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TWO MAPPINGS RELATED TO SEMI-INNER PRODUCTS AND
THEIR APPLICATIONS IN GEOMETRY OF NORMED LINEAR

SPACES

S.S. Dragomir and J.J. Koliha

Abstract. In this paper we introduce two mappings associated with the lower and upper semi-
inner product (·, ·)i and (·, ·)s and with semi-inner products [·, ·] (in the sense of Lumer) which
generate the norm of a real normed linear space, and study properties of monotonicity and bound-
edness of these mappings. We give a refinement of the Schwarz inequality, applications to the
Birkhoff orthogonality, to smoothness of normed linear spaces as well as to the characterization of
best approximants.

1 Introduction and preliminaries

In this paper we continue the study of mappings associated with the lower and upper semi-inner
product in a normed space that started in [DK-97a], [DK-97b] and [DK-98]. The main reason
for studying these mappings is to obtain sharper estimates than those available using only the
norm, and to attempt a clearer geometrical description of the normed space in the absence of
a true inner product. We also consider semi-inner products in the sense of Lumer, which lie
between the lower and upper semi-inner product, and define our mappings Ψ[ , ]

x,y in dependence
on a particular semi-inner product. It turns out that the previously studied mappings Φi

x,y and

Φsx,y (see [DK-97b]) form the lower and upper envelope, respectively, for Ψ[ , ]
x,y.

Our results will provide, in particular, refinements of the Schwarz inequality based on the
lower and upper semi-inner product, and a characterization of best approximants.

Let (X, ‖·‖) be a real normed linear space. We define the lower and upper semi-inner product
by

(y, x)i = lim
t→0−

‖x+ ty‖2 − ‖x‖2

2t
and (y, x)s = lim

t→0+

‖x+ ty‖2 − ‖x‖2

2t
,

respectively. These limits are well defined for every pair x, y ∈ X (see for example [D-90], [I]);
the subscripts i and s stand for inferior and superior, respectively. We mention that (·, ·)i and
(·, ·)s are not semi-inner products in the sense of Lumer since they are not additive in the first
variable (see (VII) below).

For the sake of completeness we list here some of the main properties of these products that
will be used in the sequel (see [De], [D-90], [D-92a], [D-92b]), assuming that p, q ∈ {s, i} and
p 6= q:

(I) (x, x)p = ‖x‖2 for all x ∈ X;

(II) (αx, βy)p = αβ(x, y)p if αβ ≥ 0 and x, y ∈ X;

(III) |(x, y)p| ≤ ‖x‖ ‖y‖ for all x, y ∈ X;
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22 Dragomir and Koliha

(IV) (αx+ y, x)p = α(x, x)p + (y, x)p if x, y belong to X and α is a real number;

(V) (−x, y)p = −(x, y)q for all x, y ∈ X;

(VI) (x+ y, z)p ≤ ‖x‖ ‖z‖+ (y, z)p for all x, y, z ∈ X;

(VII) The mapping (·, ·)p is continuous and subadditive (superadditive) in the first variable for
p = s (or p = i);

(VIII) The element x ∈ X is Birkhoff orthogonal to the element y ∈ X (that is,

‖x+ ty‖ ≥ ‖x‖ for all t ∈ R)

if and only if

(y, x)i ≤ 0 ≤ (y, x)s;

(IX) The normed linear space (X, ‖·‖) is smooth at the point x0 ∈ X\{0} if and only if the
mapping y 7→ (y, x0)p is linear, or if and only if (y, x0)s = (y, x0)i for all y ∈ X;

(X) Let J be the normalized duality mapping on X, that is, let

J (x) = {f ∈ X∗ | f(x) = ‖x‖2 and ‖f‖ = ‖x‖};

note that, for every x ∈ X, J (x) is a nonempty convex subset of X∗, and

J (αx) = αJ (x) for all α ∈ R and all x ∈ X.

Then for every pair x, y ∈ X there exist w1, w2 ∈ J (x) so that

(y, x)s = w1(y), (y, x)i = w2(y);

(XI) We have the representations

(y, x)s = sup{w(y) |w ∈ J (x)}, (y, x)i = inf{w(y) |w ∈ J (x)}.

Therefore

(y, x)i ≤ (y, x)s for all x, y ∈ X.

(XII) If the norm ‖·‖ is induced by an inner product (·, ·), then

(y, x)i = (y, x) = (y, x)s for all x, y ∈ X.

The normalized duality maping is discussed in [De]; for other properties of (·, ·)p see [A],
[De], [D-90], [D-92a], [D-92b], [I], where further references are given.

The terminology throughout the paper is standard. We mention that for functions we use
the terms ‘increasing’ (and ‘strictly increasing’), ‘decreasing’ (and ‘strictly decreasing’), thus
avoiding ‘nondecreasing’ and ‘nonincreasing’.

2 Properties of the mappings Φ[ , ]
x,y and Ψ[ , ]

x,y

First of all, let us recall the concept of semi-inner products on a real normed linear space
introduced by Lumer [L].

Definition 2. Let X be a real linear space. A mapping [·, ·] : X×X → R is called a semi-inner
product on X if it satisfies the following conditions:
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Two Mappings Related to Semi-Inner Products and Applications 23

(a) [x, x] ≥ 0 for all x ∈ X, and [x, x] = 0 implies x = 0;

(b) [αx+ βy, z] = α[x, z] + β[y, z] for all α, β ∈ R and all x, y, z ∈ X;

(c) [x, αy] = α[x, y] for all α ∈ R and all x, y ∈ X;

(d) |[x, y]|2 ≤ [x, x][y, y] for all x, y ∈ X.

It is easy to see that if [·, ·] is a semi-inner product on X, then the mapping ‖·‖ : x 7→ [x, x]1/2

for all x ∈ X is a norm on X. Moreover, for any y ∈ X, the functional fy : x 7→ [x, y] for all
x ∈ X is linear and continuous in the norm topology of (X, ‖·‖), with ‖fy‖ = ‖y‖.

Conversely, if (X, ‖·‖) is a normed linear space, then the norm can be always represented
through a semi-inner product (Lumer [L]) in the form

[x, y] = 〈J̃ (y), x〉 for all x, y ∈ X,

where J̃ is a section of the normalized duality mapping J defined in the introduction.
For the sake of completeness, we give a simple proof of the following known lemma.

Lemma 2.1. Let (X, ‖·‖) be a real normed linear space and [·, ·] a semi-inner product which
generates the norm ‖·‖. Then

(x, y)i ≤ [x, y] ≤ (x, y)s for all x, y ∈ X.(2.1)

Proof. We may assume that y 6= 0. The functional fy : X → R defined by fy(x) = [x, y] is
linear, and

|fy(x)| = |[x, y]| ≤ ‖x‖ ‖y‖ , that is, ‖fy‖ ≤ ‖y‖ .

Further,

‖fy‖ ≥
|fy(x)|
‖y‖

=
‖y‖2

‖y‖
= ‖y‖ ,

which proves ‖fy‖ = ‖y‖. Also, fy(y) = ‖fy‖ ‖y‖, and fy ∈ J (y).
By property (XI) of the introduction,

(x, y)s = sup{w(x) |w ∈ J (y)}, x ∈ X,

and thus

(x, y)s ≥ fy(x) = [x, y] for all x ∈ X.

The inequality (x, y)i ≤ [x, y] for all x ∈ X follows from fact that

(x, y)i = inf{w(x) |w ∈ J (y)}, x ∈ X,

and the lemma is proved.

For a given semi-inner product on X generating the norm of X we define the mappings

Φ[ , ]
x,y : R→ R, Φ[ , ]

x,y (t) :=
[y, x+ ty]
‖x+ ty‖

,

and

Ψ[ , ]
x,y : R→ R, Ψ[ , ]

x,y (t) :=
[x, x+ ty]
‖x+ ty‖

,

where x, y are assumed to be linearly independent in X. We will also make use of the mappings

Φpx,y (t) =
(y, x+ ty)p
‖x+ ty‖

, Ψp
x,y (t) =

(x, x+ ty)p
‖x+ ty‖

,

where p ∈ {i, s}. (For more detailed properties of Φpx,y see [DK-97b].)
The following proposition explores connections between all these mappings.
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24 Dragomir and Koliha

Proposition 2.2. Let (X, ‖·‖) be a real normed linear space, [·, ·] a semi-inner product gener-
ating the norm in X and x, y two linearly independent vectors in X. Then

‖x+ ty‖ = Ψ[ , ]
x,y (t) + tΦ[ , ]

x,y (t) for all t ∈ R,(2.2)

and

Φ[ , ]
x,y (1/t) = sgn(t)Ψ[ , ]

y,x (t) for all t ∈ R\{0}.(2.3)

Proof. Let t ∈ R. Then

‖x+ ty‖ =
‖x+ ty‖2

‖x+ ty‖
=

[x+ ty, x+ ty]
‖x+ ty‖

=
[x, x+ ty] + t[y, x+ ty]

‖x+ ty‖
= Ψ[ , ]

x,y (t) + tΦ[ , ]
x,y (t) ,

and equality (2.2) is proved.
Let t ∈ R\{0}. Then

Φ[ , ]
x,y (1/t) =

[y, x+ y/t]
‖x+ y/t‖

=
[y, y + tx]/t
‖y + tx‖ /|t|

= sgn(t)
[y, y + tx]
‖y + tx‖

= sgn(t)Ψ[ , ]
y,x (t) ,

where sgn(t) = |t|/t for t ∈ R\{0}.

The following theorem summarizes the main properties of the mapping Φ[ , ]
x,y.

Theorem 2.3. Let (X, ‖·‖) be a real normed linear space, [·, ·] a semi-inner product which
generates the norm of X, and x, y two linearly independent vectors in X. Then:

(i) The mapping Φ[ , ]
x,y is bounded, and∣∣∣Φ[ , ]

x,y (t)
∣∣∣ ≤ ‖y‖ for all t ∈ R;(2.4)

(ii) We have the inequalities

Φix,y (t) ≤ Φ[ , ]
x,y (t) ≤ Φsx,y (t) for all t ∈ R,(2.5)

and the bounds

Φix,y (t) = inf{Φ[ , ]
x,y (t) | [·, ·] ∈ J (X)},(2.6)

Φsx,y (t) = sup{Φ[ , ]
x,y (t) | [·, ·] ∈ J (X)},(2.7)

where J (X) is the class of all semi-inner products generating the norm of X;

(iii) We have the limits

lim
u→0−

Φ[ , ]
x,y (u) =

(y, x)i
‖x‖

, lim
t→0+

Φ[ , ]
x,y (t) =

(y, x)s
‖x‖

(2.8)

and

lim
u→−∞

Φ[ , ]
x,y (u) = −‖y‖ , lim

t→+∞
Φ[ , ]
x,y (t) = ‖y‖ ;(2.9)

(iv) The mapping Φ[ , ]
x,y is increasing on R.
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Proof. (i) Follows from the Schwarz inequality (III).
(ii) Follows from Lemma 2.1.
(iii) According to Theorem 2.1 of [DK-97b],

lim
t→0+

Φpx,y (t) =
(y, x)s
‖x‖

, p ∈ {s, i}.(2.10)

Then an application of the inequalities (2.5) yields the second limit in (2.8). The first limit
follows from Φ[ , ]

x,y (−t) = −Φ[ , ]
x,−y (t).

The limits in (2.9) similarly follow from Theorem 2.1 of [DK-97b] by an application of (2.5).
(iv) Let t2 > t1. By the Schwarz inequality,

[x+ t2y, x+ t1y] ≤ ‖x+ t2y‖ ‖x+ t1y‖ .

By the linearity of the semi-inner product in the first variable,

[x+ t2y, x+ t1y] = [(t2 − t1)y + x+ t1y, x+ t1y]

= ‖x+ t1y‖2 + (t2 − t1)[y, x+ t1y],

and so, by the above inequality, we get

‖x+ t2y‖ ‖x+ t1y‖ ≥ ‖x+ t1y‖2 + (t2 − t1)[y, x+ t1y],

that is,

‖x+ t1y‖ (‖x+ t2y‖ − ‖x+ t1y‖) ≥ (t2 − t1)[y, x+ t1y],

which implies

Φ[ , ]
x,y (t1) =

[y, x+ t1y]
‖x+ t1y‖

≤ ‖x+ t2y‖ − ‖x+ t1y‖
t2 − t1

.

On the other hand, for any t > 0 we have

‖x‖ ‖x+ ty‖ ≥ (x, x+ ty)s = (x+ ty − ty, x+ ty)s

= ‖x+ ty‖2 + (−ty, x+ ty)s = ‖x+ ty‖2 − t(y, x+ ty)i;

this implies

‖x+ ty‖ − ‖x‖
t

≤ Φix,y (t) (t > 0).(2.11)

In this inequality replace x by x+ t1y and set t := t2 − t1; then

‖x+ t2y‖ − ‖x+ t1y‖
t2 − t1

=
‖x+ t1y + ty‖ − ‖x+ t1y‖

t

≤ Φix+t1y,y (t) = Φix,y (t2) .

As Φix,y (t2) ≤ Φ[ , ]
x,y (t2), we conclude that

Φ[ , ]
x,y (t1) ≤ Φ[ , ]

x,y (t2) ,

which shows that Φ[ , ]
x,y is increasing.

The following theorem summarizes properties of Ψ[ , ]
x,y.
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Theorem 2.4. Let (X, ‖·‖) be real normed linear space, [·, ·] a semi-inner product which gen-
erates the norm of X, and x, y linearly independent vectors in X. Then:

(i) The mapping Ψ[ , ]
x,y is bounded, and∣∣∣Ψ[ , ]

x,y (t)
∣∣∣ ≤ ‖x‖ for all t ∈ R;(2.12)

(ii) We have the inequalitites

Ψi
x,y (t) ≤ Ψ[ , ]

x,y (t) ≤ Ψs
x,y (t) for all t ∈ R,(2.13)

and the bounds

Ψi
x,y (t) = inf{Ψ[ , ]

x,y (t) | [·, ·] ∈ J (X)},(2.14)

Ψs
x,y (t) = sup{Ψ[ , ]

x,y (t) | [·, ·] ∈ J (X)};(2.15)

(iii) We have the limits

lim
t→+∞

Ψ[ , ]
x,y (t) =

(x, y)s
‖y‖

, lim
u→−∞

Ψ[ , ]
x,y (u) = − (x, y)i

‖y‖
;(2.16)

(iv) The mapping Ψ[ , ]
x,y is continuous at 0;

(v) Ψ[ , ]
x,y is increasing on (−∞, 0] and decreasing on (0,∞).

Proof. (i) Follows from the Schwarz inequality.
(ii) Can be deduced from Lemma 2.1; we omit the details.
(iii) We have

lim
t→+∞

Ψp
x,y (t) = lim

t→+∞

(x, x+ ty)p
‖x+ ty‖

= lim
t→+∞

t(x, x/t+ y)p
t ‖y + x/t‖

= lim
α→0+

(x, y + αx)p
‖y + αx‖

= lim
α→0+

Φpy,x (α) .

By (2.10), limα→0+ Φpy,x (α) = (x, y)s/ ‖y‖, and the result follows from inequality (2.13).
(iv) First we observe that

Ψ[ , ]
x,y (t) = ‖x+ ty‖ − tΦ[ , ]

x,y (t) for all t ∈ R(2.17)

by Proposition 2.2. By (2.8) and the definition of Ψ[ , ]
x,y,

lim
t→0

Ψ[ , ]
x,y (t) = ‖x‖ = Ψ[ , ]

x,y (0) .

(v) Let t1 < t2 ≤ 0. Using (2.17), we deduce

Ψ[ , ]
x,y (t2)−Ψ[ , ]

x,y (t1)
t2 − t1

=
‖x+ t2y‖ − ‖x+ t1y‖

t2 − t1
− t2Φ[ , ]

x,y (t2)− t1Φ[ , ]
x,y (t1)

t2 − t1
.

In the proof of Theorem 2.4 we established that

Φ[ , ]
x,y (t1) ≤ ‖x+ t2y‖ − ‖x+ t1y‖

t2 − t1
≤ Φ[ , ]

x,y (t2)
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Two Mappings Related to Semi-Inner Products and Applications 27

for all t1 < t2; thus se get

Ψ[ , ]
x,y (t2)−Ψ[ , ]

x,y (t1)
t2 − t1

≥ Φ[ , ]
x,y (t1)− t2Φ[ , ]

x,y (t2)− t1Φ[ , ]
x,y (t1)

t2 − t1

=
t2Φ[ , ]

x,y (t1)− t1Φ[ , ]
x,y (t1)− t2Φ[ , ]

x,y (t2) + t1Φ[ , ]
x,y (t1)

t2 − t1

=
t2(Φ[ , ]

x,y (t1)− Φ[ , ]
x,y (t2))

t2 − t1
≥ 0

as t2 < 0 and Φ[ , ]
x,y (t1) ≤ Φ[ , ]

x,y (t2).
If t2 > t1 > 0, then

Ψ[ , ]
x,y (t2)−Ψ[ , ]

x,y (t1)
t2 − t1

≤ Φ[ , ]
x,y (t2)− t2Φ[ , ]

x,y (t2)− t1Φ[ , ]
x,y (t1)

t2 − t1

=
t2Φ[ , ]

x,y (t2)− t1Φ[ , ]
x,y (t2)− t2Φ[ , ]

x,y (t2) + t1Φ[ , ]
x,y (t1)

t2 − t1

=
t1(Φ[ , ]

x,y (t1)− Φ[ , ]
x,y (t2))

t2 − t1
≤ 0

as t1 > 0 and Φ[ , ]
x,y (t1) ≤ Φ[ , ]

x,y (t2).
The theorem is thus proved.

In the case that (X, ‖·‖) is a real inner product space, the mappings Φ[ , ]
x,y and Ψ[ , ]

x,y assume
the following form:

Φx,y (t) =
(y, x) + t ‖y‖2

‖x+ ty‖
, Ψx,y (t) =

‖x‖2 + t(x, y)
‖x+ ty‖

.

It is then possible to calculate the second derivatives of these mappings, and determine their
convexity and concavity. The details of this investigation appeared in [DK-97b].

Proposition 2.5. ([DK-97b], Proposition 2.3) Let (X; (·, ·)) be a real inner product space, and
x, y two linearly independent vectors in X. Then:

(i) Φpx,y is strictly convex on the interval (−∞,−(x, y)/ ‖y‖2), and strictly concave on the
interval (−(x, y)/ ‖y‖2 ,+∞).

(ii) Ψp
x,y is strictly convex on the set (−∞, t1)∪ (t2,+∞) and strictly concave on the interval

(t1, t2), where

t1 =
−(x, y)−

√
∆x,y

4 ‖y‖2
, t2 =

−(x, y) +
√

∆x,y

4 ‖y‖2

and ∆x,y = 8 ‖x‖2 ‖y‖2 + (x, y)2 > 0.

3 A refinement of the Schwarz inequality

Using the results of the preceding sections, it is possible to give a refinement of the Schwarz
inequality involving a semi-inner product generating the norm of the given normed linear space.
First we observe that, for any t > 0,

‖x+ 2ty‖ ‖x+ ty‖ ≥ (x+ 2ty, x+ ty)s = (x+ ty + ty, x+ ty)s

= ‖x+ ty‖2 + (ty, x+ ty)s,
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28 Dragomir and Koliha

and

Φsx,y (t) ≤ ‖x+ 2ty‖ − ‖x+ ty‖
t

(t > 0).(3.1)

The following theorem is then a direct consequence of Theorem 2.3, (2.11) and (3.1).

Theorem 3.1. Let (X, ‖·‖) be a normed linear space and [·, ·] a semi-inner product generating
the norm of X. Given two linearly independent vectors x, y ∈ X, then for all t > 0 > u we
have the following inequalities.

‖x‖ ‖y‖ ≥ ‖x+ 2ty‖ − ‖x+ ty‖
t

‖x‖

≥ (y, x+ ty)s
‖x+ ty‖

‖x‖ ≥ [y, x+ ty]
‖x+ ty‖

‖x‖ ≥ (y, x+ ty)i
‖x+ ty‖

‖x‖

≥ ‖x+ ty‖ − ‖x‖
t

‖x‖

≥ (y, x)s ≥ [y, x] ≥ (y, x)i

≥ ‖x+ uy‖ − ‖x‖
u

‖x‖

≥ (y, x+ uy)s
‖x+ uy‖

‖x‖ ≥ [y, x+ uy]
‖x+ uy‖

‖x‖ ≥ (y, x+ uy)i
‖x+ uy‖

‖x‖

≥ ‖x+ 2uy‖ − ‖x+ uy‖
u

≥ −‖x‖ ‖y‖ .(3.2)

Let Ω be a compact metric space and C(Ω) the space of all real valued functions on Ω
equipped with the norm ‖x‖ = sups∈Ω |x(s)|. For any x ∈ C(Ω) write

Ωx = {s ∈ Ω : |x(s)| = ‖x‖}.

For each x ∈ C(Ω) select a finite Borel measure µx on Ω satisfying

|µx|(Ω) = ‖x‖ , suppµx ⊂ Ωx, µx sgn(x) ≥ 0.

In view of [De, Example 12.2],

[y, x] =
∫

Ω
y dµx

is a semi-inner product in C(Ω). Also,

(y, x)i = inf {x(s)y(s) : s ∈ Ωx}, (y, x)s = sup {x(s)y(s) : s ∈ Ωx}.

If x, y are linearly independent elements of C(Ω) and t > 0, we have the inequalities

sup
s∈Ω
|x(s)| sup

s∈Ω
|y(s)| ≥

sups∈Ω |x(s) + 2ty(s)| − sups∈Ω |x(s) + ty(s)|
t

sup
s∈Ω
|x(s)|

≥
sups∈Ωx+ty

y(s)(x(s) + ty(s))
sups∈Ω |x(s) + ty(s)|

sup
s∈Ω
|x(s)|

≥
∫

Ω y dµx+ty

sups∈Ω |x(s) + ty(s)|
sup
s∈Ω
|x(s)|

≥
infs∈Ωx+ty y(s)(x(s) + ty(s))

sups∈Ω |x(s) + ty(s)|
sup
s∈Ω
|x(s)|

≥
sups∈Ω |x(s) + ty(s)| − sups∈Ω |x(s)|

t
sup
s∈Ω
|x(s)|

≥ sup
s∈Ωx

x(s)y(s) ≥
∫

Ω
y dµx ≥ inf

s∈Ωx
x(s)y(s).
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Two Mappings Related to Semi-Inner Products and Applications 29

Analogous inequalities hold for u < 0.

A specialization of Theorem 3.1 to a real inner product space yields the following result.

Corollary 3.2. Let (X; (·, ·)) be a real inner product space. For any two linearly independent
vectors x, y ∈ X and any t > 0 > u we have the following refinement of the Schwarz inequality.

‖x‖ ‖y‖ ≥ [3t ‖y‖2 + 2(x, y)] ‖x‖
‖x+ 2ty‖+ ‖x+ ty‖

≥ [t ‖y‖2 + (x, y)] ‖x‖
‖x+ ty‖

≥ [t ‖y‖2 + 2(x, y)] ‖x‖
‖x+ ty‖+ ‖x‖

≥ (x, y)

≥ [u ‖y‖2 + 2(x, y)] ‖x‖
‖x+ uy‖+ ‖x‖

≥ [u ‖y‖2 + 2(x, y)] ‖x‖
‖x+ uy‖

≥ [3u ‖y‖2 + 2(x, y)] ‖x‖
‖x+ 2uy‖+ ‖x+ uy‖

≥ −‖x‖ ‖y‖ .

4 A property of a semi-inner product

Suppose that (X, ‖·‖) is a normed space, and [·, ·] a semi-inner product generating the norm of
X. In this section we consider the following problem regarding a condition which involves the
second (nonlinear) argument of the semi-inner product:

Does [y, x+ ty] = 0 for all t ∈ R imply y = 0?(Q)

If [·, ·] is a true inner product (linear in the second argument), then the preceding question has
a positive answer as

0 = [y, x+ ty] = [y, x] + t ‖y‖2 for all t ∈ R,

which obviously implies y = 0. We show that the mappings introduced and studied in the
present paper, in particular the refinement of the Schwarz inequality obtained in the preceding
section, can be used to provide an affirmative answer to (Q) in the general case of a semi-inner
product.

We start by proving the following theorem.

Theorem 4.1. Let (X, ‖·‖) be a normed linear space and [·, ·] a semi-inner product generating
the norm of X. Given two linearly independent vectors x, y ∈ X, the following statements are
equivalent.

(i) ‖x+ ty‖ = ‖x‖ for all t ∈ R;

(ii) ‖x+ 2ty‖ = ‖x+ ty‖ for all t ∈ R;

(iii) (y, x+ ty)i = 0 for all t ∈ R;

(iv) [y, x+ ty] = 0 for all t ∈ R;

(v) (y, x+ ty)s = 0 for all t ∈ R.

Proof. In the proof we use Theorem 3.1.
(i) ⇐⇒ (ii). If ‖x+ ty‖ = ‖x‖ for all t ∈ R, then also ‖x+ 2ty‖ = ‖x‖ for all t ∈ R, and

(ii) holds. Conversely, if (ii) holds, then (3.2) gives

0 ≥ ‖x+ ty‖ − ‖x‖
t

≥ ‖x+ uy‖ − ‖x‖
u

≥ 0,
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which implies ‖x+ ty‖ = ‖x‖ for all t ∈ R\{0}; the latter equality holds also for t = 0, and (i)
holds.

¿From (3.2) we deduce that (ii) implies (iii), (iv) and (v), while any of the conditions (iii),
(iv), (v) implies (i). This completes the proof.

The theorem enables us to give an answer to the problem (Q).

Theorem 4.2. Let (X, ‖·‖) be a normed linear space, and [·, ·] a semi-inner product that gen-
erates the norm of X. Then the following is true:

[y, x+ ty] = 0 for all t ∈ R implies y = 0.(4.1)

More generally, any of the conditions (i)–(v) of Theorem 4.1 implies y = 0.

Proof. (a) If x, y are linearly dependent, then y = αx for some α 6= 0. If [y, x+ ty] = 0 for all
t ∈ R, then

0 = [y, x+ ty] = [y, (α+ t)y] = (α+ t) ‖y‖2 for all t ∈ R,

which implies y = 0.
(b) Suppose that x, y are linearly independent and that [y, x+ ty] = 0 for all t ∈ R. By the

preceding theorem ‖x+ ty‖ = ‖x‖ for all t ∈ R. But

‖x+ ty‖ = ‖x− (−t)y‖ ≥ | ‖x‖ − |t| ‖y‖ |,

and ‖x‖ ≥ | ‖x‖ − |t| ‖y‖ | for all t ∈ R, which implies

|t| ‖y‖ ≤ 2 ‖x‖ for all t ∈ R;

hence y = 0.

5 New characterizations of the Birkhoff orthogonality

Let us recall the concept of orthogonality in the sense of Birkhoff which can be defined in
normed linear spaces.

Definition 3. Let (X, ‖·‖) be a real normed linear space and x, y two elements of X. The
vector x is called Birkhoff orthogonal to y if

‖x+ αy‖ ≥ ‖x‖ for all α ∈ R.(5.1)

We use notation x ⊥ y (B).

We know that in each real normed linear space (X, ‖·‖) there exists at least one semi-inner
product [·, ·] which generates the norm ‖·‖, that is, ‖x‖ = [x, x]1/2 for all x ∈ X, and that such
semi-inner product is unique if and only if X is smooth.

The following concept of orthogonality is well known (see [L], [G]).

Definition 4. Let [·, ·] be a semi-inner product which generates the norm of X, and let x, y ∈
X. The vector x is said to be orthogonal to y in the sense of Lumer (relative to a semi-inner
product [·, ·]) if [y, x] = 0. We denote this by x ⊥ y (L).

The following connection between Birkhoff’s and Lumer’ orthogonality holds.

Proposition 5.1. Let (X, ‖·‖) be a real normed linear space, and x, y two vectors in X. Then
x ⊥ y (B) if and only if x ⊥ y (L) relative to some semi-inner product [·, ·] which generates the
norm ‖·‖.
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Proof. Assume that [·, ·] is a semi-inner product which generates the norm of X, and that
x ⊥ y (L), that is, [y, x] = 0. Then

‖x‖2 = [x, x] = [x+ λy, x] ≤ ‖x‖ ‖x+ λy‖

for all λ ∈ R, that is, ‖x‖ ≤ ‖x+ λy‖ for λ ∈ R, which is equivalent to x ⊥ y (B).
Conversely suppose that x ⊥ y (B). Then (5.1) holds, and by the Hahn-Banach theorem

there is fx ∈ X∗ such that

fx(y) = 0, fx(x) = ‖x‖2 , ‖fx‖ = ‖x‖ .

Hence we can choose a section J̃ of the normalized duality mapping J (see (X)) so that
J̃ (x) = fx. The semi-inner product

[u, v] = 〈J̃ (v), u〉, u, v ∈ X,

generates the norm of X, and

[y, x] = 〈J̃ (x), y〉 = fx(y) = 0.

Consequently x ⊥ y (L) relative to [·, ·].

The following counterexample shows that x ⊥ y (B) need not imply [y, x] = 0 for every
semi-inner product generating the norm of X.

Let us consider the normed linear space (R3, ‖·‖1). It is easy to check that

[y, x] = ‖x‖1
∑
xk 6=0

xkyk
|xk|

is a semi-inner product which generates the norm ‖·‖1. Consider the vectors x = (1, 0, 0)
and y = (1, 1, 0). We have

‖x‖1 = 1, x+ λy = (1 + λ, λ, 0), ‖x+ λy‖1 = |1 + λ|+ |λ|.

Now it is clear that

‖x+ λy‖1 = |1 + λ|+ |λ| ≥ 1 = ‖x‖1 for all λ ∈ R,

that is, x ⊥ y (B). On the other hand,

[y, x] = 1 6= 0,

which shows that x is not Lumer orthogonal to y.

Remark 5.1. For a given y ∈ X define

B(y) = {x ∈ X |x ⊥ y (B)} and L[ , ](y) = {x ∈ X | [y, x] = 0},

where [·, ·] belongs to J (X), the class of all semi-inner products generating the norm of X.
With this notation, Proposition 5.1 can be expressed as

B(y) =
⋃

[ , ]∈J (X)

L[ , ](y).

The following proposition also holds.
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Proposition 5.2. Let (X, ‖·‖) be a real normed linear space and x, y two elements of X. The
following statements are equivalent:

(i) x ⊥ y (B);

(ii) For every semi-inner product [·, ·] which generates the norm of X we have the inequalities

[y, x+ uy] ≤ 0 ≤ [y, x+ ty] for all u < 0 < t.(5.2)

Proof. (i) =⇒ (ii) If x ⊥ y (B), then we have (y, x)i ≤ 0 ≤ (y, x)s. By (2.5) we have that

Φix,y (t) ≤ Φ[ , ]
x,y (t) ≤ Φsx,y (t) , t ∈ R,

that is,

(y, x+ ty)i
‖x+ ty‖

≤ [y, x+ ty]
‖x+ ty‖

≤ (y, x+ ty)s
‖x+ ty‖

, t ∈ R.

If u < 0, then

[y, x+ uy]
‖x+ uy‖

≤ (y, x+ uy)s
‖x+ uy‖

≤ (y, x)i ≤ 0;

if t > 0, then

[y, x+ ty]
‖x+ ty‖

≥ (y, x+ ty)i
‖x+ ty‖

≥ (y, x)s ≥ 0,

and the inequality (5.2) is obtained.
(ii) =⇒ (i) Suppose that (5.2) holds. Since

lim
u→0−

[y, x+ uy]
‖x+ uy‖

=
(y, x)i
‖y‖

, lim
t→0+

[y, x+ ty]
‖x+ ty‖

=
(y, x)s
‖y‖

by Theorem 2.3 (ii), we get (y, x)i ≤ 0 ≤ (y, x)s, and the proposition is proved.

Remark 5.2. Condition (ii) of the above theorem can be replaced by the following weaker
condition.

There exists a semi-inner product which generates the norm of X
and ε > 0 such that

[y, x+ uy] ≤ 0 ≤ [y, x+ ty] for − ε < u < 0 < t < ε.(5.2′)

This follows from the monotonicity of the mapping Φ[ , ]
x,y (see Theorem 2.3).

The mapping Φ[ , ]
x,y provides a new characterization of smoothness.

Theorem 5.3. Let (X, ‖·‖) be a real normed linear space and let x0 ∈ X\{0}. Then the
following conditions on x0 are equivalent.

(i) X is smooth at the point x0;

(ii) For some semi-inner product [·, ·] generating the norm of X, the mapping Φ[ , ]
x0,y is con-

tinuous at 0 for all y ∈ X.

Proof. The equivalence follows from the equations

lim
u→0−

Φ[ , ]
x,y (u) =

(y, x)i
‖x‖

, lim
t→0+

Φ[ , ]
x,y (t) =

(y, x)s
‖x‖

established in Theorem 2.3.
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Birkhoff orthogonality has applications in the theory of best approximation in normed linear
spaces. The preceding results can be used to give new characterizations of best approximants.

Definition 5. Let X be a normed linear space, G a set in X, and x ∈ X. An element g0 ∈ G
is called an element of best approximation of x (by the elements of the set G) if

‖x− g0‖ = inf
g∈G
‖x− g‖ .(5.3)

We denote by PG(x) the set of all such elements g0, that is,

PG(x) = {g0 ∈ G | ‖x− g0‖ = inf
g∈G
‖x− g‖}.(5.4)

For classical results on best approximation see the books [S-70], [S-74] by I. Singer. For
some new results concerning the characterization of best approximants, proximinal, semičeby-
ševian or čebyševian subspaces in terms of the upper and lower (as well as ordinary) semi-inner
products we refer to the recent papers [D-88], [D-89], [D-91] of S. S. Dragomir.

We state here the following characterization of best approximants in terms of Birkhoff’s
orthogonality due to Singer [S-70, p.92].

Lemma 5.4. Let (X, ‖·‖) be a normed linear space, G a linear subspace of X, x ∈ X\G and
g0 ∈ G. Then

g0 ∈ PG(x) if and only if x− g0 ⊥ G (B).

Combining this lemma with preceding characterizations of Birkhoff orthogonality, we obtain
the following characterization of best approximants.

Theorem 5.5. Let X, G, x and g0 be as in Lemma 5.4. The following statements are equiva-
lent.

(i) g0 ∈ PG(x);

(ii) For some (in fact any) semi-inner product [·, ·] generating the norm of X, g0 and x satisfy
the inequality

[x− g0, x− g0 + w] ≤ ‖x− g0 + w‖2 for all w ∈ G.(5.5)

Proof. By Lemma 5.4, (i) is equivalent to x− g0 ⊥ g (B) = 0 for all g ∈ G, which in turn is
equivalent to to

[g, x− g0 + ug] ≤ 0 ≤ [g, x− g0 + tg] if u < 0 < t(5.6)

by Proposition 5.2. But

[g, x− g0 + tg] ≥ 0, t > 0,(5.7)

is equivalent to [tg, x− g0 + tg] ≥ 0 for all t > 0. As

[tg, x− g0 + tg] = [x− g0 + tg − x+ g0, x− g0 + tg]

= ‖x− g0 + tg‖2 − [x− g0, x− g0 + tg],

(5.7) is equivalent to

[x− g0, x− g0 + tg] ≤ ‖x− g0 + tg‖2(5.8)

for all g ∈ G, t > 0. Similarly, the relation

[g, x− g0 + ug] ≤ 0, u < 0
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is equivalent to [ug, x− g0 + ug] ≥ 0 for all u < 0 in view of the linearity of [·, ·] in the first
argument, and consequently to

[x− g0, x− g0 + ug] ≤ ‖x− g0 + ug‖2(5.9)

for all g ∈ G, u < 0.
Combining (5.8) and (5.9) and observing that (5.8) holds (with equality) also for t = 0, we

conclude that

[x− g0, x− g0 + tg] ≤ ‖x− g0 + tg‖2

for all g ∈ G and all t ∈ R.
As g ∈ G if and only if tg ∈ G for t 6= 0, we deduce the desired equivalence, and the theorem

is proved.

References

[A] Dan Amir : Characterizations of Inner Product Spaces, Birkhäuser, Basel, 1986.
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