
Hydrological Processes, Vol. 22, Issue 23, pp. 4628-4638 (2008) 
The published article can be downloaded from: http://dx.doi.org/10.1002/hyp.7082  

 1 

Shuffled Complex Evolution Model Calibrating Algorithm:  

Enhancing its Robustness and Efficiency 
 

Nitin Muttil
1
 and A. W. Jayawardena

2
 

 
1
 School of Architectural, Civil and Mechanical Engineering and Institute for Sustainability and Innovation, 

Victoria University, PO Box 14428, Melbourne, VIC, Australia, 8001. 

[Corresponding author] Email: nitin.muttil@vu.edu.au 

 
2
 International Centre for Water Hazard and Risk Management, Public Works Research Institute, 1-6, 

Minamihara, Tsukuba, Ibaraki 305-8516, Japan. 

(Formally from the Department of Civil Engineering, The University of Hong Kong) 

 

 

Abstract 

The Shuffled Complex Evolution (SCE-UA) has been used extensively and proved to be a 

robust and efficient global optimization method for the calibration of conceptual models. 

In this paper, we propose two enhancements to the SCE-UA algorithm, one to improve its 

exploration and another to improve its exploitation capability of the search space. A 

strategically located initial population is used to improve the exploration capability and a 

modification to the downhill simplex search method enhances its exploitation capability. 

This enhanced version of SCE-UA is tested, first on a suite of test functions and then on a 

conceptual rainfall-runoff model using synthetically generated runoff values. It is observed 

that the strategically located initial population drastically reduces the number of failures 

and the modified simplex search also leads to a significant reduction in the number of 

function evaluations to reach the global optimum, when compared to the original SCE-

UA. Thus, the two enhancements significantly improve the robustness and efficiency of 

the SCE-UA model calibrating algorithm. 
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Introduction 

With the advent of digital computers, a generation of models known as conceptual models has 

been developed. The successful application of a model heavily depends on how well it is 

calibrated. There is a substantial body of research documenting problems encountered during 

model calibration, especially with conceptual models (Duan et al., 1992; Gan and Biftu, 1996; 

Kuczera, 1997). Duan et al., (1992) pointed out five characteristics that complicate the 

optimization of conceptual models, which are as below: 

i) Several major regions of attraction 

ii) Numerous local optima in each region of attraction 

iii) Rough objective function surface with discontinuous derivatives 

iv) Parameters may exhibit varying degree of sensitivity and a great deal of 

interaction, which may be non-linear 

v) Response surface is often non-convex with long curved ridges 

The most important of these characteristics is the presence of multiple local optima.  

 To deal with the problem of multiple local minima, global search methods are applied. 

These methods are global in the sense that they constitute a parallel search of the search space 

(as opposed to a point by point search) by using a population of potential solutions. This 

capability of such techniques for effective "exploration" of the search space makes them less 

probable to get trapped into local minima. Popular global search methods are the so-called 

population-evolution-based search strategies such as the Shuffled Complex Evolution- 

University of Arizona (SCE-UA) (Duan et al., 1992) and Genetic Algorithms (GA) (Wang, 

1991). This study aims to significantly improve the robustness and efficiency of the SCE-UA 

algorithm. The SCE-UA has been extensively used for the calibration of various rainfall-

runoff models. These include the NAM/MIKE 11 model (Madsen, 2000), the Sacramento 

model (Sorooshian et al., 1993; Duan et al., 1994; Gan and Biftu, 1996; Yapo et al., 1996; 
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Gan et al., 1997; Ajami et al., 2004), the Tank model (Tanakamaru and Burges, 1996; Cooper 

et al., 1997), and the Xinanjiang model (Gan and Biftu, 1996; Gan et al., 1997; Cheng et al., 

2002; Cheng et al., 2006; Jayawardena et al., 2006). Other than for the calibration of 

hydrologic models, the SCE-UA has also been used in other water related fields. Atiquzzaman 

and Liong (2004) employed the SCE-UA for the rehabilitation of water distribution networks, 

whereas Cui and Kuczera (2003) used it for optimizing urban water supply headworks 

systems. For calibration of groundwater models, He et al. (2007) used the SCE-UA to 

calibrate a groundwater prediction model for a coastal plain in Japan, Contractor and Jenson 

(2000) used it to calibrate an unsaturated flow model, whereas Agyei and Hatfield (2006) 

tested the SCE-UA on several inverse modeling problems involving the estimation of 

parameters in a coupled numerical groundwater flow and contaminant transport model.  

 A brief introduction to the SCE-UA algorithm is first presented in the next section. 

This is followed by the two proposed enhancements to the original SCE-UA. A comparison of 

the enhanced SCE-UA with its original counterpart on a suite of popular test functions and 

also a conceptual rainfall-runoff model is then presented.  

 

The Shuffled Complex Evolution Algorithm 

The SCE-UA algorithm was developed at the University of Arizona (Duan et al., 1992) to 

deal with the peculiarities of parameter estimation in conceptual rainfall-runoff (CRR) 

models. It combines the best features of "multiple complex shuffling" and "competitive 

evolution" based on the simplex search method (Nelder and Mead, 1965). The use of multiple 

complexes and their periodic shuffling provide an effective exploration of different promising 

regions of attraction within the search space. In other words, the partitioning into and 

shuffling of complexes facilitates a freer and extensive exploration of the search space in 

different directions, thereby reducing the chances of the search getting trapped in local 
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optima. This effective exploration is coupled with the competitive complex evolution (CCE) 

algorithm, which is provided by the downhill simplex algorithm. The simplex search provides 

a robust technique for evolving each complex independently and thus directs the evolution in 

an improvement direction. This "competitive evolution" of the simplexes provides effective 

exploitation within the search space. Thus, the "multiple complex shuffling" and "competitive 

evolution" features provide an effective balance of exploration and exploitation in the SCE-

UA as compared with other contemporary optimization strategies. 

 In essence, the SCE-UA begins with an "initial population" of points sampled 

randomly from the feasible space. The population is partitioned into one or more complexes, 

each containing a fixed number of points. Each complex evolves based on a statistical 

"reproduction" process that uses the "simplex" geometric shape to direct the search in the 

correct direction. Periodically, the entire population is shuffled and points are reassigned to 

complexes to ensure information sharing. As the search progresses, the entire population tends 

to converge toward the neighborhood of the global optimum, provided the initial population 

size is sufficiently large. For a lucid explanation on the details of the algorithm, the reader is 

referred to Duan et al. (1994). 

 A number of studies have been conducted to compare the SCE-UA and other global 

and local search procedures for model calibration (Duan et al., 1992; Gan and Biftu, 1996; 

Kuczera, 1997; Franchini et al., 1998). Duan et al. (1993) compared the SCE-UA method with 

controlled random search (CRS2) method and a multi start algorithm (MSX) on seven well 

established test functions from the literature and demonstrated the superiority of the SCE-UA 

method. Sorooshian et al. (1993) used a "true" parameter set for the Leaf River watershed to 

generate "synthetic" streamflows to calibrate the Sacramento model with several optimization 

algorithms, including the SCE-UA and the multi-start simplex (MSX) methods. They found 

that the SCE-UA located the "true" parameter values at a 100% success rate while the MSX 

failed to locate the global optimum in all trials. Cooper et al. (1997) investigated the 
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performance of three probabilistic optimization techniques for calibrating the Tank model. 

These methods were the SCE-UA, genetic algorithms (GA) and simulated annealing (SA) 

methods. They found that out of the three global optimization methods, SCE-UA provided 

better estimates of the optimal solution than GA and SA methods. SCE-UA was also the best 

in terms of efficiency as expressed by the number of iterations for convergence. They 

concluded that the superior performance of SCE-UA was perhaps due to its strategy of 

concurrently exploring several different promising regions of attraction. Kuczera (1997) 

compared four algorithms, namely the SCE-UA method, the GA (with traditional crossover) 

and multiple random starts (using either simplex or quasi-Newton local searches) for 

parameter identification of the modified Surface inFiltration Baseflow (SFB) model 

(Boughton, 1984). In his case study, the SCE-UA algorithm was found to be most robust and 

efficient. Thyer et al. (1999) compared the performance of two probabilistic global 

optimization methods: SCE-UA and the three-phase simulated annealing algorithm (SA-SX). 

Both algorithms were used to calibrate 2 parameter sets (a reduced, well-identified parameter 

set and the full parameter set) of a modified version of the SFB model using data from 2 

Australian catchments that have low and high runoff yields. For the reduced, well-identified 

parameter set, the algorithms have a similar efficiency for the low-yielding catchment, but 

SCE-UA is almost twice as robust. Although the robustness of the algorithms is similar for the 

high-yielding catchment, SCE-UA is six times more efficient than SA-SX. Ndiritu and 

Daniell (2001) observed that the simple GA is inappropriate for global optimum location and 

hence they modified the simple GA by using 3 strategies for its improvement. They further 

compared their improved GA with the SCE-UA and noted that SCE-UA outperformed the 

improved GA on 2 of the 3 optimization problems that they investigated. Thus, they 

concluded that SCE-UA would be the first preference for the optimization of unfamiliar 

continuous variable problems including rainfall-runoff model calibration. These studies by 
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various researchers have demonstrated that the SCE-UA method is a robust and efficient 

search algorithm. 

 

Enhancing the SCE-UA Algorithm 

Despite the good performance of the SCE-UA, the question remains as to whether the 

robustness and efficiency of the calibrating algorithm can be further improved. Only a few 

studies have been attempted to enhance the optimizing capability of the SCE-UA algorithm. 

Agyei and Hatfield (2006) coupled the SCE-UA with the Gradient based Lavenberg-

Marquardt (GBLM) algorithm, with the aim of combining the global search power of the 

SCE-UA with the local search capability of the GBLM algorithm. The resultant hybrid 

algorithm (which they called SCEGB) was compared with the SCE-UA and GBLM 

algorithms on several inverse-modeling problems involving the estimation of parameters of a 

nonlinear numerical groundwater flow model. Using perfect (i.e., noise-free) data and also 

data corrupted with noise, they mention that the SCEGB and SCE-UA outperform the GBLM 

by producing more accurate parameter estimates. As far as the comparison of SCEGB and 

SCE-UA is concerned, in all simulations both were equally robust but the SCEGB was 

computationally more efficient. As an improvement over the SCE-UA, the Shuffled Complex 

Evolution Metropolis (SCEM-UA) algorithm (Vrugt et al., 2003) was developed, which 

adopts Markov chain Monte Carlo theory (MCMC) and uses the Metropolis-Hastings 

algorithm (MH) to replace the downhill simplex method to obtain a global optimal estimation. 

With the aim of enhancing the exploration capability of the SCE-UA algorithm, Muttil and 

Liong (2004) presented a systematic way of generating the initial population. The following 

sub-sections describe the two enhancements to the SCE-UA algorithm presented in this study. 

 

Enhancing robustness by increasing initial population diversity 
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Various population-evolution-based search strategies, including the SCE-UA use a random 

data generator to generate the initial population. As the search proceeds, the population 

converges towards an optimum in one of the many possible regions of attraction. If this region 

of attraction does not contain the global optimum, then the search converges to a local 

optimum. The reason for such local minimum convergence could be insufficiently large initial 

population size or an initial population that is not well spread in the search space.  

 In order to prevent such convergence into local minima, it is essential to maintain the 

diversity in the population, which increases the capability of exploration in different regions 

of the search space. Actually, researchers in the field of evolutionary computation had realized 

the importance of population diversity as early as in 1970. Bremermann et al. (1966) 

identified that keeping individuals with lower fitness can lead to improved capability to 

escape local optima, and the lack of diversity is one of the major source of stagnation at ridges 

on the fitness landscapes. It was also proposed by Galar (1985) that evolutionary innovations 

may be more likely to happen from “mutations of mutants” than from the variations of the 

superior individuals. More discussion of population diversity is available in Fogel, (1998). 

 Various mechanisms have been suggested to achieve population diversity. A class of 

diversity preserving approaches is the crowding-based techniques. De Jong (1975) proposed 

the crowding approach, where each offspring is compared to a randomly selected set of K 

(crowding factor) individuals from the original population and the most similar (according to 

a distance function) individual is replaced by the offspring. Many variations of the crowding 

approach have been proposed (for example, Mengshoel & Goldberg, 1999). A second class of 

diversity preserving approaches is inspired by the biological niche concept (Holland, 1975). 

Goldberg and Richardson (1987) developed the first widely accepted fitness sharing 

technique, in which the perceived fitness of an individual is modified according to both the 

actual performance fitness and its neighborhood information. The more crowded the area the 

individual is located in, the more its fitness is degraded. This creates a number of artificial 
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niches, each having a carrying capacity proportional to the general quality of the solutions in 

the niche. One of the drawbacks of fitness sharing is that it requires the definition of a 

neighborhood radius σshare which is hard to estimate. A third class of diversity preserving 

approaches works by explicit segregation of competition according to some rules. A widely 

used technique is the “island” parallel model, in which individuals are allocated to a number 

of subpopulations and competition occurs only among individuals within the same 

subpopulation. Another way to implement segregation of competition is by defining some 

kind of distance metric and only allowing individuals in the range of a specified distance to 

compete and mate (Davidor, 1991). The underlying assumption of these spatial separation 

approaches is that different niches will converge to different areas of the search space and thus 

the diversity of the whole population can be maintained. Yet another approach to achieve 

population diversity is to actively generate diversity, either by restarting the search or by just 

increasing the mutation rate. In the restarting approach, when the population shows the signal 

of getting trapped in local optima, an entire new epoch is started and the population is filled 

with new random individuals (Fukunaga, 1997). The CHC algorithm (Eshelman, 1990) (CHC 

stands for Cross-generational selection, Heterogeneous recombination and Cataclysmic 

mutation) employs the so-called Cataclysmic mutation to pursue sustainable search. When the 

population gets converged, a highly disruptive mutation is applied to the best individuals for 

multiple times to reinitialize the population by mutating some percentage of its bits (e.g. 

35%). 

 Given the importance of population diversity, with the aim of increasing the diversity 

of the initial population of points, a scheme to strategically locate the initial population so that 

the points are well spread in the search space was proposed in a previous study (Muttil and 

Liong, 2004). Figure 1 shows the locations of points in the initial population, suggested by the 

proposed scheme, for a 2-dimensional search space. This systematic initial population consists 

of 2
N
 non-axial points and (2N+1) axial points (where N is the dimension of the search space). 
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The points in the initial population for a 2-dimensional search space are presented in Table 1 

and in Table 2 for a 3-dimensional search space (with lower and upper bounds of the 

parameters being -1.0 and +1.0 respectively). The strategically located initial population is 

expected to increase the exploratory capability of the search algorithm. On a suite of test 

functions, Muttil and Liong (2004) demonstrated that the strategically located initial 

population significantly reduced the number of failures in locating the known global 

optimum, thus enhancing the robustness of the SCE-UA. 

 A limitation of the proposed initial population is that when the dimension of the search 

space increases, the number of points in the initial population becomes excessively large. For 

a problem with 8 variables (i.e., N = 8), the suggested number of points is 273 [= 2
8
 + (2*8 + 

1)] and for a 10-dimensional problem, the population size increases to 1045. To overcome this 

limitation, we propose to select the points in the initial population in such a way that first, the 

axial points are included in the initial population and if the “population size” is larger than the 

number of axial points, then the non-axial points are included in the initial population. For a 

2- and 3-dimensional search space, the sequence of selecting the points in the initial 

population is as presented in Table 1 and Table 2 respectively. Considering the 3-dimensional 

search space, if the “population size” is 10, then it is made up of the 7 axial points and the top 

three non-axial points from Table 2. If the “population size” is even larger than the number of 

axial and non-axial points, then the remaining points in the initial population are randomly 

generated from within the search space.  

 

Enhancing efficiency using improved simplex search method 

With the aim of improving the exploitative capability of the SCE-UA, a second enhancement 

to the SCE-UA is presented in this section, which deals with modifying the simplex search 

method. In the simplex search method employed in the original SCE-UA, the new points are 

generated by reflecting (or contracting) the worst point (Xw in Figure 2) in a simplex about the 
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centroid of the remaining points (Xc). We propose to shift the newly generated reflected (or 

contracted) point towards the best point in the simplex (Xb), with the aim of directing the 

simplex towards the optimum using a lesser number of function evaluations. Thus, not only 

the worst point, but also the best point in a simplex is used to generate the reflected (or 

contracted point), thus making better use (or better exploitation) of the already available 

information. 

 The reflected and contracted points are shifted towards the best point using a 

parameter θ, which is defined as below for reflection and contraction, respectively.  

 

  X new = ((1.0 - θ) * X ref) + (θ * X b)      (1) 

  X new = ((1.0 - θ) * X con) + (θ * X b)      (2) 

 

where Xnew is the newly generated point, Xref is the reflected point, Xcon is the contracted point 

and Xb is the best point in the simplex. The parameter θ can take values between 0.0 and 1.0. 

The higher its value, the more is the exploitation pressure, since the new point (X new) moves 

closer to the best point (Xb). When θ = 0.0, the newly generated point, Xnew, remains at Xref 

(for the reflection step) and at Xcon (for the contraction step). When θ = 0.5, the new point is in 

the middle of the reflected (or contracted) point and the best point (Xb), which is shown in 

Figure 2 (a) and (b), for reflection and contraction steps respectively.  

 

Experiment on Test Functions 

This section presents a performance comparison between the original SCE-UA and the 

enhanced SCE-UA on a suite of ten test functions. These test functions include the seven that 

were originally used by Duan et al. (1993) to demonstrate the robustness and efficiency of the 

SCE-UA algorithm. The ten test functions used in this study can be found in Table 3. Of the 

three new test functions that are included for the comparison, two are 2-dimensional functions 
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(Griewank and Schwefel functions) and the third is a 10-dimensional function (Neumaier no. 

3 function; also called Trid function) (Neumaier, 2008). Like the Rastrigin test function, the 

Griewank function is a non-linear multi-modal function, with a huge number of local optima 

contained in a single region of attraction. Figure 3 shows the multi-modal nature of the 

Griewank function, with many small peaks and valleys spread throughout the response 

surface. The Schwefel test function is also a non-linear multi-modal function, but with 

relatively lesser number of local optima. It is included because it has a deceptive response 

surface in that the global minimum is located far from the second-best minimum, and thus 

search algorithms are potentially prone to get trapped in the wrong direction. Moreover, the 

global minimum is near the bounds of the domain. This function will test a search algorithm’s 

ability to overcome potentially deceptive response surfaces. The Neumaier no. 3 function 

being a 10-dimensional function will also serve as an additional performance gauge of the 

search algorithms’ ability to perform in a high-dimensional environment. The details of the 

three new test functions can be found in the Appendix. 

 For the two types of SCE-UA algorithms, the default values of the parameters are 

used, as recommended by Duan et al. (1994). These default parameter values are the number 

of points in a complex being (2N+1); the number of points in a sub-complex is (N+1) and the 

number of evolution steps taken by each complex before shuffling is (2N+1), where N is the 

dimension of the search space. The performance criteria used are: (i) the number of failures 

(NF) out of 100 trials; and (ii) the average number of function evaluations (AFE) resulting 

from successful trials. The criterion NF measures robustness while AFE describes the 

efficiency of the algorithm. 

 The stopping criteria used is the same as that used by Duan et al. (1993). A trial is 

deemed a success as soon as the best function value in the sample became less than 10
-3

. 

However, if the trial reached 25,000 function evaluations without reducing the best function 

value below 10
-3

, the trial is deemed a failure. Exceptions to the stopping criterion of 25,000 
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function evaluations are the Neumaier no. 3 function and the Griewank 10D function, which 

being 10-dimensional functions, are expected to require higher number of function 

evaluations. As such, the maximum number of function evaluations for these 2 test functions 

is set to 50,000. 

 If the systematic initial population already consists of the known global optimum of a 

test function, the comparison is obviously not fair. Such an example is the Rastrigin function, 

whose parameter ranges are -1  X1  1 and -1  X2  1, and the global optimum is at the 

point (0, 0). In the systematically generated initial population, one of the proposed axial points 

is the point (0, 0).  In such cases, the parameter ranges are changed to –0.9  X1  1 and –0.9 

 X2  1, so that the systematic initial population does not contain the global optimum. 

 The results of the comparison are presented in Table 4. For the enhanced version of 

the algorithm, the value of θ that gave the best results is also presented in Table 4. It is seen 

that best results are obtained when θ is in the range 0.1 - 0.5 and values higher than this lead 

to an increase in the number of failures. It is clearly seen that on the test functions, the 

proposed enhancements significantly reduce the number of failures (NF) (thus improving the 

robustness) and also the average function evaluations (AFE) (thus improving the efficiency) 

of the SCE-UA algorithm.  

 For the high dimensional test functions, namely the 6-dimensional Hartman function 

and the 10-dimensional Neumaier no. 3 and Griewank functions, the number of points in the 

proposed initial population is 77 and 1045 respectively, thus necessitating the use of 6 

complexes for the Hartman function and 50 complexes for the 10-dimensional functions. As 

mentioned previously, in order to avoid large population sizes, it is proposed to select the 

axial points first into the initial population and then, if necessary, the non-axial points are 

included. By using such an approach for filling up the initial population, even lesser number 

of complexes can be used. Tables 5, 6 and 7 present the results for using lesser number of 
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complexes than that proposed by the systematic initial population for the Hartman, Neumaier 

no. 3 and Griewank 10D test functions respectively. It is observed in these tables that even 

with a lesser number of complexes, the enhanced SCE-UA performs better than its original 

counterpart for all the three test functions. Especially for the Griewank 10D function, it is 

observed that when the value of θ is increased beyond 0.0, the number of failures tend to 

increase, suggesting that the SCE-UA works best with only the first enhancement. 

 To further test the capability of the enhanced SCE-UA on high dimensional calibration 

problems, it is compared to the original SCE-UA on a 30-dimensional version of the Rastrigin 

test function. The stopping criteria used is the same as that for the 10-dimensional test 

functions. The results of the comparison are presented in Table 8, which again shows 

significant improvement in the statistics NF and AFE, demonstrating improved robustness and 

efficiency of the enhanced SCE-UA in a higher dimensional search space. 

 

Experiment on a Conceptual Rainfall-Runoff Model 

The enhanced SCE-UA, which was shown to have improved robustness and efficiency on the 

test functions, is now applied to the calibration of a conceptual rainfall-runoff (CRR) model 

using synthetic runoff data, generated using a “true” (i.e. known) parameter set. The CRR 

model considered in this study is the SIXPAR model, which is a simplified research version 

of the Sacramento Soil Moisture Accounting (SAC-SMA) model. The SIXPAR model was 

originally used by Duan et al. (1992, 1993) to demonstrate the difficult nature of CRR model 

calibration, owing to the severity of the problem of multiple optima for different parameter 

subspaces of this model. Since this study presents an enhanced version of the original SCE-

UA algorithm, we thought it important to compare the enhanced SCE-UA with its original 

counterpart on the SIXPAR model. 
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 Figure 4 presents the SIXPAR model, which retains some of the major modeling 

concepts of the SAC-SMA model, including the two-layer structure and the percolation 

features, while deleting some components such as evapotranspiration and tension water 

reservoirs of the SAC-SMA model. The six parameters considered for calibration are UM, 

BM, UK, BK, A and X. The parameters UM and BM (units of length) act as thresholds that 

limit the sizes of the upper and lower zone storages, respectively. The parameters UK and BK 

(units of time
-1

) control the rates of the recession, whereas parameters A and X 

(dimensionless) relate to the nonlinear percolation process (Duan et al., 1992). 

 For the SIXPAR model, using a known “true” parameter set (UM = 5.0, BM = 0.2, 

UK = 0.8, BK = 0.2, A = 0.3, X = 3.0), a 200-day synthetic sequence of daily rainfall and 

streamflow data was constructed. The lower and upper parameter bounds used to define the 

feasible parameter space are UM = (0, 50), BM = (0, 50), UK = (0, 1), BK = (0, 1), A = (0, 1) 

and X = (0, 10). This procedure for construction of synthetic data is similar to that employed 

by Duan et al. (1992). 

 The original SCE-UA is compared with the version with the two enhancements in 

locating the known global optimum of the SIXPAR model. As with the experiment on test 

functions, all the parameters of the SCE-UA are the default ones. The objective function that 

is minimized is the simple least squares (SLS). The stopping criteria used is also same as that 

used for the test functions, except that the maximum number of function evaluations is set to 

10,000. The results of the comparison are presented in Table 9. The number of complexes was 

varied from 2 to 6 and further runs with higher number of complexes was not conducted 

because with 6 complexes, the original SCE-UA was able to locate the global optimum in all 

the 100 trials (i.e., NF = 0 in Table 9). The average function evaluations (AFE) needed by the 

original SCE-UA is 2191. The enhanced SCE-UA, on the contrary achieves NF = 0 with 4 

complexes and with an AFE value of 1177, which is about 50% less number of function 

evaluations to locate the global optimum, when compared to its original counterpart.  
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 Even for other values of the number of complexes, it is seen from the results presented 

in Table 9 that the enhanced SCE-UA is significantly more robust and efficient. For example, 

with 3 complexes, the original SCE-UA has 8 failures in the 100 trials (i.e., NF = 8) and the 

average function evaluations required for the successful trials is 1258 (i.e., AFE = 1258). The 

enhanced SCE-UA, with 3 complexes has NF = 1 and AFE = 999 (for θ = 0.2). Thus, in 

calibrating the SIXPAR model also, the two proposed enhancements significantly improve the 

robustness (indicated by significant reduction in the number of failures to locate the global 

optimum) and also the efficiency (indicated by substantial reduction in the number of function 

evaluations in locating the global optimum) of the SCE-UA algorithm. 

 

Conclusion and Recommendations 

The present study proposes two enhancements to the SCE-UA model-calibrating algorithm, 

which is compared with the original SCE-UA on a suite of test functions and also on the 

SIXPAR conceptual rainfall-runoff model. The test functions used include non-linear, highly 

multi-modal, deceptive test functions with dimensions ranging from two to thirty, which are 

expected to provide a difficult test for any optimization algorithm. Test functions like 

Griewank and Rastrigin have a large number of local optima, which is expected in the 

response surface of a rainfall-runoff model.  

 The first enhancement is a scheme to systematically, instead of randomly, generating 

the initial population, which leads to a much better exploration of the search space, 

demonstrated by a significant reduction in the number of failures in locating the global 

optimum. The second enhancement, a modification to the downhill simplex search method 

leads to enhanced exploitation, which is demonstrated by a reduction in the number of 

function (or model objective function) evaluations to reach the global optimum. In this study, 

the parameter θ is used to control the exploitative power of the simplex search method. For 
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both the test functions and the SIXPAR model, different values of θ are analyzed and it is 

observed that in general its value ranging from 0.1 – 0.3 lead to reductions in the number of 

function evaluations to reach the global optimum. In some cases, as in the SIXPAR model, 

with two complexes, a value of θ = 0.3 leads to an increase in the number of failures and 

therefore it seems safe to conclude that a value of θ up to 0.2 would lead to improvements in 

efficiency. Further study would be undertaken for delineating some guidelines on how to 

accurately choose the value of θ.  

 Thus, in conclusion, this study proposes two enhancements to the original SCE-UA 

model-calibrating algorithm to improve its robustness and efficiency, which is demonstrated 

on a suite of test functions and also on the SIXPAR rainfall-runoff model.  
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Appendix 

Details of the test functions other than the ones used by Duan et al. (1993) are presented 

below: 

a) The Schwefel function (Schwefel, 1981) is a 2-dimensional test function, which is given 

by the equation: 

f(x) = 


2

1i

– xi . sin( || ix ) 

The upper and lower bounds are -500   x1, x2   500 and the global minimum is f(x) = –

837.9658 at (x1 = 420.9687, x2 = 420.9687).  
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b) The Griewank 2-dimensional function (Griewank, 1981) is given by the following 

equation: 

f(x) = 


2

1i

(xi
2
/200) - 



2

1i

cos(xi/ i ) + 1 

The upper and lower bounds are -550   x1, x2   600 and the global minimum is f(x) = 0 at (x1 

= 0, x2 = 0). For this test function, the lower bound is set to -550 (instead of -600) so that the 

systematically generated initial population does not contain the global minimum. 

 

c) The Neumaier No. 3 function (Neumaier, 2008), also called Trid function is a 10-

dimensional function and is given by the following equation: 

f(x) = 


10

1i

(xi – 1)
2
 – 



10

2i

xi . xi-1 

The upper and lower bounds are –100   xi   100 and the global minimum is f(x) = –210 at 

(10, 18, 24, 28, 30, 30, 28, 24, 18, 10). 

 

d) The Rastrigin 30-dimensional function (Rastrigin, 1974) has the equation as below: 

f(x) = 30 + 


30

1i

[xi
2
 – cos(2πxi)]  

The upper and lower bounds are –0.9   xi   1 and the global minimum is f(x) = 0 at xi = 0 for 

i = 1 to 30. For this test function also, the lower bound is set to -0.9 so that the systematically 

generated initial population does not include the global minimum. 
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Table 1. Proposed initial population for a 

2-dimensional search space 

 X1 X2 

Axial points 
a
 

  0.0   0.0 

+ 0.5   0.0 

– 0.5   0.0 

  0.0 + 0.5 

  0.0 – 0.5 

Non-axial 

points 
b
 

+ 0.75 + 0.75 

– 0.75 + 0.75 

+ 0.75 – 0.75 

– 0.75 – 0.75 

a
 2N+1 (i.e. 5) axial points 

b
 2

N
 (i.e. 4) non-axial points 
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Table 2. Proposed initial population for a 3-dimensional 

search space 

 X1 X2 X3 

Axial points 
a
 

  0.0   0.0   0.0 

+ 0.5   0.0   0.0 

– 0.5   0.0   0.0 

  0.0 + 0.5   0.0 

  0.0 – 0.5   0.0 

  0.0   0.0 + 0.5 

  0.0   0.0 – 0.5 

Non-Axial 

points 
b
 

+ 0.75 + 0.75 + 0.75 

– 0.75 + 0.75 + 0.75 

+ 0.75 – 0.75 + 0.75 

– 0.75 – 0.75 + 0.75 

+ 0.75 + 0.75 – 0.75 

– 0.75 + 0.75 – 0.75 

+ 0.75 – 0.75 – 0.75 

– 0.75 – 0.75 – 0.75 

a
 2N+1 (i.e. 7) axial points 

b
 2

N
 (i.e. 8) non-axial points 
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Table 3. Test functions considered 

Function name Dimension 

Goldstein-Price 
*
 2 

Rosenbrock 
*
 2 

Six-hump camelback 
*
 2 

Rastrigin 
*
 2 

Griewank 2D 2 

Schwefel 2 

Shekel 
*
 4 

Hartman 
*
 6 

Griewank 10D 
*
 10 

Neumaier no. 3 10 
*
 Test functions used in Duan et al. (1993) 
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Table 4. Performance of SCE-UA algorithms on test functions 

Function name (dimension) 

(No. of 

complexes; 

population 

size) 

Original SCE-UA 
Enhanced SCE-UA 

(with both enhancements) 

NF AFE θ NF AFE 

Goldstein-Price (2D)  (2; 10) 2 162 0.5 0 86 

Rosenbrock (2D) (2; 10) 0 274 0.2 0 214 

6-hump camelback (2D) (2; 10) 0 162 0.5 0 87 

Rastrigin (2D) (2; 10) 34 340 0.0 20 303 

Griewank (2D) (2; 10) 12 355 0.2 9 289 

Schwefel (2D) (2; 10) 53 257 0.3 14 177 

Shekel (4D) (3; 27) 23 494 0.2 0 415 

Hartman (6D) (6; 78) 10 673 0.4 0 469 

Neumaier no. 3 (10D) (50; 1050) 0 20,989 0.6 0 9,760 

Griewank (10D) (50; 1050) 0 28,843 0.6 0 15,438 
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Table 5. SCE-UA runs for Hartman function with lesser 

number of complexes (than that required by the 

systematic initial population) 

(No. of 

complexes; 

population 

size) 

Original SCE-UA 
Enhanced SCE-UA  

(with both enhancements) 

NF AFE θ 
*
 NF AFE 

(2; 26) 22 422 

0.0 4 420 

0.1 5 381 

0.2 4 345 

0.3 2 307 

0.4 1 279 

(3; 39) 16 495 

0.0 4 458 

0.1 6 414 

0.2 11 379 

0.3 3 345 

0.4 2 304 

(4; 52) 9 518 

0.0 0 496 

0.1 0 453 

0.2 0 422 

0.3 0 370 

0.4 0 334 

*
 When θ = 0.0, only the first enhancement, namely the 

systematic initial population is being used by SCE-UA 
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Table 6. SCE-UA runs for Neumaier no. 3 function with 

lesser number of complexes (than that required by the 

systematic initial population) 

No. of 

complexes 

Original SCE-UA 
Enhanced SCE-UA  

(with both enhancements) 

NF AFE θ 
*
 NF AFE 

(2; 42) 0 1261 

0.0 0 1164 

0.1 0 1088 

0.2 0 1006 

0.3 1 2846 

(3; 63) 0 1258 

0.0 0 1244 

0.1 0 1163 

0.2 0 1363 

0.3 13 5693 
*
 When θ = 0.0, only the first enhancement, namely the systematic 

initial population is being used by SCE-UA 
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Table 7. SCE-UA runs for Griewank 10D function with 

lesser number of complexes (than that required by the 

systematic initial population) 

(No. of 

complexes; 

population 

size) 

Original SCE-UA 
Enhanced SCE-UA  

(with both enhancements) 

NF AFE θ 
*
 NF AFE 

(2; 42) 24 1823 
0.0 2 1593 

0.1 10 1837 

(3; 63) 24 1802 
0.0 19 1674 

0.1 16 1961 

(4; 84) 23 1801 
0.0 16 1784 

0.1 22 1961 

(9; 189) 5 2671 
0.0 3 2689 

0.1 12 2648 

(10; 210) 8 3000 
0.0 8 2978 

0.1 15 2886 

(11; 231) 2 3300 
0.0 1 3279 

0.1 9 3138 

(12; 252) 2 3600 
0.0 4 3605 

0.1 13 3430 

(13; 273) 0 3989 
0.0 0 3939 

0.1 6 3788 

*
 When θ = 0.0, only the first enhancement, namely the 

systematic initial population is being used by SCE-UA 
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Table 8. Performance of SCE-UA algorithms on the 

Rastrigin 30D test function 

(No. of 

complexes; 

population 

size) 

Original SCE-UA 
Enhanced SCE-UA  

(with both enhancements) 

NF AFE θ 
*
 NF AFE 

(2; 122) 89 8334 

0.0 0 3706 

0.1 0 4016 

0.2 0 3293 

(3; 183) 76 6777 

0.0 0 5157 

0.1 0 4678 

0.2 0 3948 

(4; 244) 66 7162 

0.0 0 5467 

0.1 0 5081 

0.2 0 4287 

(5; 305) 56 6667 

0.0 0 5771 

0.1 0 5414 

0.2 0 4663 

(6; 366) 26 7281 

0.0 0 6183 

0.1 0 5839 

0.2 0 5104 

(7; 427) 20 7305 

0.0 0 6628 

0.1 0 6440 

0.2 0 5599 

(8; 488) 5 7740 

0.0 0 7334 

0.1 0 7094 

0.2 0 6123 

(9; 549) 2 8443 

0.0 0 8065 

0.1 0 7748 

0.2 0 6746 

*
 When θ = 0.0, only the first enhancement, namely the 

systematic initial population is being used by SCE-UA 
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Table 9. Performance of SCE-UA algorithms on the 

SIXPAR model 

(No. of 

complexes; 

population 

size) 

Original SCE-UA 
Enhanced SCE-UA  

(with both enhancements) 

NF AFE θ 
*
 NF AFE 

(2; 26) 17 945 

0.0 9 1142 

0.1 12 1066 

0.2 22 1662 

0.3 53 1869 

(3; 39) 8 1258 

0.0 4 1139 

0.1 3 1015 

0.2 1 999 

0.3 2 1079 

0.4 18 1430 

(4; 52) 2 1566 

0.0 1 1390 

0.1 3 1297 

0.2 0 1177 

0.3 4 1068 

0.4 4 1020 

(5; 65) 4 1832 

0.0 1 1754 

0.1 0 1548 

0.2 2 1444 

0.3 2 1284 

0.4 4 1175 

(6; 78) 0 2191 

0.0 0 2064 

0.1 0 1813 

0.2 0 1626 

0.3 2 1508 

0.4 1 1374 

*
 When θ = 0.0, only the first enhancement, namely the 

systematic initial population is being used by SCE-UA 
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Figure 2. Reflection and contraction steps when θ = 0.5 
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Figure 3. Multi-modal nature of the Griewank test function 
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