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TWO MAPPINGS RELATED TO SEMI-INNER PRODUCTS AND
THEIR APPLICATIONS IN GEOMETRY OF NORMED LINEAR
SPACES

S.S. Dragomir and J.J. Koliha

ABSTRACT. In this paper we introduce two mappings associated with the lower and upper semi-
inner product (-,-); and (-,-)s and with semi-inner products [-,-] (in the sense of Lumer) which
generate the norm of a real normed linear space, and study properties of monotonicity and bound-
edness of these mappings. We give a refinement of the Schwarz inequality, applications to the
Birkhoff orthogonality, to smoothness of normed linear spaces as well as to the characterization of
best approximants.

1 INTRODUCTION AND PRELIMINARIES

In this paper we continue the study of mappings associated with the lower and upper semi-inner
product in a normed space that started in [DK-97a], [DK-97b] and [DK-98]. The main reason
for studying these mappings is to obtain sharper estimates than those available using only the
norm, and to attempt a clearer geometrical description of the normed space in the absence of
a true inner product. We also consider semi-inner products in the sense of Lumer, which lie

between the lower and upper semi-inner product, and define our mappings \IIH, in dependence

on a particular semi-inner product. It turns out that the previously studied mappings <I>§:7y and

@3, (see [DK-97b]) form the lower and upper envelope, respectively, for \I/[IL

Our results will provide, in particular, refinements of the Schwarz inequality based on the
lower and upper semi-inner product, and a characterization of best approximants.

Let (X, ||-]|) be a real normed linear space. We define the lower and upper semi-inner product
by

2

o ety = el
t—0— 2t and  (y,z)s = tli}(l)’lJr 2t

9

respectively. These limits are well defined for every pair x,y € X (see for example [D-90], [I]);
the subscripts ¢ and s stand for inferior and superior, respectively. We mention that (-,-); and
(+,+)s are not semi-inner products in the sense of Lumer since they are not additive in the first
variable (see (VII) below).

For the sake of completeness we list here some of the main properties of these products that
will be used in the sequel (see [De], [D-90], [D-92a], [D-92b]), assuming that p,q € {s,i} and

p# ¢

(1) (x,2), = ||z|? for all z € X;

(II) (az,By)p = af(z,y)p if f >0 and z,y € X;
(10 [(@,y)p| < [z [ly|| for all z,y € X;
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22 Dragomir and Koliha

(IV) (ax +y,z)p = a(z, ), + (y, x)p if ,y belong to X and « is a real number;

(VI

(VII) The mapping (-,-), is continuous and subadditive (superadditive) in the first variable for
p=s(or p=i);

)

(V) (—z,y)p = —(x,y)q for all x,y € X;
) (@ +y,2)p < [lz]l 2] + (y, 2)p for all z,y,z € X;
)

(VIII) The element « € X is Birkhoff orthogonal to the element y € X (that is,
|z + tyl| > ||z|| for all t € R)
if and only if
(y, )i <0< (y,2)s;

(IX) The normed linear space (X, ||-||) is smooth at the point xg € X\{0} if and only if the
mapping y — (y, Zo), is linear, or if and only if (y,z¢)s = (y,xo); for all y € X;

(X) Let J be the normalized duality mapping on X, that is, let
J (@) ={f € X*| f(z) = |l|* and |f]| = l|=]};
note that, for every x € X, J(z) is a nonempty convex subset of X*, and
J(az) = aJ(x) for all @ € R and all z € X.
Then for every pair x,y € X there exist wy,ws € J(x) so that
(v, 2)s =wi(y), (¥, 2)i = wa(y);
(XI) We have the representations
(v, 7)s = sup{w(y) [w € T (@)},  (y,2)i = inf{w(y) |w e T(x)}.
Therefore

(y,x)i < (y, ), for all z,y € X.

(XII) If the norm |-|| is induced by an inner product (-,-), then
(y7x)2 = (y,I) = (yvgj)s for all T,y € X.

The normalized duality maping is discussed in [Del; for other properties of (-, ), see [A],
[De], [D-90], [D-92a], [D-92b], [I], where further references are given.

The terminology throughout the paper is standard. We mention that for functions we use
the terms ‘increasing’ (and ‘strictly increasing’), ‘decreasing’ (and ‘strictly decreasing’), thus
avoiding ‘nondecreasing’ and ‘nonincreasing’.

2 PROPERTIES OF THE MAPPINGS @QL AND \IIH,

First of all, let us recall the concept of semi-inner products on a real normed linear space
introduced by Lumer [L].

Definition 2. Let X be a real linear space. A mapping [-,-] : X x X — Ris called a semi-inner
product on X if it satisfies the following conditions:
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Two Mappings Related to Semi-Inner Products and Applications 23
z,z] >0 for all z € X, and [z, z] = 0 implies = = 0;

) |
b) [ax + By, z] = afz, 2] + By, 2] for all @, 8 € R and all z,y,z € X;
) [z, ay] = alz,y] for all € R and all 2,y € X

) |

() |[z,y]]* < [2,2]ly, y] for all 2,y € X.
It is easy to see that if [+, -] is a semi-inner product on X, then the mapping ||-|| : = + [z, z]'/?
for all € X is a norm on X. Moreover, for any y € X, the functional f, : z — [z,y] for all
x € X is linear and continuous in the norm topology of (X, ||-]|), with ||f, |l = ||y

Conversely, if (X, ||-||) is a normed linear space, then the norm can be always represented
through a semi-inner product (Lumer [L]) in the form

[z,y] = (T (y), ) forall z,y € X,

where J is a section of the normalized duality mapping J defined in the introduction.
For the sake of completeness, we give a simple proof of the following known lemma.

Lemma 2.1. Let (X, ||]|) be a real normed linear space and [-,-] a semi-inner product which
generates the norm ||-||. Then
(2.1) (z,9)i < [2,y] < (z,y)s forall z,y € X.

Proof. We may assume that y # 0. The functional f, : X — R defined by f,(z) = [z,y] is
linear, and

lfy @) = [z, yll < [zl lyll, thatis, [lfyll <yl
Further,

@) _ gl

£yl = = = Iyl
! Iyl Iyl ’

which proves || fy[| = [ly[l. Also, f,(y) = [ fyll [yll, and f, € T(y).
By property (XI) of the introduction,

(z,9)s = sup{w (@) |w € T(y)}, =€ X,

and thus
(2.)s > o) = [5,9] for all o€ X.
The inequality (x,y); < [z,y] for all x € X follows from fact that
(z,y); = inf{w(x)|we T(y)}, =zeX,

and the lemma is proved. i

For a given semi-inner product on X generating the norm of X we define the mappings

, T + ty]
ol . RoR, ol (1) .= L2t
sy R 200 = T
and
t
\IJEEJ :R — R, \Ilgcv] (t) == 7[1"'1‘4_ y]7
Y Y |z + ty||

where x,y are assumed to be linearly independent in X. We will also make use of the mappings

t t
ar, ()= WL gy gy T
e+ ty] G PR

where p € {7, s}. (For more detailed properties of ®7 = see [DK-97b].)
The following proposition explores connections between all these mappings.
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24 Dragomir and Koliha

Proposition 2.2. Let (X, ||||) be a real normed linear space, [-,-] a semi-inner product gener-
ating the norm in X and x,y two linearly independent vectors in X. Then

(2.2) |z + ty| = Ok ) () + @l () for all t € R,
and
(2.3) oll (1/t) = sgn(t)¥lL (1) for all t € R\{0}.

Proof. Let t € R. Then

|z +ty* _ [z + ty, = + ty]
[ + ty|| [+ ty||

[z, 2 + ty] + t[y, © + ty]
— =l @)+l (1),

o+ tyl =

and equality (2.2) is proved.
Let t € R\{0}. Then

ly, y + t]

ol (1/1) = y,z+y/t]  [yy+ta]/t e

e/t Nyl /I
= sgn(t)\llgl”lﬁ (t),

where sgn(t) = [t|/t for t € R\{0}. I

gn(t)

(]

The following theorem summarizes the main properties of the mapping ®z .

Theorem 2.3. Let (X,||-||) be a real normed linear space, [-,-| a semi-inner product which
generates the norm of X, and x,y two linearly independent vectors in X. Then:

(i) The mapping <I>£¢L 18 bounded, and

(2.4) \cp ) (t)‘ < |yl for all t € R;

[
@)y
(ii) We have the inequalities

(2.5) L, (1) <L) (1) < @5, (t) forall t €R,

g
and the bounds

(2.6) ®;, (t) = {25}, (1) | [, -] € T(X)},

(2.7) ®;, (t) = sup{@L} () |[-,] € T(X)},

where J(X) is the class of all semi-inner products generating the norm of X;

(iii) We have the limits

( ): (y?x)i (t) — (yax)s

2.8 lim ®L) (]

28) S Py el =T
and

(2.9) Jim @U@ ==yl lim ekl = [yl

(iv) The mapping (PH, is increasing on R.
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Two Mappings Related to Semi-Inner Products and Applications

Proof. (i) Follows from the Schwarz inequality (III).
(ii) Follows from Lemma 2.1.
(iii) According to Theorem 2.1 of [DK-97b],

: (y,)s .
P —
(2.10) thr& % (t) s p € {s,i}.

25

Then an application of the inequalities (2.5) yields the second limit in (2.8). The first limit

follows from ®L}, (—t) = —al'l(#).

The limits in (2.9) similarly follow from Theorem 2.1 of [DK-97b] by an application of (2.5).

(iv) Let t2 > t1. By the Schwarz inequality,
[z 4+ toy, z + t1y] < ||z + tayl| |z + t1y]]-
By the linearity of the semi-inner product in the first variable,

[z + by, z + tiy] = [(t2 — t1)y + = + tay, @ + 11y
= |z + tiyl® + (t2 — t1) [y, = + tay),

and so, by the above inequality, we get

2 + tayll &+ tryl| > &+ tiyl” + (t2 — t1) [y, = + tay),
that is,

2+ tayll (= + tayll — [lz + tryl) > (t2 — t1)[y, = + tay],
which implies

v,z +tiy] _ [lz + byl — [lz + tay||
lz+tiyll — to — 1

oll (t1) =
On the other hand, for any ¢ > 0 we have

lzllllz + tyll > (z, 2 + ty)s = (x + ty — ty,z + ty),
2 2
= |z +tyll” + (—ty,z + ty)s = [z + ty|” — t(y, z +ty)s;

this implies

t —

<@L, () (t>0).

In this inequality replace x by x + t1y and set t := t5 — t1; then
[z + tayll = llz + tayll _ Nz +tay + tyll — |l + tayll
to — 11 t
S Py (1) = 05y ().

As ®L  (tg) < ®l:] (t,), we conclude that
ol (t) <ol (ta),
which shows that @H, is increasing. N

The following theorem summarizes properties of \IIH,
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26 Dragomir and Koliha

Theorem 2.4. Let (X, ||-||) be real normed linear space, [-,-] a semi-inner product which gen-
erates the norm of X, and x,y linearly independent vectors in X. Then:

(i) The mapping \IIHJ s bounded, and

(2.12) W) )] < el for att te®;

(ii) We have the inequalitites

(2.13) L) <Ll < (t) forall teR,

T,y

and the bounds

(2.14) VG, () =inf{¥h) (1) [[] € T(X)},
(2.15) w3, (1) = sup{Uh) (1) [ ] € T(X));

(ili) We have the limits

(2.16) lim Wl (¢) = 2222 lim Wl (u)=— ;
tooo Y Iyl u——co %Y Iyl
(iv) The mapping \IJQ’,L is continuous at 0O;
(v) \Ilg[,;]y is increasing on (—oo, 0] and decreasing on (0, 00).
Proof. (i) Follows from the Schwarz inequality.
(ii) Can be deduced from Lemma 2.1; we omit the details.
(iii) We have
t t t
todfoo  HY totoe oty todeo tly 4+ a/t]
— lim M: lim 2 (a).
I R R R

By (2.10), lima—o4 @}, (@) = (2, 9)s/ |y, and the result follows from inequality (2.13).
(iv) First we observe that

(2.17) Ll (t) = ||z +ty] —tol] (¢) forall teR
by Proposition 2.2. By (2.8) and the definition of Wk},

lim 0L (1) = Jo = WL}, (0).

(v) Let t; < to < 0. Using (2.17), we deduce

Wk (o) = Wh) (1) _ |z +tayl — Il + tayll £D5) (82) — 1B (1)
to —t to —tp to —tp ’

In the proof of Theorem 2.4 we established that

1y < Lt =llz+twl _

3l L] (¢
Y to —t = Fzy ( 2)
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Two Mappings Related to Semi-Inner Products and Applications 27

for all £ < to; thus se get

vl (t2) — Wbl (1) 08 (t2) — 6108} (1)

> ol (¢
to — 1t B x,y(l) to — 11
@l (t1) — 1B (1) — @) () + 01 ®L (1)
to —t1
_ 0@ () — 5y (8)
o —t -

as ta < 0 and <I>£¢L (t1) < <I>£¢]y (t2).
If to > t; > 0, then

Wiy () = Wiy (h) _ g1, ] () — 2®5n (o) 012y (1)

tg — tl t2 - tl
_ t2‘I’[rl.l; (t2) — t1q>~[ﬂ,7;J (t2) — tsz.ﬁt’,g (t2) + th)gc’,;l (t1)
to —ty
_ hu(@hy () ~ By (1) _
to — 1 -

as t; >0 and @&}, (t1) < @b ().
The theorem is thus proved. i

[,]

In the case that (X, ||-]|) is a real inner product space, the mappings @QL and ¥y, assume
the following form:

2 2
N R R I AR TCN')
fetal * e o+ ty]

It is then possible to calculate the second derivatives of these mappings, and determine their
convexity and concavity. The details of this investigation appeared in [DK-97b].

Proposition 2.5. ([DK-97b], Proposition 2.3) Let (X; (-,-)) be a real inner product space, and
x,y two linearly independent vectors in X. Then:

(i) @5, is strictly conver on the interval (—oo, —(z,y)/ lyl|®), and strictly concave on the
interval (—(z,y)/ |ly|* , +00).

(ii) WL, is strictly convex on the set (—o0,t1) U (t2, +00) and strictly concave on the interval
(t1,t2), where

_(-T7 y) vV ALy _(ajay) + Az,y

ty = ; 2 =
4ly|® 4]ly|®

2 2
and Ay = 8|z]” lyl” + (z,9)* > 0.

3 A REFINEMENT OF THE SCHWARZ INEQUALITY

Using the results of the preceding sections, it is possible to give a refinement of the Schwarz
inequality involving a semi-inner product generating the norm of the given normed linear space.
First we observe that, for any ¢ > 0,

|+ 2ty| | + tyl| > (x4 2ty,z +ty)s = (x + ty + ty,z +ty)s
= ||z + tyl® + (ty, x + ty)s,
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28 Dragomir and Koliha

and

e <l 2l = o+t
(3.) @, (1) < t

The following theorem is then a direct consequence of Theorem 2.3, (2.11) and (3.1).

(t >0).

Theorem 3.1. Let (X, ||-|) be a normed linear space and [-,-] a semi-inner product generating
the norm of X. Given two linearly independent vectors x,y € X, then for all t > 0 > u we
have the following inequalities.

[z + 2ty|| — [lz + ty|| "

Izl [yl > ; l
(¥, + ty)s ly, © + ty] (y, x + ty);
> 2 2| > = 2] > —— 2|
|z + ty|| |z + tyl| lz +ty|l
|z + tyl| — |||
Z (yax)s Z [y,ll?] Z (yaz)z
|z + uy|| — |||
> ——— ||z
u
(y,z + uy) [y,  + uy] (y, x + uy);
> 2 ]| > S |z > “ |l
|z + uyll |z + uyll |2 + uyl|
|z + 2uy|| — ||z + uy||
- U
(3.2) > — [l ly]l -

Let Q be a compact metric space and C(f2) the space of all real valued functions on 2
equipped with the norm |[|z|| = sup,cq, |z(s)|. For any x € C'(Q2) write

O, ={s€Q:|z(s)] = |z|}-
For each x € C(f2) select a finite Borel measure p,, on 2 satisfying

1 () = ]l supp py € Quy g1y sgn(z) = 0.
In view of [De, Example 12.2],

ly,z] = /deux

is a semi-inner product in C(Q). Also,
(yax)i = inf {Z(S)y(s) HERS Qz}a (yax)s = sup {:c(s)y(s) HERS Qm}
If 2,y are linearly independent elements of C(€2) and ¢ > 0, we have the inequalities

Sup,eq |2(5) + 2ty(s)| — supseq |2(s) + ty(s)|

sup [ (s)| sup [y(s)| > - sup [z(s)]
seN seEN sEQ
SUP,eq, ., Y(s)(z(s) +ty(s))
sup |z(s)]
Sup,eq [7(s) + ty(s)| s€Q
d
Jovdhoss — gup o)

T SUDgeq |z(s) + ty(s)| seq
infseq, ., y(s)(@(s) +ty(s))

sup [z(s)|
Supseq |z(s) +ty(s)|  seo
su x(s ty(s)| —su x(s
Z ps€Q| ( )+ y(t)| ps€Q| ( )| sup\x(s)\
seQ

Y

sup «(s)y(s) > / ydp, > inf x(s)y(s).
SEQ, O SEQ,
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Two Mappings Related to Semi-Inner Products and Applications 29

Analogous inequalities hold for u < 0.

A specialization of Theorem 3.1 to a real inner product space yields the following result.

Corollary 3.2. Let (X;(-,-)) be a real inner product space. For any two linearly independent
vectors x,y € X and any t > 0 > u we have the following refinement of the Schwarz inequality.

2 2
Bt llyll” +2(z )l =l o [Ellyll” + (=, )] =]
l + 2ty + [lz + ty[| — [l + tyll

St lyll* + 2(=, )] |l
|+ tyll + |||
> (z,y)
[ully])* + 2(z, )] ||zl < [ully])* + 2(z, )] ||=||
o +uyll + (= — |2+ uyll
Bullyll® + 2(z, )] ||
=l A+ 2uyl| + (|2 + uy|l
> — |z lyll-

] lyll =

4 A PROPERTY OF A SEMI-INNER PRODUCT

Suppose that (X, ||-]|) is a normed space, and [, -] a semi-inner product generating the norm of
X. In this section we consider the following problem regarding a condition which involves the
second (nonlinear) argument of the semi-inner product:

Q) Does [y, + ty] = 0 for all £ € R imply y = 07

If [-, ] is a true inner product (linear in the second argument), then the preceding question has
a positive answer as

0=[y,x+ty =[y,a] +t|y|* forallteR,

which obviously implies y = 0. We show that the mappings introduced and studied in the
present paper, in particular the refinement of the Schwarz inequality obtained in the preceding
section, can be used to provide an affirmative answer to (Q) in the general case of a semi-inner
product.

We start by proving the following theorem.

Theorem 4.1. Let (X, ||-|) be a normed linear space and [-,-] a semi-inner product generating
the norm of X. Given two linearly independent vectors x,y € X, the following statements are
equivalent.

(i) llz +tyll = [lz|| for all t € R;
(ii) |2+ 2tyl| = |lz + ty[| for all t € R;
(iii) (y,xz+ty);i =0 for allt € R;
(iv) [y, +ty] = 0 for all t € R;

(v) (y,x+ty)s =0 for all t € R.

Proof. In the proof we use Theorem 3.1.
(i) < (ii). If ||z + ty|| = ||z|| for all ¢t € R, then also ||z + 2ty|| = ||z|| for all ¢t € R, and
(ii) holds. Conversely, if (ii) holds, then (3.2) gives

[l +tyll = ll=ll o [l + uyll — [|=]

0>
- t - U

>0,
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which implies || + ty|| = ||z| for all ¢ € R\{0}; the latter equality holds also for ¢t = 0, and (i)
holds.

JFrom (3.2) we deduce that (ii) implies (iii), (iv) and (v), while any of the conditions (iii),
(iv), (v) implies (i). This completes the proof. I

The theorem enables us to give an answer to the problem (Q).

Theorem 4.2. Let (X, ||-||) be a normed linear space, and [-,-] a semi-inner product that gen-
erates the norm of X. Then the following is true:

(4.1) [y, +ty] =0 for all t € R implies y = 0.
More generally, any of the conditions (1)—(v) of Theorem 4.1 implies y = 0.

Proof. (a) If x,y are linearly dependent, then y = ax for some o # 0. If [y, x + ty] = 0 for all
t € R, then

0=[y,z+ty] =y, (a+t)y] = (a+7) ||y||2 for all ¢t € R,

which implies y = 0.
(b) Suppose that z,y are linearly independent and that [y, z + ty] = 0 for all ¢ € R. By the
preceding theorem ||z + ty|| = ||z|| for all ¢ € R. But

[l +tyll = llz = (=)yll = [zl — [t lyll ],
and ||z|| > ||lz] — |t| |ly]| | for all ¢ € R, which implies
gl < 2 2] for all ¢ € R;

hence y = 0. 1

5 NEW CHARACTERIZATIONS OF THE BIRKHOFF ORTHOGONALITY

Let us recall the concept of orthogonality in the sense of Birkhoff which can be defined in
normed linear spaces.

Definition 3. Let (X, ||-||) be a real normed linear space and x,y two elements of X. The
vector x is called Birkhoff orthogonal to y if

(5.1) |z + ay|| > ||z|| for all « € R.

We use notation z L y (B).

We know that in each real normed linear space (X, ||-||) there exists at least one semi-inner
product [-, -] which generates the norm ||-||, that is, ||z| = [z, z]'/? for all € X, and that such
semi-inner product is unique if and only if X is smooth.

The following concept of orthogonality is well known (see [L], [G]).

Definition 4. Let [, -] be a semi-inner product which generates the norm of X, and let x,y €
X. The vector z is said to be orthogonal to y in the sense of Lumer (relative to a semi-inner
product [-,]) if [y, z] = 0. We denote this by « L y (L).

The following connection between Birkhoff’s and Lumer’ orthogonality holds.

Proposition 5.1. Let (X, ||||) be a real normed linear space, and z,y two vectors in X. Then
x Ly (B)ifand only if x L y (L) relative to some semi-inner product |-, -] which generates the
norm ||-|.

N NN TT A T E— o~ 11 . x7r 1 o~ T v



Two Mappings Related to Semi-Inner Products and Applications 31

Proof. Assume that [-,-] is a semi-inner product which generates the norm of X, and that
x Ly (L), that is, [y,2] = 0. Then

2
)™ = [z, 2] = [ + My, 2] < |l=]| = + Ayl|

for all A € R, that is, ||z|| < ||z + Ay|| for A € R, which is equivalent to x L y (B).
Conversely suppose that 2 L y (B). Then (5.1) holds, and by the Hahn-Banach theorem
there is f, € X* such that

Fo@) =0, fol@) = lal*. Ifall = .

Hence we can choose a section J of the normalized duality mapping J (see (X)) so that
J(z) = fr. The semi-inner product

[u,v] = (T (v),u), u,v € X,
generates the norm of X, and
[y,as] = <j(l‘),y> = fw(y) =0.

Consequently = L y (L) relative to [-,-]. Il

The following counterexample shows that L y (B) need not imply [y, 2] = 0 for every
semi-inner product generating the norm of X.

Let us consider the normed linear space (R3,||-||,). It is easy to check that

_ _ TrYk
Gz =zl Y

= Ll

is a semi-inner product which generates the norm ||-||;. Consider the vectors Z = (1,0,0)
and 7 = (1,1,0). We have

Iz, =1, TH+Xg=1+XX0), [T+, =[1+A+]A.
Now it is clear that
Iz + Agll; =1+ A+ A > 1=z, forall AeR,
that is, z L y (B). On the other hand,
[9,7] =1#0,
which shows that Z is not Lumer orthogonal to ¥.
Remark 5.1. For a given y € X define
Bly)={reX|z Ly B)} and Lbl(y)={reX|[ya] =0},

where [, -] belongs to J(X), the class of all semi-inner products generating the norm of X.
With this notation, Proposition 5.1 can be expressed as

The following proposition also holds.
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Proposition 5.2. Let (X, ||-||) be a real normed linear space and x,y two elements of X. The
following statements are equivalent:

(i) = Ly (B);
(ii) For every semi-inner product |-, -] which generates the norm of X we have the inequalities
(5.2) v,z +uy] <0< [y, z+ty] forall u<0<t.

Proof. (i) = (ii) Ifz Ly (B), then we have (y,z); <0 < (y,x)s. By (2.5) we have that

oy () SO () <@, (1), tER
that is,
(yvl'"i_ty)lg[yax"_ty]g(yvl'"’_ty)s’ teR.
[ +tyll — e+ tyll lz + ty
If w < 0, then
vz +uy] oz tuy)s (. 2); < 0;
[ + uyll [l + uyll
if ¢ > 0, then
oty Wrtt) g o g
[l + tyll [l + tyll
and the inequality (5.2) is obtained.
(i) = (i) Suppose that (5.2) holds. Since
lim [yax + uy] _ (yvx)l im [yvl' +ty] — (yax)s
w=0— flztayl Ayl T 0+ [l 4ty Iyl

by Theorem 2.3 (ii), we get (y,2); < 0 < (y,)s, and the proposition is proved. I

Remark 5.2. Condition (ii) of the above theorem can be replaced by the following weaker
condition.

There exists a semi-inner product which generates the norm of X
and € > 0 such that

(5.2 [y, +uy] <0< [y,x+ty] for —e<u<0<t<e.

This follows from the monotonicity of the mapping tb_[ﬂ]y (see Theorem 2.3).

The mapping CIJHJ provides a new characterization of smoothness.

Theorem 5.3. Let (X,||-||) be a real normed linear space and let xo € X\{0}. Then the
following conditions on xq are equivalent.
(i) X is smooth at the point xo;
(ii) For some semi-inner product [-,-] generating the norm of X, the mapping @&5]774 is con-
tinuous at 0 for ally € X.

Proof. The equivalence follows from the equations

established in Theorem 2.3. §
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Birkhoff orthogonality has applications in the theory of best approximation in normed linear
spaces. The preceding results can be used to give new characterizations of best approximants.

Definition 5. Let X be a normed linear space, G a set in X, and x € X. An element g9 € G
is called an element of best approzimation of x (by the elements of the set G) if

5.3 — gol = inf ||z —g|.
(5-3) lz = goll = Inf [|lz — g

We denote by Pg(z) the set of all such elements gg, that is,
(5.4) Pa(x) =1g0 € G| llz — goll = inf [|lz — g}

For classical results on best approximation see the books [S-70], [S-74] by I. Singer. For
some new results concerning the characterization of best approximants, proximinal, semic¢eby-
Sevian or ¢ebySevian subspaces in terms of the upper and lower (as well as ordinary) semi-inner
products we refer to the recent papers [D-88], [D-89], [D-91] of S. S. Dragomir.

We state here the following characterization of best approximants in terms of Birkhoff’s
orthogonality due to Singer [S-70, p.92].

Lemma 5.4. Let (X, ||-||) be a normed linear space, G a linear subspace of X, x € X\G and
go € G. Then

go € Pa(x) if and only if x — go L G (B).

Combining this lemma with preceding characterizations of Birkhoff orthogonality, we obtain
the following characterization of best approximants.

Theorem 5.5. Let X, G, x and go be as in Lemma 5.4. The following statements are equiva-
lent.

(i) go € Pg(x);

(ii) For some (in fact any) semi-inner product [-, -] generating the norm of X, go and x satisfy
the inequality

(5.5) [z — g,z — go + w] < ||z — go +w|? for allw € G.

Proof. By Lemma 5.4, (i) is equivalent to 2 — go L g (B) = 0 for all ¢ € G, which in turn is
equivalent to to

(5.6) [g,2—go+ug) <0< [g,x —go+tg Hu<0<t
by Proposition 5.2. But
(5.7) [g,2 —go+1tg] >0, t>0,
is equivalent to [tg,x — go +tg] > 0 for all ¢ > 0. As

[tg,x — go +tg] = [x — go +tg — = + go,  — go + tg]

= |l = go +tg]l” — [z = go,x — go + tg].

(5.7) is equivalent to
(5.8) [ — g0, — go + tg] < |2 — go + tg|”
for all g € G, t > 0. Similarly, the relation

l9,2 — g0 +ug] <0, uw<0
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is equivalent to [ug,z — go + ug] > 0 for all u < 0 in view of the linearity of [-,-] in the first
argument, and consequently to

(5.9) [z — g0, — go + ug] < ||z — go + ugl®

forall g € G, u < 0.
Combining (5.8) and (5.9) and observing that (5.8) holds (with equality) also for ¢ = 0, we
conclude that

2
[z — go,x — go +tg] < ||z — go + tg|

for all g € G and all t € R.
As g € G if and only if tg € G for t # 0, we deduce the desired equivalence, and the theorem
is proved. N
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