
A FRAMEWORK FOR PROVING HILBERT’S DOUBLE
INTEGRAL INEQUALITY AND RELATED RESULTS

T.C. PEACHEY

Abstract. The classical Hilbert and Hardy integral inequalities are derived
within a functional analytic framework. That framework is further used to
generate a new inequality, sharper than Hilbert’s.

1. Introduction

The inequality of our title is the following celebrated result.

Theorem 1. Suppose p > 1, q = p
(p−1) , f ∈ Lp (0,∞) and g ∈ Lq (0,∞) . Then∫ ∞

0

∫ ∞
0

f (x) g (y)
x+ y

dxdy ≤ π

sin
(
π
p

) ‖f‖p ‖g‖q .(1.1)

The above inequality is the integral analogue of Hilbert’s double series theorem. It
was first proved by Schur [7] for the case p = 2, and as given here by Hardy [2].

We are also concerned with the integral version of Hardy’s inequality.

Theorem 2. Suppose p > 1, f ∈ Lp (0,∞) , F (x) =
∫ x

0 f (t) dt. Then∥∥x−1F (x)
∥∥
p
≤ p

p− 1
‖f‖p .(1.2)

In [3], Hardy, Littlewood and Polya show how these two inequalities are implied by
their Theorem 319. The relevant part of that theorem is:

Theorem 3. Suppose p > 1, q = p
p−1 , that K (x, y) is non-negative and homoge-

neous of degree -1, and that∫ ∞
0

K (x, 1)x−
1
p dx =

∫ ∞
0

K (1, y) y−
1
q dy = C.

Then

∫ ∞
0

∫ ∞
0

K (x, y) f (x) g (y) dxdy ≤ C

(∫ ∞
0
|f (x)|p dx

) 1
p
(∫ ∞

0
|g (y)|q dy

) 1
q

(1.3)
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and ∫ ∞
0

dy

(∫ ∞
0

K (x, y) f (x) dx
)p
≤ Cp

∫ ∞
0
|f (x)|p dx.(1.4)

The aim of this paper is to show how results essentially equivalent to this theorem
may be derived in a natural way from considerations of a certain inner product
space.

The classical results above have been greatly generalized in recent decades [1], [6].
The approach presented here may not be capable of proving such generalizations.
It does, however, seem conducive to generating some novel results. For example,
an inequality that implies (1.1) , but that is sharper, will be derived.

2. Framework for the Proofs

The general functions considered in this work are assumed to be real-valued and
measurable on a domain (0,∞) . For two such functions, u and v, we define the
convolution

u ∗ v (x) =
∫ ∞

0
u
(x
t

)
v (t)

dt

t
.(2.1)

(The integral here is Lebesgue, as are all the following ones.) It has long been real-
ized, [1], that in terms of this convolution, (1.4) is essentially ‖g ∗ f‖p ≤ ‖g‖1 ‖f‖p .

The convolution (2.1) satisfies the commutative property

u ∗ v (x) = v ∗ u (x)(2.2)

in the sense that, when one side exists, so does the other, and the two sides agree.
Likewise, for the associative property

[u ∗ (v ∗ w)] (x) = [(u ∗ v) ∗ w] (x) ,(2.3)

which will be considered in more detail later.

We also employ an inner product

〈u, v〉 =
∫ ∞

0
u (x) v (x)

dx

x
.(2.4)

This can be related to the convolution (2.1) by

〈u, v〉 = [(Ru) ∗ v] (1) ,(2.5)

using the operator R, defined by

Ru (x) = u

(
1
x

)
.(2.6)

We will also have occasion to use the operator Ma defined for a > 0 by

Mau (x) = u (ax) .(2.7)
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Associated with the inner product (2.4) is the norm

∦ u ∦p =
[∫ ∞

0
|u (x)|p dx

x

] 1
p

.(2.8)

Further, u ∈ L̃p means that ∦ u ∦p < ∞. Note the unusual notation. This is used
to avoid confusion with the more common norm ‖f‖ which lacks the 1

x factor in
the integrand. The following relations are simply proved:

∦ Ru ∦p = ∦ u ∦p(2.9)

and

∦Mau ∦p = ∦ u ∦p .(2.10)

3. Results

This section establishes some relations connecting the definitions of Section 2.

Theorem 4. If p > 1, q = p
p−1 , u ∈ L̃p, v ∈ L̃q, then u ∗ v (x) exists for all x > 0

and

|u ∗ v (x)| ≤ ∦ u ∦p ∦ v ∦q .(3.1)

Proof. By Hölder’s inequality∫ ∞
0

∣∣∣u(x
t

)∣∣∣ |v (t)| dt
t

=
∫ ∞

0

∣∣∣u(x
t

)
t−

1
p

∣∣∣ ∣∣∣v (t) t−
1
q

∣∣∣ dt
≤

[∫ ∞
0

∣∣∣u(x
t

)∣∣∣p dt
t

] 1
p
[∫ ∞

0
|v (t)|q dt

t

] 1
q

= ∦ RMxu ∦p ∦ v ∦q
= ∦ u ∦p ∦ v ∦q,

where the last step uses (2.9) and (2.10) . Existence of u ∗ v (x) and (3.1) follow.

Next, we consider a Hölder type inequality for the inner product and a partial
converse.

Theorem 5. Suppose p > 1, and q = p
p−1 . Then

(i)

|〈u, v〉| ≤ ∦ u ∦p ∦ v ∦q,(3.2)

(ii) if 〈|u| , |v|〉 ≤ U ∦ v ∦q for all v ∈ L̃q, then ∦ u ∦p ≤ U.

Proof. Part (i) can be deduced from the previous theorem using (2.5) .Alternatively,
defining φ (x) = x−

1
pu (x) and ψ (x) = x−

1
q v (x), then ∦ u ∦p = ‖φ‖p , ∦ v ∦q = ‖ψ‖q

and ∫ ∞
0

u (x) v (x)
dx

x
=
∫ ∞

0
φ (x)ψ (x) dx.
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Then both (i) and (ii) follow from similar results for φ and ψ in conventional
Lebesgue spaces. See [3], Theorem 191 for a statement of the required theory.

We are now in a position to prove a result equivalent to the first part of Theo-
rem 3. This shows that, for the inner product (2.4) , the operator (Ru) ∗ is adjoint
to u ∗ .

Theorem 6. Suppose that p > 1, q = p
p−1 , u ∈ L̃p, v ∈ L̃q and k ∈ L̃1. Then

〈k ∗ u, v〉 exists with

〈k ∗ u, v〉 = 〈k, (Ru) ∗ v〉 = 〈u, (Rk) ∗ v〉(3.3)

and

|〈k ∗ u, v〉| ≤ ∦ k ∦1 ∦ u ∦p ∦ v ∦q .(3.4)

Proof. Consider

〈|k| ∗ |u| , |v|〉 =
∫ ∞

0
|v (x)| dx

x

∫ ∞
0

∣∣∣k (x
t

)∣∣∣ |u (t)| dt
t

=
∫ ∞

0
|v (x)| dx

x

∫ ∞
0
|k (s)|

∣∣∣u(x
s

)∣∣∣ ds
s

=
∫ ∞

0
|k (s)| ds

s

∫ ∞
0

∣∣∣(Ru)
( s
x

)∣∣∣ |v (x)| dx
x

= 〈|k| , |Ru| ∗ |v|〉 .

However, by (2.9) , Ru ∈ L̃p, so by Theorem 4 with u replaced by Ru,

|Ru| ∗ |v| ≤ ∦ Ru ∦p ∦ v ∦q = ∦ u ∦p ∦ v ∦q

using (2.9) again. Thus

〈|k| ∗ |u| , |v|〉 ≤ 〈|k| , ∦ u ∦p ∦ v ∦q〉
= ∦ u ∦p ∦ v ∦q 〈|k| , 1〉
= ∦ k ∦1 ∦ u ∦p ∦ v ∦q < ∞.

This shows the existence of 〈k ∗ u, v〉 and gives (3.4) . Now, Fubini’s theorem allows
us to repeat the argument above, changing the order of integration, but with |k| ,
|u| , and |v| replaced by k, u and v respectively. This gives 〈k ∗ u, v〉 = 〈k, (Ru) ∗ v〉 ,
the first part of (3.3) . The remaining part can be shown by changing the order of
integration without the change of variable.

Theorem 7. If p > 1, u ∈ L̃p and k ∈ L̃1, then k ∗ u ∈ L̃p and

∦ k ∗ u ∦p ≤ ∦ k ∦1 ∦ u ∦p .(3.5)

Proof. Introduce q = p
p−1 . Theorem 6 ensures that for all v ∈ L̃q,

〈|k| ∗ |u| , |v|〉 ≤ ∦ k ∦1 ∦ u ∦p ∦ v ∦q .

Then, Theorem 5 Part (ii) with |u| replaced by |k| ∗ |u| gives |k| ∗ |u| ∈ L̃p, with
∦ |k| ∗ |u| ∦p ≤ ∦ k ∦1 ∦ u ∦p . The required results follow.
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4. Applications

In Theorem 6, if we replace u (x) by x
1
p f (x) and v (x) by x

1
q g (x) , then ∦ u ∦p

= ‖f‖p and ∦ v ∦q = ‖g‖q . If we also replace k (x) by x
1
p

(x+1) , we have

∦ k ∦1 =
∫ ∞

0

x
1
p

x+ 1
dx

x
=
∫ 1

0
s

1
p−1 (x− 1)−

1
p ds,

which is B
(

1
p , 1−

1
p

)
or π cosec

(
π
p

)
. Further,

〈k ∗ u, v〉 =
∫ ∞

0

∫ ∞
0

f (x) g (y)
x+ y

dxdy.(4.1)

Then (3.4) becomes the Hilbert inequality (1.1) .

To obtain the Hardy inequality we use Theorem 7. There we substitute x
1
p f (x)

for u (x) , as before. In addition, we take k (x) to be

hµ (x) =
{

Γ−1 (µ)x
1
p−µ (x− 1)µ−1 for x > 1,

0 for 0 < x ≤ 1,
(4.2)

where µ is any positive constant. Note that k ∈ L̃1, in fact,

∦ k ∦1 =
∫ ∞

1

1
Γ (µ)

x
1
p−µ−1 (x− 1)µ−1

dx

=
1

Γ (µ)

∫ 1

0
s−

1
p (1− s)µ−1

ds

=
1

Γ (µ)
B

(
1− 1

p
, µ

)

=
Γ
(

1− 1
p

)
Γ
(
µ+ 1− 1

p

) .
Moreover,

k ∗ u (x) =
∫ x

0

1
Γ (µ)

(x
t
− 1
)µ−1 (x

t

) 1
p−µ

t
1
p f (t)

dt

t
= x

1
p−µIµf (x) ,

where

Iµf (x) =
1

Γ (µ)

∫ x

0
(x− t)µ−1

f (t) dt,

the Riemann-Liouville fractional integral of order µ. Then Theorem 7 gives the
following result.

Theorem 8. If p > 1, µ > 0 and f ∈ Lp (0,∞) , then

∥∥x−µIµf (x)
∥∥
p
≤

Γ
(

1− 1
p

)
Γ
(
µ+ 1− 1

p

) ‖f‖p .
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This is a generalization of Theorem 1.2, due to Knopp [4]; the case µ = 1 is the
original Hardy inequality.

Alternatively, substituting u (x) = xµ+ 1
p f (x) and

k (x) =
{

Γ−1 (µ)x
1
p (1− x)µ−1 for 0 < x < 1,

0 for x ≥ 1,

gives a theorem involving the Weyl fractional integral

Jµf (x) =
1

Γ (µ)

∫ ∞
x

(t− x)µ−1
f (t) dt,

namely,

Theorem 9. If p > 1, µ > 0 and f ∈ Lp (0,∞) , then

‖Jµf (x)‖p ≤
Γ
(

1
p

)
Γ
(
µ+ 1

p

) ‖xµf (x)‖p .

This is also a well-known result. See [3], Theorem 329.

5. Extensions

We begin with sufficient conditions for the relation (2.3) .

Theorem 10. If p > 1, w ∈ L̃p and u, v ∈ L̃1, then

[(u ∗ v) ∗ w] (x) = [u ∗ (v ∗ w)] (x)(5.1)

for almost all x > 0 and

∦ u ∗ (v ∗ w) ∦p ≤ ∦ u ∦1 ∦ v ∦1 ∦ w ∦p .(5.2)

Proof. By Theorem 7, v ∗w ∈ L̃p. Then another application of that theorem, with
k and u replaced by u and v ∗ w respectively, gives

∦ u ∗ (v ∗ w) ∦p ≤ ∦ u ∦1 ∦ v ∗ w ∦p
which cannot exceed ∦ u ∦1 ∦ v ∦1 ∦ w ∦p ≤ ∞.
This proves (5.2) and ensures the existence of [u ∗ (v ∗ w)] (x) for almost all x > 0.
For those x, ∫ ∞

0

∣∣∣u(x
t

)∣∣∣ dt
t

∫ ∞
0

∣∣∣∣v( ts
)∣∣∣∣ |w (s)| ds

s
< ∞.

Fubini’s theorem now permits the second step in

[u ∗ (v ∗ w)] (x) =
∫ ∞

0
u
(x
t

) dt
t

∫ ∞
0

v

(
t

s

)
w (s)

ds

s

=
∫ ∞

0
w (s)

ds

s

∫ ∞
0

u
(x
t

)
v

(
t

s

)
dt

t

=
∫ ∞

0
w (s)

ds

s

∫ ∞
0

u

(
x

ys

)
v (y)

dy

y

= [(u ∗ v) ∗ w] (x) ,
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giving (5.1) .

Versions of the index laws for fractional integration can be deduced from The-
orem 10. Let p > 1, µ, ν > 0. Replace w (x) by x

1
p f (x) so f ∈ Lp. Replace v by

hµ as defined in (4.2) and replace u (x) by x−µhν (x) . Then u ∗ v (x) = hν+µ (x) .
Theorem 10 then gives:

Theorem 11. If p > 1, f ∈ Lp then

x−µ−νIνIµf (x) = x−µ−νIν+µf (x) ∈ Lp.

If, instead, we swap the definitions of u and v, then we obtain

Theorem 12. Under the conditions of Theorem 11:

x−µIµx−µ−νIνxµf (x) = x−µ−νIν+µf (x) .

This is a version of the “second index law” due to Love [5]. Use of the adjoints
(Ru) ∗ and (Rv) ∗ give similar results for the Weyl fractional integral.

Returning to more general considerations, we have

Theorem 13. Suppose p > 1, q = p
p−1 , u ∈ L̃p, v ∈ L̃q and k1, k2 ∈ L̃1. Then

〈(k1 ∗ k2) ∗ u, v〉 = 〈k2 ∗ u, (Rk1) ∗ v〉(5.3)

and

|〈(k1 ∗ k2) ∗ u, v〉| ≤ ∦ k2 ∗ u ∦p ∦ (Rk1) ∗ v ∦q .(5.4)

Proof. By Theorem 10, (k1 ∗ k2) ∗ u = k1 ∗ (k2 ∗ u) in L̃p.
So

〈(k1 ∗ k2) ∗ u, v〉 = 〈k1 ∗ (k2 ∗ u) , v〉 .(5.5)

Since, by Theorem 7, k2 ∗ u ∈ L̃p, Theorem 6 applies to the right hand side and
this yields (5.3) .

By (2.9) , Rk1 ∈ L̃1 so that (Rk1 ∗ v) ∈ L̃q, again using Theorem 7. Hence,
by Theorem 5

|〈(k1 ∗ k2) ∗ u, v〉| = |〈k2 ∗ u, (Rk1) ∗ v〉|
≤ ∦ k2 ∗ u ∦p ∦ (Rk1) ∗ v ∦q,

which completes the proof.

As an application of this result, take k1 (x) = x
1
p e−x, k2 (x) = x−

1
q e−

1
x , u (x) =

x
1
p f (x) and v (x) = x

1
q g (x) . Then

(Rk1) ∗ v (x) = x−
1
p

∫ ∞
0

e−
t
x g (t) dt = x−

1
pG

(
1
x

)
,
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where G is the (one-sided) Laplace transform of g. Similarly, k2∗u (x) = x−
1
qF
( 1
x

)
,

F being the Laplace transform of f. In addition,

k1 ∗ k2 (x) =
x

1
p

x+ 1
= k (x)

say. So the left side of (5.3) is 〈k ∗ u, v〉 which we have seen in (4.1) is equal to
Hilbert’s double integral.

The right side of (5.3) is

〈k2 ∗ u, (Rk1) ∗ v〉 =
∫ ∞

0
x−

1
qF

(
1
x

)
x−

1
pG

(
1
x

)
dx

x

=
∫ ∞

0
F (s)G (s) ds.

Thus, in this case (5.3) gives

Theorem 14. For f ∈ Lp, g ∈ Lq where p > 1 and 1
p + 1

q = 1,∫ ∞
0

∫ ∞
0

f (x) g (y)
x+ y

dxdy =
∫ ∞

0
F (s)G (s) ds,(5.6)

where F and G are the Laplace transforms of f and g.

Further, since ∦ k2 ∗ u ∦p = ‖x1− 2
pF (x) ‖p and ∦ (Rk1) ∗ v ∦q = ‖x1− 2

qG (x) ‖q,
then (5.4) gives the following.

Theorem 15. Under the conditions of Theorem 14∣∣∣∣∫ ∞
0

∫ ∞
0

f (x) g (y)
x+ y

dxdy

∣∣∣∣ ≤ ∥∥∥x1− 2
pF (x)

∥∥∥
p

∥∥∥x1− 2
qG (x)

∥∥∥
q
.(5.7)

This inequality implies Hilbert’s. For∥∥∥x1− 2
pF (x)

∥∥∥
p

= ∦ k2 ∗ u ∦p

≤ ∦ k2 ∦1 ∦ u ∦p

= Γ
(

1
q

)
‖f‖p

and similarly ∥∥∥x1− 2
qG (x)

∥∥∥
q
≤ Γ

(
1
p

)
‖g‖q .

As

Γ
(

1
q

)
Γ
(

1
p

)
= π cosec

(
π

p

)
,

(5.7) implies (1.1) .

To show that (5.7) is a sharper inequality than (1.1) , consider the case f (x) =
g (x) = e−x, p = q = 2. Then F (x) = G (x) = 1

x+1 and∥∥∥x1− 2
pF (x)

∥∥∥
p

=
∥∥∥x1− 2

qG (x)
∥∥∥
q

= 1
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while

‖f‖p = ‖g‖q = p−
1
p =

1√
2
.

The right side of (5.7) is thus equal to 1 while that of (1.1) is π
2 .

Note that (5.6) can be obtained directly by changing the order of integration on
the right side, using Hilbert’s inequality to justify the process. However, we can
find no mention of formula (5.6) in the literature.
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