
ON TRAPEZOID INEQUALITY VIA A GRÜSS TYPE RESULT
AND APPLICATIONS

S.S. DRAGOMIR AND A. MCANDREW

Abstract. In this paper, we point out a Grüss type inequality and apply it
for special means (logarithmic mean, identric mean, etc... ) and in Numerical
Analysis in connection with the classical trapezoid formula.

1. Introduction

In 1935, G. Grüss (see for example [1, p. 296]), proved the following integral
inequality which gives an approximation for the integral of a product in terms of
the product of integrals:

Theorem 1. Let f, g : [a, b]→ R be two integrable mappings so that ϕ ≤ f (x) ≤ Φ
and γ ≤ g (x) ≤ Γ for all x ∈ [a, b], where ϕ,Φ, γ,Γ are real numbers. Then we
have: ∣∣∣∣∣∣ 1

b− a

b∫
a

f (x) g (x) dx− 1
b− a

b∫
a

f (x) dx · 1
b− a

b∫
a

g (x) dx

∣∣∣∣∣∣
≤ 1

4
(Φ− ϕ) (Γ− γ)(1.1)

and the inequality is sharp, in the sense that the constant 1
4 can not be replaced by

a smaller one.

For a simple proof of this fact as well as for extensions, generalizations, discrete
variants etc... see the book [1, p. 296] by Mitrinović, Pec̆arić and Fink and the
papers [2]-[7] where further references are given.

In this paper, we point out a different Grüss type inequality and apply it for
special means (logarithmic mean, identric mean, etc... ) and in Numerical Analysis
in connection with the classical trapezoid formula.

2. A Grüss’ type inequality

We start with the following result of Grüss’ type.

Theorem 2. Let f, g : [a, b] → R be two integrable mappings. Then we have the
following Grüss’ type inequality:∣∣∣∣∣∣ 1

b− a

b∫
a

f (x) g (x) dx− 1
b− a

b∫
a

f (x) dx · 1
b− a

b∫
a

g (x) dx

∣∣∣∣∣∣
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≤ 1
b− a

b∫
a

∣∣∣∣∣∣
f (x)− 1

b− a

b∫
a

f (y) dy

 ·
g (x)− 1

b− a

b∫
a

g (y) dy

∣∣∣∣∣∣ dx.(2.1)

The inequality (2.1) is sharp.

Proof. First of all, let observe that

I :=
1

b− a

b∫
a

f (x)− 1
b− a

b∫
a

f (y) dy

 ·
g (x)− 1

b− a

b∫
a

g (y) dy

 dx

=
1

b− a

b∫
a

f (x) g (x)− g (x) · 1
b− a

b∫
a

f (y) dy − f (x) · 1
b− a

b∫
a

g (y) dy

+
1

b− a

b∫
a

f (y) dy · 1
b− a

b∫
a

g (y) dy

 dx

=
1

b− a

b∫
a

f (x) g (x) dx− 1
b− a

b∫
a

g (x) dx · 1
b− a

b∫
a

f (y) dy

− 1
b− a

b∫
a

f (x) dx · 1
b− a

b∫
a

g (y) dy + (b− a) · 1
b− a

b∫
a

f (y) dy · 1
b− a

b∫
a

g (y) dy

=
1

b− a

b∫
a

f (x) g (x) dx− 1
b− a

b∫
a

g (x) dx · 1
b− a

b∫
a

f (x) dx.

On the other hand, by the use of modulus properties, we have

|I| ≤ 1
b− a

b∫
a

∣∣∣∣∣∣
f (x)− 1

b− a

b∫
a

f (y) dy

 ·
g (x)− 1

b− a

b∫
a

g (y) dy

∣∣∣∣∣∣ dx
and the inequality (2.1) is proved.

Choosing f (x) = g (x) = sgn
(
x− a+b

2

)
, the equality is satisfied in (2.1).

The following corollaries are interesting.

Corollary 1. Let f : [a, b] → R be a differentiable mapping on (a, b) having the
first derivative f ′ : (a, b)→ R bounded on (a, b). Then we have the inequality:∣∣∣∣∣∣f (a) + f (b)

2
− 1
b− a

b∫
a

f (x) dx

∣∣∣∣∣∣
≤ b− a

4
max
x∈(a,b)

∣∣∣∣f ′ (x)− f (b)− f (a)
b− a

∣∣∣∣(2.2)
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Proof. A simple integration by parts gives that:

f (a) + f (b)
2

(b− a)−
b∫
a

f (x) dx =

b∫
a

(
x− a+ b

2

)
f ′ (x) dx.(2.3)

Applying the inequality (2.1) we get that:

∣∣∣∣∣∣
b∫
a

1
b− a

(
x− a+ b

2

)
f ′ (x) dx− 1

b− a

b∫
a

(
x− a+ b

2

)
dx · 1

b− a

b∫
a

f ′ (x) dx

∣∣∣∣∣∣
≤ 1
b− a

b∫
a

∣∣∣∣∣∣
x− a+ b

2
− 1
b− a

b∫
a

(
y − a+ b

2

)
dy



·

f ′ (x)− 1
b− a

b∫
a

f ′ (y) dy

∣∣∣∣∣∣ dx.
As

b∫
a

(
x− a+ b

2

)
dx = 0

we get∣∣∣∣∣∣
b∫
a

(
x− a+ b

2

)
f ′ (x) dx

∣∣∣∣∣∣ ≤
b∫
a

∣∣∣∣(x− a+ b

2

)(
f ′ (x)− f (b)− f (a)

b− a

)∣∣∣∣ dx

≤ max
x∈(a,b)

∣∣∣∣f ′ (x)− f (b)− f (a)
b− a

∣∣∣∣
b∫
a

∣∣∣∣(x− a+ b

2

)∣∣∣∣ dx
=

(b− a)2

4
max
x∈(a,b)

∣∣∣∣f ′ (x)− f (b)− f (a)
b− a

∣∣∣∣ .(2.4)

Now using the equality (2.3), the inequality(2.4) becomes the desired result
(2.2) .

Corollary 2. Let f : [a, b] → R be a differentiable mapping on (a, b) having the
first derivative f ′ : (a, b)→ R, q-integrable on (a, b) where p, q > 1, 1

p + 1
q = 1.Then

we have the inequality: ∣∣∣∣∣∣f (a) + f (b)
2

− 1
b− a

b∫
a

f (x) dx

∣∣∣∣∣∣
≤ 1

2

(
b− a
p+ 1

) 1
p

 b∫
a

∣∣∣∣f ′ (x)− f (b)− f (a)
b− a

∣∣∣∣q dx


1
q

.(2.5)
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Proof. Using Hölder’s inequality, we have that:
b∫
a

∣∣∣∣(x− a+ b

2

)(
f ′ (x)− f (b)− f (a)

b− a

)∣∣∣∣ dx

≤

 b∫
a

∣∣∣∣x− a+ b

2

∣∣∣∣p dx


1
p
 b∫
a

∣∣∣∣f ′ (x)− f (b)− f (a)
b− a

∣∣∣∣q dx


1
q

=
(b− a)

1
p+1

2 (p+ 1)
1
p

 b∫
a

∣∣∣∣f ′ (x)− f (b)− f (a)
b− a

∣∣∣∣q dx


1
q

as a simple computation shows that

b∫
a

∣∣∣∣x− a+ b

2

∣∣∣∣p dx =

a+b
2∫
a

(
a+ b

2
− x
)p

dx+

b∫
a+b

2

(
x− a+ b

2

)p
dx

= −
(
a+b

2 − x
)p+1

p+ 1

∣∣∣∣∣
a+b

2

a

+

(
x− a+b

2

)p+1

p+ 1

∣∣∣∣∣
b

a+b
2

=
(b− a)p+1

(p+ 1) 2p+1 +
(b− a)p+1

(p+ 1) 2p+1 =
(b− a)p+1

(p+ 1) 2p
.

Now, using the first part of (2.4) and the identity (2.3), we get the desired result
(2.5) .

The following result also holds.

Corollary 3. Let f : [a, b] → R be a differentiable mapping on (a, b) and suppose
that f ′ : (a, b)→ R is integrable on (a, b) .Then we have the inequality:∣∣∣∣∣∣f (a) + f (b)

2
− 1
b− a

b∫
a

f (x) dx

∣∣∣∣∣∣ ≤ 1
2

b∫
a

∣∣∣∣f ′ (x)− f (b)− f (a)
b− a

∣∣∣∣ dx(2.6)

Proof. We have
b∫
a

∣∣∣∣(x− a+ b

2

)(
f ′ (x)− f (b)− f (a)

b− a

)∣∣∣∣ dx ≤ max
x∈(a,b)

∣∣∣∣x− a+ b

2

∣∣∣∣
×

b∫
a

∣∣∣∣f ′ (x)− f (b)− f (a)
b− a

∣∣∣∣ dx =
b− a

2

b∫
a

∣∣∣∣f ′ (x)− f (b)− f (a)
b− a

∣∣∣∣ dx.
Using the first part of (2.4) and the identity (2.3) ,we get the desired result

(2.6) .
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3. Applications for some special means

Let us recall some special means we shall use in the sequel:
(a) The arithmetic mean

A = A (a, b) :=
a+ b

2
, a, b ≥ 0;

(b) The geometric mean

G = G (a, b) :=
√
ab, a, b ≥ 0;

(c) The harmonic mean

H = H (a, b) :=
2

1
a + 1

b

, a, b > 0;

(d) The logarithmic mean

L = L (a, b) :=
{
a if b = a
b−a

ln b−ln a if b 6= a, a, b > 0;

(e) The identric mean

I = I (a, b) :=

 a if a = b

1
e

(
bb

aa

) 1
b−a

if a 6= b, a, b > 0;

(f) The p−logarithmic mean

Lp = Lp (a, b) :=

 a if b = a[
bp+1−ap+1

(p+1)(b−a)

] 1
p

if b 6= a, a, b > 0

where p ∈ R\ {−1, 0} .
It is well known that

H ≤ G ≤ L ≤ I ≤ A(3.1)

and the mapping Lpis monotonically increasing in p ∈ R with L0 := I and L−1 :=
L.

I. Now, let consider the inequality∣∣∣∣∣∣f (a) + f (b)
2

− 1
b− a

b∫
a

f (x) dx

∣∣∣∣∣∣
≤ b− a

4
max
x∈(a,b)

∣∣∣∣f ′ (x)− f (b)− f (a)
b− a

∣∣∣∣ ,(3.2)

where f is as in Corollary1.
1. Consider the mapping f : (0,∞)→ R, f (x) = xr, r ∈ R\ {0,−1} . Then for

0 < a < b, we have
f (a) + f (b)

2
= A (ar, br) ,

1
b− a

b∫
a

f (x) dx = Lrr (a, b) ,
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f ′ (x)− f (b)− f (a)
b− a

= rxr−1 − rLr−1
r−1 = r

(
xr−1 − Lr−1

r−1

)
,

and by the inequality3.2 we get:

|A (ar, br)− Lrr (a, b)| ≤ |r| (b− a)
4

max
x∈(a,b)

∣∣xr−1 − Lr−1
r−1

∣∣(3.3)

2. Consider the mapping f : (0,∞) → R, f (x) = 1
x . Then for 0 < a < b, we

have
f (a) + f (b)

2
=

A (a, b)
G2 (a, b)

,

1
b− a

b∫
a

f (x) dx =
1

L (a, b)
,

f ′ (x)− f (b)− f (a)
b− a

= − 1
x2 +

1
ab

=
x2 −G2

G2x2

max
x∈(a,b)

∣∣∣∣f ′ (x)− f (b)− f (a)
b− a

∣∣∣∣ = max
x∈(a,b)

{∣∣b2 − ab∣∣
ab · b2

,

∣∣a2 − ab
∣∣

ab · a2

}

=
(b− a)
ab

max
x∈(a,b)

{
1
b
,

1
a

}
=

(b− a)
a2b

and by the inequality (3.2)we get∣∣∣∣ AG2 −
1
L

∣∣∣∣ ≤ (b− a)2

4aG2

which is equivalent to

0 ≤ LA−G2 ≤ (b− a)2

4a
L.(3.4)

3. Consider the mapping f : (0,∞) → R, f (x) = lnx. Then for 0 < a < b, we
have

f (a) + f (b)
2

= lnG,

1
b− a

b∫
a

f (x) dx = ln I,

f ′ (x)− f (b)− f (a)
b− a

=
1
x
− 1
L
,

max
x∈(a,b)

∣∣∣∣f ′ (x)− f (b)− f (a)
b− a

∣∣∣∣ =
1
a
− 1
L

=
L− a
aL

and by the inequality (3.2) we get

|lnG− ln I| ≤
(
L− a
aL

)
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which is equivalent to:

1 ≤ I

G
≤ exp

(
L− a
aL

)
(3.5)

II. Now, let consider the inequality:∣∣∣∣∣∣f (a) + f (b)
2

− 1
b− a

b∫
a

f (x) dx

∣∣∣∣∣∣
≤ 1

2

b∫
a

∣∣∣∣f ′ (x)− f (b)− f (a)
b− a

∣∣∣∣ dx(3.6)

1. Consider the mapping f : (0,∞) → R f (x) = x2, r ∈ R\ {0,−1} and
0 < a < b. Then

b∫
a

∣∣∣∣f ′ (x)− f (b)− f (a)
b− a

∣∣∣∣ dx = |r|
b∫
a

∣∣xr−1 − Lr−1
r−1

∣∣ dx.
For simplicity, let assume that r > 1. Then

b∫
a

∣∣xr−1 − Lr−1
r−1

∣∣ dx =

Lr−1∫
a

(
Lr−1
r−1 − xr−1) dx+

b∫
Lr−1

(
xr−1 − Lr−1

r−1

)
dx

= Lr−1
r−1 (Lr−1 − a)− xr

r

∣∣∣∣Lr−1

a

+
xr

r

∣∣∣∣b
Lr−1

− (b− Lr−1)Lr−1
r−1

= Lrr−1 − aLr−1
r−1 −

Lrr−1 − a
r

r

+
br − Lrr−1

r
− (b− Lr−1)Lr−1

r−1

=
br + ar

r
− Lr−1

r−1 (a+ b) +
2Lrr−1

r
=

2
r

[
A (ar, br)− rLr−1

r−1A+ Lrr−1
]

and by the inequality (3.6) we get

0 ≤ A (ar, br)− Lrr (a, b) ≤
[
A (ar, br)− rLr−1

r−1A+ Lrr−1
]

(3.7)

or

rLr−1
r−1A ≤ Lrr (a, b) + Lrr−1 (a, b) .(3.8)

Similar results can be obtained for r ≤ 1, r 6= 0,−1.
We shall omit the details.
2. Consider the mapping f : (a, b)→ R, f (x) = 1

x . Then for 0 < a < b we have:

b∫
a

∣∣∣∣x2 −G2

G2x2

∣∣∣∣ dx =
1
G2

b∫
a

∣∣∣∣x2 −G2

x2

∣∣∣∣ dx

=
1
G2

 G∫
a

G2 − x2

x2 dx+

b∫
G

x2 −G2

x2 dx
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=
1
G2

[
G2 x

−1

−1

∣∣∣∣G
a

− (G− a) + (b−G)−G2 x
−1

−1

∣∣∣∣b
G

]

=
1
a2

[
−G

2

G
+
G2

a
+ b+ a− 2G+

G2

b
− G2

G

]

=
1
G2

[
b+ a− 2G− 2G+G2

(
a+ b

ab

)]
=

4
G2 (A−G) =

4 (A−G)
G2

and by inequality (3.6) we get:∣∣∣∣ AG2 −
1
L

∣∣∣∣ ≤ 2 (A−G)
G2

i.e.,

0 ≤ AL−G2 ≤ 2L (A−G)(3.9)

or equivalently:

2LG ≤ G2 +AL(3.10)

which is a very interesting inequality amongst A,L and G.
3. Consider the mapping f : (a, b) → R, f (x) = lnx. Then for 0 < a < b, we

have:
b∫
a

∣∣∣∣ 1x − 1
L

∣∣∣∣ dx =

b∫
a

|x− L|
xL

dx =

L∫
a

(L− x)
xL

dx+

b∫
L

x− L
xL

dx

=
1
L

[
L lnx|La − (L− a) + (b− L)− L lnx|bL

]
=

1
L

[L lnL− L ln a− L+ a+ b− L− L ln b+ L lnL]

=
1
L

[2L lnL− L (ln a+ ln b) + a+ b− 2L]

and then by the inequality (3.6) we get

|lnG− ln I| ≤ 1
2L

[2L lnL− L (ln a+ ln b) + a+ b− 2L]

= lnL− ln a+ ln b
2

+
A

L
− 1 = lnL− lnG+

A− L
L

= ln
[(

L

G

)
exp

(
A− L
L

)]
i.e.,

1 ≤ I

G
≤ L

G
exp

(
A− L
L

)
(3.11)

which implies

1 ≤ I

L
≤ exp

(
A− L
L

)
.(3.12)
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4. Applications for the trapezoid formula

In this section we shall assume that f : I ⊆ R → R is a differentiable mapping
whose derivative is satisfying the following condition:

|f (b)− f (a)− (b− a) f ′ (x)| ≤ Ω (b− a)2
,Ω > 0(4.1)

for all a, b ∈ I and x between a and b.
If f ′ is M−lipschitzian, i.e.,

|f ′ (u)− f ′ (v)| ≤M |u− v| ,M > 0

then

|f (b)− f (a)− (b− a) f ′ (x)| = |f ′ (c)− f ′ (x)| |b− a|

≤M |b− a| |c− x| ≤M (b− a)2

where c is between a and b, too. Consequently, the mappings having the first
derivative lipschitzian satisfy the condition (4.1).

The following trapezoid formula holds.

Theorem 3. Let f : [a, b]→ R be a differentiable mapping on (a, b) whose deriva-
tive f ′ : (a, b)→ R is satisfying the above condition (4.1)on (a, b) . If Ih : a = x0 <
x1 < ... < xn−1 < xn = b is a division of [a, b] and hi = xi+1 − xi, i = 0, ..., n− 1,
then we have:

b∫
a

f (t) dt = AT,Ih (f) +RT,Ih (f)(4.2)

where

AT,Ih (f) =
n−1∑
i=0

f (xi) + f (xi+1)
2

hi(4.3)

and the remainder RT,Ih (f) satisfies the estimation:

|RT,Ih (f)| ≤ Ω
4

n−1∑
i=0

h3
i .(4.4)

Proof. Applying Corollary 1 on the interval [xi, xi+1] we can write:∣∣∣∣∣∣(xi+1 − xi)
f (xi) + f (xi+1)

2
−

xi+1∫
xi

f (t) dt

∣∣∣∣∣∣
≤ xi+1 − xi

4
max

x∈(xi,xi+1)

∣∣∣∣f ′ (x)− f (xi+1)− f (xi)
xi+1 − xi

∣∣∣∣
≤ Ω (xi+1 − xi)3

4
i.e., ∣∣∣∣∣∣f (xi) + f (xi+1)

2
hi −

xi+1∫
xi

f (t) dt

∣∣∣∣∣∣ ≤ Ωh3
i

4

for all i = 0, ..., n− 1.
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Summing the above inequality and using the generalized triangle inequality, we
get the approximation (4.2) and the remainder satisfies the estimation (4.4).

Remark 1. We have got in this way a trapezoid formula for a class larger than
the class C2 [a, b] for which the usual trapezoid formula works with the remainder
term satisfying the estimation

|RT,Ih (f)| ≤
‖f ′′‖∞

12

n−1∑
i=0

h3
i

where ‖f ′′‖∞ = sup
t∈(a,b)

|f ′′ (t)| <∞.
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