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Abstract—In this paper, we discuss the problem of 

characterization for uncertain multi-channel digital signal spaces, 
propose using fuzzy −n cell number space to represent uncertain 

−n channel digital signal space, and put forward a method of 
constructing such fuzzy −n cell numbers. We introduce two new 
metrics and concepts of certain types of difference values on fuzzy 

−n cell number space, and study their properties. Further, based 
on the metrics or difference values appropriately defined we put 
forward an algorithmic version of pattern recognition in an 
imprecise or uncertain environment, and we also give practical 
examples to show the application and rationality of the proposed 
techniques. 
 

Index Terms—Uncertain multi-channel digital signals, Fuzzy 
−n cell numbers, −n dimensional fuzzy vectors, Metrics, 

Difference values, Pattern recognition 

I. INTRODUCTION 
T is known that in a precise or certain environment, 
multi-channel digital signals can be represented by elements 

of multi-dimensional Euclidean space, i.e., crisp 
multi-dimensional vectors. If however we wish to study multi 
channel digital signals in an imprecise or uncertain 
environment, then the signals themselves are imprecise or have 
no certain bound, and it becomes unwise to use crisp 
multidimensional vectors to represent them. In this paper, we 
recommend using fuzzy −n cell numbers to represent 
imprecise or uncertain multi-channel digital signals, and put 
forward a method of constructing such fuzzy −n cell numbers. 
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The concept of general fuzzy numbers was introduced by 
Chang and Zadeh [2] in 1972 with the consideration of the 
properties of probability functions. Since then both the 
numbers and the problems in relation to them (see for example 
[3, 4, 5, 6, 11, 16, 19, 20, 21]) have been widely studied. With 
the development of theories and applications of fuzzy numbers, 
this concept becomes more and more important. In [7] Kaleva 
ever used a special type of −n dimensional fuzzy number, 
whose sets of cuts are all hyper-rectangles. In 2002 we 
carefully studied the special type of −n dimensional fuzzy 
number, and call it fuzzy −n cell number in [14,15]. It has been 
demonstrated that fuzzy −n cell number is used much more 
conveniently than general −n dimensional fuzzy numbers in 
theoretical investigations and some fields of application in [14, 
15, 17]. On the other hand, −n dimensional fuzzy vector is also 
an important concept, which is the Cartesian product of n  

−1 dimensional fuzzy numbers. In 1985, Kaufmann and Gupta 
[8] already studied fuzzy vectors, soon afterwards, Miyakawa 
and Nakamura et al. [9,10,12] also studied the problems of 
theories and applications in relating to fuzzy vectors. In 1997, 
Butnariu [1] studied Methods of solving optimization problems 
and linear equations in the space of fuzzy vectors. Recently, we 
[14] showed that fuzzy −n cell numbers and −n dimensional 
fuzzy vectors can represent each other, and obtained the 
representations of the joint membership function and the edge 
membership functions of a fuzzy −n cell number of each other. 

In a previous paper [15], we defined a metric LD  on the 
fuzzy −n cell number space, and studied its properties. And in 
paper [14], we again studied this type of metric in regard to two 
fuzzy −n cell numbers as the form of −n dimensional fuzzy 
vectors. Although metric LD  can be more conveniently used in 
applications and theoretical investigations, it has some 
shortcomings. That is, it has a tendency to be rougher, and can 
not really characterize the degree of difference of two fuzzy 

−n cell numbers in some applications (see Example 3.1 in 
Section 3 of this paper). In this paper, in order to discuss the 
problem of pattern recognition in an imprecise or uncertain 
environment based on degree of difference, we define two new 
metrics and some concepts of difference values on fuzzy 

−n cell number space, which may better characterize the 
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degree of difference of two fuzzy −n cell numbers in some 
applications, and study their properties. 

It is well known that pattern recognition is an important field 
of research. In this aspect many research achievements have 
been obtained (for example, see [13]). In this paper, as 
applications of the metrics and difference values (defined by 
us), we also study the problem of pattern recognition in an 
imprecise or uncertain environment, put forward an algorithmic 
version of pattern recognition based on the metrics or 
difference values (defined by us) of fuzzy −n cell numbers, 
and also give examples to show the application and rationality 
of the method. 

The organization of the paper is as follows. In Section 2, we 
give an example to show how to set up fuzzy −n cell numbers 
to represent imprecise or uncertain multi-channel digital signals. 
In Section 3, we define two new metrics, and study their 
properties. In Section 4, we introduce concepts of difference 
values of two fuzzy −n cell numbers, and examine their 
properties. In Section 5, an algorithmic version of pattern 
recognition is given based on the metrics or the difference 
values defined by us, and examples are also given to show the 
application and rationality of the method. Finally, in Section 6, 
we give a brief conclusion of this paper.  

II. REPRESENTATIONS OF UNCERTAIN MULTI-CHANNEL 
DIGITAL SIGNALS 

A fuzzy set of the Euclidean space nR  is a function 
]1,0[: →nRu . For fuzzy set u , we denote   :{][ nr Rxu ∈=  

})( rxu ≥  for ]1,0[∈r , and }0)(  :{][ 0 >∈= xuRxu n  (the 

closure of }0)(  :{ >∈ xuRx n ). If u  is a normal and fuzzy 

convex fuzzy set of nR , )(xu  is upper semi-continuous, and 
0][u  is compact, then we call u  a −n dimensional fuzzy 

numbers, and denote the −n dimensional fuzzy number space 
by nE . If Eu ∈ , and for each ]1,0[∈r , ru][  is a hyper 

rectangle, i.e., there exist Rruru ii ∈)(  ),(  with )()( ruru ii ≤ , 

( ni ,,2,1 L= ) such that ∏ =
=

n

i ii
r ruruu

1
)](  ),([][ , then we call 

u  is a fuzzy −n cell number, and denote the fuzzy −n cell 
number space by )( nEL . A −n dimensional fuzzy vector is an 

ordered class ),,,( 21 nuuu L , where Eui ∈  (i.e., 1E ), 
ni ,,2,1 L= . In [14], We have shown that fuzzy −n cell 

numbers and −n dimensional fuzzy vectors can represent each 
other, and as the representation is unique, )( nEL  and the 

−n dimensional fuzzy vector space (i.e., the Cartesian product 
4484476

L

n

EEE ××× ) may be regarded as identical. 
When exploring and discussing some quantity, properties or 

laws of movement of phenomena/objects in the physical world, 
it is essential for us to establish the description space of them. 
For instance, when the quantity in question is only the one with 
a single factor, we can take it as a dot in real number field R , 
that is, the space of quantities corresponding to single factor 

can be described by −1 dimensional Euclidean space R . 
Similarly, we can describe the quantities with n  factors, using 

−n dimensional Euclidean space nR . However, in the physical 
world, many phenomena are imprecise or uncertain (such as, 
have no certain bound). When the quantity discussed by us 
possesses some imprecise or uncertain attributes, it is 
unsuitable that we use still nR  to represent the space of the 
quantities (see Remark 2.1). It is our opinion that using the 
fuzzy −n cell number space discussed in [14, 15] to describe 
the quantities with some uncertain factors and discuss these 
quantities in this −n dimensional fuzzy vector space is a more 
suitable method to reveal the objective laws of things in 
physical world (see Remark 2.1). 

In the following example, we demonstrate how we construct 
a fuzzy −n cell number to represent a quantity that possesses 
some uncertain attributes based on statistical data. About the 
algorithmic version of such fuzzy −n cell numbers, we can see 
the first or second step of the algorithmic version in Section 5. 

Example 2.1. It is well known that different kinds of terrain 
or landcover possess the different reflections of the 
electromagnetic spectrum. Based on this principle, one can set up 
a method to recognize the category of landcover, a challenging 
remote sensing classification problem, using spectral and terrain 
features for vegetation classification in some zone. In remote 
sensing classification, the colligation of all species covering a 
zone of 4500 m2 can be boiled down to an element of remote 
sensing space. We use “Korean Pine accounts for the main part” 
to denote forest that mainly contains Korean Pines. Because in 
different “Korean Pine accounts for the main part” areas, there 
are many different factors such as the difference of the density of 
Korean Pines, of the species and quantity of other plants, of the 
physiognomy and so on, the values of reflections of the 
electromagnetic spectrum are also different. Therefore “Korean 
Pine accounts for the main part” should not be a certain crisp 
value but a fuzzy set without certain bound. So, using a fuzzy 
number to represent the spectral sensitivity level of the “Korean 
Pine accounts for the main part” is more suitable than using a 
crisp number. Suppose that we use 4 wave bands: MSS-4, 
MSS-5, MSS-6, MSS-7. We take 10 samples, and acquire the 
following data for some zone of “Korean Pine accounts for the 
main part”: 

45.1708.3448.1238.1510 Sample
02.1810.3658.1250.159 Sample
62.1864.3767.1382.168 Sample
29.1487.3098.1090.157 Sample
54.1510.3294.1180.136 Sample
75.2010.4280.1310.165 Sample
75.1450.3570.1190.144 Sample
16.1870.3779.1282.153 Sample
35.1681.3856.1260.152 Sample
37.1950.4030.1301.151 Sample

7MSS6MSS5MSS4MSS −−−−

 

We can directly work out the following means iμ  
( 4,3,2,1=i ) and standard deviations iσ  ( 4,3,2,1=i ) from the 
data: 
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MSS-4          MSS-5           MSS-6            MSS-7 
iμ :  46.151 =μ     58.122 =μ     54.363 =μ      33.174 =μ  

iσ :  22.11 =σ       88.02 =σ       55.33 =σ        08.24 =σ  
From the means and the standard deviations, with 
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( 4,3,2,1=i ) 
we can define 4 triangular model one-dimensional fuzzy 
numbers 321   ,  , uuu  and 4u  that respectively correspond with 
MSS-4, MSS-5, MSS-6 and MSS-7: 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∉

∈
−

∈
−

=
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By Theorem 3.1 and 3.2 in [14], we know that 321   ,  , uuu  and 

4u  determine a fuzzy −4 cell number ),,( 43,21 uuuuu = , and 
the membership function of u  is 

)}(),(),(),(min{),,,( 443322114321 xuxuxuxuxxxxu =  
4

4321 ),,,( Rxxxx ∈  
Then u  can be used to represent “Korean Pine accounts for the 
main part”. 

Likewise, from the means and the standard deviations, 
according to 

⎪⎩

⎪
⎨
⎧

=
+∞∉

+∞∈
−

−= 4,3,2,1
),0(if                                        0

),0(if    )
2

)(exp()( 2

2

i
x

xxxv

i

i
i

ii
ii σ

μ
 

we can also define 4 Gaussian model one-dimensional fuzzy 
numbers 321   ,  , vvv  and 4v  that respectively correspond with 
MSS-4, MSS-5, MSS-6 and MSS-7: 
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and obtain the membership function of the fuzzy −4 cell 
number ),,( 43,21 vvvvv =  determined by 321   ,  , vvv  and 4v  as 

)}(),(),(),(min{),,,( 443322114321 xvxvxvxvxxxxv = , 
4

4321 ),,,( Rxxxx ∈ . Then the fuzzy −4 cell number v  can also 
be used to represent the “Korean Pine accounts for the main 
part”. 

Remark 2.1.  Of course, if the quantity to describe is precise 
and certain, we should use a crisp multi-dimensional vector to 
represent it. However, if the quantity to describe is imprecise 
and uncertain, such as “Korean Pine accounts for the main part”, 
then using a fuzzy −n cell number to represent it is better than 
using a crisp −n dimensional vector. If we narrowly use a crisp 
multi-dimensional vector, such as )33.17 , 54.36 ,58.12 ,46.15(  
(i.e., the mean vector), to represent “Korean Pine accounts for 
the main part”, then it can not clearly tell us the relationship of 
“Korean Pine accounts for the main part” and the zone whose 
value of reflection of electromagnetic spectrum is 

)79.16 ,50.37 ,80.12 ,16.15(  since )79.16 ,50.37 ,80.12 ,16.15(  
)33.17 ,54.36 ,58.12 ,46.15(≠ . If we use fuzzy −n cell number 

),,( 43,21 vvvvv =  to represent it, then we can almost affirm that the 
zone whose value is )79.16 ,50.37 ,80.12 ,16.15(  is part of 
“Korean Pine accounts for the main part” since 

)93.0 ,93.0 ,94.0 ,94.0min()79.16 ,50.37 ,80.12 ,16.15( =v 93.0= , i.e., 
the degree of the zone which is “Korean Pine accounts for the 
main part” is 93.0 . 

III. METRICS ON FUZZY −n CELL NUMBER SPACE 

In [3], the authors studied the metric )  ,  ( ⋅⋅pd  (note that in 

this paper we rewrite )  ,  ( ⋅⋅pd  as )  ,  ( ⋅⋅pD ) on general 

−n dimensional fuzzy number space nE , which is defined by 
pprr

p rvudvuD /11 

0 
)d)]][,]([[(),( ∫=  for any nEvu ∈, , and 

point out that the metric pD  is complete. 

In [15], we studied the metrics D  and LD  on )( nEL , but 
the two metrics seem to be ‘rough’ in certain applications (see 
Example 3.1). In the following, other metrics are defined on 

)( nEL , which better reveal the difference between two 
different uncertain quantities (see Example 3.1). Their 
properties are also discussed such that they may be used 
appropriately. 
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We denote nibaARLC ii
n ,,2,1  ,exist     there:{)( L=≤=  

}  ],[ such that 
1∏ =

=
n

i ii baA , where  ],[
1∏ =

n

i ii ba  is the Cartesian 

product ],[],[],[ 2211 nn bababa ××× L . 
Theorem 3.1. We define mappings 

),0[)()(:ˆ +∞→× nn RLCRLCdα  
 and 

),0[)()(:
~

+∞→× nn RLCRLCdα  
 by 

∑=
−−⋅=

n

i iiiii babaBAd
1

|}|  |,max{|),(ˆ αα  

 and 

∑=

−+−
=

n

i

iiii

i

baba
BAd

1 2

||||
),(

~
αα  

 for any )(],[
1

nn

i ii RLCaaA ∈= ∏=
 and )(],[

1

nn

i ii RLCbbB ∈= ∏=
, 

where ),,,( 21 nαααα L=  satisfies 1
1

=∑ =

n

i iα  and 0≥iα , 

ni ,,2,1 L= . Then for any ,],[,],[
11 ∏∏ ==

==
n

i ii
n

i ii bbBaaA  

∏ =
=

n

i ii ccC
1

],[  in )( nRLC  and each Rk ∈ , αd̂  and αd
~

 

satisfies 
(1) ),(ˆ),(ˆ ABdBAd αα =  and ),(

~
),(

~
ABdBAd αα = ; 

(2) 0),(ˆ ≥BAdα  and 0),(
~

≥BAdα ; 

(3) 0),(ˆ =BAdα  ⇔ BA = ⇔  0),(
~

=BAdα ; 

(4) ),(ˆ),(ˆ),(ˆ BCdCAdBAd ααα +≤  and  ),(
~

),(
~

CAdBAd αα ≤   

),(
~

BCdα+ ; 

(5) ),(ˆ),(ˆ BAdCBCAd αα =++  and ),(
~

CBCAd ++α  

),(
~

BAdα= ; 

(6) ),(ˆ||),(ˆ BAdkkBkAd αα =  and ),(
~

||),(
~

BAdkkBkAd αα = . 
Proof. We only show Proofs (4), (5) and (6) (the other 

proofs are easy). From 

),(ˆ),(ˆ              

|})|  |,max{||}|  |,(max{|              

|}|||  |,||max{|              

|}|  |,max{|),(ˆ

1

1
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i iiiiiiiii
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∑
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),(ˆ                           

} ||  |,max{|                            
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iiiiii

n
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iiiiii
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i iii
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α

α

=
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∑
∑

=

=
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1
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iii

n

i ii

iii

n

i ii

α
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α

α

=

−−⋅=

−−⋅=

∑
∑

=

=

 

we see that  (4), (5) and (6) of the theorem hold for αd̂ . For αd
~

, 
we can similarly prove that (4), (5) and (6) of the theorem also 
hold.                      

Theorem 3.2. We define mappings  

),0[)()(:ˆ
, +∞→× nn
p ELELDα  

and 
),0[)()(:~

, +∞→× nn
p ELELDα  

by 
pprr

p rvudrvuD /11 

0 , )d])][,]([ˆ[(),(ˆ ∫ ⋅= αα  

and 

∫ ⋅=
1 

0 

/1
, )d)]][,]([

~
[(),(~ pprr

p rvudrvuD αα  

i.e., 

ppn

i iiiii

p

rrvrurvrur

vuD
/11 

0 1

,

)d]|})()(|  |,)()(max{|[(

),(ˆ    

∫ ∑ =
−−⋅= α

α
 

and 

pn

i
p

iiiii

p

rrvrurvrur

vuD

/11 

0 1

,

)d|)])()(||)()((|[(
2
1

),(~    

∫ ∑ =
−+−⋅= α

α

 

 for any )()(),( nn ELELvu ×∈ , where 1≥p , and ,,,( 21 Lααα =  

)nα  satisfies 1
1

=∑ =

n

i iα  and 0>iα , ni ,,2,1 L= . Then for 

any )(,, nELwvu ∈  and each Rk ∈ , pD ,
ˆ

α  and pD ,

~
α  satisfy 

(1) ),(ˆ),(ˆ
,, uvDvuD pp αα =  and ),(~),(~

,, uvDvuD pp αα = ; 

(2) 0),(ˆ
, ≥vuD pα  and 0),(~

, ≥vuD pα ; 

(3) 0),(ˆ
, =vuD pα  ⇔ vu = ⇔  0),(~

, =vuD pα ; 

(4) ),(ˆ),(ˆ),(ˆ
,,, vwDwuDvuD ppp ααα +≤  and  ),(~

, vuD pα  

),(~),(~
,, vwDwuD pp αα +≤ ; 

(5) ),(ˆ),(ˆ
,, vuDwvwuD pp αα =++  and ),(~

, wvwuD p ++α  

),(~
, vuD pα= ; 

(6) ),(ˆ||),(ˆ
,, vuDkkvkuD pp αα =  and ),(~

, kvkuD pα  

),(~|| , vuDk pα= . 
Proof. It is obvious that (1) and (2) of the theorem hold. 
By the definition of pD ,

ˆ
α , it is obvious that vu = ⇒  

0),(ˆ
, =vuD pα . Otherwise, let 0),(ˆ

, =vuD pα . Then we have 

0d]|})()(|  |,)()(max{|[
1 

0 1
=−−⋅∫ ∑ =

rrvrurvrur pn

i iiiiiα . 

Taking note of 0>iα , we see that ∑ =
−⋅

n

i ii rur
1

)(max{|( α  

0|}))()(|  |,)( =− rvrurv iii  holds for r  almost everywhere on 

]1,0[ . Further, we have that ∑ =
−⋅

n

i iii rvru
1

 |,)()(max{|α  

0|})()(| =− rvru ii  holds for r  almost everywhere on ]1,0[ , so 

we can see that )()( rvru ii = and )()( rvru ii =  holds for r  

almost everywhere on ]1,0[  for ni ,,2,1 L= . Therefore, we 

obtain that rr vu ][][ =  holds for r  almost everywhere on ]1,0[ , 
so we know that vu =  holds by Lemma 2.1 in [18]. Thus, 

0),(ˆ
, =vuD pα  ⇔ vu =  holds. Likewise, we can prove 



TFS-2008-0342 
 

5

0),(~
, =vuD pα  ⇔ vu = , so (3) of the theorem holds. From 

Theorem 3.1, we have 

),(ˆ),(ˆ               

)d] )][,]([ˆ[())]][,]([ˆ[(               

]d) )]][,]([ˆ)][,]([ˆ[([               

)d ]|})()(|  |,)()(max{|[(),(ˆ

,,

/11 

0 

p/11 

0 

/1p1 

0 

/11 

0 1,

vwDwuD

rvwdrdrwudr

rvwdwudr

rrvrurvrurvuD

pp

prrpprr

prrrr

ppn

i iiiiip

αα

αα

αα

α α

+=

⋅+⋅≤

+⋅≤

−−⋅=

∫∫
∫
∫ ∑ =

 

The proofs of ),(~),(~),(~
,,, vwDwuDvuD ppp ααα +≤ , (5) and (6) 

can be similarly proved.           
Remark 3.1. From Theorems 3.1 and 3.2, we know αα dd

~
,ˆ  

and pp DD ,,

~,ˆ
αα  are metrics on )( nRLC  and )( nEL , respectively, 

and satisfy translation invariance, absolute homogeneity. Also, 
from the factor r  of the integrands in the definitions of 

),(ˆ
, vuD pα  and ),(~

, vuD pα , we can see that the bigger the 
degrees of the points are, which belong to the fuzzy −n cell 
numbers u  and v , the greater the effects on the metric of u  
and v . This is true in reality. 

Example 3.1.  Let wvu ,,  be the −2 cell numbers defined 
by: ),( 21 uuu = , ),( 21 vvv =  and ),( 21 www = , where, 

  
]2,0[if      0
]2,1(if2
]1,0[if     

)(
⎪
⎩

⎪
⎨

⎧

∉
∈−
∈

=
x
xx
xx

xui
,   

]4,2[if      0
]4,3(if4
]3,2[if2

)(
⎪
⎩

⎪
⎨

⎧

∉
∈−
∈−

=
x
xx
xx

xvi
 

( 2,1=i ) 

 
]2,0[if      0
]2,1(if2
]1,0[if     

)(1
⎪
⎩

⎪
⎨

⎧

∉
∈−
∈

=
x
xx
xx

xw ,  
]4,2[if      0
]4,3(if4
]3,2[if2

)(2
⎪
⎩

⎪
⎨

⎧

∉
∈−
∈−

=
x
xx
xx

xw  

Then we know that rrui =)( , rrui −= 2)( , rrvi += 2)( , 

rrvi −= 4)(  ( 2,1=i ), rrw =)(1 , rrw −= 2)(1 , rrw += 2)(2  

and rrw −= 4)(2  for ]1,0[∈r .  From the definitions of LD , 
we have ),(2),( wuDvuD LL == , i.e., LD  can not tell us the 
difference of ),( vuDL  and ),( wuDL , so we say that LD  seems 
to be ‘rough’ (similar proof for D ). However, as a matter of 
fact, ),( vuDL  and ),( wuDL  should have some difference. 

Taking )2/1  ,2/1(=α , from the definitions of pD ,

~
α , we can 

obtain pp p
vuD /1, )1(

2 ),(~
+

=α  >   ),(~
)1(

1
,/1 wuD

p pp α=
+

, this 

accord with fact. 
If we restrain the metric pD  (i.e. )  ,  ( ⋅⋅pd  defined by 

Diamond in [3], see paragraph 1 of this section) on general 
−n dimensional fuzzy number space nE  into on )( nEL , then 

it also becomes a metric on )( nEL . In the following, we give 

the relationships of the metrics pp DD ,,

~,ˆ
αα  and pD . 

Theorem 3.3. Metrics pp DD ,,

~,ˆ
αα  and pD  satisfy 

(1)  DDDDD pppp ≤≤≤≤ ,,,
ˆ~ˆ

2
1

ααα , i.e., ),(~),(ˆ
2
1

,, vuDvuD pp αα ≤   

),(),(),(ˆ
, vuDvuDvuD pp ≤≤≤ α   for any )(, nELvu ∈  ( D  is 

discussed in [15]). 

(2) D
p

D
p

D pLpp /1/1, )1(
1

)1(
1ˆ

+
≤

+
≤α , i.e., ),(ˆ

, vuD pα  

),(
)1(

1),(
)1(

1
/1/1 vuD

p
vuD

p pLp +
≤

+
≤   for any )(, nELvu ∈ . 

Proof. For any )(, nELvu ∈  and ]1,0[∈r , by the definitions 

of αd̂  and αd
~

, we have 

)][,]([ˆ
2

|})()(|  |,)()(max{|2
 

))][,]([
~

(   
2

|)()(||)()(|
4

|)()(||)()(||)()(||)()(|
2

|)()(||)()(| |)()(||)()(|

2
1

}|)()(|  |,)()(max{|
2
1

)][,]([ˆ
2
1    

1

1

1

1

1

rr

n

i

iiii
i

rrn

i

iiii
i

n

i

iiiiiiii
i

n

i

iiiiiiii

i

n

i iiiii

rr

vud

rvrurvru

vud
rvrurvru

rvrurvrurvrurvru

rvrurvrurvrurvru

rvrurvru

vud

α

α

α

α

α

α

α

α

=

−−
⋅≤

=
−+−

⋅≤

−+−+−+−
⋅≤

−−−+−+−
⋅=

−−⋅=

∑

∑

∑

∑

∑

=

=

=

=

=

 

From this, we can directly obtain ),(~),(ˆ
2
1

,, vuDvuD pp αα ≤  

),(ˆ
, vuD pα≤ . 

By Theorem 4.4 in [15], we know LL dndd ≤≤ , where, 

|}||,{|max),( 1 iiiiniL babaBAd −−= ≤≤  for any ∏ =
=

n

i ii aaA
1

],[  

)( nRLC∈  and )(],[
1

nn

i ii RLCbbB ∈= ∏ =
. Therefore, for any 

)(, nELvu ∈ , we have 

ppn

i jjjjnji

ppn

i iiiii

p

rrvrurvrur

rrvrurvrur

vuD

/11 

0 1 1

/11 

0 1

,

)d ]|})()(|  |,)()({|max[(

)d ]|})()(|  |,)()(max{|[(

),(ˆ

∫ ∑
∫ ∑

= ≤≤

=

−−⋅≤

−−⋅=

α

α

α

 

),( 

)d ]),([(

)d ])][,]([[sup(

)),((  )d ])][,]([[( 

)d ])][,]([[(

/11 

0 

/11 

0 ]1,0[

/11 

0 

/1n

1i i

1 

0 

vuD

rvuD

rvud

vuDrvud

rvudr

pp

pprr
r

p
pprr

pprr
L

≤

=

≤

=≤

⋅=

∫
∫
∫

∑∫

∈

=
α

 

Thus, we also obtain ),(),(),(ˆ
, vuDvuDvuD pp ≤≤α  and the 

proof of (1) of the theorem is complete. 
From 

ppn

i iiiii

p

rrvrurvrur

vuD
/11 

0 1

,

)d ]|})()(|  |,)()(max{|[( 

),(ˆ     

∫ ∑ =
−−⋅= α

α
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),(
)1(

1

)d )(,(

)d ]),([(

 )d ])][,]([sup[(

)d ])][,]([[(

/1

/11 

0 

/11 

0 

/11 

0 ]1,0[

/11 

0 

vuD
p

rrvuD

rvurD

rvudr

rvudr

p

pp

pp
L

pprr
Lr

pprr
L

+
=

≤

=

⋅≤

⋅≤

∫
∫
∫
∫

∈

 

and Theorem 4.5 in [15], we can see that (2) of the theorem 
holds.                    

Remark 3.2. From (1) of Theorem 3.3, we see 

ppp DDD ,,,
ˆ~ˆ

2
1

ααα ≤≤ , i.e., pD ,
ˆ

α  and pD ,

~
α  are equivalent, so we 

know that pD ,
ˆ

α  and pD ,

~
α  induce equivalent topologies on 

)( nEL  by the knowledge of topological space.  

IV. DIFFERENCE VALUES ON FUZZY −n CELL NUMBER SPACE 

In Section 3, we discussed metrics on )( nEL . But sometimes 
these have some shortcomings demonstrating the difference of 
two objects. For example, we consider that the degree of 
difference of 1  and 2  is bigger than the degree of difference of 

1010  and 11010 +  though their metrics (Euclidean metric) 
measure both are 1 . A mapping from the Cartesian product 

XX ×  of a set X  into R  needs to satisfy stronger conditions 
in order that it can become a metric, and this brings limitations 
in some applications. The measure used to characterize the 
differences does not need to satisfy all metric conditions, for 
example, when we set up a method of pattern recognition 
basing on the principle of minimal difference (i.e. the principle 
of maximal likelihood), the measure used to characterize the 
differences does not need to satisfy all metric conditions. To 
conveniently set up methods of pattern recognition using fuzzy 

−n cell numbers, we introduce the concepts of difference 
values on )( nEL , and study the properties. 

Let )( nELu ∈  and n
n R∈= ),,,( 21 αααα L  satisfy 

∑ =
=

n

i i1
1α  and 0≥iα  ( ni ,,2,1 L= ). We denote 

∑ ∫=
+=

n

i iii drrururuM
1

1

0
)]()([)( αα , denote )()( uMuM α=  

as )1,,1,1(
nnn

L=α , and denote )()( 1 uMuM =  as Eu ∈ . 

Definition 4.1.  Let )(, nELvu ∈  with 
0)(  ),( ≥vMuM αα and 0)()( ≠+ vMuM αα . We denote 

a

n

i iii

a vMuM

drrvrur
vuL

)]()([

|)()(|2
),( 1

1

0
,

αα
α

α

+

−
=

∑ ∫=  

 and  

a

n

i iii

a vMuM

drrvrur
vuR

)]()([

|)()(|2
),( 1

1

0
,

αα
α

α

+

−
=

∑ ∫=  

and call ),(, vuL aα  and ),(, vuR aα  a left difference value and a 
right difference value of u  and v  (with respect to the weight 
α  and parameter a ), respectively. And we denote 

)],(),([
2
1),( ,,, vuRvuLvu aaa ααα +=Δ  

i.e., 

a
n

i iiiii

n

i iiiii

a

drrvrurvrur

drrvrurvrur
vu

⎟
⎠
⎞⎜

⎝
⎛ +++

−+−
=Δ

∑ ∫

∑ ∫

=

=

1

1

0

1

1

0
,

)]()()()([

|])()(||)()((|
),(

α

α
α  

and call ),(, vuaαΔ  a difference value of u  and v  (with 
respect to the weight α  and parameter a ), where, 

n
n R∈= ),,,( 21 αααα L  with ∑ =

=
n

i i1
1α  and 0≥iα  

( ni ,,2,1 L= ) , and ),0( +∞∈a . Specially, we denote 

),(),( , vuvu aa αΔ=Δ  as )1,,1,1(
nnn

L=α , and ),( vuaΔ  

),(,1 vuaΔ=  as Evu ∈, . 
Remark 4.1.  (1) Generally speaking, we consider that the 

degree of the difference of two numbers is related not only by 
the metric of them but also by the sizes of them. As the metrics 
are the same, the bigger the sizes of the two numbers are, the 
smaller the degree of their difference is. The denominator 

avMuM )]()([ αα +  in the definition of a,αΔ  just plays the action 

(see Example 4.1), and the exponent a  in avMuM )]()([ αα +  
can be properly chosen accordingly to the case in question. (2) 

Taking the note of that ∑
=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+n

a

ii
i

i vMuM
vMuM

1
1

)()(
)()(

αα

α  holds as 

)1,,1,1(
nnn

L=α  and 1=a , and ∑
=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+n

a

ii
i

i vMuM
vMuM

1
1

)()(
)()(

αα

α  

does not necessarily hold as )1,,1,1(
nnn

L≠α  or 1≠a , from 

∑

∫

∫

∑
∑ ∫

∫

∑ ∫

∑ ∫

=

=

Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
+

=

⎟
⎠
⎞

⎜
⎝
⎛ +++

−+−
⋅
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⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛
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+++
=

⎟
⎠
⎞

⎜
⎝
⎛ +++

−+−
=

Δ

=

=

=

n
iia

a
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i

a

iiii

iiii

n

a

n
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i

a
n
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i iiiii

a

i

i
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drrvrurvrur

drrvrurvrur
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we can directly see that ),(1 vuΔ  is a convex combination of 
),(1 ii vuΔ , ni ,,2,1 L= , but ),(, vuaαΔ  is not necessarily a 

convex combination of ),( iia vuΔ , ni ,,2,1 L=  as 

)1,,1,1(
nnn

L≠α  or 1≠a . 

Example 4.1.  Let vuvu ′′,,,  be the −2 cell numbers 
defined by: ),( 21 uuu = , ),( 21 vvv = , ),( 21 uuu ′′=′  and 

),( 21 vvv ′′=′ , where, 

⎪
⎩

⎪
⎨

⎧

∉
∈−
∈

=
]2,0[if      0
]2,1(if2
]1,0[if     

)(
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ii
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x
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⎩

⎪
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⎧

∉
∈−
∈+−
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]12,10[if      0
]12,11(if12
]11,10[if10
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i
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ii

ii

x
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xx

xv  

⎪
⎩

⎪
⎨

⎧

∉
∈−
∈+−

=′

]102,100[if      0
]102,101(if102
]101,100[if100

)(

i

ii

ii

ii

x
xx
xx

xu  

⎪
⎩

⎪
⎨

⎧

∉
∈−
∈+−

=′

]12,10[if      0
]12,11(if112
]11,10[if110

)(

i

ii

ii

ii

x
xx
xx

xv  

and 2,1=i . Then we know that rrui =)( , rrui −= 2)( , 

rrvi += 10)( , rrvi −= 12)( , rrui +=′ 100)( , rrui −=′ 102)( , 

rrvi +=′ 110)( , rrvi −=′ 112)(  ( ]1,0[∈r , 2,1=i ).  From the 

definitions of pD ,

~
α  and a,αΔ , we can obtain 

]
pp

pp

p

p

drrrrr

rrrrr

vuD

/1

/1 
2
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0 1

,

)1(
20

2
1

|))]122||10(|               

|)122||10(|([
2
1

),(~    
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⎝

⎛
+

=

+−−+−−+
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⎡ +−−+−−= ∫
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2
1
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2
1

),(~   

⎟⎟
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a

a

a

drrrrrrdrrrrrr

drrrrrrdrrrrrr

vu
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),(    

1
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1
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1
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1

01

,

=

⎟
⎠
⎞

⎜
⎝
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=

Δ

∫∫
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a

a

a

drrrrrrdrrrrrr

drrrrrrdrrrrrr
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)112102110100()112102110100(

|)112102||110100(||)112102||110100(|

),(    

1

02

1

01

1
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01

,

=

⎟
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⎞

⎜
⎝
⎛ −+−+++++−+−++++

+−−+−−+++−−+−−+
=

′′Δ

∫∫

∫∫
αα

αα

α
 

so we have ),(~),(~
,, vuDvuD pp ′′= αα  and ),(),( ,, vuvu aa ′′Δ>Δ αα . 

Property 4.1. Let )(, nELvu ∈  with 0)(  ),( ≥vMuM αα  and 

0)()( ≠+ vMuM αα , n
n R∈= ),,,( 21 αααα L  with ∑ =

=
n

i i1
1α  

and 0>iα  ( ni ,,2,1 L= ), and ),0( +∞∈a . Then 
(1) 0),(, ≥Δ vuaα ; 

(2) 0),(, =Δ vuaα  if and only if vu = ; 

(3) ),(),( ,, uvvu aa αα Δ=Δ ; 

(4) ),(),( ,, wvwu aa αα Δ≥Δ  for any )( nELw ∈  and wvu ≤≤ ; 

(5) ),(),( ,, vuwvwu aa αα Δ≤++Δ  for any )( nELw ∈  and 

)0̂,,0̂,0̂( L≥w ; 

(6) ),(),( ,
1

, vukkvku a
a

a αα Δ=Δ −  for any 0>k . 
Proof.  It is obvious that the conclusions (1) and (3) hold. 

The proof of conclusion (2) can also be completed by imitating 
the proof of (3) of Theorem 3.2 by using Lemma 2.1 in [18]. 

From wvu ≤≤ , we know that )()()( rwrvru iii ≤≤  and 

)()()( rwrvru iii ≤≤  ( ni ,,2,1 L= ), so |)()(| rwru ii −  

|)()(| rwrv ii −≥  and |)()(||)()(| rwrvrwru iiii −≥− . Therefore, 

we have 

∑ ∫

∑ ∫

=

=

−+−≥
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n

i iiiii

n

i iiiii

drrwrvrwrvr

drrwrurwrur

1

1
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1

1

0

|])()(||)()([|

|])()(||)()([|    

α

α
 

On the other hand, from )()()( rwrvru iii ≤≤  and 

)()()( rwrvru iii ≤≤  ( ni ,,2,1 L= ), we can also see that )(uM α  

)()]()([)]()([
1

1

01

1

0
vMdrrvrvrdrrurur n

i iii
n

i iii ααα =+≤+= ∑ ∫∑ ∫ ==
, 

so we can obtain )()()(0 wMvMuM ααα ≤≤≤ . Thus, we have 

( )a

n

i iiiii

a wMuM

drrwrurwrur
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|])()(||)()([|
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1

0
,
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α

α

+
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,

1

1

0
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a

a

n

i iiiii

α

αα

α

Δ=
+

−+−
≥

∑ ∫=

 

so conclusion (4) holds. 
From 0̂≥w , we know 0)( ≥wMα , so we have 
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n

i iiiii

a
n

i iiiiiiiii

n

i iiiiiiiii

a
n

i iiiii

n

i iiiii

a

wMvMuM

drrvrurvrur
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∑ ∫
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∑ ∫
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vMuM

drrvrurvrur

a

a
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i iiiii
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Δ=
+

−+−
≤

∑ ∫=

 

i.e., conclusion (5) holds. 
For any 0>k , we have 

),(

)]()()()([

|])()(||)()([|

)]()()()()()()()([

|])()()()(||)()()()([|

),(     

,
1

1

1

0

1

1

0

1

1

0

1

1

0

,

vuk

drrvrurvrurk

drrvrurvrurk

drrkvrkurkvrkur

drrkvrkurkvrkur

kvku

a
a

a
n

i iiiii
a

n

i iiiii

a
n

i iiiii

n

i iiiii

a

α

α

α

α

α

α

Δ=

⎟
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⎛ +++

−+−
=

⎟
⎠
⎞

⎜
⎝
⎛ +++
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=

Δ

−
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∑ ∫

∑ ∫

∑ ∫

∑ ∫

 

so conclusion (6) holds. Therefore, the proof of the theorem is 
completed.               

Remark 4.2.  (1) Although the conclusion (4) of Theorem 4.1 
holds, wvu ≤≤  does not imply ),(),( ,, vuwu aa αα Δ≥Δ  (see 
Example 4.2). Comparing 

( )a

n

i iiiii

a wMuM

drrwrurwrur
wu

)()(

|])()(||)()([|
),( 1

1

0
,

αα
α

α

+

−+−
=Δ

∑ ∫=  

to 

( )a

n

i iiiii

a vMuM

drrvrurvrur
vu

)()(

|])()(||)()([|
),( 1

1

0
,

αα
α

α

+

−+−
=Δ

∑ ∫=  

we can see that the untruth of ),(),( ,, vuwu aa αα Δ≥Δ  is caused 

only by ( )awMuM )()( αα +  ( )avMuM )()( αα +≥ , and when 

( )awMuM )()( αα +  and ( )avMuM )()( αα +  are properly 
smaller, wvu ≤≤  can imply ),(),( ,, vuwu aa αα Δ≥Δ . So, in 

general, we may choose a  in ]1,0(  such that a,αΔ  can 
reasonably characterize the degree of the difference of two 
fuzzy −n cell numbers. 

(2) Generally speaking, the difference value a,αΔ  does not 
satisfy the property of the triangular inequality, i.e., the 
inequality ),(),(),( ,,, vwwuvu aaa ααα Δ+Δ≤Δ  does not 

necessarily hold for )(,, nELwvu ∈ . Example 4.3 can show it. 
Example 4.2.  Let wvu ,,  be the −2 cell numbers defined 

by: )0̂  ,0̂(=u , ),( 21 vvv =  and ),( 21 www = , where 

⎪
⎩

⎪
⎨

⎧

∉
∈−
∈+−

=
]3,1[if      0
]3,2(if3
]2,1[if1

)(

i

ii

ii

ii

x
xx
xx

xv , 
⎪
⎩

⎪
⎨

⎧

∉
∈−
∈+−

=
]4,2[if      0
]4,3(if4
]3,2[if2

)(

i

ii

ii

ii

x
xx
xx

xw  

and 2,1=i . Then we know that 0)( =rui , 0)( =ru i , 

rrvi += 1)( , rrvi −= 3)( , rrwi += 2)( , and rrwi −= 4)(  

( ]1,0[∈r , 2,1=i ), so we have wvu ≤≤ , but we can see 
),(),( ,, vuwu aa αα Δ≤Δ , from 

3
1 

]4020[]4020[

|]40||20[||]40||20[|
 

),(     

2
1

02

1

01

1

02

1

01

2,

=

⎟
⎠
⎞

⎜
⎝
⎛ −+++++−++++

+−+−−++−+−−
=

Δ

∫∫

∫∫
drrrrdrrrr

drrrrdrrrr

wu

αα

αα

α

 

and 

2
1

)3010()3010(

|)30||10(||)30||10(|

),(     

2
1

02

1

01

1

02

1

01

2,

=

⎟
⎠
⎞

⎜
⎝
⎛ −+++++−++++

+−+−−++−+−−
=

Δ

∫∫

∫∫
drrrrdrrrr

drrrrdrrrr

vu

αα

αα

α

 

Example 4.3.  Let wvu ,,  be the −2 cell numbers defined 

by: ),( 21 uuu = , )1̂,1̂(=v  and )2̂,2̂(=w , where 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−∉

−∈−

−−∈+

=

]
10
1,

10
19[if      0

]
10
1,

10
9(if

10
1

]
10
9,

10
19[if

10
19

)(

i

ii

ii

ii

x

xx

xx

xu  

and 2,1=i . Then we know that rrui +−=
10
19)( , rrui −=

10
1)( , 

1)( =rvi , 1)( =rvi , 2)( =rwi , 2)( =rwi  ( ]1,0[∈r , 2,1=i ), 

so we have 19),(1, =Δ vuα , 
11
29),(1, =Δ wuα  and 

3
1),(1, =Δ wvα , 

it implies ),(),(),( 1,1,1, wvwuvu ααα Δ+Δ>Δ . 
Example 4.4.  Let wvu ,,  be the −2 cell numbers (see Fig.1) 

defined by: ),( 21 uuu = , )2̂  ,2̂(=v  and ),( 21 www = , where 

⎪
⎩

⎪
⎨

⎧

∉
∈−
∈

=
]2,0[if      0
]2,1(if2
]1,0[if     

)(

i

ii

ii

ii

x
xx
xx

xu  

⎪
⎩

⎪
⎨

⎧

∉
∈−
∈+−

=
]3,1[if      0
]3,2(if3
]2,1[if1

)(

i

ii

ii

ii

x
xx
xx

xw  

and 2,1=i . Then we know that rrui =)( , rrui −= 2)( , 

2)( =rvi , 2)( =rvi , rrwi += 1)( , rrwi −= 3)(  ( ]1,0[∈r , 

2,1=i ), so we can obtain that ),(~
2
1),(~

,, wuDvuD pp αα ==  and 

),(
3
2),( ,, wuvu aaa αα Δ==Δ . However, it is obvious (see Fig. 

4.1) that the degree of the difference of u  and v  is different 
from the degree of the difference of u  and w . 
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              ),( 21 xxu  
                                                          x2 

 
                1  
                                      2  
                               1  
 
                  0             1           2                           1x  
    
         ),( 21 xxv                                          x2 

                                                               
                                                    
                                                 3  
          
           1                       2  
                             1  
 
            0             1           2           3                            1x  
 

),( 21 xxw                                         x2 

                                                                
                                                    
                                       3  
                                   
            1              2  
                      1  
 
            0             1           2           3                            1x  

Fig. 1. Fuzzy −2 cell numbers vu   ,  and w  in Example 4.4 

 
In fact, sometimes, the degree of the difference of two fuzzy 

numbers is not only related with the metric and the sizes of 
them, but also related with the degree of fuzzy (we call it fuzzy 
degree) of them. Example 4.4 shows that for the wvu ,,  given, 

the metric pD ,

~
α  and the difference value a,αΔ  can not tell us 

the difference of the degree of the difference u  and v  with the 
degree of the difference of u  and w  since ),(~

, vuD pα  

),(~
, wuD pα=  and ),(),( ,, wuvu aa αα Δ=Δ , but we see that the 

two degrees of the differences indeed have some differences. In 
order to overcome the defect, we introduce the following 
concept. 

Definition 4.2.  Let )(, nELvu ∈ . We denote 

⎟
⎠
⎞

⎜
⎝
⎛ −+−⋅

⎟
⎠
⎞

⎜
⎝
⎛ −+−=

Λ

∑ ∫ ∫∫ ∫

∑ ∫

=

=

n

i

u

u

v

v ii

u

u

v

v iii

n

i iiiii

a

i

i

i

i

i

i

i

i

dttvdttudttvdttua

drrvrurvrur

vu

1

)0( 

)1(* 

)0( 

)1(* 

)1(* 

)0( 

)1(* 

)0( 

1

1

0

,

)|)()(||)()((|exp    

|])()(||)()(([|

),(    

α

α

α

and call ),(, vuaαΛ  a difference value of u  and v  (with 
respect to the weight α  and parameter a ), where, 

2
)1()1()1( ii uu

iu +∗ = , 2
)1()1()1( ii vv

iv +∗ =  , and ),,,( 21 nαααα L=  

nR∈  with ∑ =
=

n

i i1
1α  and 0≥iα  ( ni ,,2,1 L= ), and ),0( +∞∈a . 

We denote ),(),( , vuvu aa αΛ=Λ  as )1,,1,1(
nnn

L=α , and 

),(),( ,1 vuvu aa Λ=Λ  as Evu ∈, . 
Example 4.5.  Let wvu ,,  be the −2 cell numbers defined in 

Example 4.4. Then 

e

rdr

dtdttdttdt

drrrr

vu

i i

i i

=

⋅=

⎟
⎠
⎞⎜

⎝
⎛ −−+−⋅

⎟
⎠
⎞

⎜
⎝
⎛ −−+−=

Λ

∫

∑ ∫ ∫∫ ∫

∑ ∫

=

=

)1exp(2

)|1)2(||1(|exp      

|)22||2(|

),(    

1

0

2

1

2 

1 

2 

2 

1 

0 

2 

2 

2

1

1

0

1,

α

α

α

 

and 

1

)0exp(2

)|)3()2(||)1((|exp     

|)32||1(|

),(   

1

0

2

1

2 

1 

3 

2 

1 

0 

2 

1 

2

1

1

0

1,

=

⋅=

⎟
⎠
⎞⎜

⎝
⎛ −−−+−−⋅

⎟
⎠
⎞

⎜
⎝
⎛ +−−+−−=

Λ

∫

∑ ∫ ∫∫ ∫

∑ ∫

=

=

rdr

dttdttdtttdt

drrrrrr

wu

i i

i i

α

α

α

 

so we see ),(),( 1,1, wuvu αα Λ>Λ . Therefore, in this case, the 

difference value a,αΛ  is more suitable than metrics and 

difference value a,αΔ  to characterize the degree of the 
difference of two fuzzy −n cell numbers. 

Property 4.2.  Let )(, nELvu ∈ , n
n R∈= ),,,( 21 αααα L  

with ∑ =
=

n

i i1
1α  and 0>iα  ( ni ,,2,1 L= ), and ),0( +∞∈a . 

Then 
(1) 0),(, ≥Λ vuaα ; 

(2) 0),(, =Λ vuaα  if and only if vu = ; 

(3) ),(),( ,, uvvu aa αα Λ=Λ ; 

(4)  ),()ˆ,ˆ( ,, vubvbu aa αα Λ=++Λ  for any Rb ∈ ; 

(5) ),(||),( ||,, vukkvku aka αα Λ=Λ  for any Rk ∈ . 
Proof.  It is obvious that the conclusions (1) and (3) hold. 

The proof of conclusion (2) can also be completed by imitating 
the proof of (3) of Theorem 3.2 by using Lemma 2.1 in [18]. 

For any Rb ∈  and ni ,,2,1 L= , we have 

)(                 

)]}(),([:]1,0[sup{                 

)]}()ˆ(),()ˆ([:]1,0[sup{))(ˆ(

btu

rurubtr

rburbutrtbu

i

ii

iii

−=

∈−∈=

++∈∈=+

 

hence 

⎟
⎠
⎞

⎜
⎝
⎛ −−++−−+=

++Λ

∑ ∫=

n

i iiiii

a

drbrvbrubrvbrur

bvbu

1

1

0

,

|])()(||)()((|

)ˆ,ˆ(    

α

α

 



TFS-2008-0342 
 

10

),( 

)|))(())((|                          

|))(())(((|exp    

|])()(||)()((|

)|))(ˆ())(ˆ(|                          

|))(ˆ())(ˆ((|exp    

|])()(||)()((|

)|))(ˆ())(ˆ(|                           

|))(ˆ())(ˆ((|exp    

,

)0( 

)1(* 

)0( 

)1(* 

1

)1(* 

)0( 

)1(* 

)0( 

1

1

0

)0( 

)1(* 

)0( 

)1(* 

1

)1(* 

)0( 

)1(* 

)0( 

1

1

0

)0( 

)1(* 

)0( 

)1(* 

1

)1(* 

)0( 

)1(* 

)0( 

vu

dssvdssu

dssvdssua

drrvrurvrur

dsbsbvdsbsbu

dsbsbvdsbsbua

drrvrurvrur

dttbvdttbu

dttbvdttbua

a

u

u

v

v ii

n

i

u

u

v

v iii

n

i iiiii

u

u

v

v ii

n

i

u

u

v

v iii

n

i iiiii

bu

bu

bv

bv ii

n

i

bu

bu

bv

bv iii

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

α

α

α

α

α

α

Λ=

⎟
⎠
⎞−+

⎜
⎝
⎛ −⋅

⎟
⎠
⎞

⎜
⎝
⎛ −+−=

⎟
⎠
⎞++−+++

⎜
⎝
⎛ ++−++⋅

⎟
⎠
⎞

⎜
⎝
⎛ −+−=

⎟
⎠
⎞+−++

⎜
⎝
⎛ +−+⋅

∫ ∫

∑ ∫ ∫

∑ ∫

∫ ∫

∑ ∫ ∫

∑ ∫

∫ ∫

∑ ∫ ∫

=

=

=

=

+

+

+

+

=

+

+

+

+

 

i.e., conclusion (4) holds.   
For any 0>k , we have 

)],([||

)|)()(|              

|)()((|exp    

|])()(||)()([|

)|)/()/(|              

|)/()/((|exp    

|])()(||)()([|

)|)()()()(|             

|)()()()((|exp    

|])()()()(||)()()()([|

),(    

||,

)0( 

)1(* 

)0( 

)1(* 

1

)1(* 

)0( 

)1(* 

)0( 

1

1

0

)0( 

)1(* 

)0( 

)1(* 

1

)1(* 

)0( 

)1(* 

)0( 

1

1

0

)0()( 

)1(*)( 

)0()( 

)1(*)( 

1

)1(*)( 

)0()( 

)1(*)( 

)0()( 

1

1

0

,

vuk

dssvdssu

dssvdssuka

drrvrurvrurk

dtktvdtktu

dtktvdtktua

drrvkrukrvkrukr

dttkvdttku

dttkvdttkua

drrkvrkurkvrkur

kvku

ak

u

u

v

v ii

n

i

u

u

v

v iii

n

i iiiii

uk

ku

vk

kv ii

n

i

ku

uk

kv

vk iii

n

i iiiii

ku

ku

kv

kv ii

n

i

ku

ku

kv

kv iii

n

i iiiii

a

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

α

α

α

α

α

α

α

α

Λ⋅=

⎟
⎠
⎞−+

⎜
⎝
⎛ −⋅

⎟
⎠
⎞

⎜
⎝
⎛ −+−=

⎟
⎠
⎞−+

⎜
⎝
⎛ −⋅

⎟
⎠
⎞

⎜
⎝
⎛ −+−=

⎟
⎠
⎞−+

⎜
⎝
⎛ −⋅

⎟
⎠
⎞

⎜
⎝
⎛ −+−=

Λ

∫ ∫

∑ ∫ ∫

∑ ∫

∫ ∫

∑ ∫ ∫

∑ ∫

∫ ∫

∑ ∫ ∫

∑ ∫

=

=

=

=

=

=

 

For any 0<k , we have 

⎟
⎠
⎞

⎜
⎝
⎛ −+−=

⎟
⎠
⎞−+

⎜
⎝
⎛ −⋅

⎟
⎠
⎞

⎜
⎝
⎛ −+−=

Λ

∑ ∫

∫ ∫

∑ ∫ ∫

∑ ∫

=

=

=

n

i iiiii

ku

ku

kv

kv ii

n

i

ku

ku

kv

kv iii

n

i iiiii

a

drrvkrukrvkrukr

dttkvdttku

dttkvdttkua

drrkvrkurkvrkur

kvku

i

i

i

i

i

i

i

i

1

1

0

)0()( 

)1(*)( 

)0()( 

)1(*)( 

1

)1(*)( 

)0()( 

)1(*)( 

)0()( 

1

1

0

,

|])()(||)()([|

)|)()()()(|               

|)()()()((|exp    

|])()()()(||)()()()([|

),(    

α

α

α

α

 

 

)],([||

)|)()(|              

|)()((|||exp    

|])()(||)()([|||

)|)()(|               

|)()((|exp    

|])()(||)()([|||

)|)/()/(|               

|)/()/((|exp    

||,

)0( 

)1(* 

)0( 

)1(* 

1

)1(* 

)0( 

)1(* 

)0( 

1

1

0

)0( 

)1(* 

)0( 

)1(* 

1

)1(* 

)0( 

)1(* 

)0( 

1

1

0

)0( 

)1(* 

)0( 

)1(* 

1

)1(* 

)0( 

)1(* 

)0( 

vuk

dssvdssu

dssvdssuak

drrvrurvrurk

dsskvdssku

dsskvdsskua

drrvrurvrurk

dtktvdtktu

dtktvdtktua

ak

u

u

v

v ii

n

i

u

u

v

v iii

n

i iiiii

u

u

v

v ii

n

i

u

u

v

v iii

n

i iiiii

uk

ku

vk

kv ii

n

i

ku

uk

kv

vk iii

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

α

α

α

α

α

α

Λ⋅=

⎟
⎠
⎞−+

⎜
⎝
⎛ −⋅⋅

⎟
⎠
⎞

⎜
⎝
⎛ −+−=

⎟
⎠
⎞−+

⎜
⎝
⎛ −⋅

⎟
⎠
⎞

⎜
⎝
⎛ −+−=

⎟
⎠
⎞−+

⎜
⎝
⎛ −⋅

∫ ∫

∑ ∫ ∫

∑ ∫

∫ ∫

∑ ∫ ∫

∑ ∫

∫ ∫

∑ ∫ ∫

=

=

=

=

=

 

If 0=k , it is obvious that ),(||),( ||,, vukkvku aka αα Λ=Λ  
holds, so conclusion (5) holds. Therefore, the proof of the 
theorem is completed.            

At the end of the section, combining the definitions of a,αΔ  and 

a,αΛ , we give the following definition of difference value a,αΓ . 

Definition 4.3.  Let )(, nELvu ∈  with 0)(  ),( ≥vMuM αα  
and 0)()( ≠+ vMuM αα . We denote 

⎟
⎠
⎞

⎜
⎝
⎛ −+−⋅

⎟
⎠
⎞

⎜
⎝
⎛ +++

⎟
⎠
⎞

⎜
⎝
⎛ −+−

=

Γ

∑ ∫

∑ ∫

∑ ∫ ∫∫ ∫

=

=

=

n

i iiiii

a
n

i iiiii

n

i

u

u

v

v ii

u

u

v

v iii

a

drrvrurvrur

drrvrurvrur

dttvdttudttvdttua

vu
i

i

i

i

i

i

i

i

1

1

0

1

1

0

1

)0( 

)1(* 

)0( 

)1(* 

)1(* 

)0( 

)1(* 

)0( 2

,

|])()(||)()(([|     

)]()()()([

)|)()(||)()((|exp

),(    

1

α

α

α

α

 

and call ),(, vuaαΓ  a difference value of u  and v  (with respect 

to α  and ),( 21 aaa = ), where, n
n R∈= ),,,( 21 αααα L  with 

∑ =
=

n

i i1
1α  and 0≥iα  ( ni ,,2,1 L= ), and ),0(),( 21 +∞∈= aaa  

),0( +∞× . We denote ),(),( , vuvu aa αΓ=Γ  as )1,,1,1(
nnn

L=α , 

and ),(),( ,1 vuvu aa Γ=Γ  as Evu ∈, . 
Likewise, we have the following properties about the 

difference value a,αΓ . 

Property 4.3.  Let )(, nELvu ∈  with 0)(  ),( ≥vMuM αα  
and 0)()( ≠+ vMuM αα , n

n R∈= ),,,( 21 αααα L  with 

∑ =
=

n

i i1
1α  and 0>iα  ( ni ,,2,1 L= ), and ),( 21 aaa =  

),0(),0( +∞×+∞∈ . Then 
(1) 0),(, ≥Γ vuaα ; 

(2) 0),(, =Γ vuaα  if and only if vu = ; 

(3) ),(),( ,, uvvu aa αα Γ=Γ ; 
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(4) ),()ˆ,ˆ( ,, vubvbu aa αα Γ≤++Γ  for any ),0[ +∞∈b ; 

(5) ),(),( ,
2

,
1 vukkvku b

a
a αα Γ=Γ −  for any ),0[ +∞∈k , where 

),( 21 kaab = . 
Proof.  The proofs of the properties can be completed 

similarly with the proofs of Property 4.1 and 4.2, respectively, 
so we omit it.                     

V. PATTERN RECOGNITION BASED ON METRICS AND 
DIFFERENCE VALUES  

In Section 3 and 4, we discussed metrics and difference 
values on )( nEL . In this section, we put forward an 
algorithmic version of pattern recognition in an imprecise or 
uncertain environment based on the metrics and difference 
values defined by us, and give examples to show the 
application (see Example 5.1) and rationality (see Example 5.2) 
of the method. 

Consider a problem to identify an object (denoted by O ) 
belonging to some one of l  classes (denoted by lCCC ,,, 21 L ) 
in an imprecise or uncertain environment. Let the objects have 
n  characteristics. Since the problem discussed by us take on 
some imprecise or uncertain attributes, it is unsuitable (see 
Remark 2.1) that we use a crisp −n dimensional vector (i.e., a 
standard −n dimensional real number vector) to express the n  
character values of iC  ( li ,,2,1 L= ) or O . Therefore, using the 
method of statistics, we construct 1+l  fuzzy −n cell numbers 
to express the n  character values of lCCC ,,, 21 L  and O , 
respectively, and then put forward an algorithmic version of 
pattern recognition based on the metrics or the difference 
values defined by us. 
Algorithmic version of pattern recognition based on metrics 
The first step: 

Depending on the practicality, we first find out one domain 
of the thj character value of iC  for each i  ( li ,,2,1 L= ) and 

j  ( nj ,,2,1 L= ), and denote the said domain by i
jD . 

We arbitrarily take im  samples in iC  ( li ,,2,1 L= ), and 

gain im  measure values (denoted by i
m

ii
i

ccc ,, 21 L ) of the n  

characters of the im  samples, denote ),,,( 21
i
mn

i
m

i
m

i
m cccc L=  

( imm ,,2,1 L= ), i.e., we gain the following tables: 

11
2

1
1

1
2

1
22

1
21

1
1

1
12

1
11

1

111

      :

nmmm

n

n

ccc

ccc
ccc

C

L

MMM

L

L

  

22
2

2
1

2
2

2
22

2
21

2
1

2
12

2
11

2

222

      :

nmmm

n

n

ccc

ccc
ccc

C

L

MMM

L

L

 

L  

l
nm

l
m

l
m

l
n

ll

l
n

ll

l

lll
ccc

ccc
ccc

C

L

MMM

L

L

21

22221

11211

      :  

For iC  ( li ,,2,1 L= ), we directly work out the following 

means ∑ =
= im

k
i
kj

i

i
j c

m 1

1μ  and standard deviations 

∑ =
−

−
= im

k
i
j

i
kj

i

i
j c

m 1
2)(

1
1 μσ  ( nj ,,2,1 L= ) of the n  

character values of iC  ( li ,,2,1 L= ), respectively. We 

construct triangular model −1 dimensional fuzzy numbers i
ju  

( li ,,2,1 L= , nj ,,2,1 L= ) as the following: 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

+−∉

+∈
−+

−∈
−−

=

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
ji

j

i
j

i
j

i
j

i
j

i
j

i
ji

j

i
j

i
j

i
j

Dx

Dx
x

Dx
x

xu

I

I

I

]2,2[if                  0

          ]2,(if
2

)2(

          ],2[if
2

)2(

)(

σμσμ

σμμ
σ
σμ

μσμ
σ

σμ

 

( li ,,2,1 L= , nj ,,2,1 L= ) 

or construct Gaussian model one-dimensional fuzzy numbers i
jv  

( li ,,2,1 L= , nj ,,2,1 L= ) as the following 

⎪
⎩

⎪
⎨

⎧

∉

∈
−

−
=

i
j

i
ji

j

i
j

i
j

Dx

Dx
x

xv
if                        0

if)
2

)(
exp(

)( 2

2

σ

μ
 

( li ,,2,1 L= , nj ,,2,1 L= ) 

We construct fuzzy −n cell numbers ),,,( 21
i
n

iii uuuu L=  

( { })(,),(),(min),,,( 221121 n
i
n

ii
n

i xuxuxuxxxu LL = ) and ,( 1
ii vv =  

),,2
i
n

i vv L  ( { })(,),(),(min),,,( 221121 n
i
n

ii
n

i xvxvxvxxxv LL = ), 

li ,,2,1 L= , and use iu  or iv  to express the thi  class iC  
( li ,,2,1 L= ). 
The second step: 

For the object O  to be recognized, taking t  samples in O , 
we can gain t  classes of data about the n  characters of O  as 
the following: 

tntt

n

n

ooo

ooo
ooo

O

L

MMM

L

L

21

22221

11211

      :  

We work out the following means (denoted by nooo ,,, 21 L ) 
and standard deviations (denoted by nsss ,,, 21 L ) of the n  
character values of O : 

∑ =
=

t

k kii o
t

o
1

1     ( ni ,,2,1 L= ) 

and 

∑ =
−

−
=

t

k ikii oo
t

s
1

2)(
1

1        ( ni ,,2,1 L= ) 

We construct triangular model one-dimensional fuzzy numbers 
iw  ( ni ,,2,1 L= ) as the following: 
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⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

+−∉

+∈
−+

−∈
−−

=

=

=

=

)(]2   ,2[if                  0

          )(]2   ,(if
2

)2(

         )(]    ,2[if
2
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)(

1

1

1

j
i

l
jiiii

j
i

l
jiii

i
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j
i

l
jiii

i

ii

i

Dsosox

Dsoox
s

xso

 Dosox
s

sox

xw

UI

UI

UI

 

( ni ,,2,1 L= ) 
or construct Gaussian model one-dimensional fuzzy numbers 

iw′  ( ni ,,2,1 L= ) as the following 

⎪
⎩

⎪
⎨

⎧

∉

∈
−

−=′

=

=

j
i

l
j

j
i

l
j

i

i
i

Dx

Dx
s
oxxv

1

12

2

if                               0

if)
2

)(exp()(

U

U
  ( ni ,,2,1 L= ) 

We construct fuzzy −n cell numbers ),,,( 21 nwwww L=  
( { })(,),(),(min),,,( 221121 nnn xwxwxwxxxw LL = ) and ,( 1ww ′=′  

),,2 nww ′′ L  ( { })(,),(),(min),,,( 221121 nnn xwxwxwxxxw ′′′=′ LL ), 
and use w  or w′  to express the object O . 
The third step: 

Taking proper ),,,( 21 nαααα L=  with 1
1

=∑ =

n

i iα  and 

0≥iα , ni ,,2,1 L= , and 1≥p , we compute the metrics 

pn

i
pj

ii
j

iii

j
p

rrurwrurwr

uwD

/11 

0 1

,

)d|)])()(||)()((|[(
2
1

),(~    

∫ ∑ =
−+−⋅= α

α

 

( lj ,,2,1 L= ) 
or 

pn

i
pj

ii
j

iii

j
p

rrvrwrvrwr

vwD

/11 

0 1

,

)d|)])()(||)()((|[(
2
1

),(~   

∫ ∑ =
−′+−′⋅=

′

α

α

 

( lj ,,2,1 L= ) 
The fourth step: 

We choose 0ju  in luuu ,,, 21 L , or 0jv ′  in lvvv ,,, 21 L  such that 

)},(~,),,(~),,(~min{),(~
,

2
,

1
,,

0 l
ppp

j
p uwDuwDuwDuwD αααα L=  

or 
)},(~,),,(~),,(~min{),(~

,
2

,
1

,,
0 l

ppp
j

p vwDvwDvwDvwD ′′′=′ ′
αααα L  

Then we can consider that object O  belongs to the th0j  class 
0j

C , 

or belongs to the th0j′  class 
0j

C ′ . 

Remark 5.1.  In the third and fourth steps of the above 
method, we can have the metric pD ,

ˆ
α  replace the metric pD ,

~
α , 

as a result of which, we can also set up a method based on the 
metric pD ,

ˆ
α . 

Algorithmic version of pattern recognition based on 
difference values 
The first step and the second step: 

They are respectively same with the first step and the second 
step of the method of pattern recognition based on the metric, as 
above. 
The third step: 

Taking proper ),,,( 21 nαααα L=  with 1
1

=∑ =

n

i iα  and 

0≥iα , ni ,,2,1 L= , and ),0(),0(),( 21 +∞×+∞∈= aaa , 
we compute the difference values 
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j
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j
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j
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,

|])()(||)()(([|       

)]()()()([

)|)()(||)()((|exp

),(      

1

α

α
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α

 

( lj ,,2,1 L= ) 
or 
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=
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a
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( lj ,,2,1 L= ) 
The fourth step: 

We choose 0ju  in luuu ,,, 21 L , or 0jv ′  in lvvv ,,, 21 L  such 
that 

)},(,),,(),,(min{),( ,
2

,
1

,,
0 l

aaa
j

a uwuwuwuw αααα ΓΓΓ=Γ L  
or 

)},(,),,(),,(min{),( ,
2

,
1

,,
0 l

aaa
j

a vwvwvwvw ′Γ′Γ′Γ=′Γ ′
αααα L  

Then we can consider that object O  belongs to the th0j  class 

0j
C , or belongs to the th0j′  class 

0j
C ′ . 

Remark 5.2.  In the third and fourth steps of the method 
above, we can have the difference value a,αΔ  or a,αΛ  replace 

the difference value a,αΓ , as a result of, we can also set up a 

method based on the difference value a,αΔ  or a,αΛ . 
In order to be more obvious, we may use the following 

diagram to illustrate the methods set up by us. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Measure values of the jth 
character of samples in C1,

j=1,2,…,n 

Measure values of the jth 
character of samples in Cl , 

j=1,2,…,n 

Measure values of the ith 
character of samples in O,

i=1,2,…,n 

Mean 1
jμ , j=1,2,…,n 

Standard deviation 1
jσ ,

 j=1,2,…,n 

Mean l
jμ , j=1,2,…,n 

Standard deviation l
jσ ,  

j=1,2,…,n 

Mean iμ , i=1,2,…,n 

Stan-dard deviation iσ ,
i=1,2,…,n 

1-dimensional fuzzy 
numbers: 

u1
j ,  j=1,2,…,n 

1-dimensional fuzzy 
numbers: 

ul
j ,  j=1,2,…,n 

1-dimensional fuzzy 
numbers: 

wi ,  i=1,2,…,n 

Fuzzy n-cell number u1 Fuzzy n-cell number ul Fuzzy n-cell number w

Difference value ),( 1, uwaαΓ Difference value ),(, la uwαΓ

The minimal ),(
0, la uwαΓ  

O belongs to the j0th class
0jC  
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Example 5.1.  Suppose that some terrain consists of five 
different types of land based cover: 1C : Road; 2C : Farm or 
Crop; 3C : Korean Pine accounts for the main part; 4C : Boreal 
and Broad-leaf Mixture Forest; 5C : Birch Forest. For the five 
types of land cover ( 54321 ,,,, CCCCC ) and by using the four 
wave bands: MSS-4, MSS-5, MSS-6, MSS-7, we take 10 
samples, and acquire the following data: 

46.2763.4646.1648.1810 Sample
86.2326.4898.1736.199 Sample
28.2502.5532.1736.198 Sample
21.2230.5258.1819.167 Sample
05.2582.5013.2019.906 Sample
32.2832.4578.1818.965 Sample:
89.2235.5695.1518.764 Sample
33.2612.4846.1918.243 Sample
32.2402.5101.1719.762 Sample
72.2620.5871.2018.621 Sample

7-MSS6-MSS5-MSS4-MSS

1C

 

 

59.2246.5052.3042.2510 Sample
39.2437.4156.2126.209 Sample
04.1917.4902.2623.228 Sample
16.2173.4608.1764.177 Sample
38.1975.4215.2406.266 Sample
95.2461.5328.3236.215 Sample:
43.2088.4387.1893.184 Sample
05.1880.4782.2412.233 Sample
89.2356.4541.2337.192 Sample
43.2239.5213.2851.241 Sample

7-MSS6-MSS5-MSS4-MSS

2C
 

 

45.1708.3448.1238.1510 Sample
02.1810.3658.1250.159 Sample
62.1864.3767.1382.168 Sample
29.1487.3098.1015.907 Sample

15.5432.1011.9413.806 Sample
20.7542.1013.8016.105 Sample:
14.7535.5011.7014.904 Sample
18.1637.7012.7915.823 Sample
16.3538.8112.5615.602 Sample
19.3740.5013.3015.011 Sample

7-MSS6-MSS5-MSS4-MSS

3C

 

 

34.2287.4431.1338.1610 Sample
01.2103.3810.1209.159 Sample
65.2151.4268.1221.168 Sample
23.2009.4114.1298.157 Sample
33.2198.4558.1321.176 Sample
58.2356.4601.1332.165 Sample:
63.1887.4058.1241.164 Sample
20.2121.4287.1244.153 Sample
47.1965.3803.1209.162 Sample
76.2232.4353.1305.171 Sample

7-MSS6-MSS5-MSS4-MSS

4C

 

 

62.2309.4634.1367.1710 Sample
11.2396.4370.1297.159 Sample
61.2238.4525.1302.178 Sample
15.2332.4498.1289.157 Sample
76.2303.4573.1323.176 Sample
41.2338.4690.1321.185 Sample:
98.2243.4313.1358.164 Sample
54.2295.4488.1204.173 Sample
19.2371.4462.1241.162 Sample
64.2376.4545.1312.181 Sample

7-MSS6-MSS5-MSS4-MSS

5C

 

By 

∑ =
=

10

110
1

k
i
kj

i
j cμ   ( 5,4,3,2,1=i , 4,3,2,1=j ) 

and 

∑ =
−

−
=

10

1
2)(

110
1

k
i
j

i
kj

i
j c μσ   ( 5,4,3,2,1=i , 4,3,2,1=j ) 

we can work out the following means and standard deviations: 
55.0   ,06.19 1

1
1
1 == σμ , 58.1   ,24.18 1

2
1
2 == σμ  

28.4   ,20.51 1
3

1
3 == σμ , 98.1   ,24.25 1

4
1
4 == σμ  

88.2   ,89.21 2
1

2
1 == σμ , 82.4   ,68.24 2

2
2
2 == σμ  

09.4   ,37.47 2
3

2
3 == σμ , 39.2   ,63.21 2

4
2
4 == σμ  

22.1   ,46.15 3
1

3
1 == σμ , 88.0   ,58.12 3

2
3
2 == σμ  

55.3   ,54.36 3
3

3
3 == σμ , 08.2   ,33.17 3

4
3
4 == σμ  

64.0   ,22.16 4
1

4
1 == σμ , 58.0   ,78.12 4

2
4
2 == σμ  

87.2   ,41.42 4
3

4
3 == σμ , 50.1   ,22.21 4

4
4
4 == σμ  

82.0   ,01.17 5
1

5
1 == σμ , 42.0   ,20.13 5

2
5
2 == σμ  

94.0   ,00.45 5
3

5
3 == σμ , 42.0   ,20.23 5

4
5
4 == σμ  

Taking ),0( +∞=j
iD ( 4,3,2,1=i  and 5,4,3,2,1=j ) then 

according to 
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⎪
⎪
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I
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2
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( 5,4,3,2,1=i , 4,3,2,1=j ) 
we have 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∉

∈
−

∈
−

=

]16.20  ,96.17[if         0

]16.20  ,06.19(if
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16.20
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10.1

96.17

)(1
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x

xx

xx
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⎪
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⎩

⎪
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⎨

⎧

∉

∈
−

∈
−

=

]1.402  ,08.15[if         0

]1.402  ,24.18(if
16.3

40.21

 ]8.241  ,08.15[if
16.3

08.15

)(1
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x
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xx

xu  
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⎪
⎪

⎩

⎪
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⎨

⎧

∉
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−

∈
−

=

]9.765  ,64.42[if         0

]9.765  ,20.51(if
56.8
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64.42

)(1
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∉
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−
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−
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28.21

)(1
4

x

xx

xx

xu  
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⎪
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]6.412  ,63.21(if
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]7.901  ,02.13[if         0
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90.17

 ]5.461  ,02.13[if
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]4.341  ,82.10[if         0
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76.1

34.14

 ]2.581  ,82.10[if
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⎪
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⎪
⎪
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∈
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∈
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]3.644  ,44.29[if         0
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64.43
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44.29
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⎪
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]1.492  ,17.13[if         0

]1.492  ,33.17(if
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 ]7.331  ,17.13[if
16.4

17.13
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]7.501  ,22.16(if
28.1
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]8.154  ,67.36[if         0

]8.154  ,41.42(if
74.5
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 ]2.414  ,67.36[if
74.5

67.36
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⎧

∉

∈
−

∈
−

=

]4.222  ,22.18[if         0

]4.222  ,22.21(if
00.3

22.24

 ]1.222  ,22.18[if
00.3

22.18

)(4
4

x

xx

xx

xu  

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∉

∈
−

∈
−

=

]8.651  ,37.15[if         0

]8.651  ,01.17(if
64.1

65.18

 ]7.011  ,37.15[if
64.1

37.15

)(5
1

x

xx

xx

xu ,

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∉

∈
−

∈
−

=

]4.041  ,36.12[if         0

]4.041  ,20.13(if
84.0

04.14

 ]3.201  ,36.12[if
84.0

36.12

)(5
2

x

xx

xx

xu  

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∉

∈
−

∈
−

=

]6.984  ,02.43[if         0

]6.984  ,00.45(if
98.1

98.46

 ]5.004  ,02.43[if
98.1

02.43

)(5
3

x

xx

xx

xu ,

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∉

∈
−

∈
−

=

]4.042  ,36.22[if         0

]4.042  ,20.23(if
84.0

04.24

 ]3.202  ,36.22[if
84.0

36.22

)(5
4

x

xx

xx

xu  

and for ]1,0[∈r  

rrurru 10.116.20)(   ,96.1710.1)( 1
1

1
1 −=+=  

rrurru 16.340.21)(   ,08.1516.3)( 1
2

1
2 −=+=  

rrurru 56.876.59)(   ,64.4256.8)( 1
3

1
3 −=+=  

rrurru 96.320.29)(   ,28.2196.3)( 1
4

1
4 −=+=  

rrurru 76.565.27)(   ,13.1676.5)( 2
1

2
1 −=+=  

rrurru 64.932.34)(   ,04.1564.9)( 2
2

2
2 −=+=  

rrurru 18.855.55)(   ,19.3918.8)( 2
3

2
3 −=+=  

rrurru 78.441.26)(   ,85.1678.4)( 2
4

2
4 −=+=  

rrurru 44.290.17)(   ,02.1344.2)( 3
1

3
1 −=+=  

rrurru 76.134.14)(   ,82.1076.1)( 3
2

3
2 −=+=  

rrurru 10.764.43)(   ,44.2910.7)( 3
3

3
3 −=+=  

rrurru 16.449.21)(   ,17.1316.4)( 3
4

3
4 −=+=  

rrurru 28.150.17)(   ,94.1428.1)( 4
1

4
1 −=+=  

rrurru 16.194.13)(   ,62.1116.1)( 4
2

4
2 −=+=  

rrurru 74.515.48)(   ,67.3674.5)( 4
3

4
3 −=+=  

rrurru 00.322.24)(   ,22.1800.3)( 4
4

4
4 −=+=  

rrurru 64.165.18)(   ,37.1564.1)( 5
1

5
1 −=+=  

rrurru 84.004.14)(   ,36.1284.0)( 5
2

5
2 −=+=  

rrurru 98.198.46)(   ,02.4398.1)( 5
3

5
3 −=+=  

rrurru 84.004.24)(   ,36.2284.0)( 5
4

5
4 −=+=  

Thus the fuzzy −4 cell numbers ),,,( 4321
iiiii uuuuu = , 

5,4,3,2,1=i , ie., 
)}(),(),(),(min{),,,( 443322114321 xuxuxuxuxxxxu iiiii =  

4
4321 ),,,( Rxxxx ∈ , 5,4,3,2,1=i  

can be used to represent iC , 5,4,3,2,1=i , respectively. 
Using the same four wave bands: MSS-4, MSS-5, MSS-6, 

MSS-7, we now proceed to examine some zone (i.e., object, 
denoted by O ) 12 times, stochastically, at various times or 
positions, or using various viewers, and obtain the following 
data: 

23.2356.4425.1302.1812 Sample
18.2321.4578.1302.1711 Sample
52.2389.4534.1351.1710 Sample
13.2381.4334.1220.169 Sample
84.2201.4632.1313.178 Sample
14.2396.4356.1221.167 Sample
61.2397.4659.1311.166 Sample       
31.2331.4591.1301.185 Sample
77.2253.4306.1332.164 Sample
56.2282.4457.1200.173 Sample
49.2367.4571.1221.172 Sample
52.2341.4513.1331.181 Sample

7MSS6MSS5MSS4MSS

O

−−−−

 

We can work out the following means and standard deviations: 
77.0   ,09.17 11 == so , 50.0   ,17.13 22 == so  
01.1   ,10.45 33 == so , 33.0   ,19.23 44 == so  

So we can obtain the fuzzy −4 cell number ),,,( 4321 ooooo = , 
i.e., 

)}(),(),(),(min{),,,( 443322114321 xoxoxoxoxxxxo =  
4

4321 ),,,( Rxxxx ∈  
that can be used to represent O , where, 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∉

∈
−

∈
−

=

]8.631  ,55.15[if         0

]8.631  ,09.17(if
54.1

63.18

 ]7.091  ,55.15[if
54.1

55.15

)(1

x

xx

xx

xo ,

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∉

∈
−

∈
−

=

]4.171  ,17.12[if           0

]4.171  ,17.13(if
00.1

17.14

 ]3.171  ,17.12[if
1.00

17.12

)(2

x

xx

xx

xo  
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⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∉

∈
−

∈
−

=

]7.124  ,08.43[if         0

]7.124  ,10.45(if
02.2

12.47

 ]5.104  ,08.43[if
02.2

08.43

)(3

x

xx

xx

xo ,

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∉

∈
−

∈
−

=

]3.792  ,53.22[if         0

]3.792  ,19.23(if
66.0

79.23

 ]3.192  ,53.22[if
66.0

53.22

)(4

x

xx

xx

xo  

and for ]1,0[∈r . 

rrorro 54.163.18)(   ,55.1554.1)( 11 −=+=  

rrorro 00.117.14)(   ,17.1200.1)( 22 −=+=  

rrorro 02.212.47)(   ,08.4302.2)( 33 −=+=  

rrorro 66.079.23)(   ,53.2266.0)( 44 −=+=  

Taking )
4
1,

4
1,

4
1,

4
1(=α  and )

5
1,

5
1(=a , By 

∑ ∫

∑ ∫

∑ ∫ ∫∫ ∫

=

=

=

−+−⋅

⎟
⎠
⎞

⎜
⎝
⎛ +++

⎟
⎠
⎞

⎜
⎝
⎛ −+−

=

Γ

4

1

1

0

4

1

1

0

4

1

)0( 

)1(* 

)0( 

)1(* 

)1(* 

)0( 

)1(* 

)0( 2

,

|])()(||)()(([|      

)]()()()([

)|)()(||)()((|exp

),(    

1

i iiiii

a

i iiiii

i

u

u

v

v ii

u

u

v

v iii

a

drrvrurvrur

drrvrurvrur

dttvdttudttvdttua

vu
i

i

i

i

i

i

i

i

α

α

α

α  

we can obtain 36.3),( 1
, =Γ uoaα , 34.10),( 2

, =Γ uoaα , ),( 3
, uoaαΓ  

27.4= , 11.1),( 4
, =Γ uoaα , 03.0),( 5

, =Γ uoaα . From ),( 5
, uoaαΓ  

)},(),,(),,(),,(),,(min{ 5
,

4
,

3
,

2
,

1
, uououououo aaaaa ααααα ΓΓΓΓΓ= , we 

know that O  belongs to 5C , i.e., the zone measured by us is 
covered by Birch Forest. 

Remark 5.3.  Although, only for the example, using mean 
vectors ),,,( 4321

iiii μμμμ , 5,4,3,2,1=i  and ),,,( 4421 oooo  to 
represent respectively 4321 ,,, CCCC  and O , we perhaps also 
judge that O  belongs to 5C  by the usual Euclidean metrics, 
we still emphasize that using fuzzy −n cell numbers to deal 
with imprecise or uncertain quantities is better than using crisp 

−n dimensional vectors. The following example (to simplify 
and shorten the problem, we only consider −1 dimensional 
case) will show this. 

Example 5.2.  The following two classes of ferrous 
quantities (kilogram per hundred kilogram) of minerals come 
respectively two different mine areas (denoted by A  and B ). 

.348  0.11,1  5.32,2  7.37,1  8.36,2  2.26,8  2.34,6  4.51,3  9.34,7  2.33,5  :
98.7 ,03.12  ,30.12   ,36.11   ,33.8     ,63.9   ,02.9    ,31.8    ,76.11  ,20.10  :

B
A  

Suppose that one group (denoted by C ) of minerals comes 
from the one of A  and B . The problem to be solved is to 
identify if C  comes from A  or B . We take samples, and 
acquire the following data for C : 

0.322 3.27,1 0.51,2 5.36,1 3.32,2 8.56,2 .36,9 6.02,7 0.31,2 8.20,1 :C  
We can work out: 09.10=Aμ , 67.1=Aσ , 03.40=Bμ , 

43.27=Bσ , 52.24=Cμ  and 86.18=Cσ . 
If we use crisp means to represent A , B  and C , then we 

have 09.10=A , 03.40=B , 52.24=C and 43.14),( =ACd  
),(51.15 BCd=< . If we regard ),(),( BCdACd <  as evidence, 

we can draw a conclusion that C comes from A . However, the 
conclusion does not accord with fact.  We should note that 

although ),(),( BCdACd < , the difference of ),( ACd  and 
),( BCd  is small. Furthermore, from the statistical data, we can 

see that the ferrous quantities of minerals coming from A  are 
more coincident, but B  and C  are not. It is almost impossible 
that some minerals in C  come from A , such as, minerals with 
ferrous quantities 02.76  and 56.28 . So we may judge that C  
comes from B . 

If we use fuzzy −1 cell numbers to represent A , B  and C , 
then we have 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∉

∈
−

∈
−

=

]3.431  ,75.6[if         0

]3.431  ,09.10(if
34.3

43.13

 ]0.091  ,75.6[if
34.3

75.6

)(

x

x
x

x
x

xA ,

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∉

∈
−

∈
+

=

]4.899  ,0[if         0

]4.899  ,03.40(if
86.54

89.94

 ]0.034  ,0[if
86.54

83.14

)(

x

x
x

x
x

xB  

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∉

∈
−

∈
+

=

]2.246  ,0[if         0

]2.246  ,52.24(if
72.37

24.62

 ]4.522  ,0[if
72.37

20.13

)(

x

x
x

x
x

xC  

75.634.3)( += rrA , 
⎩
⎨
⎧

∈
∈−

=
]27.0,0[if                    0
]1,27.0(if83.1486.54

)(
r
rr

rB , 

⎩
⎨
⎧

∈
∈−

=
]35.0,0[if                     0
]1,35.0(if20.1372.37

)(
r
rr

rC , rrA 34.343.13)( −= , 

rrB 86.5489.94)( −= , rrC 72.3724.62)( −= , so ),( )1.0 ,1.0( ACΓ  

),(
019.4
38.1577.2139.106

487.3
01.14

)1.0 ,1.0(
178.127.3 BCee Γ==>== .  

Thus we can affirm that C  comes from B . 

VI. CONCLUSION 
In this paper, we suggest using fuzzy −n cell numbers to 

represent imprecise or uncertain multichannel digital signals, 
and put forward a method (see the first or second step of the 
algorithmic version in Section 5, or see Example 2.1) of 
constructing such fuzzy −n cell numbers. Although the metrics 
D  and LD  have been studied formerly in [14,15], in view of 
the roughness of D  and LD , we define two new metrics on 
fuzzy −n cell number space in order that they can better 
characterize the degree of the difference of two objects in some 
imprecise or uncertain environment, and we study their 
properties (Section 3). In some applications, metrics are 
unsuitable for use in finding the difference of two fuzzy 

−n cell numbers, so we introduce the concepts of difference 
values a,αΔ , a,αΛ  and a,αΓ , study their properties, and show 
the rationality for their use in characterizing the degree of the 
difference of two fuzzy −n cell numbers by Remarks and 
examples (see Section 4). Finally, in Section 5, we put forward 
an algorithmic version of pattern recognition in an imprecise or 
uncertain environment based on the metrics and difference 
values defined by us, and give examples to show the 
application (see Example 5.1) and rationality (see Example 5.2) 
of the methods. 
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