SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL

N.S. BARNETT, P. CERONE, S.S. DRAGOMIR, AND J. ROUMELIOTIS

AbStract. Some inequalities for the dispersion of a random variable whose
pdf is defined on a finite interval and applications are given.

1. Introduction

In this note we obtain some inequalities for the dispersion of a continuous random variable X having the probability density function (p.d.f.) f defined on a finite interval $[a, b]$.

Tools used include: Korkine's identity, which plays a central role in the proof of Chebychev's integral inequality for synchronous mappings [24], Hölder's weighted inequality for double integrals and an integral identity connecting the variance $\sigma^{2}(X)$ and the expectation $E(X)$. Perturbed results are also obtained by using Grüss, Chebyshev and Lupaş inequalities. In Section 4, results from an identity involving a double integral are obtained for a variety of norms.

2. Some Inequalities for Dispersion

Let $f:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}_{+}$be the p.d.f. of the random variable X and

$$
E(X):=\int_{a}^{b} t f(t) d t
$$

its expectation and

$$
\begin{aligned}
\sigma(X) & =\left[\int_{a}^{b}(t-E(X))^{2} f(t) d t\right]^{\frac{1}{2}} \\
& =\left[\int_{a}^{b} t^{2} f(t) d t-[E(X)]^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

its dispersion or standard deviation.
The following theorem holds.

[^0]Theorem 1. With the above assumptions, we have

$$
0 \leq \sigma(X) \leq\left\{\begin{array}{lll}
\frac{\sqrt{3}(b-a)^{2}}{6}\|f\|_{\infty} & \text { provided } & f \in L_{\infty}[a, b] \tag{2.1}\\
\frac{\sqrt{2}(b-a)^{1+\frac{1}{q}}}{2[(q+1)(2 q+1)]^{\frac{2}{q}}}\|f\|_{p} & \text { provided } & f \in L_{p}[a, b] \\
\frac{\text { 公 }(b-a)}{2} . & \text { and } & p>1, \frac{1}{p}+\frac{1}{q}=1
\end{array}\right.
$$

Proof. Korkine's identity [24], is

$$
\begin{align*}
& \int_{a}^{b} p(t) d t \int_{a}^{b} p(t) g(t) h(t) d t-\int_{a}^{b} p(t) g(t) d t \cdot \int_{a}^{b} p(t) h(t) d t \tag{2.2}\\
= & \frac{1}{2} \int_{a}^{b} \int_{a}^{b} p(t) p(s)(g(t)-g(s))(h(t)-h(s)) d t d s
\end{align*}
$$

which holds for the measurable mappings $p, g, h:[a, b] \rightarrow \mathbb{R}$ for which the integrals involved in (2.2) exist and are finite. Choose in (2.2) $p(t)=f(t), g(t)=h(t)=$ $t-E(X), t \in[a, b]$ to get

$$
\begin{equation*}
\sigma^{2}(X)=\frac{1}{2} \int_{a}^{b} \int_{a}^{b} f(t) f(s)(t-s)^{2} d t d s \tag{2.3}
\end{equation*}
$$

It is obvious that

$$
\begin{align*}
& \int_{a}^{b} \int_{a}^{b} f(t) f(s)(t-s)^{2} d t d s \tag{2.4}\\
\leq & \sup _{(t, s) \in[a, b]^{2}}|f(t) f(s)| \int_{a}^{b} \int_{a}^{b}(t-s)^{2} d t d s \\
= & \frac{(b-a)^{4}}{6}\|f\|_{\infty}^{2}
\end{align*}
$$

and then, by (2.3), we obtain the first part of (2.1).
For the second part, we apply Hölder's integral inequality for double integrals to obtain

$$
\begin{aligned}
& \int_{a}^{b} \int_{a}^{b} f(t) f(s)(t-s)^{2} d t d s \\
\leq & \left(\int_{a}^{b} \int_{a}^{b} f^{p}(t) f^{p}(s) d t d s\right)^{\frac{1}{p}}\left(\int_{a}^{b} \int_{a}^{b}(t-s)^{2 q} d t d s\right)^{\frac{1}{q}} \\
= & \|f\|_{p}^{2}\left[\frac{(b-a)^{2 q+2}}{(q+1)(2 q+1)}\right]^{\frac{1}{q}},
\end{aligned}
$$

where $p>1$ and $\frac{1}{p}+\frac{1}{q}=1$, and the second inequality in (2.1) is proved.
For the last part, observe that

$$
\begin{aligned}
\int_{a}^{b} \int_{a}^{b} f(t) f(s)(t-s)^{2} d t d s & \leq \sup _{(t, s) \in[a, b]^{2}}|(t-s)|^{2} \int_{a}^{b} \int_{a}^{b} f(t) f(s) d t d s \\
& =(b-a)^{2}
\end{aligned}
$$

as

$$
\int_{a}^{b} \int_{a}^{b} f(t) f(s) d t d s=\int_{a}^{b} f(t) d t \int_{a}^{b} f(s) d s=1
$$

Using a finer argument, the last inequality in (2.1) can be improved as follows.
Theorem 2. Under the above assumptions, we have

$$
\begin{equation*}
0 \leq \sigma(X) \leq \frac{1}{2}(b-a) \tag{2.5}
\end{equation*}
$$

Proof. We use the following Grüss type inequality:

$$
\begin{equation*}
0 \leq \frac{\int_{a}^{b} p(t) g^{2}(t) d t}{\int_{a}^{b} p(t) d t}-\left(\frac{\int_{a}^{b} p(t) g(t) d t}{\int_{a}^{b} p(t) d t}\right)^{2} \leq \frac{1}{4}(M-m)^{2} \tag{2.6}
\end{equation*}
$$

provided that p, g are measurable on $[a, b]$ and all the integrals in (2.6) exist and are finite, $\int_{a}^{b} p(t) d t>0$ and $m \leq g \leq M$ a.e. on $[a, b]$. For a proof of this inequality see [19].

Choose in (2.6), $p(t)=f(t), g(t)=t-E(X), t \in[a, b]$. Observe that in this case $m=a-E(X), M=b-E(X)$ and then, by (2.6) we deduce (2.5).
Remark 1. The same conclusion can be obtained for the choice $p(t)=f(t)$ and $g(t)=t, t \in[a, b]$.

The following result holds.
Theorem 3. Let X be a random variable having the p.d.f. given by $f:[a, b] \subset$ $\mathbb{R} \rightarrow \mathbb{R}_{+}$. Then for any $x \in[a, b]$ we have the inequality:

$$
\begin{align*}
& \sigma^{2}(X)+(x-E(X))^{2} \tag{2.7}\\
\leq & \left\{\begin{array}{lll}
(b-a)\left[\frac{(b-a)^{2}}{12}+\left(x-\frac{a+b}{2}\right)^{2}\right]\|f\|_{\infty} & \text { provided } & f \in L_{\infty}[a, b] ; \\
{\left[\frac{(b-x)^{2 q+1}+(x-a)^{2 q+1}}{2 q+1}\right]^{\frac{1}{q}}\|f\|_{p}} & \text { provided } & f \in L_{p}[a, b], p>1 \\
\left(\frac{b-a}{2}+\left|x-\frac{a+b}{2}\right|\right)^{2} . & \text { and } & \frac{1}{p}+\frac{1}{q}=1 ;
\end{array}\right.
\end{align*}
$$

Proof. We observe that

$$
\begin{align*}
\int_{a}^{b}(x-t)^{2} f(t) d t & =\int_{a}^{b}\left(x^{2}-2 x t+t^{2}\right) f(t) d t \tag{2.8}\\
& =x^{2}-2 x E(X)+\int_{a}^{b} t^{2} f(t) d t
\end{align*}
$$

and as

$$
\begin{equation*}
\sigma^{2}(X)=\int_{a}^{b} t^{2} f(t) d t-[E(X)]^{2} \tag{2.9}
\end{equation*}
$$

we get, by (2.8) and (2.9),

$$
\begin{equation*}
[x-E(X)]^{2}+\sigma^{2}(X)=\int_{a}^{b}(x-t)^{2} f(t) d t \tag{2.10}
\end{equation*}
$$

which is of interest in itself too.

We observe that

$$
\begin{aligned}
\int_{a}^{b}(x-t)^{2} f(t) d t & \leq \text { ess } \sup _{t \in[a, b]}|f(t)| \int_{a}^{b}(x-t)^{2} d t \\
& =\|f\|_{\infty} \frac{(b-x)^{3}+(x-a)^{3}}{3} \\
& =(b-a)\|f\|_{\infty}\left[\frac{(b-a)^{2}}{12}+\left(x-\frac{a+b}{2}\right)^{2}\right]
\end{aligned}
$$

and the first inequality in (2.7) is proved.
For the second inequality, observe that by Hölder's integral inequality,

$$
\begin{aligned}
\int_{a}^{b}(x-t)^{2} f(t) d t & \leq\left(\int_{a}^{b} f^{p}(t) d t\right)^{\frac{1}{p}}\left(\int_{a}^{b}(x-t)^{2 q} d t\right)^{\frac{1}{q}} \\
& =\|f\|_{p}\left[\frac{(b-x)^{2 q+1}+(x-a)^{2 q+1}}{2 q+1}\right]^{\frac{1}{q}}
\end{aligned}
$$

and the second inequality in (2.7) is established.
Finally, observe that,

$$
\begin{aligned}
\int_{a}^{b}(x-t)^{2} f(t) d t & \leq \sup _{t \in[a, b]}(x-t)^{2} \int_{a}^{b} f(t) d t \\
& =\max \left\{(x-a)^{2},(b-x)^{2}\right\} \\
& =(\max \{x-a, b-x\})^{2} \\
& =\left(\frac{b-a}{2}+\left|x-\frac{a+b}{2}\right|\right)^{2}
\end{aligned}
$$

and the theorem is proved.

The following corollaries are easily deduced.
Corollary 1. With the above assumptions, we have

$$
0 \leq \sigma(X) \leq\left\{\begin{array}{l}
(b-a)^{\frac{1}{2}}\left[\frac{(b-a)^{2}}{12}+\left(E(X)-\frac{a+b}{2}\right)^{2}\right]^{\frac{1}{2}}\|f\|_{\infty}^{\frac{1}{2}} \\
\text { provided } f \in L_{\infty}[a, b] ; \\
{\left[\frac{(b-E(X))^{2 q+1}+(E(X)-a)^{2 q+1}}{2 q+1}\right]^{\frac{1}{2 q}}\|f\|_{p}^{\frac{1}{2}}} \tag{2.11}\\
\text { if } f \in L_{p}[a, b], p>1 \text { and } \frac{1}{p}+\frac{1}{q}=1 \\
\frac{b-a}{2}+\left|E(X)-\frac{a+b}{2}\right|
\end{array}\right.
$$

Remark 2. The last inequality in (2.11) is worse than the inequality (2.5), obtained by a technique based on Grüss' inequality.

The best inequality we can get from (2.7) is that one for which $x=\frac{a+b}{2}$, and this applies for all the bounds as

$$
\begin{aligned}
\min _{x \in[a, b]}\left[\frac{(b-a)^{2}}{12}+\left(x-\frac{a+b}{2}\right)^{2}\right] & =\frac{(b-a)^{2}}{12}, \\
\min _{x \in[a, b]} \frac{(b-x)^{2 q+1}+(x-a)^{2 q+1}}{2 q+1} & =\frac{(b-a)^{2 q+1}}{2^{2 q}(2 q+1)},
\end{aligned}
$$

and

$$
\min _{x \in[a, b]}\left[\frac{b-a}{2}+\left|x-\frac{a+b}{2}\right|\right]=\frac{b-a}{2} .
$$

Consequently, we can state the following corollary as well.
Corollary 2. With the above assumptions, we have the inequality:

$$
\begin{align*}
0 & \leq \sigma^{2}(X)+\left[E(X)-\frac{a+b}{2}\right]^{2} \tag{2.12}\\
& \leq\left\{\begin{array}{lll}
\frac{(b-a)^{3}}{12}\|f\|_{\infty} & \text { provided } & f \in L_{\infty}[a, b] ; \\
\frac{(b-a)^{2 q+1}}{4(2 q+1)^{\frac{1}{q}}}\|f\|_{p} & \text { if } & f \in L_{p}[a, b], p>1, \\
\frac{(b-a)^{2}}{12} . & \text { and } & \frac{1}{p}+\frac{1}{q}=1 ;
\end{array}\right.
\end{align*}
$$

Remark 3. from the last inequality in (2.12), we obtain

$$
\begin{equation*}
0 \leq \sigma^{2}(X) \leq(b-E(X))(E(X)-a) \leq \frac{1}{4}(b-a)^{2} \tag{2.13}
\end{equation*}
$$

which is an improvement on (2.5).

3. Perturbed Results Using Grüss Type inequalities

In 1935, G. Grüss (see for example [26]) proved the following integral inequality which gives an approximation for the integral of a product in terms of the product of the integrals.
Theorem 4. Let $h, g:[a, b] \rightarrow \mathbb{R}$ be two integrable mappings such that $\phi \leq h(x) \leq$ Φ and $\gamma \leq g(x) \leq \Gamma$ for all $x \in[a, b]$, where $\phi, \Phi, \gamma, \Gamma$ are real numbers. Then,

$$
\begin{equation*}
|T(h, g)| \leq \frac{1}{4}(\Phi-\phi)(\Gamma-\gamma) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
T(h, g)=\frac{1}{b-a} \int_{a}^{b} h(x) g(x) d x-\frac{1}{b-a} \int_{a}^{b} h(x) d x \cdot \frac{1}{b-a} \int_{a}^{b} g(x) d x \tag{3.2}
\end{equation*}
$$

and the inequality is sharp, in the sense that the constant $\frac{1}{4}$ cannot be replaced by a smaller one.

For a simple proof of this as well as for extensions, generalisations, discrete variants and other associated material, see [25], and [1]-[21] where further references are given.

A 'premature' Grüss inequality is embodied in the following theorem which was proved in [23]. It provides a sharper bound than the above Grüss inequality.

Theorem 5. Let h, g be integrable functions defined on $[a, b]$ and let $d \leq g(t) \leq D$. Then

$$
\begin{equation*}
|T(h, g)| \leq \frac{D-d}{2}|T(h, h)|^{\frac{1}{2}} \tag{3.3}
\end{equation*}
$$

where $T(h, g)$ is as defined in (3.2).
Theorem 5 will now be used to provide a perturbed rule involving the variance and mean of a p.d.f.
3.1. Perturbed Results Using 'Premature' Inequalities. In this subsection we develop some perturbed results.

Theorem 6. Let X be a random variable having the p.d.f. given by $f:[a, b] \subset$ $\mathbb{R} \rightarrow \mathbb{R}_{+}$. Then for any $x \in[a, b]$ and $m \leq f(x) \leq M$ we have the inequality

$$
\begin{align*}
\left|P_{V}(x)\right| & :=\left|\sigma^{2}(X)+(x-E(X))^{2}-\frac{(b-a)^{2}}{12}-\left(x-\frac{a+b}{2}\right)^{2}\right| \tag{3.4}\\
& \leq \frac{M-m}{2} \cdot \frac{(b-a)^{2}}{\sqrt{45}}\left[\left(\frac{b-a}{2}\right)^{2}+15\left(x-\frac{a+b}{2}\right)\right]^{\frac{1}{2}} \\
& \leq(M-m) \frac{(b-a)^{3}}{\sqrt{45}}
\end{align*}
$$

Proof. Applying the 'premature' Grüss result (3.3) by associating $g(t)$ with $f(t)$ and $h(t)=(x-t)^{2}$, gives, from (3.1)-(3.3)

$$
\begin{align*}
& \left|\int_{a}^{b}(x-t)^{2} f(t) d t-\frac{1}{b-a} \int_{a}^{b}(x-t)^{2} d t \cdot \int_{a}^{b} f(t) d t\right| \tag{3.5}\\
\leq & (b-a) \frac{M-m}{2}[T(h, h)]^{\frac{1}{2}},
\end{align*}
$$

where from (3.2)

$$
\begin{equation*}
T(h, h)=\frac{1}{b-a} \int_{a}^{b}(x-t)^{4} d t-\left[\frac{1}{b-a} \int_{a}^{b}(x-t)^{2} d t\right]^{2} \tag{3.6}
\end{equation*}
$$

Now,

$$
\begin{align*}
\frac{1}{b-a} \int_{a}^{b}(x-t)^{2} d t & =\frac{(x-a)^{3}+(b-x)^{3}}{3(b-a)} \tag{3.7}\\
& =\frac{1}{3}\left(\frac{b-a}{2}\right)^{2}+\left(x-\frac{a+b}{2}\right)^{2}
\end{align*}
$$

and

$$
\frac{1}{b-a} \int_{a}^{b}(x-t)^{4} d t=\frac{(x-a)^{5}+(b-x)^{5}}{5(b-a)}
$$

giving, from (3.6),

$$
\begin{equation*}
45 T(h, h)=9\left[\frac{(x-a)^{5}+(b-x)^{5}}{b-a}\right]-5\left[\frac{(x-a)^{3}+(b-x)^{3}}{b-a}\right]^{2} \tag{3.8}
\end{equation*}
$$

Let $A=x-a$ and $B=b-x$ in (3.8) to give

$$
\begin{aligned}
45 T(h, h) & =9\left(\frac{A^{5}+B^{5}}{A+B}\right)-5\left(\frac{A^{3}+B^{3}}{A+B}\right)^{2} \\
& =9\left[A^{4}-A^{3} B+A^{2} B^{2}-A B^{3}+B^{4}\right]-5\left[A^{2}-A B+B^{2}\right]^{2} \\
& =\left(4 A^{2}-7 A B+4 B^{2}\right)(A+B)^{2} \\
& =\left[\left(\frac{A+B}{2}\right)^{2}+15\left(\frac{A-B}{2}\right)^{2}\right](A+B)^{2}
\end{aligned}
$$

Using the facts that $A+B=b-a$ and $A-B=2 x-(a+b)$ gives

$$
\begin{equation*}
T(h, h)=\frac{(b-a)^{2}}{45}\left[\left(\frac{b-a}{2}\right)^{2}+15\left(x-\frac{a+b}{2}\right)^{2}\right] \tag{3.9}
\end{equation*}
$$

and from (3.7)

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b}(x-t)^{2} d t & =\frac{A^{3}+B^{3}}{3(A+B)}=\frac{1}{3}\left[A^{2}-A B+B^{2}\right] \\
& =\frac{1}{3}\left[\left(\frac{A+B}{2}\right)^{2}+3\left(\frac{A-B}{2}\right)^{2}\right]
\end{aligned}
$$

giving

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b}(x-t)^{2} d t=\frac{(b-a)^{2}}{12}+\left(x-\frac{a+b}{2}\right)^{2} \tag{3.10}
\end{equation*}
$$

Hence, from (3.5), (3.9) (3.10) and (2.10), the first inequality in (3.4) results. The coarsest uniform bound is obtained by taking x at either end point. Thus the theorem is completely proved.

Remark 4. The best inequality otainable from (3.4) is at $x=\frac{a+b}{2}$ giving

$$
\begin{equation*}
\left|\sigma^{2}(X)+\left[E(X)-\frac{a+b}{2}\right]^{2}-\frac{(b-a)^{2}}{12}\right| \leq \frac{M-m}{12} \frac{(b-a)^{3}}{\sqrt{5}} \tag{3.11}
\end{equation*}
$$

The result (3.11) is a tighter bound than that obtained in the first inequality of (2.12) since $0<M-m<2\|f\|_{\infty}$.

For a symmetric p.d.f. $E(X)=\frac{a+b}{2}$ and so the above results would give bounds on the variance.

The following results hold if the p.d.f $f(x)$ is differentiable, that is, for $f(x)$ absolutely continuous.

Theorem 7. Let the conditions on Theorem 4 be satisfied. Further, suppose that f is differentiable and is such that

$$
\left\|f^{\prime}\right\|_{\infty}:=\sup _{t \in[a, b]}\left|f^{\prime}(t)\right|<\infty
$$

Then

$$
\begin{equation*}
\left|P_{V}(x)\right| \leq \frac{b-a}{\sqrt{12}}\left\|f^{\prime}\right\|_{\infty} \cdot I(x) \tag{3.12}
\end{equation*}
$$

where $P_{V}(x)$ is given by the left hand side of (3.4) and,

$$
\begin{equation*}
I(x)=\frac{(b-a)^{2}}{\sqrt{45}}\left[\left(\frac{b-a}{2}\right)^{2}+15\left(x-\frac{a+b}{2}\right)^{2}\right]^{\frac{1}{2}} . \tag{3.13}
\end{equation*}
$$

Proof. Let $h, g:[a, b] \rightarrow \mathbb{R}$ be absolutely continuous and h^{\prime}, g^{\prime} be bounded. Then Chebychev's inequality holds (see [23])

$$
T(h, g) \leq \frac{(b-a)^{2}}{\sqrt{12}} \sup _{t \in[a, b]}\left|h^{\prime}(t)\right| \cdot \sup _{t \in[a, b]}\left|g^{\prime}(t)\right| .
$$

Matić, Pečarić and Ujević [23] using a 'premature' Grüss type argument proved that

$$
\begin{equation*}
T(h, g) \leq \frac{(b-a)}{\sqrt{12}} \sup _{t \in[a, b]}\left|g^{\prime}(t)\right| \sqrt{T(h, h)} \tag{3.14}
\end{equation*}
$$

Associating $f(\cdot)$ with $g(\cdot)$ and $(x-\cdot)^{2}$ with $h(\cdot)$ in (3.13) gives, from (3.5) and (3.9), $I(x)=(b-a)[T(h, h)]^{\frac{1}{2}}$, which simplifies to (3.13) and the theorem is proved.

Theorem 8. Let the conditions of Theorem 6 be satisfied. Further, suppose that f is locally absolutely continuous on (a, b) and let $f^{\prime} \in L_{2}(a, b)$. Then

$$
\begin{equation*}
\left|P_{V}(x)\right| \leq \frac{b-a}{\pi}\left\|f^{\prime}\right\|_{2} \cdot I(x) \tag{3.15}
\end{equation*}
$$

where $P_{V}(x)$ is the left hand side of (3.4) and $I(x)$ is as given in (3.13).
Proof. The following result was obtained by Lupaş (see [23]). For $h, g:(a, b) \rightarrow \mathbb{R}$ locally absolutely continuous on (a, b) and $h^{\prime}, g^{\prime} \in L_{2}(a, b)$, then

$$
|T(h, g)| \leq \frac{(b-a)^{2}}{\pi^{2}}\left\|h^{\prime}\right\|_{2}\left\|g^{\prime}\right\|_{2}
$$

where

$$
\|k\|_{2}:=\left(\frac{1}{b-a} \int_{a}^{b}|k(t)|^{2}\right)^{\frac{1}{2}} \text { for } k \in L_{2}(a, b)
$$

Matić, Pečarić and Ujević [23] further show that

$$
\begin{equation*}
|T(h, g)| \leq \frac{b-a}{\pi}\left\|g^{\prime}\right\|_{2} \sqrt{T(h, h)} \tag{3.16}
\end{equation*}
$$

Associating $f(\cdot)$ with $g(\cdot)$ and $(x-\cdot)^{2}$ with h in (3.16) gives (3.15), where $I(x)$ is as found in (3.13), since from (3.5) and (3.9), $I(x)=(b-a)[T(h, h)]^{\frac{1}{2}}$.
3.2. Alternate Grüss Type Results for Inequalities Involving the Variance. Let

$$
\begin{equation*}
S(h(x))=h(x)-\mathcal{M}(h) \tag{3.17}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{M}(h)=\frac{1}{b-a} \int_{a}^{b} h(u) d u \tag{3.18}
\end{equation*}
$$

Then from (3.2),

$$
\begin{equation*}
\mathcal{T}(h, g)=\mathcal{M}(h g)-\mathcal{M}(h) \mathcal{M}(g) \tag{3.19}
\end{equation*}
$$

Dragomir and McAndrew [19] have shown, that

$$
\begin{equation*}
\mathcal{T}(h, g)=\mathcal{T}(S(h), S(g)) \tag{3.20}
\end{equation*}
$$

and proceeded to obtain bounds for a trapezoidal rule. Identity (3.20) is now applied to obtain bounds for the variance.

Theorem 9. Let X be a random variable having the p.d.f. $f:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}_{+}$. Then for any $x \in[a, b]$ the following inequality holds, namely,

$$
\begin{equation*}
\left|P_{V}(x)\right| \leq \frac{8}{3} \nu^{3}(x)\left\|f(\cdot)-\frac{1}{b-a}\right\|_{\infty} \quad \text { if } f \in L_{\infty}[a, b] \tag{3.21}
\end{equation*}
$$

where $P_{V}(x)$ is as defined by the left hand side of (3.4), and $\nu=\nu(x)=\frac{1}{3}\left(\frac{b-a}{2}\right)^{2}+$ $\left(x-\frac{a+b}{2}\right)^{2}$.
Proof. Using identity (3.20), associate with $h(\cdot),(x-\cdot)^{2}$ and $f(\cdot)$ with $g(\cdot)$. Then

$$
\begin{align*}
& \int_{a}^{b}(x-t)^{2} f(t) d t-\mathcal{M}\left((x-\cdot)^{2}\right) \tag{3.22}\\
= & \int_{a}^{b}\left[(x-t)^{2}-\mathcal{M}\left((x-\cdot)^{2}\right)\right]\left[f(t)-\frac{1}{b-a}\right] d t
\end{align*}
$$

where from (3.18),

$$
\mathcal{M}\left((x-\cdot)^{2}\right)=\frac{1}{b-a} \int_{a}^{b}(x-t)^{2} d t=\frac{1}{3(b-a)}\left[(x-a)^{3}+(b-x)^{3}\right]
$$

and so

$$
\begin{equation*}
3 \mathcal{M}\left((x-\cdot)^{2}\right)=\left(\frac{b-a}{2}\right)^{2}+3\left(x-\frac{a+b}{2}\right)^{2} \tag{3.23}
\end{equation*}
$$

Further, from (3.17),

$$
S\left((x-\cdot)^{2}\right)=(x-t)^{2}-\mathcal{M}\left((x-\cdot)^{2}\right)
$$

and so, on using (3.23)

$$
\begin{equation*}
S\left((x-\cdot)^{2}\right)=(x-t)^{2}-\frac{1}{3}\left(\frac{b-a}{2}\right)^{2}-\left(x-\frac{a+b}{2}\right)^{2} \tag{3.24}
\end{equation*}
$$

Now, from (3.22) and using (2.10), (3.23) and (3.24), the following identity is obtained

$$
\begin{align*}
& \sigma^{2}(X)+[x-E(X)]^{2}-\frac{1}{3}\left[\left(\frac{b-a}{2}\right)^{2}+3\left(x-\frac{a+b}{2}\right)^{2}\right] \tag{3.25}\\
= & \int_{a}^{b} S\left((x-t)^{2}\right)\left(f(t)-\frac{1}{b-a}\right) d t,
\end{align*}
$$

where $S(\cdot)$ is as given by (3.24). Taking the modulus of (3.25) gives

$$
\begin{equation*}
\left|P_{V}(x)\right|=\left|\int_{a}^{b} S\left((x-t)^{2}\right)\left(f(t)-\frac{1}{b-a}\right) d t\right| . \tag{3.26}
\end{equation*}
$$

Observe that under different assumptions with regard to the norms of the p.d.f. $f(x)$ we may obtain a variety of bounds.

For $f \in L_{\infty}[a, b]$ then

$$
\begin{equation*}
\left|P_{V}(x)\right| \leq\left\|f(\cdot)-\frac{1}{b-a}\right\|_{\infty} \int_{a}^{b}\left|S\left((x-t)^{2}\right)\right| d t \tag{3.27}
\end{equation*}
$$

Now, let

$$
\begin{equation*}
S\left((x-t)^{2}\right)=(t-x)^{2}-\nu^{2}=\left(t-X_{-}\right)\left(t-X_{+}\right) \tag{3.28}
\end{equation*}
$$

where

$$
\begin{align*}
\nu^{2} & =\mathcal{M}\left((x-\cdot)^{2}\right)=\frac{(x-a)^{3}+(b-x)^{3}}{3(b-a)} \tag{3.29}\\
& =\frac{1}{3}\left(\frac{b-a}{2}\right)^{2}+\left(x-\frac{a+b}{2}\right)^{2}
\end{align*}
$$

and

$$
\begin{equation*}
X_{-}=x-\nu, \quad X_{+}=x+\nu \tag{3.30}
\end{equation*}
$$

Then,

$$
\begin{align*}
H(t) & =\int S\left((x-t)^{2}\right) d t=\int\left[(t-x)^{2}-\nu^{2}\right] d t \tag{3.31}\\
& =\frac{(t-x)^{3}}{3}-\nu^{2} t+k
\end{align*}
$$

and so from (3.31) and using (3.28) - (3.29) gives,

$$
\begin{align*}
& \int_{a}^{b}\left|S\left((x-t)^{2}\right)\right| d t \tag{3.32}\\
= & H\left(X_{-}\right)-H(a)-\left[H\left(X_{+}\right)-H\left(X_{-}\right)\right]+\left[H(b)-H\left(X_{+}\right)\right] \\
= & 2\left[H\left(X_{-}\right)-H\left(X_{+}\right)\right]+H(b)-H(a) \\
= & 2\left\{-\frac{\nu^{3}}{3}-\nu^{2} X_{-}-\frac{\nu^{3}}{3}+\nu^{2} X_{+}\right\}+\frac{(b-x)^{3}}{3}-\nu^{2} b+\frac{(x-a)^{3}}{3}+\nu^{2} a \\
= & 2\left[2 \nu^{3}-\frac{2}{3} \nu^{3}\right]+\frac{(b-x)^{3}+(x-a)^{3}}{3}-\nu^{2}(b-a) \\
= & \frac{8}{3} \nu^{3} .
\end{align*}
$$

Thus, substituting into (3.27), (3.26) and using (3.29) readily produces the result (3.21) and the theorem is proved.

Remark 5. Other bounds may be obtained for $f \in L_{p}[a, b], p \geq 1$ however obtaining explicit expressions for these bounds is somewhat intricate and will not be considered further here. They involve the calculation of

$$
\sup _{t \in[a, b]}\left|(t-x)^{2}-\nu^{2}\right|=\max \left\{\left|(x-a)^{2}-\nu^{2}\right|, \nu^{2},\left|(b-x)^{2}-\nu^{2}\right|\right\}
$$

for $f \in L_{1}[a, b]$ and

$$
\left(\int_{a}^{b}\left|(t-x)^{2}-\nu^{2}\right|^{q} d t\right)^{\frac{1}{q}}
$$

for $f \in L_{p}[a, b], \frac{1}{p}+\frac{1}{q}=1, p>1$, where ν^{2} is given by (3.29).
4. Some Inequalities for Absolutely Continuous P.D.F.s

We start with the following lemma which is interesting in itself.
Lemma 1. Let X be a random variable whose probability density function f : $[a, b] \rightarrow \mathbb{R}_{+}$is absolutely continuous on $[a, b]$. Then we have the identity

$$
\begin{align*}
& \sigma^{2}(X)+[E(X)-x]^{2} \tag{4.1}\\
= & \frac{(b-a)^{2}}{12}+\left(x-\frac{a+b}{2}\right)^{2}+\frac{1}{b-a} \int_{a}^{b} \int_{a}^{b}(t-x)^{2} p(t, s) f^{\prime}(s) d s d t
\end{align*}
$$

where the kernel $p:[a, b]^{2} \rightarrow \mathbb{R}$ is given by

$$
p(t, s):=\left\{\begin{array}{c}
s-a \quad \text { if } a \leq s \leq t \leq b \\
s-b \text { if } a \leq t<s \leq b
\end{array}\right.
$$

for all $x \in[a, b]$.
Proof. We use the identity (see (2.10))

$$
\begin{equation*}
\sigma^{2}(X)+[E(X)-x]^{2}=\int_{a}^{b}(x-t)^{2} f(t) d t \tag{4.2}
\end{equation*}
$$

for all $x \in[a, b]$.
On the other hand, we know that (see for example [22] for a simple proof using integration by parts)

$$
\begin{equation*}
f(t)=\frac{1}{b-a} \int_{a}^{b} f(s) d s+\frac{1}{b-a} \int_{a}^{b} p(t, s) f^{\prime}(s) d s \tag{4.3}
\end{equation*}
$$

for all $t \in[a, b]$.
Substituting (4.3) in (4.2) we obtain

$$
\begin{align*}
& \sigma^{2}(X)+[E(X)-x]^{2} \tag{4.4}\\
= & \int_{a}^{b}(t-x)^{2}\left[\frac{1}{b-a} \int_{a}^{b} f(s) d s+\frac{1}{b-a} \int_{a}^{b} p(t, s) f^{\prime}(s) d s\right] d t \\
= & \frac{1}{b-a} \cdot \frac{1}{3}\left[(x-a)^{3}+(b-x)^{3}\right]+\frac{1}{b-a} \int_{a}^{b} \int_{a}^{b}(t-x)^{2} p(t, s) f^{\prime}(s) d s d t .
\end{align*}
$$

Taking into account the fact that

$$
\frac{1}{3}\left[(x-a)^{3}+(b-x)^{3}\right]=\frac{(b-a)^{2}}{12}+\left(x-\frac{a+b}{2}\right)^{2}, x \in[a, b]
$$

then, by (4.4) we deduce the desired result (4.1).

The following inequality for P.D.F.s which are absolutely continuous and have the derivatives essentially bounded holds.

Theorem 10. If $f:[a, b] \rightarrow \mathbb{R}_{+}$is absolutely continuous on $[a, b]$ and $f^{\prime} \in$ $L_{\infty}[a, b]$, i.e., $\left\|f^{\prime}\right\|_{\infty}:=$ ess $\sup _{t \in[a, b]}\left|f^{\prime}(t)\right|<\infty$, then we have the inequality:

$$
\begin{align*}
& \left|\sigma^{2}(X)+[E(X)-x]^{2}-\frac{(b-a)^{2}}{12}-\left(x-\frac{a+b}{2}\right)^{2}\right| \tag{4.5}\\
\leq & \frac{(b-a)^{2}}{3}\left[\frac{(b-a)^{2}}{10}+\left(x-\frac{a+b}{2}\right)^{2}\right]\left\|f^{\prime}\right\|_{\infty}
\end{align*}
$$

for all $x \in[a, b]$.
Proof. Using Lemma 1, we have

$$
\begin{aligned}
& \left|\sigma^{2}(X)+[E(X)-x]^{2}-\frac{(b-a)^{2}}{12}-\left(x-\frac{a+b}{2}\right)^{2}\right| \\
= & \frac{1}{b-a}\left|\int_{a}^{b} \int_{a}^{b}(t-x)^{2} p(t, s) f^{\prime}(s) d s d t\right| \\
\leq & \frac{1}{b-a} \int_{a}^{b} \int_{a}^{b}(t-x)^{2}|p(t, s)|\left|f^{\prime}(s)\right| d s d t \\
\leq & \frac{\left\|f^{\prime}\right\|_{\infty}}{b-a} \int_{a}^{b} \int_{a}^{b}(t-x)^{2}|p(t, s)| d s d t
\end{aligned}
$$

We have

$$
\begin{aligned}
I & :=\int_{a}^{b} \int_{a}^{b}(t-x)^{2}|p(t, s)| d s d t \\
& =\int_{a}^{b}(t-x)^{2}\left[\int_{a}^{t}(s-a) d s+\int_{t}^{b}(b-s) d s\right] d t \\
& =\int_{a}^{b}(t-x)^{2}\left[\frac{(t-a)^{2}+(b-t)^{2}}{2}\right] d t \\
& =\frac{1}{2}\left[\int_{a}^{b}(t-x)^{2}(t-a)^{2} d t+\int_{a}^{b}(t-x)^{2}(b-t)^{2} d t\right] \\
& =\frac{\left(I_{a}+I_{b}\right)}{2} .
\end{aligned}
$$

Let $A=x-a, B=b-x$ then

$$
\begin{aligned}
I_{a} & =\int_{a}^{b}(t-x)^{2}(t-a)^{2} d t \\
& =\int_{0}^{b-a}\left(u^{2}-2 A u+A^{2}\right) u^{2} d u \\
& =\frac{(b-a)^{3}}{3}\left[A^{2}-\frac{3}{2} A(b-a)+\frac{3}{5}(b-a)^{2}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
I_{b} & =\int_{a}^{b}(t-x)^{2}(b-t)^{2} d t \\
& =\int_{0}^{b-a}\left(u^{2}-2 B u+B^{2}\right) u^{2} d u \\
& =\frac{(b-a)^{3}}{3}\left[B^{2}-\frac{3}{2} B(b-a)+\frac{3}{5}(b-a)^{2}\right]
\end{aligned}
$$

Now,

$$
\begin{aligned}
\frac{I_{a}+I_{b}}{2}= & \frac{(b-a)^{3}}{3}\left[\frac{A^{2}+B^{2}}{2}-\frac{3}{4}(A+B)(b-a)+\frac{3}{5}(b-a)^{2}\right] \\
= & \frac{(b-a)^{3}}{3}\left[\left(\frac{b-a}{2}\right)^{2}+\left(x-\frac{a+b}{2}\right)^{2}-3 \frac{(b-a)^{2}}{20}\right] \\
& \frac{(b-a)^{3}}{3}\left[\frac{(b-a)^{2}}{10}+\left(x-\frac{a+b}{2}\right)^{2}\right]
\end{aligned}
$$

and the theorem is proved.
The best inequality we can get from (4.5) is embodied in the following corollary.
Corollary 3. If f is as in Theorem 10, then we have

$$
\begin{equation*}
\left|\sigma^{2}(X)+\left[E(X)-\frac{a+b}{2}\right]^{2}-\frac{(b-a)^{2}}{12}\right| \leq \frac{(b-a)^{4}}{30}\left\|f^{\prime}\right\|_{\infty} . \tag{4.6}
\end{equation*}
$$

We now analyze the case where f^{\prime} is a Lebesgue p-integrable mapping with $p \in(1, \infty)$.
Remark 6. The results of Theorem 10 may be compared with those of Theorem 7. It may be shown that both bounds are convex and symmetric about $x=\frac{a+b}{2}$. Further, the bound given by the 'premature' Chebychev approach, namely from (3.12)-(3.13) is tighter than that obtained by the current approach (4.5) which may be shown from the following. Let these bounds be described by B_{p} and B_{c} so that, neglecting the common terms

$$
B_{p}=\frac{b-a}{2 \sqrt{15}}\left[\left(\frac{b-a}{2}\right)^{2}+15 Y\right]^{\frac{1}{2}}
$$

and

$$
B_{c}=\frac{(b-a)^{2}}{100}+Y,
$$

where

$$
Y=\left(x-\frac{a+b}{2}\right)^{2} .
$$

It may be shown through some straightforward algebra that $B_{c}^{2}-B_{p}^{2}>0$ for all $x \in[a, b]$ so that $B_{c}>B_{p}$.
The current development does however have the advantage that the identity (4.1) is satisfied, thus allowing bounds for $L_{p}[a, b], p \geq 1$ rather than the infinity norm.

Theorem 11. If $f:[a, b] \rightarrow \mathbb{R}_{+}$is absolutely continuous on $[a, b]$ and $f^{\prime} \in L_{p}$, i.e.,

$$
\left\|f^{\prime}\right\|_{p}:=\left(\int_{a}^{b}\left|f^{\prime}(t)\right|^{p} d t\right)^{\frac{1}{p}}<\infty, \quad p \in(1, \infty)
$$

then we have the inequality

$$
\begin{align*}
& \left|\sigma^{2}(X)+[E(X)-x]^{2}-\frac{(b-a)^{2}}{12}-\left(x-\frac{a+b}{2}\right)^{2}\right| \tag{4.7}\\
\leq & \frac{\left\|f^{\prime}\right\|_{p}}{(b-a)^{\frac{1}{p}}(q+1)^{\frac{1}{q}}}\left[(x-a)^{3 q+2} \tilde{B}\left(\frac{b-a}{x-a}, 2 q+1, q+2\right)\right. \\
& \left.+(b-x)^{3 q+2} \tilde{B}\left(\frac{b-a}{b-x}, 2 q+1, q+2\right)\right]
\end{align*}
$$

for all $x \in[a, b]$, when $\frac{1}{p}+\frac{1}{q}=1$ and $\tilde{B}(\cdot, \cdot, \cdot)$ is the quasi incomplete Euler's Beta mapping:

$$
\tilde{B}(z ; \alpha, \beta):=\int_{0}^{z}(u-1)^{\alpha-1} u^{\beta-1} d u, \quad \alpha, \beta>0, z \geq 1
$$

Proof. Using Lemma 1, we have, as in Theorem 10, that

$$
\begin{align*}
& \left|\sigma^{2}(X)+[E(X)-x]^{2}-\frac{(b-a)^{2}}{12}-\left(x-\frac{a+b}{2}\right)^{2}\right| \tag{4.8}\\
\leq & \frac{1}{b-a} \int_{a}^{b} \int_{a}^{b}(t-x)^{2}|p(t, s)|\left|f^{\prime}(s)\right| d s d t
\end{align*}
$$

Using Hölder's integral inequality for double integrals, we have

$$
\begin{align*}
& \int_{a}^{b} \int_{a}^{b}(t-x)^{2}|p(t, s)|\left|f^{\prime}(s)\right| d s d t \tag{4.9}\\
\leq & \left(\int_{a}^{b} \int_{a}^{b}\left|f^{\prime}(s)\right|^{p} d s d t\right)^{\frac{1}{p}}\left(\int_{a}^{b} \int_{a}^{b}(t-x)^{2 q}|p(t, s)|^{q} d s d t\right)^{\frac{1}{q}} \\
= & (b-a)^{\frac{1}{p}}\left\|f^{\prime}\right\|_{p}\left(\int_{a}^{b} \int_{a}^{b}(t-x)^{2 q}|p(t, s)|^{q} d s d t\right)^{\frac{1}{q}}
\end{align*}
$$

where $p>1, \frac{1}{p}+\frac{1}{q}=1$.
We have to compute the integral

$$
\begin{align*}
& :=\int_{a}^{b} \int_{a}^{b}(t-x)^{2 q}|p(t, s)|^{q} d s d t \tag{4.10}\\
& =\int_{a}^{b}(t-x)^{2 q}\left[\int_{a}^{t}(s-a)^{q} d s+\int_{t}^{b}(b-s)^{q} d s\right] d t \\
& =\int_{a}^{b}(t-x)^{2 q}\left[\frac{(t-a)^{q+1}+(b-t)^{q+1}}{q+1}\right] d t \\
& =\frac{1}{q+1}\left[\int_{a}^{b}(t-x)^{2 q}(t-a)^{q+1} d t+\int_{a}^{b}(t-x)^{2 q}(b-t)^{q+1} d t\right]
\end{align*}
$$

Define

$$
\begin{equation*}
E:=\int_{a}^{b}(t-x)^{2 q}(t-a)^{q+1} d t \tag{4.11}
\end{equation*}
$$

If we consider the change of variable $t=(1-u) a+u x$, we have $t=a$ implies $u=0$ and $t=b$ implies $u=\frac{b-a}{x-a}, d t=(x-a) d u$ and then

$$
\begin{align*}
E & =\int_{0}^{\frac{b-a}{x-a}}[(1-u) a+u x-x]^{2 q}[(1-u) a+u x-a](x-a) d u \tag{4.12}\\
& =(x-a)^{3 q+2} \int_{0}^{\frac{b-a}{x-a}}(u-1)^{2 q} u^{q+1} d u \\
& =(x-a)^{3 q+2} \tilde{B}\left(\frac{b-a}{x-a}, 2 q+1, q+2\right)
\end{align*}
$$

Define

$$
\begin{equation*}
F:=\int_{a}^{b}(t-x)^{2 q}(b-t)^{q+1} d t \tag{4.13}
\end{equation*}
$$

If we consider the change of variable $t=(1-v) b+v x$, we have $t=b$ implies $v=0$, and $t=a$ implies $v=\frac{b-a}{b-x}, d t=(x-b) d v$ and then

$$
\begin{align*}
F & =\int_{\frac{b-a}{b-x}}^{0}[(1-v) b+v x-x]^{2 q}[b-(1-v) b-v x]^{q+1}(x-b) d v \tag{4.14}\\
& =(b-x)^{3 q+2} \int_{0}^{\frac{b-a}{b-x}}(v-1)^{2 q} v^{q+1} d v \\
& =(b-x)^{3 q+2} \tilde{B}\left(\frac{b-a}{b-x}, 2 q+1, q+2\right)
\end{align*}
$$

Now, using the inequalities (4.8)-(4.9) and the relations (4.10)-(4.14), since $D=$ $\frac{1}{q+1}(E+F)$, we deduce the desired estimate (4.7).

The following corollary is natural to be considered.
Corollary 4. Let f be as in Theorem 11. Then, we have the inequality:

$$
\begin{align*}
& \left|\sigma^{2}(X)+\left[E(X)-\frac{a+b}{2}\right]^{2}-\frac{(b-a)^{2}}{12}\right| \tag{4.15}\\
\leq & \frac{\left\|f^{\prime}\right\|_{p}(b-a)^{2+\frac{3}{q}}}{(q+1)^{\frac{1}{q}} 2^{3+\frac{2}{q}}}[B(2 q+1, q+1)+\Psi(2 q+1, q+2)]^{\frac{1}{q}}
\end{align*}
$$

where $\frac{1}{p}+\frac{1}{q}=1, p>1$ and $B(\cdot, \cdot)$ is Euler's Beta mapping and $\Psi(\alpha, \beta):=$ $\int_{0}^{1} u^{\alpha-1}(u+1)^{\beta-1} d u, \alpha, \beta>0$.

Proof. In (4.7) put $x=\frac{a+b}{2}$.
The left side is clear.

Now

$$
\begin{aligned}
\tilde{B}(2,2 q+1, q+2) & =\int_{0}^{2}(u-1)^{2 q} u^{q+1} d u \\
& =\int_{0}^{1}(u-1)^{2 q} u^{q+1} d u+\int_{1}^{2}(u-1)^{2 q} u^{q+1} d u \\
& =B(2 q+1, q+2)+\Psi(2 q+1, q+2)
\end{aligned}
$$

The right hand side of (4.7) is thus:-

$$
\begin{aligned}
& \frac{\left\|f^{\prime}\right\|_{p}\left(\frac{b-a}{2}\right)^{\frac{3 q+2}{q}}}{(b-a)^{\frac{1}{p}}(q+1)^{\frac{1}{q}}}[2 B(2 q+1, q+2)+2 \Psi(2 q+1, q+2)]^{\frac{1}{q}} \\
= & \frac{\left\|f^{\prime}\right\|_{p}(b-a)^{2+\frac{3}{q}}}{(q+1)^{\frac{1}{q}} 2^{3+\frac{2}{q}}}[B(2 q+1, q+2)+\Psi(2 q+1, q+2)]^{\frac{1}{q}}
\end{aligned}
$$

and the corollary is proved.
Finally, as f is absolutely continuous, $f^{\prime} \in L_{1}[a, b]$ and $\left\|f^{\prime}\right\|_{1}=\int_{a}^{b}\left|f^{\prime}(t)\right| d t$, and we can state the following theorem.

Theorem 12. If the p.d.f., $f:[a, b] \rightarrow \mathbb{R}_{+}$is absolutely continuous on $[a, b]$, then

$$
\begin{align*}
& \left|\sigma^{2}(X)+[E(X)-x]^{2}-\frac{(b-a)^{2}}{12}-\left(x-\frac{a+b}{2}\right)^{2}\right| \tag{4.16}\\
\leq & \left\|f^{\prime}\right\|_{1}(b-a)\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right]^{2}
\end{align*}
$$

for all $x \in[a, b]$.
Proof. As above, we can state that

$$
\begin{aligned}
& \left|\sigma^{2}(X)+[E(X)-x]^{2}-\frac{(b-a)^{2}}{12}-\left(x-\frac{a+b}{2}\right)^{2}\right| \\
\leq & \frac{1}{b-a} \int_{a}^{b} \int_{a}^{b}(t-x)^{2}|p(t, s)|\left|f^{\prime}(s)\right| d s d t \\
\leq & \sup _{(t, s) \in[a, b]^{2}}\left[(t-x)^{2}|p(t, s)|\right] \frac{1}{b-a} \int_{a}^{b} \int_{a}^{b}\left|f^{\prime}(s)\right| d s d t \\
= & \left\|f^{\prime}\right\|_{1} G
\end{aligned}
$$

where

$$
\begin{aligned}
G & :=\sup _{(t, s) \in[a, b]^{2}}\left[(t-x)^{2}|p(t, s)|\right] \leq(b-a) \sup _{t \in[a, b]}(t-x)^{2} \\
& =(b-a)[\max (x-a, b-x)]^{2} \\
& =(b-a)\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right]^{2},
\end{aligned}
$$

and the theorem is proved.
It is clear that the best inequality we can get from (4.16) is the one when $x=\frac{a+b}{2}$, giving the following corollary.

Corollary 5. With the assumptions of Theorem 12, we have:

$$
\begin{equation*}
\left|\sigma^{2}(X)+\left[E(X)-\frac{a+b}{2}\right]^{2}-\frac{(b-a)^{2}}{12}\right| \leq \frac{(b-a)^{3}}{4}\left\|f^{\prime}\right\|_{1} \tag{4.17}
\end{equation*}
$$

References

[1] P. CERONE and S. S. DRAGOMIR, Three point quadrature rules involving, at most, a first derivative, submitted, RGMIA Res. Rep. Coll., 4, 2(1999), Article 8.
[2] P. CERONE and S. S. DRAGOMIR, Trapezoidal type rules from an inequalities point of view, Accepted for publication in Analytic-Computational Methods in Applied Mathematics, G.A. Anastassiou (Ed), CRC Press, New York.
[3] P. CERONE and S. S. DRAGOMIR, Midpoint type rules from an inequalities point of view, Accepted for publication in Analytic-Computational Methods in Applied Mathematics, G.A. Anastassiou (Ed), CRC Press, New York.
[4] P. CERONE, S. S. DRAGOMIR and J. ROUMELIOTIS, An inequality of Ostrowski type for mappings whose second derivatives are bounded and applications, Preprint. RGMIA Res. Rep Coll., 1(1) (1998), Article 4, 1998. [ONLINE] http://rgmia.vu.edu.au/v1n1.html
[5] P. CERONE, S. S. DRAGOMIR and J. ROUMELIOTIS, An inequality of Ostrowski-Grüss type for twice differentiable mappings and applications, Preprint. RGMIA Res. Rep Coll., 1(2) (1998), Article 8, 1998. [ONLINE] http://rgmia.vu.edu.au/v1n2.html
[6] P. CERONE, S. S. DRAGOMIR and J. ROUMELIOTIS, An Ostrowski type inequality for mappings whose second derivatives belong to $L_{p}(a, b)$ and applications, Preprint. RGMIA Res. Rep Coll., $\mathbf{1}(1)$ (1998), Article 5, 1998. [ONLINE] http://rgmia.vu.edu.au/v1n1.html
[7] P. CERONE, S. S. DRAGOMIR and J. ROUMELIOTIS, On Ostrowski type for mappings whose second derivatives belong to $L_{1}(a, b)$ and applications, Preprint. RGMIA Res. Rep Coll., 1(2), Article 7, 1998. [ONLINE] http://rgmia.vu.edu.au/v1n2.html
[8] P. CERONE, S. S. DRAGOMIR and J. ROUMELIOTIS, Some Ostrowski type inequalities for n-time differentiable mappings and applications, Preprint. RGMIA Res. Rep Coll., 1 (2) (1998), 51-66. [ONLINE] http://rgmia.vu.edu.au/v1n2.html
[9] P. CERONE, S.S. DRAGOMIR, J. ROUMELIOTIS and J. SUNDE, A new generalization of the trapezoid formula for n-time differentiable mappings and applications, RGMIA Res. Rep. Coll., 2 (5) Article 7, 1999. [ONLINE]
[10] S.S. DRAGOMIR, Grüss type integral inequality for mappings of r-Hölder's type and applications for trapezoid formula, Tamkang Journal of Mathematics, accepted, 1999.
[11] S.S. DRAGOMIR, A Taylor like formula and application in numerical integration, submitted.
[12] S.S. DRAGOMIR, Grüss inequality in inner product spaces, The Australian Math. Gazette, 26 (2), 66-70, 1999. http://rgmia.vu.edu.au/v2n5.html
[13] S.S. DRAGOMIR, New estimation of the remainder in Taylor's formula using Grüss' type inequalities and applications, Mathematical Inequalities and Applications, 2, 2 (1999), 183194.
[14] S.S. DRAGOMIR, Some integral inequalities of Grüss type, Italian J. of Pure and Appl. Math., accepted, 1999.
[15] S.S. DRAGOMIR and N. S. BARNETT, An Ostrowski type inequality for mappings whose second derivatives are bounded and applications , Preprint. RGMIA Res. Rep Coll., $\mathbf{1}(2)$ (1998), Article 9, 1998. [ONLINE] http://rgmia.vu.edu.au/v1n2.html
[16] S.S. DRAGOMIR, P. CERONE and A. SOFO, Some remarks on the midpoint rule in numerical integration, submitted, 1999.
[17] S.S. DRAGOMIR, P. CERONE and A. SOFO, Some remarks on the trapezoid rule in numerical integration, Indian J. of Pure and Appl. Math., (in press), 1999. Preprint: RGMIA Res. Rep. Coll., 2(5), Article 1, 1999.
[18] S.S. DRAGOMIR, Y.J. CHO and S.S. KIM, Some remarks on the Milovanović-Pečarić Inequality and in Applications for special means and numerical integration., Tamkang Journal of Mathematics, accepted, 1999.
[19] S.S. DRAGOMIR and A. McANDREW, On Trapezoid inequality via a Grüss type result and applications, RGMIA Res. Rep. Coll., 2, 2(1999), Article 6.
[20] S.S. DRAGOMIR, J.E. PEČARIĆ and S. WANG, The unified treatment of trapezoid, Simpson and Ostrowski type inequality for monotonic mappings and applications, Preprint: RGMIA Res. Rep. Coll., 2(4), Article 3, 1999. [ONLINE] http://rgmia.vu.edu.au/v2n4.html
[21] S.S. DRAGOMIR and A. SOFO, An integral inequality for twice differentiable mappings and applications, Preprint: RGMIA Res. Rep. Coll., 2(2), Article 9, 1999. [ONLINE] http://rgmia.vu.edu.au/v2n2.html
[22] S.S. DRAGOMIR and S. WANG, An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Computers Math. Applic., 33, 15-22, 1997.
[23] M. MATIĆ, J.E. PEČARIĆ and N. UJEVIĆ, On New estimation of the remainder in Generalised Taylor's Formula, M.I.A., Vol. 2 No. 3 (1999), 343-361.
[24] D.S. MITRINOVIĆ, J.E. PEČARIĆ and A.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.
[25] D.S. MITRINOVIĆ, J.E. PEČARIĆ and A.M. FINK, Inequalities for Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, 1994.
[26] J.E. PEČARIĆ, F. PROSCHAN and Y.L. TONG, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, 1992.

School of Communications and Informatics, PO Box 14428, Melbourne City MC 8001, Victoria, Australia.
$U R L:$ http://rgmia.vu.edu.au
E-mail address: \{neil, pc, sever, johnr\}@matilda.vu.edu.au

[^0]: Date: November 15, 1999.
 1991 Mathematics Subject Classification. Primary 60E15; Secondary 26D15.
 Key words and phrases. Random variable, Expectation, Variance, Dispertion, Grüss Inequality, Chebychev's Inequality, Lupaş Inequality.

