
SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM
VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL

N.S. BARNETT, P. CERONE, S.S. DRAGOMIR, AND J. ROUMELIOTIS

Abstract. Some inequalities for the dispersion of a random variable whose
pdf is defined on a finite interval and applications are given.

1. Introduction

In this note we obtain some inequalities for the dispersion of a continuous random
variable X having the probability density function (p.d.f.) f defined on a finite
interval [a, b].

Tools used include: Korkine’s identity, which plays a central role in the proof of
Chebychev’s integral inequality for synchronous mappings [24], Hölder’s weighted
inequality for double integrals and an integral identity connecting the variance
σ2 (X) and the expectation E (X). Perturbed results are also obtained by using
Grüss, Chebyshev and Lupaş inequalities. In Section 4, results from an identity
involving a double integral are obtained for a variety of norms.

2. Some Inequalities for Dispersion

Let f : [a, b] ⊂ R→ R+ be the p.d.f. of the random variable X and

E (X) :=
∫ b

a

tf (t) dt

its expectation and

σ (X) =

[∫ b

a

(t− E (X))2
f (t) dt

] 1
2

=

[∫ b

a

t2f (t) dt− [E (X)]2
] 1

2

its dispersion or standard deviation.
The following theorem holds.
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1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Victoria University Eprints Repository

https://core.ac.uk/display/10835062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 N.S. BARNETT, P. CERONE, S.S. DRAGOMIR, AND J. ROUMELIOTIS

Theorem 1. With the above assumptions, we have

0 ≤ σ (X) ≤



√
3(b−a)2

6 ‖f‖∞ provided f ∈ L∞ [a, b] ;

√
2(b−a)

1+ 1
q

2[(q+1)(2q+1)]
2
q
‖f‖p provided f ∈ Lp [a, b]

and p > 1, 1
p + 1

q = 1;
√

2(b−a)
2 .

(2.1)

Proof. Korkine’s identity [24], is∫ b

a

p (t) dt
∫ b

a

p (t) g (t)h (t) dt−
∫ b

a

p (t) g (t) dt ·
∫ b

a

p (t)h (t) dt(2.2)

=
1
2

∫ b

a

∫ b

a

p (t) p (s) (g (t)− g (s)) (h (t)− h (s)) dtds ,

which holds for the measurable mappings p, g, h : [a, b]→ R for which the integrals
involved in (2.2) exist and are finite. Choose in (2.2) p (t) = f (t), g (t) = h (t) =
t− E (X), t ∈ [a, b] to get

σ2 (X) =
1
2

∫ b

a

∫ b

a

f (t) f (s) (t− s)2
dtds .(2.3)

It is obvious that ∫ b

a

∫ b

a

f (t) f (s) (t− s)2
dtds(2.4)

≤ sup
(t,s)∈[a,b]2

|f (t) f (s)|
∫ b

a

∫ b

a

(t− s)2
dtds

=
(b− a)4

6
‖f‖2∞

and then, by (2.3), we obtain the first part of (2.1).
For the second part, we apply Hölder’s integral inequality for double integrals to

obtain ∫ b

a

∫ b

a

f (t) f (s) (t− s)2
dtds

≤

(∫ b

a

∫ b

a

fp (t) fp (s) dtds

) 1
p
(∫ b

a

∫ b

a

(t− s)2q
dtds

) 1
q

= ‖f‖2p

[
(b− a)2q+2

(q + 1) (2q + 1)

] 1
q

,

where p > 1 and 1
p + 1

q = 1, and the second inequality in (2.1) is proved.
For the last part, observe that∫ b

a

∫ b

a

f (t) f (s) (t− s)2
dtds ≤ sup

(t,s)∈[a,b]2
|(t− s)|2

∫ b

a

∫ b

a

f (t) f (s) dtds

= (b− a)2
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as ∫ b

a

∫ b

a

f (t) f (s) dtds =
∫ b

a

f (t) dt
∫ b

a

f (s) ds = 1.

Using a finer argument, the last inequality in (2.1) can be improved as follows.

Theorem 2. Under the above assumptions, we have

0 ≤ σ (X) ≤ 1
2

(b− a) .(2.5)

Proof. We use the following Grüss type inequality:

0 ≤
∫ b
a
p (t) g2 (t) dt∫ b
a
p (t) dt

−

(∫ b
a
p (t) g (t) dt∫ b
a
p (t) dt

)2

≤ 1
4

(M −m)2
,(2.6)

provided that p, g are measurable on [a, b] and all the integrals in (2.6) exist and are
finite,

∫ b
a
p (t) dt > 0 and m ≤ g ≤ M a.e. on [a, b]. For a proof of this inequality

see [19].
Choose in (2.6), p (t) = f (t), g (t) = t − E (X), t ∈ [a, b]. Observe that in this

case m = a− E (X), M = b− E (X) and then, by (2.6) we deduce (2.5).

Remark 1. The same conclusion can be obtained for the choice p (t) = f (t) and
g (t) = t, t ∈ [a, b].

The following result holds.

Theorem 3. Let X be a random variable having the p.d.f. given by f : [a, b] ⊂
R→ R+. Then for any x ∈ [a, b] we have the inequality:

σ2 (X) + (x− E (X))2(2.7)

≤



(b− a)
[

(b−a)2

12 +
(
x− a+b

2

)2] ‖f‖∞ provided f ∈ L∞ [a, b] ;

[
(b−x)2q+1+(x−a)2q+1

2q+1

] 1
q ‖f‖p provided f ∈ Lp [a, b] , p > 1,

and 1
p + 1

q = 1;(
b−a

2 +
∣∣x− a+b

2

∣∣)2 .
Proof. We observe that∫ b

a

(x− t)2
f (t) dt =

∫ b

a

(
x2 − 2xt+ t2

)
f (t) dt(2.8)

= x2 − 2xE (X) +
∫ b

a

t2f (t) dt

and as

σ2 (X) =
∫ b

a

t2f (t) dt− [E (X)]2 ,(2.9)

we get, by (2.8) and (2.9),

[x− E (X)]2 + σ2 (X) =
∫ b

a

(x− t)2
f (t) dt,(2.10)

which is of interest in itself too.
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We observe that∫ b

a

(x− t)2
f (t) dt ≤ ess sup

t∈[a,b]
|f (t)|

∫ b

a

(x− t)2
dt

= ‖f‖∞
(b− x)3 + (x− a)3

3

= (b− a) ‖f‖∞

[
(b− a)2

12
+
(
x− a+ b

2

)2
]

and the first inequality in (2.7) is proved.
For the second inequality, observe that by Hölder’s integral inequality,

∫ b

a

(x− t)2
f (t) dt ≤

(∫ b

a

fp (t) dt

) 1
p
(∫ b

a

(x− t)2q
dt

) 1
q

= ‖f‖p

[
(b− x)2q+1 + (x− a)2q+1

2q + 1

] 1
q

,

and the second inequality in (2.7) is established.
Finally, observe that,∫ b

a

(x− t)2
f (t) dt ≤ sup

t∈[a,b]
(x− t)2

∫ b

a

f (t) dt

= max
{

(x− a)2
, (b− x)2

}
= (max {x− a, b− x})2

=
(
b− a

2
+
∣∣∣∣x− a+ b

2

∣∣∣∣)2

,

and the theorem is proved.

The following corollaries are easily deduced.

Corollary 1. With the above assumptions, we have

0 ≤ σ (X) ≤



(b− a)
1
2

[
(b−a)2

12 +
(
E (X)− a+b

2

)2] 1
2 ‖f‖

1
2
∞

provided f ∈ L∞ [a, b] ;

[
(b−E(X))2q+1+(E(X)−a)2q+1

2q+1

] 1
2q ‖f‖

1
2
p

if f ∈ Lp [a, b] , p > 1 and 1
p + 1

q = 1;

b−a
2 +

∣∣E (X)− a+b
2

∣∣ .

(2.11)

Remark 2. The last inequality in (2.11) is worse than the inequality (2.5), ob-
tained by a technique based on Grüss’ inequality.
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The best inequality we can get from (2.7) is that one for which x = a+b
2 , and

this applies for all the bounds as

min
x∈[a,b]

[
(b− a)2

12
+
(
x− a+ b

2

)2
]

=
(b− a)2

12
,

min
x∈[a,b]

(b− x)2q+1 + (x− a)2q+1

2q + 1
=

(b− a)2q+1

22q (2q + 1)
,

and

min
x∈[a,b]

[
b− a

2
+
∣∣∣∣x− a+ b

2

∣∣∣∣] =
b− a

2
.

Consequently, we can state the following corollary as well.

Corollary 2. With the above assumptions, we have the inequality:

0 ≤ σ2 (X) +
[
E (X)− a+ b

2

]2

(2.12)

≤



(b−a)3

12 ‖f‖∞ provided f ∈ L∞ [a, b] ;

(b−a)2q+1

4(2q+1)
1
q
‖f‖p if f ∈ Lp [a, b] , p > 1,

and 1
p + 1

q = 1;
(b−a)2

12 .

Remark 3. from the last inequality in (2.12), we obtain

0 ≤ σ2 (X) ≤ (b− E (X)) (E (X)− a) ≤ 1
4

(b− a)2
,(2.13)

which is an improvement on (2.5).

3. Perturbed Results Using Grüss Type inequalities

In 1935, G. Grüss ( see for example [26]) proved the following integral inequality
which gives an approximation for the integral of a product in terms of the product
of the integrals.

Theorem 4. Let h, g : [a, b]→ R be two integrable mappings such that φ ≤ h (x) ≤
Φ and γ ≤ g (x) ≤ Γ for all x ∈ [a, b], where φ,Φ, γ,Γ are real numbers. Then,

|T (h, g)| ≤ 1
4

(Φ− φ) (Γ− γ) ,(3.1)

where

T (h, g) =
1

b− a

∫ b

a

h (x) g (x) dx− 1
b− a

∫ b

a

h (x) dx · 1
b− a

∫ b

a

g (x) dx(3.2)

and the inequality is sharp, in the sense that the constant 1
4 cannot be replaced by

a smaller one.

For a simple proof of this as well as for extensions, generalisations, discrete
variants and other associated material, see [25], and [1]-[21] where further references
are given.

A ‘premature’ Grüss inequality is embodied in the following theorem which was
proved in [23]. It provides a sharper bound than the above Grüss inequality.
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Theorem 5. Let h, g be integrable functions defined on [a, b] and let d ≤ g (t) ≤ D.
Then

|T (h, g)| ≤ D − d
2
|T (h, h)|

1
2 ,(3.3)

where T (h, g) is as defined in (3.2).

Theorem 5 will now be used to provide a perturbed rule involving the variance
and mean of a p.d.f.

3.1. Perturbed Results Using ‘Premature’ Inequalities. In this subsection
we develop some perturbed results.

Theorem 6. Let X be a random variable having the p.d.f. given by f : [a, b] ⊂
R→ R+. Then for any x ∈ [a, b] and m ≤ f (x) ≤M we have the inequality

|PV (x)| : =

∣∣∣∣∣σ2 (X) + (x− E (X))2 − (b− a)2

12
−
(
x− a+ b

2

)2
∣∣∣∣∣(3.4)

≤ M −m
2

· (b− a)2

√
45

[(
b− a

2

)2

+ 15
(
x− a+ b

2

)] 1
2

≤ (M −m)
(b− a)3

√
45

.

Proof. Applying the ‘premature’ Grüss result (3.3) by associating g (t) with f (t)
and h (t) = (x− t)2

, gives, from (3.1)-(3.3)∣∣∣∣∣
∫ b

a

(x− t)2
f (t) dt− 1

b− a

∫ b

a

(x− t)2
dt ·

∫ b

a

f (t) dt

∣∣∣∣∣(3.5)

≤ (b− a)
M −m

2
[T (h, h)]

1
2 ,

where from (3.2)

T (h, h) =
1

b− a

∫ b

a

(x− t)4
dt−

[
1

b− a

∫ b

a

(x− t)2
dt

]2

.(3.6)

Now,

1
b− a

∫ b

a

(x− t)2
dt =

(x− a)3 + (b− x)3

3 (b− a)
(3.7)

=
1
3

(
b− a

2

)2

+
(
x− a+ b

2

)2

and

1
b− a

∫ b

a

(x− t)4
dt =

(x− a)5 + (b− x)5

5 (b− a)

giving, from (3.6),

45T (h, h) = 9

[
(x− a)5 + (b− x)5

b− a

]
− 5

[
(x− a)3 + (b− x)3

b− a

]2

.(3.8)
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Let A = x− a and B = b− x in (3.8) to give

45T (h, h) = 9
(
A5 +B5

A+B

)
− 5

(
A3 +B3

A+B

)2

= 9
[
A4 −A3B +A2B2 −AB3 +B4]− 5

[
A2 −AB +B2]2

=
(
4A2 − 7AB + 4B2) (A+B)2

=

[(
A+B

2

)2

+ 15
(
A−B

2

)2
]

(A+B)2
.

Using the facts that A+B = b− a and A−B = 2x− (a+ b) gives

T (h, h) =
(b− a)2

45

[(
b− a

2

)2

+ 15
(
x− a+ b

2

)2
]

(3.9)

and from (3.7)

1
b− a

∫ b

a

(x− t)2
dt =

A3 +B3

3 (A+B)
=

1
3
[
A2 −AB +B2]

=
1
3

[(
A+B

2

)2

+ 3
(
A−B

2

)2
]
,

giving

1
b− a

∫ b

a

(x− t)2
dt =

(b− a)
12

2

+
(
x− a+ b

2

)2

.(3.10)

Hence, from (3.5), (3.9) (3.10) and (2.10), the first inequality in (3.4) results. The
coarsest uniform bound is obtained by taking x at either end point. Thus the
theorem is completely proved.

Remark 4. The best inequality otainable from (3.4) is at x = a+b
2 giving∣∣∣∣∣σ2 (X) +

[
E (X)− a+ b

2

]2

− (b− a)2

12

∣∣∣∣∣ ≤ M −m
12

(b− a)3

√
5

.(3.11)

The result (3.11) is a tighter bound than that obtained in the first inequality of
(2.12) since 0 < M −m < 2 ‖f‖∞.

For a symmetric p.d.f. E (X) = a+b
2 and so the above results would give bounds

on the variance.
The following results hold if the p.d.f f (x) is differentiable, that is, for f (x)

absolutely continuous.

Theorem 7. Let the conditions on Theorem 4 be satisfied. Further, suppose that
f is differentiable and is such that

‖f ′‖∞ := sup
t∈[a,b]

|f ′ (t)| <∞.

Then

|PV (x)| ≤ b− a√
12
‖f ′‖∞ · I (x) ,(3.12)
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where PV (x) is given by the left hand side of (3.4) and,

I (x) =
(b− a)2

√
45

[(
b− a

2

)2

+ 15
(
x− a+ b

2

)2
] 1

2

.(3.13)

Proof. Let h, g : [a, b] → R be absolutely continuous and h′, g′ be bounded. Then
Chebychev’s inequality holds (see [23])

T (h, g) ≤ (b− a)2

√
12

sup
t∈[a,b]

|h′ (t)| · sup
t∈[a,b]

|g′ (t)| .

Matić, Pečarić and Ujević [23] using a ‘premature’ Grüss type argument proved
that

T (h, g) ≤ (b− a)√
12

sup
t∈[a,b]

|g′ (t)|
√
T (h, h).(3.14)

Associating f (·) with g (·) and (x− ·)2 with h (·) in (3.13) gives, from (3.5) and
(3.9), I (x) = (b− a) [T (h, h)]

1
2 , which simplifies to (3.13) and the theorem is

proved.

Theorem 8. Let the conditions of Theorem 6 be satisfied. Further, suppose that f
is locally absolutely continuous on (a, b) and let f ′ ∈ L2 (a, b). Then

|PV (x)| ≤ b− a
π
‖f ′‖2 · I (x) ,(3.15)

where PV (x) is the left hand side of (3.4) and I (x) is as given in (3.13).

Proof. The following result was obtained by Lupaş (see [23]). For h, g : (a, b)→ R
locally absolutely continuous on (a, b) and h′, g′ ∈ L2 (a, b) , then

|T (h, g)| ≤ (b− a)2

π2 ‖h′‖2 ‖g
′‖2 ,

where

‖k‖2 :=

(
1

b− a

∫ b

a

|k (t)|2
) 1

2

for k ∈ L2 (a, b) .

Matić, Pečarić and Ujević [23] further show that

|T (h, g)| ≤ b− a
π
‖g′‖2

√
T (h, h).(3.16)

Associating f (·) with g (·) and (x− ·)2 with h in (3.16) gives (3.15), where I (x) is
as found in (3.13), since from (3.5) and (3.9), I (x) = (b− a) [T (h, h)]

1
2 .

3.2. Alternate Grüss Type Results for Inequalities Involving the Vari-
ance. Let

S (h (x)) = h (x)−M (h)(3.17)

where

M (h) =
1

b− a

∫ b

a

h (u) du.(3.18)

Then from (3.2),

T (h, g) =M (hg)−M (h)M (g) .(3.19)
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Dragomir and McAndrew [19] have shown, that

T (h, g) = T (S (h) , S (g))(3.20)

and proceeded to obtain bounds for a trapezoidal rule. Identity (3.20) is now
applied to obtain bounds for the variance.

Theorem 9. Let X be a random variable having the p.d.f. f : [a, b] ⊂ R→ R+.
Then for any x ∈ [a, b] the following inequality holds, namely,

|PV (x)| ≤ 8
3
ν3 (x)

∥∥∥∥f (·)− 1
b− a

∥∥∥∥
∞

if f ∈ L∞ [a, b] ,(3.21)

where PV (x) is as defined by the left hand side of (3.4), and ν = ν (x) = 1
3

(
b−a

2

)2
+(

x− a+b
2

)2
.

Proof. Using identity (3.20), associate with h (·), (x− ·)2 and f (·) with g (·). Then∫ b

a

(x− t)2
f (t) dt−M

(
(x− ·)2

)
(3.22)

=
∫ b

a

[
(x− t)2 −M

(
(x− ·)2

)] [
f (t)− 1

b− a

]
dt,

where from (3.18),

M
(

(x− ·)2
)

=
1

b− a

∫ b

a

(x− t)2
dt =

1
3 (b− a)

[
(x− a)3 + (b− x)3

]
and so

3M
(

(x− ·)2
)

=
(
b− a

2

)2

+ 3
(
x− a+ b

2

)2

.(3.23)

Further, from (3.17),

S
(

(x− ·)2
)

= (x− t)2 −M
(

(x− ·)2
)

and so, on using (3.23)

S
(

(x− ·)2
)

= (x− t)2 − 1
3

(
b− a

2

)2

−
(
x− a+ b

2

)2

.(3.24)

Now, from (3.22) and using (2.10), (3.23) and (3.24), the following identity is ob-
tained

σ2 (X) + [x− E (X)]2 − 1
3

[(
b− a

2

)2

+ 3
(
x− a+ b

2

)2
]

(3.25)

=
∫ b

a

S
(

(x− t)2
)(

f (t)− 1
b− a

)
dt,

where S (·) is as given by (3.24). Taking the modulus of (3.25) gives

|PV (x)| =

∣∣∣∣∣
∫ b

a

S
(

(x− t)2
)(

f (t)− 1
b− a

)
dt

∣∣∣∣∣ .(3.26)

Observe that under different assumptions with regard to the norms of the p.d.f.
f (x) we may obtain a variety of bounds.
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For f ∈ L∞ [a, b] then

|PV (x)| ≤
∥∥∥∥f (·)− 1

b− a

∥∥∥∥
∞

∫ b

a

∣∣∣S ((x− t)2
)∣∣∣ dt.(3.27)

Now, let

S
(

(x− t)2
)

= (t− x)2 − ν2 = (t−X−) (t−X+) ,(3.28)

where

ν2 = M
(

(x− ·)2
)

=
(x− a)3 + (b− x)3

3 (b− a)
(3.29)

=
1
3

(
b− a

2

)2

+
(
x− a+ b

2

)2

,

and

X− = x− ν, X+ = x+ ν.(3.30)

Then,

H (t) =
∫
S
(

(x− t)2
)
dt =

∫ [
(t− x)2 − ν2

]
dt(3.31)

=
(t− x)3

3
− ν2t+ k

and so from (3.31) and using (3.28) - (3.29) gives,∫ b

a

∣∣∣S ((x− t)2
)∣∣∣ dt(3.32)

= H (X−)−H (a)− [H (X+)−H (X−)] + [H (b)−H (X+)]
= 2 [H (X−)−H (X+)] +H (b)−H (a)

= 2
{
−ν

3

3
− ν2X− −

ν3

3
+ ν2X+

}
+

(b− x)3

3
− ν2b+

(x− a)3

3
+ ν2a

= 2
[
2ν3 − 2

3
ν3
]

+
(b− x)3 + (x− a)3

3
− ν2 (b− a)

=
8
3
ν3.

Thus, substituting into (3.27), (3.26) and using (3.29) readily produces the result
(3.21) and the theorem is proved.

Remark 5. Other bounds may be obtained for f ∈ Lp [a, b], p ≥ 1 however ob-
taining explicit expressions for these bounds is somewhat intricate and will not be
considered further here. They involve the calculation of

sup
t∈[a,b]

∣∣∣(t− x)2 − ν2
∣∣∣ = max

{∣∣∣(x− a)2 − ν2
∣∣∣ , ν2,

∣∣∣(b− x)2 − ν2
∣∣∣}

for f ∈ L1 [a, b] and (∫ b

a

∣∣∣(t− x)2 − ν2
∣∣∣q dt) 1

q

for f ∈ Lp [a, b], 1
p + 1

q = 1, p > 1, where ν2 is given by (3.29).
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4. Some Inequalities for Absolutely Continuous P.D.F.s

We start with the following lemma which is interesting in itself.

Lemma 1. Let X be a random variable whose probability density function f :
[a, b]→ R+ is absolutely continuous on [a, b]. Then we have the identity

σ2 (X) + [E (X)− x]2(4.1)

=
(b− a)2

12
+
(
x− a+ b

2

)2

+
1

b− a

∫ b

a

∫ b

a

(t− x)2
p (t, s) f ′ (s) dsdt,

where the kernel p : [a, b]2 → R is given by

p (t, s) :=

 s− a if a ≤ s ≤ t ≤ b

s− b if a ≤ t < s ≤ b
,

for all x ∈ [a, b].

Proof. We use the identity (see (2.10))

σ2 (X) + [E (X)− x]2 =
∫ b

a

(x− t)2
f (t) dt(4.2)

for all x ∈ [a, b].
On the other hand, we know that (see for example [22] for a simple proof using

integration by parts)

f (t) =
1

b− a

∫ b

a

f (s) ds+
1

b− a

∫ b

a

p (t, s) f ′ (s) ds(4.3)

for all t ∈ [a, b].
Substituting (4.3) in (4.2) we obtain

σ2 (X) + [E (X)− x]2(4.4)

=
∫ b

a

(t− x)2

[
1

b− a

∫ b

a

f (s) ds+
1

b− a

∫ b

a

p (t, s) f ′ (s) ds

]
dt

=
1

b− a
· 1

3

[
(x− a)3 + (b− x)3

]
+

1
b− a

∫ b

a

∫ b

a

(t− x)2
p (t, s) f ′ (s) dsdt.

Taking into account the fact that

1
3

[
(x− a)3 + (b− x)3

]
=

(b− a)2

12
+
(
x− a+ b

2

)2

, x ∈ [a, b] ,

then, by (4.4) we deduce the desired result (4.1).

The following inequality for P.D.F.s which are absolutely continuous and have
the derivatives essentially bounded holds.
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Theorem 10. If f : [a, b] → R+ is absolutely continuous on [a, b] and f ′ ∈
L∞ [a, b], i.e., ‖f ′‖∞ := ess sup

t∈[a,b]
|f ′ (t)| <∞, then we have the inequality:

∣∣∣∣∣σ2 (X) + [E (X)− x]2 − (b− a)2

12
−
(
x− a+ b

2

)2
∣∣∣∣∣(4.5)

≤ (b− a)2

3

[
(b− a)2

10
+
(
x− a+ b

2

)2
]
‖f ′‖∞

for all x ∈ [a, b].

Proof. Using Lemma 1, we have∣∣∣∣∣σ2 (X) + [E (X)− x]2 − (b− a)2

12
−
(
x− a+ b

2

)2
∣∣∣∣∣

=
1

b− a

∣∣∣∣∣
∫ b

a

∫ b

a

(t− x)2
p (t, s) f ′ (s) dsdt

∣∣∣∣∣
≤ 1

b− a

∫ b

a

∫ b

a

(t− x)2 |p (t, s)| |f ′ (s)| dsdt

≤
‖f ′‖∞
b− a

∫ b

a

∫ b

a

(t− x)2 |p (t, s)| dsdt.

We have

I : =
∫ b

a

∫ b

a

(t− x)2 |p (t, s)| dsdt

=
∫ b

a

(t− x)2

[∫ t

a

(s− a) ds+
∫ b

t

(b− s) ds

]
dt

=
∫ b

a

(t− x)2

[
(t− a)2 + (b− t)2

2

]
dt

=
1
2

[∫ b

a

(t− x)2 (t− a)2
dt+

∫ b

a

(t− x)2 (b− t)2
dt

]

=
(Ia + Ib)

2
.

Let A = x− a, B = b− x then

Ia =
∫ b

a

(t− x)2 (t− a)2
dt

=
∫ b−a

0

(
u2 − 2Au+A2)u2du

=
(b− a)3

3

[
A2 − 3

2
A (b− a) +

3
5

(b− a)2
]
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and

Ib =
∫ b

a

(t− x)2 (b− t)2
dt

=
∫ b−a

0

(
u2 − 2Bu+B2)u2du

=
(b− a)3

3

[
B2 − 3

2
B (b− a) +

3
5

(b− a)2
]

Now,

Ia + Ib
2

=
(b− a)3

3

[
A2 +B2

2
− 3

4
(A+B) (b− a) +

3
5

(b− a)2
]

=
(b− a)3

3

[(
b− a

2

)2

+
(
x− a+ b

2

)2

− 3
(b− a)2

20

]
(b− a)3

3

[
(b− a)2

10
+
(
x− a+ b

2

)2
]

and the theorem is proved.

The best inequality we can get from (4.5) is embodied in the following corollary.

Corollary 3. If f is as in Theorem 10, then we have∣∣∣∣∣σ2 (X) +
[
E (X)− a+ b

2

]2

− (b− a)2

12

∣∣∣∣∣ ≤ (b− a)4

30
‖f ′‖∞ .(4.6)

We now analyze the case where f ′ is a Lebesgue p−integrable mapping with
p ∈ (1,∞).

Remark 6. The results of Theorem 10 may be compared with those of Theorem 7.
It may be shown that both bounds are convex and symmetric about x = a+b

2 . Further,
the bound given by the ‘premature’ Chebychev approach, namely from (3.12)-(3.13)
is tighter than that obtained by the current approach (4.5) which may be shown from
the following. Let these bounds be described by Bp and Bc so that, neglecting the
common terms

Bp =
b− a
2
√

15

[(
b− a

2

)2

+ 15Y

] 1
2

and

Bc =
(b− a)2

100
+ Y,

where

Y =
(
x− a+ b

2

)2

.

It may be shown through some straightforward algebra that B2
c − B2

p > 0 for all
x ∈ [a, b] so that Bc > Bp.
The current development does however have the advantage that the identity (4.1)
is satisfied, thus allowing bounds for Lp [a, b], p ≥ 1 rather than the infinity norm.
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Theorem 11. If f : [a, b] → R+ is absolutely continuous on [a, b] and f ′ ∈ Lp,
i.e.,

‖f ′‖p :=

(∫ b

a

|f ′ (t)|p dt

) 1
p

<∞, p ∈ (1,∞)

then we have the inequality∣∣∣∣∣σ2 (X) + [E (X)− x]2 − (b− a)2

12
−
(
x− a+ b

2

)2
∣∣∣∣∣(4.7)

≤
‖f ′‖p

(b− a)
1
p (q + 1)

1
q

[
(x− a)3q+2

B̃

(
b− a
x− a

, 2q + 1, q + 2
)

+ (b− x)3q+2
B̃

(
b− a
b− x

, 2q + 1, q + 2
)]

for all x ∈ [a, b], when 1
p + 1

q = 1 and B̃ (·, ·, ·) is the quasi incomplete Euler’s Beta
mapping:

B̃ (z;α, β) :=
∫ z

0
(u− 1)α−1

uβ−1du, α, β > 0, z ≥ 1.

Proof. Using Lemma 1, we have, as in Theorem 10, that∣∣∣∣∣σ2 (X) + [E (X)− x]2 − (b− a)2

12
−
(
x− a+ b

2

)2
∣∣∣∣∣(4.8)

≤ 1
b− a

∫ b

a

∫ b

a

(t− x)2 |p (t, s)| |f ′ (s)| dsdt.

Using Hölder’s integral inequality for double integrals, we have∫ b

a

∫ b

a

(t− x)2 |p (t, s)| |f ′ (s)| dsdt(4.9)

≤

(∫ b

a

∫ b

a

|f ′ (s)|p dsdt

) 1
p
(∫ b

a

∫ b

a

(t− x)2q |p (t, s)|q dsdt

) 1
q

= (b− a)
1
p ‖f ′‖p

(∫ b

a

∫ b

a

(t− x)2q |p (t, s)|q dsdt

) 1
q

,

where p > 1, 1
p + 1

q = 1.
We have to compute the integral

D : =
∫ b

a

∫ b

a

(t− x)2q |p (t, s)|q dsdt(4.10)

=
∫ b

a

(t− x)2q

[∫ t

a

(s− a)q ds+
∫ b

t

(b− s)q ds

]
dt

=
∫ b

a

(t− x)2q

[
(t− a)q+1 + (b− t)q+1

q + 1

]
dt

=
1

q + 1

[∫ b

a

(t− x)2q (t− a)q+1
dt+

∫ b

a

(t− x)2q (b− t)q+1
dt

]
.
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Define

E :=
∫ b

a

(t− x)2q (t− a)q+1
dt.(4.11)

If we consider the change of variable t = (1− u) a+ux, we have t = a implies u = 0
and t = b implies u = b−a

x−a , dt = (x− a) du and then

E =
∫ b−a

x−a

0
[(1− u) a+ ux− x]2q [(1− u) a+ ux− a] (x− a) du(4.12)

= (x− a)3q+2
∫ b−a

x−a

0
(u− 1)2q

uq+1du

= (x− a)3q+2
B̃

(
b− a
x− a

, 2q + 1, q + 2
)
.

Define

F :=
∫ b

a

(t− x)2q (b− t)q+1
dt.(4.13)

If we consider the change of variable t = (1− v) b+vx, we have t = b implies v = 0,
and t = a implies v = b−a

b−x , dt = (x− b) dv and then

F =
∫ 0

b−a
b−x

[(1− v) b+ vx− x]2q [b− (1− v) b− vx]q+1 (x− b) dv(4.14)

= (b− x)3q+2
∫ b−a

b−x

0
(v − 1)2q

vq+1dv

= (b− x)3q+2
B̃

(
b− a
b− x

, 2q + 1, q + 2
)
.

Now, using the inequalities (4.8)-(4.9) and the relations (4.10)-(4.14), since D =
1
q+1 (E + F ) , we deduce the desired estimate (4.7).

The following corollary is natural to be considered.

Corollary 4. Let f be as in Theorem 11. Then, we have the inequality:∣∣∣∣∣σ2 (X) +
[
E (X)− a+ b

2

]2

− (b− a)2

12

∣∣∣∣∣(4.15)

≤
‖f ′‖p (b− a)2+ 3

q

(q + 1)
1
q 23+ 2

q

[B (2q + 1, q + 1) + Ψ (2q + 1, q + 2)]
1
q ,

where 1
p + 1

q = 1, p > 1 and B (·, ·) is Euler’s Beta mapping and Ψ (α, β) :=∫ 1
0 u

α−1 (u+ 1)β−1
du, α, β > 0.

Proof. In (4.7) put x = a+b
2 .

The left side is clear.
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Now

B̃ (2, 2q + 1, q + 2) =
∫ 2

0
(u− 1)2q

uq+1du

=
∫ 1

0
(u− 1)2q

uq+1du+
∫ 2

1
(u− 1)2q

uq+1du

= B (2q + 1, q + 2) + Ψ (2q + 1, q + 2) .

The right hand side of (4.7) is thus:-

‖f ′‖p
(
b−a

2

) 3q+2
q

(b− a)
1
p (q + 1)

1
q

[2B (2q + 1, q + 2) + 2Ψ (2q + 1, q + 2)]
1
q

=
‖f ′‖p (b− a)2+ 3

q

(q + 1)
1
q 23+ 2

q

[B (2q + 1, q + 2) + Ψ (2q + 1, q + 2)]
1
q

and the corollary is proved.

Finally, as f is absolutely continuous, f ′ ∈ L1 [a, b] and ‖f ′‖1 =
∫ b
a
|f ′ (t)| dt,

and we can state the following theorem.

Theorem 12. If the p.d.f., f : [a, b]→ R+ is absolutely continuous on [a, b], then∣∣∣∣∣σ2 (X) + [E (X)− x]2 − (b− a)2

12
−
(
x− a+ b

2

)2
∣∣∣∣∣(4.16)

≤ ‖f ′‖1 (b− a)
[

1
2

(b− a) +
∣∣∣∣x− a+ b

2

∣∣∣∣]2

for all x ∈ [a, b].

Proof. As above, we can state that∣∣∣∣∣σ2 (X) + [E (X)− x]2 − (b− a)2

12
−
(
x− a+ b

2

)2
∣∣∣∣∣

≤ 1
b− a

∫ b

a

∫ b

a

(t− x)2 |p (t, s)| |f ′ (s)| dsdt

≤ sup
(t,s)∈[a,b]2

[
(t− x)2 |p (t, s)|

] 1
b− a

∫ b

a

∫ b

a

|f ′ (s)| dsdt

= ‖f ′‖1G
where

G : = sup
(t,s)∈[a,b]2

[
(t− x)2 |p (t, s)|

]
≤ (b− a) sup

t∈[a,b]
(t− x)2

= (b− a) [max (x− a, b− x)]2

= (b− a)
[

1
2

(b− a) +
∣∣∣∣x− a+ b

2

∣∣∣∣]2

,

and the theorem is proved.

It is clear that the best inequality we can get from (4.16) is the one when x = a+b
2 ,

giving the following corollary.
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Corollary 5. With the assumptions of Theorem 12, we have:∣∣∣∣∣σ2 (X) +
[
E (X)− a+ b

2

]2

− (b− a)2

12

∣∣∣∣∣ ≤ (b− a)3

4
‖f ′‖1 .(4.17)
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