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Abstract

Genetic  Programming  is  able  to  systematically  explore  many  alternative  model  

structures  of  different  complexity  from  available  input  and  response  data.  We 

hypothesised  that  Genetic  Programming  can  be  used  to  test  the  structure  of 

hydrological models and to identify dominant processes in hydrological systems. To 

test  this,  Genetic  Programming  was  used  to  analyse  a  data  set  from a  lysimeter 

experiment  in  southeastern Australia.  The lysimeter  experiment  was conducted to 

quantify the deep percolation response under surface irrigated pasture to different soil  

types, water table depths and water ponding times during surface irrigation. Using 

Genetic Programming, a simple model of deep percolation was recurrently evolved in 

multiple Genetic Programming runs. This simple and interpretable model supported 

the dominant  process contributing to deep percolation represented in a conceptual  

model that was published earlier. Thus, this study shows that  Genetic Programming 

can be used to evaluate the structure of hydrological models and to gain insight about 

the dominant processes in hydrological systems.

1. Introduction 

Typically, a hydrological model can be formulated as: 

( ) ttt xfq εβ += ,  t=1, 2, …, n, (1)

where  t is  a  time  interval,  qt is  the  measured  response  of  a  hydrological  system (such  as 

streamflow or deep percolation below the plant rootzone) predicted by function  f  ( ),  xt  is a 

vector  of  inputs  such  as  rainfall  and  potential  evapotranspiration,  β is  a  vector  of  model 

parameters and εt is an error. In this paper, f (xt, β) is referred to as model structure representing 
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hydrological processes contributing to response qt. The model structure is an important source 

of  uncertainty  in  hydrological  predictions  and  should  therefore  be  as  rigorously  tested  as 

possible (Beven, 2001). The problem of identifying a model structure from an observed set of 

system inputs and responses has received considerable attention in control theory (see for e.g. 

Ljung, 1999 and references therein) and statistics (see e.g. Breiman, 2001 and Chatfield, 1995, 

and  the  discussions  therein).  Particularly  in  statistics,  it  is  often  argued  that  there  maybe 

multiple model structures that explain the observed data equally well and, at the same time, are 

physically  plausible.  While  this  is  not  necessarily  a  problem  if  the  modelling  purpose  is  

prediction (as model predictions can be aggregated over a large set of competing models), it will  

represent  an  issue  if  the  purpose  of  the  modelling  is  system  understanding.   For  most 

applications of hydrological models, a limited number of model structures are considered to be 

plausible.  Consequently,  only  a  few  alternative  model  formulations  are  tested using  some 

statistics  of  the  model  residuals  ε such as  the  root  mean  square  error.  In  addition to  these 

statistics, model residuals should be checked for unexplained structure such as correlations with 

model  inputs and variables that were not included in the model  or  trends to ensure that  all 

information  has  been  extracted  from the  available  data  (Kirchner  et  al.,  1996).  While  few 

alternatives seem to be available for these tests based on model residuals, there is often limited 

rigor  in  unsystematically  testing  the  structure  of  hydrological  models.  In  particular,  as  

complexity of models increases the problem of non-uniqueness of model structures increases, 

i.e. many different model structures having similar error statistics and characteristics (Beven 

and  Freer,  2001).  Conversely,  for  simpler  models  representing  only  a  limited  number  of 

dominant processes, non-uniqueness is typically less problematic. However, as usually only a 

limited  number  of  model  structures  are  tested,  it  is  difficult  to  know  whether  a  robust,  

sufficiently simple model has been found and the dominant processes have been identified. 

Genetic Programming (GP) is able to systematically explore many alternative model 

structures  of  different  complexity  from  available  input  and  response  data.  It  may  help  to 

transform a set of observed input and response data into a conceptual model of the underlying  

dominant  processes.  Therefore  we  hypothesised  that  GP  can  be  used  to  identify  dominant 

processes in hydrological systems and to evaluate the structure of hydrological models. To test 

this, GP was used to analyse a data set from a lysimeter experiment in southeastern Australia.  

Based on the GP analysis, we evaluated an existing conceptual model of deep percolation that 

had been previously developed with these experimental data.
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2. Material and Methods

Genetic programming

Genetic Programming (GP) is a relatively new automatic programming technique for evolving 

computer programs to solve, or approximately solve, problems (Koza, 1992). In engineering 

applications,  GP  is  frequently  applied  to  model  structure  identification  problems.  In  such 

applications, GP is used to infer the underlying structure of either a natural or experimental  

process in order to model the process numerically. A number of applications of GP have been 

reported in water resources, which include rainfall-runoff modelling (Whigham and Crapper, 

2001; Khu et al., 2001); effect of flexible vegetation on flow in wetlands (Babovic and Keijzer, 

2000); analysis and prediction of algal blooms (Muttil and Chau, 2006; Muttil and Lee, 2005); 

flood routing in natural channels (Sivapragasam et al., 2008), real-time wave forecasting (Gaur 

and  Deo,  2008),  pedotransfer  functions  to  estimate  the  saturated  hydraulic  conductivity 

(Parasuraman et al., 2007) and quantification of model structure uncertainty (Parasuraman and 

Elshorbagy, 2008).

GP is a member of the Evolutionary Algorithm family, which are based upon concepts 

of natural selection and genetics. The basic search strategy behind GP is a genetic algorithm 

(Holland, 1975), although GP was developed much later (Koza, 1992). Like genetic algorithms, 

GP works with a number of solution sets, known collectively as a “population”, rather than a 

single solution at any one time; thus the possibility of getting trapped in a “local optimum” is  

avoided. GP differs from the traditional genetic algorithms in that it typically operates on “parse  

trees” instead of bit strings. A parse tree is built up from a “terminal set” (the input variables in  

the problem and randomly generated constants) and a “function set” (the basic operators used to 

form the  GP  model).  The  function  set  is  user  defined  and  can  not  only  include  algebraic 

operators, such as {+, -, *, /, exp, sin} but can also take the form of logical rules, making use of  

operators such as {IF, OR AND}. An example of a parse tree can be found in Figure 1, which is 

a parse tree representing the GP model f(x) = 2 * exp(-0.5 * x) - 0.6. The function set nodes are 

represented  by  circles  and  the  terminal  set  nodes  by  rectangles.  The  “tree  size”  of  this 

expression is 5, where “tree size” is the maximum “node depth” of a tree and “node depth” is  

the minimum number of nodes that must be traversed to get from the “root node” of the tree 

(see Figure 1) to the selected node.

INSERT FIGURE 1 NEAR HERE

Once  the  initial  population  of  random parse  trees  is  generated,  GP calculates  their 

fitness  using the user  defined  “fitness  function”,  e.g.  root  mean  square  error  (RMSE),  and 

subsequently  selects  the  better  parse  trees  for  reproduction  and  variation  to  form  a  new 
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population. This process of selection, reproduction and variation iterates until a user-defined 

“stopping criterion” is  satisfied.  The solutions in each iteration are collectively known as a 

“generation”. As the population evolves from one generation to another, new solutions replace 

the older ones and are supposed to perform better. The solutions in a population associated with  

the best fit individuals will, on average, be reproduced more often than the less fit solutions.  

This is known as the Darwinian principle of the “survival of the fittest”. 

During each successive generation a proportion of the existing population is “selected” 

to breed a new generation. Individual solutions are selected through a fitness-based process,  

where fitter solutions are typically more likely to be selected. The next step is to generate a  

second  generation  population  of  solutions  from  those  selected,  through  the  two  variation 

operators - crossover and mutation. Crossover is the random swapping of sub-trees between the 

selected  “parent”  parse  trees  to  generate  the  new  “children”.  The  crossover  operator  is 

demonstrated in Figure 2. It should be noted that bold parts of the two parent trees in Figure 2 

exchange each other to create the two children. The expressions for the 2 parents and the 2 

children are also presented in this figure. The crossover tends to enable the evolutionary process 

to move toward promising regions of the solution space. In contrast to crossover, in mutation, a 

single parent parse tree is selected and random changes are made to it. Figure 3 illustrates one of 

the many possible mutation operators in GP, where an entire sub-tree in the parent is replaced 

by a randomly generated sub-tree to create the child. The mutation operator is introduced to  

prevent premature convergence to local optima. A high crossover rate is usually used so that the 

good characteristics (i.e., useful sub-trees) from the previous generations are transmitted to the  

new generation. On the other hand, the mutation rate is usually kept low since a high mutation  

rate can cause a big loss of useful sub-trees evolved in previous generations. This process of 

selection,  reproduction  and  variation  continues  until  a  new  population  of  solutions  of 

appropriate size (which is the user defined “population size”) is generated. From generation to  

generation,  the best  solution evolved in  previous generations  is  usually preserved,  which is  

called “elitism”.  For  a detailed description of  genetic  programming from a water  resources 

perspective,  the  interested reader  is  referred to  Babovic  and Keijzer  (2000) and  Khu et  al. 

(2001).

INSERT FIGURES 2 AND 3 NEAR HERE

Analysis of lysimeter data using GP

GP was used to analyse a data set from a lysimeter experiment in southeastern Australia. Based 

on the GP analysis,  we evaluated an existing conceptual model of deep percolation that was  

earlier  developed  based  on  these  experimental  data.  Using  GP,  our  aim  was  to  find  a  

parsimonious model structure, with no systematic departures from the observed data that would 
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provide  a  physically  plausible  description  of  the  dominant  processes  contributing  to  deep 

percolation. Note that the approach taken in this paper is in the spirit of a recent discussion on 

‘dominant  processes’  and  ‘model  simplification’  in  hydrology  (Sivakumar,  2008)  and  it  is 

conceptually similar to data-based mechanistic modelling (Young, 2003).

Lysimeter data set 

The lysimeter  data  set  analysed  using GP was the same  as  used by  Bethune et  al.  (2008). 

Experimental  detail  relevant  to  this  study is  briefly  explained  below.  For  a  more  detailed 

description of the lysimeter experiment, the reader is referred to Bethune et al. (2008).

The lysimeter experiment was conducted in southeastern Australia to quantify the deep 

percolation response under  irrigated pasture  to  different  soil  types,  water  table  depths,  and 

ponding  times  during  surface  irrigation.  During  surface  irrigation  in  a  real  world  situation 

(which the lysimeter is meant to represent),  water is flooded over a graded irrigation bay. The 

ponding time is the interval during which irrigation water will infiltrate at a specified location. It  

begins  when  irrigation  water  first  reaches  a  particular  location  and  ends  when  the  water  

eventually  drains  from there.  Lysimeters  represented  25  undisturbed  soil  cores  of  0.75  m 

diameter and 2.2 m depth, with 8 soil types varying between sand and heavy clay and fixed 

water table depths ranging from 0.6 m to 1.8 m. Perennial pasture was established in the cores 

which were irrigated on a regular evapotranspiration-minus-rainfall schedule and thus initial soil 

moisture  conditions  prior  to  irrigation  were  not  entirely  different  for  the  various  irrigation 

events. 

An irrigation event consisted of maintaining a pond of water of approximately 7 cm depth on  

the lysimeter surface for a period of 3, 6, 9 or 12 hours (i.e. irrigation ponding time). 

A total of 450 deep percolation (DP) events were measured as a result of 18 irrigation  

events applied during the 2005/2006 irrigation season to the 25 lysimeters. DP was measured as  

cumulative amounts of water between two consecutive irrigation events. The data set from the  

lysimeter experiment additionally included information that would typically be used in process-

based models that simulate saturated-unsaturated water flow:

• The final infiltration rate of the subsoil (if) was measured in the field using infiltration 

rings (350 mm in diameter). As water permeability was mainly restricted by the fine-

textured  subsoil,  it  provided  information  on  the  effective  near-saturated  hydraulic  

conductivity for each of the 8 soil types.

• The soil  water stored in the rootzone between saturation and field capacity (DW) is 

often  associated  with  the  amount  of  water  that  can  drain  through  the  soil  during 
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redistribution.  For  each  soil  type,  soil  water  retention  properties  were  measured  in 

undisturbed core samples of 73 mm diameter using ceramic suction plates.

• The lower boundary condition was described by the water table depth (GWD) of each 

lysimeter core.

• The  upper  boundary  condition  for  each  irrigation  event  was  characterized  by  the 

ponding  time  (to),  the  daily  average  rainfall  (R)  and  sum  of  daily  crop 

evapotranspiration (ET) between two consecutive irrigations. 

The experimental data set is presented in Figure 4, which visualizes basic relationships in the 

collected lysimeter  data.  Note  that  substantial  rainfall  (126  mm)  between the  first  and  the 

second irrigation event resulted in high DP measurements for lysimeters with sandy soils. For  

the remainder of the irrigation season, rainfall was small compared to irrigation and thus did not 

have much impact on DP.

INSERT FIGURE 4 NEAR HERE

Conceptual model of deep percolation

Bethune et al. (2008) developed a conceptual model of deep percolation based on the data from 

the lysimeter experiment. The conceptual model of DP is given by:
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where SSP and NSSP denote steady-state and non-steady-state percolation, respectively;  ET is 

evapotranspiration and a is an empirical coefficient describing the time-constant percolation rate 

during redistribution. The term if  to represents the percolation during irrigation (when irrigation 

water  is  ponding  on  the  soil  surface)  assuming  steady-state  conditions.  The  ratio  DW/ET 

denotes the time required for evapotranspiration to utilize DW. Both SSP and NSSP are affected 

by a factor representing the water table influence:  

( ) 





=

0

55.0tanh
GWD

GWD
GWDf , (3)

where  GWD0 is defined as the half depth of water table influence (analogous to the half-life 

concept in radioactive decay),  i.e.,  when  GWD=GWD0,  the reduction factor  f is tanh (0.55), 

which is 0.5.  The reduction factor becomes zero for water tables at the soil surface (no deep 

percolation) and approaches unity for deep water tables (free draining conditions, no capillary  

rise). For the soils investigated, it was estimated that GWD0 = 1 m.
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Bethune et al. (2008) found, using the conceptual model, that steady-state percolation 

during irrigation was the dominant  process contributing to deep percolation on most  of  the  

studied soils.  Non-steady-state  percolation (redistribution)  was also important  for  some soil  

types.

The conceptual model had a root mean square error (RMSE) of 10.9 mm in fitting DP 

measured in the lysimeter experiment.

The structure of the conceptual model was evaluated using the results from the GP analysis. 

GP analysis

The GP tool software used in this study was GPKernel developed at Danish Hydraulic Institute 

by Babovic and Keijzer (2000). The GPKernel parameters used for all the GP runs in this study 

are presented in Table 1. Optimum values for various control parameters were obtained using a 

trial-and-error  process  with  the  objective  to  minimise  the  RMSE during  the  model  fitting 

process. 

INSERT TABLE 1 NEAR HERE

As  discussed  previously,  high  crossover  rates  and  low mutation  rates  are  usually  used.  A 

crossover rate of 1.0 and mutation rate of 0.05 is used in this study and similar values have been 

used in various applications of GP in water resources (Babovic and Keijzer, 2000;  Khu et al., 

2001;  Muttil and Lee, 2005 and Muttil and Chau, 2006). The terminal set consists of the six 

input variables {if,  to,  GWD,  DW,  ET,  R} and DP is the target variable. Along with the simple 

math operators {+, -, *, /}, the exponential function {exp} is also included in the function set as  

( )( ) ( )( )12exp/12exp)tanh( +−= xxx  was used to formulate the conceptual model  of DP. 

The fitness function that was minimised was the RMSE. Performance of evolved GP models 

was evaluated using the model efficiency ME (Nash and Sutcliffe, 1970), the average error AE 

and the RMSE which are given by:
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where  DPobs ,  DPsim and  obsDP  are  the  observed,  simulated  and  average  observed  deep 

percolation, respectively. In this study, neither a cross-validation of the GP models nor the use 

of  more  sophisticated  measures  of  model  fitness  penalising  over-parameterization  (such  as 

'Akaike information criterion') were attempted as the evolved models were very simple with 

predominantly  one  and  no  more  than  two  empirical  coefficients  to  be  estimated  from the  

experimental  data.  Therefore,  over-fitting,  over-parameterization  and  poor  parameter 

identifiability were less of an issue. 

Interpreting GP models

GP generates simple expressions which can be analysed to provide additional insights into the 

problem at hand and assist interpretation of the underlying, dominant processes. However, GP 

has  the  tendency to evolve uncontrollably large parse  trees  (called bloating),  which lead to 

incomprehensible models. Thus, to evolve simple and interpretable models, it is necessary to  

control  bloating of GP models.  Several  techniques  for control  of  bloat  have been proposed 

(Silva and Costa, 2004) and in this study, a limit on the GP equation size (or parse tree size) was  

used. GP models were evolved using five different values of maximum equation size, namely 5,  

8, 9, 10 and 15. For each of these equation sizes, 30 GP models were evolved using different  

initialisations. The 30 GP runs took approximately 1.5 - 2 hours on an Intel dual core 1.86 GHz 

PC with 2 GB RAM. 

3. Results

Analysis of lysimeter data using GP

Using the five different maximum equation sizes (i.e., 5, 8, 9, 10 and 15) and multiple GP runs 

with different initialisations, we found that the final infiltration rate of the subsoil if, the ponding 

time to and the water table depth GWD were selected at least once per GP run (Table 2). The 

amount of water stored in the rootzone between saturation and field capacity  DW,  the daily 

average rainfall  R and the sum of daily crop evapotranspiration  ET between two consecutive 

irrigations were less frequently (less than once per GP run) selected than if, to, and GWD. 

INSERT TABLE 2 NEAR HERE 

The number of GP models evolved in 30 GP runs increased with maximum equation 

size. Similarly, as maximum equation size increased, recurrence of GP models diminished and 

variability in both RMSE and ME increased (Figure 5). No consistent trend was observed for 

AE.

INSERT FIGURE 5 NEAR HERE 
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Model performance (in terms of ME and RMSE) tended to improve with increasing 

equation size  (Table  3).  For  all  DP models,  variation from the 1:1 line  in  a plot  of  model  

simulations  against  observations  increased  as  modelled  DP  increased  (Figure  6).  This 

phenomenon, which is common in hydrological data sets, can be due to increasing measurement 

error in the DP data, or due an inability of the models to predict larger values with the same  

precision as it  does for smaller  values.  If  model  prediction error remains unrelated to input  

variables, and cannot be distinguished from measurement error, it does not preclude the model  

from giving useful insights into dominant processes. 

INSERT TABLE 3 NEAR HERE 

INSERT FIGURE 6 NEAR HERE 

For maximum equation sizes of up to 9, models formulated by GP for different GP runs 

were very recurrent (Table 3).  The GP model  DP =  if to 0.785GWD   was 29 and 26 times 

generated in 30 GP runs for the maximum equation size of 8 and 9, respectively. The GP model  

DP = if to 0.785GWD was similar to the conceptual model of steady-state percolation including 

the watertable influence (Equation 2). Only the factor representing the watertable influence is  

slightly  different,  i.e.  both  functions  are  monotonically  increasing  as  water  table  depths 

increase,  but  at  a  slightly  different  rate  (Figure  7).  Note  that  the  factor  representing  the 

watertable influence for the GP model was consistently larger than the factor in the conceptual 

model, with increasing differences for deeper water tables. These differences occurred because,  

in  contrast  to  the  conceptual  model,  the  GP  model  does  not  represent  non-steady  state 

percolation during redistribution. For the conceptual model,  percolation during redistribution 

increases for deeper watertables due to decreasing capillary rise. Residuals of the GP model DP 

=  if to 0.785GWD  did  not  show  much  noticeable  correlation  with  both  model  inputs  and 

variables that were not included into this model (Figure 8).

INSERT FIGURE 7 NEAR HERE

INSERT FIGURE 8 NEAR HERE 

 Although recurrence in multiple GP runs was lost for larger equation sizes, some of the 

larger  equations  were  remarkably  simple  (Table  3).  An example  of  a  simple  GP model  is 

presented in Equation (7), which was evolved by GP for a maximum equation size of 15. Note 

that  this  model  has  only four  inputs and  has  no  coefficients  to  be  estimated  from  the 

experimental data: 

( ) ( ) foof iDWttGWDGWDiDP +−−= /exp (7)

The general trend of relationship between DP and the other inputs in Equation (7) is physically 

reasonable within the range of the experimental  data used to generate the equation,  i.e.  DP 

SELLE AND MUTTIL: TESTING THE STRUCTURE OF HYDROLOGICAL MODELS 9



increases as if, GWD, t0 and DW increase. However, for small values of DW, t0  will have convex 

parabolic, physically unreasonable relationship with DP, i.e. DP only increases up to a certain 

value of t0 and then decreases with increasing t0. In contrast to Equation (7), the general trend of 

relationships for GP model  DP =  if to 0.785GWD  is physically meaningful  even outside the 

range of the observed data.

Evaluating conceptual model of deep percolation

For all GP equation sizes, the final infiltration rate of the subsoil if, the ponding time to and the 

water table depth GWD were at least once selected per GP run. Up to an equation size of 9, one 

particular GP model was recurrently evolved in all the 30 GP runs. This GP model contained  

only the three key variables if, to, and GWD that were related as DP = if to 0.785GWD. Residuals 

of this model did not show much noticeable correlation with both model inputs and variables 

that were not included into this model.  Although GP models with larger maximum equation 

sizes had better RMSE than the model DP = if to 0.785GWD, these models were not recurrently 

evolved for multiple GP runs and interpretation was difficult due to their complexity. The GP 

model  DP =  if to 0.785GWD  was similar to the conceptual model of steady-state percolation 

including the watertable influence. Based on all these results, steady-state percolation during 

irrigation  as  represented  by  the  conceptual  model  is  supported  as  the  dominant  process 

contributing to DP in the lysimeter experiment.

Unlike if,  to and GWD, the amount of water stored in the rootzone between saturation 

and field capacity  DW,  which was a key variable representing non-steady-state percolation in 

the conceptual model,  was selected very few times in the multiple GP runs for all equation  

sizes. In contrast to the conceptual model, the GP model DP = if to 0.785GWD did not account 

for percolation during redistribution. For this GP model,  DP was on average only 0.74 mm  

underestimated.  So,  no  obvious  bias  was  introduced by not  representing  percolation during 

redistribution.  Furthermore,  residuals  of  this  GP  model  did  not  show  much  noticeable 

correlation with model inputs and variables that were not included into this model. These results 

indicate that, from the lysimeter data set, non-steady-state percolation can be considered a minor  

process contributing to DP.

4. Concluding Remarks

In this study, GP was used to analyse a data set from a lysimeter experiment in southeastern 

Australia. We investigated the recurrence and performance of GP derived models using multiple 

GP runs and different equation sizes. The GP model  DP =  if to 0.785  GWD  was recurrently 
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evolved in the multiple GP runs up to a maximum equation size of 9. This simple model was 

readily interpretable. It supported that steady-state percolation during irrigation, as represented 

in  the  conceptual  model  developed  by  Bethune  et  al.  (2008),  was  the  dominant  process 

contributing to DP in the lysimeter experiment. However, non-steady-state percolation, which 

was also represented in the conceptual model, was likely to be a minor process contributing to  

DP and may even be not identifiable from the experimental data set. In the conceptual model,  

steady state percolation during irrigation and non-steady state percolation during redistribution 

can compensate each other and there may be an identifiability issue which was highlighted  

through our GP analysis. A model of DP representing only the dominant process (steady state  

percolation during irrigation) will be more practical as it requires less input data than a more  

complex model which may not improve predictions much. Therefore, we believe that GP can be 

used to test hydrological models, to gain insight about the dominant processes in hydrological  

systems  and  it  may  even  be  used  as  a  creative  tool  to  help  formulating  more  practical,  

parsimonious hydrologic models.
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As maximum equation  size  for GP increased,  model  recurrence  was  reduced,  and 

model  complexity  and  variability  in  model  performances  increased,  making 

interpretation of GP model more difficult and less reliable. For a maximum equation 

size of 15, GP generated 11 different models. Some of these models had slightly better  

RMSE than the conceptual model. One of these models (presented in Equation 7) was 

remarkably elegant, with less inputs than the conceptual model (only  if,  to,  DW and 

GWD) and with no coefficients to be estimated from the experimental data, whereas 

the conceptual model had two empirical coefficients (i.e. a and GWD0). It was initially 

believed  that  this  model  could  provide  alternative  model  formulations  to  the 

conceptual  model  or  that  it  may  contain  information  on  additional  important 

processes. However, physical interpretation of the model was found to be reliable only 

within the range of the observed experimental data. Outside the range of observed 

data,  the  model  was  not  physically  meaningful  and  thus  reliable  physical 

interpretation of this model or its model components may not be possible.  Therefore, 

GP should only be used with caution and some understanding of the system, as it is easy to  

over-fit and over-interpret particular features of the data. 

This paper explores a GP-based approach that can help to gain insight about the dominant 

processes in hydrological systems. As discussed earlier, this approach should however only 

be used with caution, also because it has little statistical theoretical support. In this study, a 

limit on the equation size and the use of basic algebraic operators in the function set are 

employed  to  evolve  simple  models  and  thus  facilitate  interpretation.  Using  these  GP 

settings, a model was found which competitively fitted the lysimeter data, was recurrently 

evolved in multiple GP runs and was also readily interpretable. Interpretation was feasible  

because the lysimeter data set was extensively studied by Bethune at al. (2008). It may be 

possible  to  find other  GP models  (using different  values  of  control  parameters  such as  

mutation rate and stopping criteria and/or function sets) that brilliantly fit the lysimeter data 

and are  even recurrently evolved in  multiple  runs.  It  may however  be  unlikely to  find 

another GP model that is competitively fitting the data, recurrently evolved in multiple runs 

and simple enough to be interpreted.
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It is also worth mentioning that our study only looked at a static model example, i.e. DP 

from the lysimeter experiment was represented using a static GP model that does not take 

into account lagged system inputs such as rainfall. A static model approach was appropriate 

here,  as  the  system was  effectively  reset  at  each  irrigation  event  (initial  soil  moisture 

conditions prior to irrigation were not entirely different for the various irrigation events as 

lysimeters were irrigated on a regular evapotranspiration-minus-rainfall  schedule),  which 

means  that  DP  for  a  particular  irrigation  event  will  become  uncorrelated  with  past  

conditions  and  thus  the  history  of  system inputs.  This  however  is  untypical  of  many 

hydrological models where, for example in catchment modelling, monthly streamflow is 

often highly auto-correlated and is typically represented using a dynamic model approach. 

For dynamic approaches, model inputs are propagated in time through internal model states 

that make model outputs dependent on past conditions. In principle, GP can also be applied  

to test the structure of a dynamic model by taking the lagged inputs into account. But, this 

would make the GP models more complex, potentially making interpretation difficult. 
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Figure Captions

Figure 1. Example of GP parse tree representing the GP model f(x) = 2 * exp(-0.5 * x) - 0.6. 

Function set nodes are represented by circles and the terminal set nodes by rectangles.

Figure 2. Crossover operator in GP.

Figure 3. Mutation operator in GP.

Figure 4. Scatter plot of experimental data set: DP, deep percolation between two consecutive 

irrigations; R, daily average rainfall between two consecutive irrigations; if, final infiltration 

rate of the subsoil; to, ponding time; GWD, water table depth of lysimeter; ET, sum of daily 

crop evapotranspiration between two consecutive irrigations; DW, soil water stored in the 

rootzone between saturation and field capacity.

Figure 5. Root mean square error (RMSE) for 30 GP runs with different maximum equation 

sizes.

Figure 6. Modelled vs. observed deep percolations (DP) for selected GP models (a, b, c) and 

conceptual model (d; Equation 2, with GWD0=1 m). a) 0tiDP f= ; b) GWDtiDP f 785.00= ; 

and c) ( ) foff iGWDtiiDP 2/41.4exp +−= . Dashed line is 1:1 line.

Figure 7.  Factor representing watertable influence f(GWD) vs. water table depth GWD for GP 

model GWDtiDP f 785.00= and conceptual model (Equation 3, with GWD0 = 1 m). Dotted 

lines represent the bootstrap 95% confidence interval for the empirical coefficient of GP model.

Figure 8. Standardised model residuals vs. input variables and variables not included in GP 

model GWDtiDP f 785.00= . if, final infiltration rate of the subsoil; to, ponding time; GWD, 

water table depth of lysimeter; DW, soil water stored in the rootzone between saturation and 

field capacity; ET, sum of daily crop evapotranspiration between two consecutive irrigations; R, 

daily average rainfall between two consecutive irrigations. Dotted lines show (or fail to show) 
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systematic deviation of residuals from zero, by locally-weighted polynomial regression 

(Venables and Ripley, 2003, p.230), that if present would indicate model lack of fit..
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Tables 

Table 1. Values of control parameters used in GP runs. RMSE is root mean square error.

Parameter Value

Population Size 500

Maximum equation size 5 – 15

Crossover rate 1

Mutation rate 0.05

Function set +, -, *, /, exp

Fitness function RMSE

Stopping criterion 500 generations

Elitism used Yes
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Table 2. Input variable counts from 30 GP runs using different maximum equation sizes.

Maximum 
Equation size

R if to GWD ET DW

5 0 30 30 0 0 0

8 0 30 30 30 0 0

9 0 30 30 30 0 0

10 0 42 36 30 2 2

15 0 84 48 38 0 6

R – daily average rainfall between two consecutive irrigations

if  - final infiltration rate of the subsoil

to - ponding time

GWD - water table depth of lysimeter

ET - sum of daily crop evapotranspiration between two consecutive irrigations

DW - soil water stored in the rootzone between saturation and field capacity
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Table 3. Conceptual model and GP models that were evolved more than once in 30 GP runs for 

different maximum equation sizes.

Max. 
eq. size

Conceptual/GP model ME AE RMSE Freq

NA 










 +=

0

55.0tanh
GWD

GWD
i

ET

DW
atiDP fof 0.91 -1.68 10.93 NA

5 0tiDP f= 0.71 -1.77 19.74 30

8 GWDtiDP f 785.00= 0.85 -0.74 14.24 29

9

GWDtiDP f 785.00= 0.85 -0.74 14.24 26

( ) GWDtiDP f 0859.0−= 0.84 2.57 14.58 2

( )[ ]GWDtiDP of exp582.0 += 0.85 -3.62 14.01 2

10

ff iGWDtiDP += 0718.0 0.87 -1.7 12.98 8

( )GWDtiDP f 34.455.0 0 += 0.89 -2.63 12.22 6

( ) 74.300 +−= GWDttiDP f
0.85 0 14.17 4

( )GWDitiDP ff += 069.0 0.88 -1.6 12.94 3

( )76.26.0 0 += GWDtiDP f
0.89 -3.36 12.05 2

GWDt
ET

DW
iDP of 





 −=

0.87 1.76 13.15 2

15

( ) ff ittiGWDDP 273.0 00 +−= 0.91 2.02 11.24 4

( ) foff iGWDtiiDP 2/41.4exp +−= 0.94 0.78 8.93 2

( ) ( ) foof iDWttGWDGWDiDP +−−= /exp 0.93 2.45 9.69 2

foof itGWDtiDP 14.366.0 +−= 0.91 1.75 11.12 2

ME - modelling efficiency (Nash and Sutcliffe, 1970)

AE - average error (mm)

RMSE - root mean square error (mm)

Freq - frequency of model evolved in 30 GP runs
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Figure 1. Example of GP parse tree representing the GP model f(x) = 2 * exp(-0.5 * x) - 0.6. 

Function set nodes are represented by circles and the terminal set nodes by rectangles.
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( ) ( ) zzxxzxf **9.0, ++= ( ) ( )yzxxzyxf −+= /*2.0),,(

(a) Parents

zyzxzyxf *)(*9.0),,( −+= )/()*2.0(),( zxxxzxf ++=
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Figure 2. Crossover operator in GP.
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Figure 3. Mutation operator in GP.
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Figure 4. Scatter plot of experimental data set: DP, deep percolation between two consecutive 

irrigations; R, daily average rainfall between two consecutive irrigations; if, final infiltration 

rate of the subsoil; to, ponding time; GWD, water table depth of lysimeter; ET, sum of daily 

crop evapotranspiration between two consecutive irrigations; DW, soil water stored in the 

rootzone between saturation and field capacity.

SELLE AND MUTTIL: TESTING THE STRUCTURE OF HYDROLOGICAL MODELS 26



Figure 5. Root mean square error (RMSE) for 30 GP runs with different maximum equation 

sizes.
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Figure 6. Modelled vs. observed deep percolations (DP) for selected GP models (a, b, c) and 

conceptual model (d; Equation 2, with GWD0=1 m). a) 0tiDP f= ; b) GWDtiDP f 785.00= ; 

and c) ( ) foff iGWDtiiDP 2/41.4exp +−= . Dashed line is 1:1 line.

SELLE AND MUTTIL: TESTING THE STRUCTURE OF HYDROLOGICAL MODELS 28



 

Figure 7.  Factor representing watertable influence f(GWD) vs. water table depth GWD for GP 

model GWDtiDP f 785.00= and conceptual model (Equation 3, with GWD0 = 1 m). Dotted 

lines represent the bootstrap 95% confidence interval for the empirical coefficient of GP model.

SELLE AND MUTTIL: TESTING THE STRUCTURE OF HYDROLOGICAL MODELS 29



Figure 8. Standardised model residuals vs. input variables and variables not included in GP 

model GWDtiDP f 785.00= . if, final infiltration rate of the subsoil; to, ponding time; GWD, 

water table depth of lysimeter; DW, soil water stored in the rootzone between saturation and 

field capacity; ET, sum of daily crop evapotranspiration between two consecutive irrigations; R, 

daily average rainfall between two consecutive irrigations. Dotted lines show (or fail to show) 

systematic deviation of residuals from zero, by locally-weighted polynomial regression 

(Venables and Ripley, 2003, p.230), that if present would indicate model lack of fit.
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