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AN OSTROWSKI TYPE INEQUALITY FOR MAPPINGS WHOSE
SECOND DERIVATIVES ARE BOUNDED AND APPLICATIONS

S.S. DRAGOMIR AND N.S. BARNETT

Abstract. An integral inequality of Ostrowski’s type for mappings whose second derivatives are
bounded is proved. Applications in Numerical Integration and for special means are pointed out.

1 Introduction

In [1], S.S. Dragomir and S. Wang obtained the following Ostrowski type inequality [2, p. 468]:

Theorem 1.1. Let f : [a, b]→ R be continuous on [a, b] and a differentiable on (a, b) . If f ′ ∈
L1 (a, b) and there exists the constants γ,Γ so that

γ ≤ f ′ (x) ≤ Γ for all x ∈ (a, b) ,(1.1)

then we have the inequality:∣∣∣∣∣∣f (x)− 1
b− a

b∫
a

f (t) dt− f (b)− f (a)
b− a

(
x− a+ b

2

)∣∣∣∣∣∣ ≤ 1
4

(b− a) (Γ− γ)(1.2)

for all x ∈ [a, b] .

The proof used essentially the identity

f (x) =
1

b− a

b∫
a

f (t) dt+
1

b− a

b∫
a

p (x, t) f ′ (t) dt(1.3)

for all x ∈ [a, b] , where f is as above and the kernel p (·, ·) : [a, b]2 → R is given by

p (x, t) :=

 t− a if t ∈ [a, x]

t− b if t ∈ (x, b]
(1.4)

and Grüss’ integral inequality which says (see for example [1]) that:∣∣∣∣∣∣ 1
b− a

b∫
a

g (x)h (x) dx− 1
b− a

b∫
a

g (x) dx · 1
b− a

b∫
a

h (x) dx

∣∣∣∣∣∣(1.5)

≤ 1
4

(Φ− ϕ) (Γ− γ)

provided g, h : [a, b]→ R are integrable and

ϕ ≤ g (x) ≤ Φ, γ ≤ h (x) ≤ Γ(1.6)

for all x ∈ [a, b] .
The main aim of this paper is to point out a new estimation of the left membership of (1.2)

and to apply it for special means and in Numerical Integration.
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2 A New Integral Inequality

The following results holds:

Theorem 2.1. Let f : [a, b] → R be continuous on [a, b] and twice differentiable on (a, b) ,
whose second derivative f ′′ : (a, b)→ R is bounded on (a, b). Then we have the inequality

∣∣∣∣∣∣f (x)− 1
b− a

b∫
a

f (t) dt− f (b)− f (a)
b− a

(
x− a+ b

2

)∣∣∣∣
(2.1)

≤ 1
2


[(
x− a+b

2

)2
(b− a)2 +

1
4

]2

+
1
12

 (b− a)2 ‖f ′′‖∞

≤
‖f ′′‖∞

6
(b− a)2

for all x ∈ [a, b] .

Proof. For the sake of completness, we give a short proof of the identity (1.3) which will be
used in the sequel.

Integrating by parts, we have
x∫
a

(t− a) f ′ (t) dt = (x− a) f (x)−
x∫
a

f (t) dt

and
b∫
x

(t− b) f ′ (t) dt = (b− x) f (x)−
b∫
x

f (t) dt.

Adding these two equalities, we get

x∫
a

(t− a) f ′ (t) dt+

b∫
x

(t− b) f ′ (t) dt = (b− a) f (x)−
b∫
a

f (t) dt

which is equivalent to (1.3) .
Applying the identity (1.3) for f ′ (·) we can state

f ′ (t) =
1

b− a

b∫
a

f ′ (s) ds+
1

b− a

b∫
a

p (t, s) f ′′ (s) ds

which is equivalent to

f ′ (t) =
f (b)− f (a)

b− a
+

1
b− a

b∫
a

p (t, s) f ′′ (s) ds.

Substituting f ′ (t) in the right membership of (1.3) we get

f (x) =
1

b− a

b∫
a

f (t) dt

+
1

b− a

b∫
a

p (x, t)

f (b)− f (a)
b− a

+
1

b− a

b∫
a

p (t, s) f ′′ (s) ds

 dt
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=
1

b− a

b∫
a

f (t) dt+
f (b)− f (a)

(b− a)2

b∫
a

p (x, t) dt

+
1

(b− a)2

b∫
a

b∫
a

p (x, t) p (t, s) f ′′ (s) dsdt

and as

b∫
a

p (x, t) dt =

x∫
a

(t− a) dt+

b∫
x

(t− b) dt

= (b− a)
(
x− a+ b

2

)
we get the integral identity:

f (x) =
1

b− a

b∫
a

f (t) dt+
f (b)− f (a)

b− a

(
x− a+ b

2

)
(2.2)

+
1

(b− a)2

b∫
a

b∫
a

p (x, t) p (t, s) f ′′ (s) dsdt

for all x ∈ [a, b] .
Now, using the identity (2.2) we get∣∣∣∣∣∣f (x)− 1

b− a

b∫
a

f (t) dt− f (b)− f (a)
b− a

(
x− a+ b

2

)∣∣∣∣(2.3)

≤ 1
(b− a)2

b∫
a

b∫
a

|p (x, t) p (t, s)| |f ′′ (s)| dsdt

≤
‖f ′′‖∞
(b− a)2

b∫
a

b∫
a

|p (x, t)| |p (t, s)| dsdt.

We have

b∫
a

|p (t, s)| ds =
(t− a)2 + (b− t)2

2
.

Also

A :=

b∫
a

|p (x, t)|

[
(t− a)2 + (b− t)2

2

]
dt

=
1
2

 x∫
a

(t− a)
[
(t− a)2 + (b− t)2

]
dt+

b∫
x

(b− t)
[
(t− a)2 + (b− t)2

]
dt


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=
1
2

 x∫
a

[
(t− a)3 + (t− a) (b− t)2

]
dt+

b∫
x

[
(t− a)2 (b− t) + (b− t)3

]
dt

 .
Note that

x∫
a

(t− a)3
dt =

(x− a)4

4
,

x∫
a

(t− a) (b− t)2
dt

= −1
3

(b− x)3 (x− a)− 1
12

(b− x)4 +
1
12

(b− x)4 ;

b∫
x

(t− b) (t− a)2
dt

=
1
3

(x− a)3 (b− x)− 1
12

(b− a)4 +
1
12

(x− a)4 ;

b∫
x

(t− b)3
dt =

(x− b)4

4
.

Consequently, we have

A =
1
2

[
(x− a)4

4
− 1

3
(b− x)3 (x− a)− 1

12
(b− x)4 +

1
12

(b− a)4

−1
3

(x− a)3 (b− x) +
1
12

(b− a)4 − 1
12

(x− a)4 +
(x− b)4

4

]

=
1
12

[
(x− a)4 − 2 (b− x)3 (x− a)− 2 (x− a)3 (b− x)

+ (b− x)4 + (b− a)4
]
.

Now, observe that,

(x− a)4 + (b− x)4 =
[
(x− a)2 + (b− x)2

]2
− 2 (x− a)2 (b− x)2

and

−2 (b− x)3 (x− a)− 2 (x− a)3 (b− x)

= −2 (x− a) (b− x)
[
(x− a)2 + (b− x)2

]
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then

B := 12A =
[
(x− a)2 + (b− x)2

]2
− 2 (x− a) (b− x)

[
(x− a)2 + (b− x)2

]
−2 (x− a)2 (b− x)2 + (b− a)4

=
[
(x− a)2 + (b− x)2 − (x− a) (b− x)

]2
− 3 (x− a)2 (b− x)2 + (b− a)4

.

But a simple calculation shows that

(x− a)2 + (b− x)2 =
1
2

(b− a)2 + 2
(
x− a+ b

2

)2

and as

(x− a)2 + (b− x)2 + 2 (x− a) (b− x) = (b− a)2

we get

2 (x− a) (b− x) = (b− a)2 −
[
(x− a)2 + (b− x)2

]
i.e.,

(x− a) (b− x) =
1
2

(b− a)2 − 1
2

[
(x− a)2 + (b− x)2

]

=
1
4

(b− a)2 −
(
x− a+ b

2

)2

.

Consequently,

B =

[
1
2

(b− a)2 + 2
(
x− a+ b

2

)2

− 1
4

(b− a)2 +
(
x− a+ b

2

)2
]2

−

−3

[
1
4

(b− a)2 −
(
x− a+ b

2

)2
]2

+ (b− a)4

= 6
(
x− a+ b

2

)2

+ 3 (b− a)2
(
x− a+ b

2

)2

+
7
8

(b− a)4

and then

A =
1
12

[
6
(
x− a+ b

2

)4

+ 3 (b− a)2
(
x− a+ b

2

)2

+
7
8

(b− a)4

]
.

Now, using the inequality (2.3) and simple algebraic manipulations, we get the first result
in (2.1) .

The second part is obvious by the fact that∣∣∣∣x− a+ b

2

∣∣∣∣ ≤ b− a
2

for all x ∈ [a, b] .
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3 Applications in Numerical Integration

Let Ih : a = x0 < x1 < ... < xn−1 < xn = b be a division of the interval [a, b], ξi ∈ [xi, xi+1]
(i = 0, 1, ..., n− 1) a sequence of intermediate points and hi := xi+1−xi (i = 0, 1, ..., n− 1). As
in [1], consider the perturbed Riemann’s sum defined by

AG (f, Ih, ξ) :=
n−1∑
i=0

f (ξi)hi −
n−1∑
i=0

(
ξi −

xi + xi+1

2

)(
f (xi+1)− f (xi)

)
.(3.1)

In that paper Dragomir and Wang proved the following result:

Theorem 3.1. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b) , whose
derivative f ′ : (a, b)→ R is bounded on (a, b) and assume that

γ ≤ f ′ (x) ≤ Γ for all x ∈ (a, b) .(3.2)

Then we have the quadrature formula:
b∫
a

f (x) dx = AG (f, Ih, ξ) +RG (f, Ih, ξ)(3.3)

and the remainder RG (f, Ih, ξ) satisfies the estimation

|RG (f, Ih, ξ)| ≤ 1
4

(Γ− γ)
n−1∑
i=0

h2
i ,(3.4)

for all ξ =
(
ξ0, ..., ξn−1

)
as above.

Here, we prove another type of estimation for the remainder RG (f, Ih, ξ) in the case when
f is twice differentiable.

Theorem 3.2. Let f : [a, b] → R be continuous on [a, b] and twice differentiable on (a, b) ,
whose second derivative f ′′ : (a, b)→ R is bounded on (a, b). Denote ‖f ′′‖∞ := sup

t∈(a,b)
|f ′′ (t)| <

∞. Then we have the quadrature formula (3.3) and the remainder RG (f, Ih, ξ) satisfies the
estimation:

|RG (f, Ih, ξ)| ≤
‖f ′′‖∞

2

n−1∑
i=0



(
ξi −

xi+xi+1
2

)2

h2
i

+
1
4


2

+
1
12

h3
i(3.5)

≤
‖f ′′‖∞

6

n−1∑
i=0

h3
i

for all ξi as above.

Proof. Apply Theorem 2.1 on the interval [xi, xi+1] (i = 0, . . . , n− 1) to obtain

∣∣∣∣∣∣f (ξi)hi −
xi+1∫
xi

f (t) dt−
(
ξi −

xi + xi+1

2

)
(f (xi+1)− f (xi))

∣∣∣∣∣∣
≤
‖f ′′‖∞

2



(
ξi −

xi+xi+1
2

)2

h2
i

+
1
4


2

+
1
12

h3
i ≤
‖f ′′‖∞

6
h3
i

for all ξi ∈ [xi, xi+1] and i ∈ {0, . . . , n− 1} .
Summing over i from 0 to n − 1 and using the generalized triangle inequality, we get the

desired inequality (3.5) .
We omit the details.
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4 Applications for Special Means

Recall the following means :
(a) The arithmetic mean

A = A (a, b) :=
a+ b

2
, a, b ≥ 0;

(b) The geometric mean:

G = G (a, b) :=
√
ab, a, b ≥ 0;

(c) The harmonic mean:

H = H (a, b) :=
2

1
a

+
1
b

, a, b ≥ 0;

(d) The logarithmic mean:

L = L (a, b) :=


a if a = b

b− a
ln b− ln a

if a 6= b

a, b > 0;

(e) The identric mean:

I := I (a, b) =


a if a = b

1
e

(
bb

aa

) 1
b−a

if a 6= b

a, b > 0;

(f) The p-logarithmic mean:

Lp = Lp (a, b) :=


[
bp+1 − ap+1

(p+ 1) (b− a)

] 1
p

if a 6= b;

a if a = b

where p ∈ R\ {−1, 0} and a, b > 0.
The following simple relationships are well known in the literature

H ≤ G ≤ L ≤ I ≤ A(4.1)

and

Lp is monotonically increasing in p ∈ R with L0 := I and L−1 := L.(4.2)

1. Consider the mapping f (x) = xp (p ≥ 2) on [a, b] ⊂ (0,∞) .

Applying the inequality (2.1) for f (x) = xp, we get:∣∣∣xp − Lpp − pLp−1
p−1 (x−A)

∣∣∣(4.3)

≤ p (p− 1) b
2

p−2
{[

(x−A)2

(b− a)2 +
1
4

]2

+
1
12

}
(b− a)2
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≤ p (p− 1) bp−2

6
(b− a)2

for all x ∈ [a, b] .

Choosing in(4.3) , x = A, we get

0 ≤ Lpp −Ap ≤
7
96
p (p− 1) bp−2 (b− a)2

.(4.4)

2. Consider the mapping f (x) = 1
x (x ∈ [a, b] ⊂ (0,∞)) .

Applying the inequality (2.1) for this mapping we get:∣∣∣∣ 1x − 1
L
− x−A

G2

∣∣∣∣(4.5)

≤ 1
3a3

{[
(x−A)2

(b− a)2 +
1
4

]2

+
1
12

}
(b− a)2 ≤ 1

3a3 (b− a)2

for all x ∈ [a, b] .

Choosing in (4.5) x = A, we get

0 ≤ A− L
AL

≤ 7
48a3 (b− a)2

.(4.6)

Also, choosing in (4.5) x = L, we get

0 ≤ A− L
G2 ≤ 1

3a3

{[
(x−A)2

(b− a)2 +
1
4

]2

+
1
12

}
(b− a)2(4.7)

≤ 1
3a3 (b− a)2

.

3. Finally, let us consider the mapping f (x) = − lnx (x ∈ [a, b] ⊂ (0,∞)) . Then, by (2.1),
we get: ∣∣∣∣∣∣∣∣∣ln


I

(
b

a

) x−A
b−a

x


∣∣∣∣∣∣∣∣∣ ≤

1
2a2

{[
(x−A)2

(b− a)2 +
1
4

]2

+
1
12

}
(b− a)2 ≤ 1

6a2 (b− a)2(4.8)

for all x ∈ [a, b] .

Putting x = A in (4.8) we get

1 ≤ A

I
≤ exp

[
7

96a2 (b− a)2
]
.(4.9)
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