
Durham E-Theses

A knowledge-based system for the estimation of

geotechnical properties.

Giolas, Antonis

How to cite:

Giolas, Antonis (1994) A knowledge-based system for the estimation of geotechnical properties., Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/964/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/964/
 http://etheses.dur.ac.uk/964/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

A KNOWLEDGE-BASED SYSTEM FOR THE ESTIMATION

OF GEOTECHNICAL PROPERTIES

A thesis submitted to the

School of Engineering

University of Durham

for the degree of

Doctor of Philosophy

by

Antonis Giolas

December 1994

A KNOWLEDGE-BASED SYSTEM FOR THE ESTIMATION

OF GEOTECHNICAL PROPERTIES

A thesis submitted to the

School of Engineering

University of Durham

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

for the degree of

Doctor of Philosophy

by

Antonis Giolas

December 1994

To my parents

11

DECLARATION

I hereby declare that the work reported in this thesis has not been previously

submitted for any degree. All material in this thesis is original except where

indicated by reference to other work.

STATEMENT OF COPYRIGHT

The copyright of this thesis rests with the author. No quotation from it should be

published without his prior written consent and information derived from it should

be acknowledged.

111

ABSTRACT

Ground properties are mainly evaluated from direct measurements obtained from

either laboratory or field tests. As an alternative, or in conjunction with test

measurements, ground properties can also be estimated from correlations and

published summaries of "typical" values. The advantages of their use are that both

are simple, easy to use and they provide a cheap, if crude, means for the rapid

estimation of ground properties.

A knowledge-based system has been developed to provide a tool for storing and

using correlations and "typical" values for the estimation of ground properties. The

system was implemented in the ProKappa software, running under X windows on a

Sun Spark 2 workstation. The system developed is intended to provide geotechnical

engineers with a decision-support tool and to demonstrate the applicability of

knowledge-based system technology to the ground property evaluation problem.

The development of this system involved the identification and collection of the

domain knowledge (knowledge associated with the ground, ground properties,

"typical" values and correlations, which was elicited from the relevant technical

literature). Generic forms for the representation of correlations and "typical" values

in the system were developed (which provide a consistent form for the

representation).

The system also incorporates an inference engine, which includes the process that

makes use of this knowledge to produce estimations for ground properties; a user

interface to facilitate the use of the system; and finally knowledge acquisition

modules for updating of existing knowledge, to ensure that the system will maintain

its functionality in the future.

iv

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Dr David Toll, for his

continuous support and guidance throughout the course of my work. His constant

supply of ideas in our conversations was an significant source of inspiration.

This work was partially funded by the Greek NATO Fellowships programs and their

contribution is acknowledged.

Also I would like to thank all the members of staff of the School of Engineering and

in particular Professor P. B. Attewell for both his social and academic support.

Many thanks also to Bernard McEleavey, Steve Richardson and Brian Scurr for

their help during the laboratory demonstration, and to Trevor Nancarrow for his

contribution in overcoming many software and hardware problems.

Many thanks to my cousin, football and basketball partner Nikitas Vaptismas, the

sweet and laid-back Marina Moula, the caring and ever supporting Dora Robi, the

round mount of rebound and king of the sting Yianni Giola, Panagiotis "the boss"

Dounis and to captain llias Papadimitropoulos. Furthermore to Andy Oliver for his

tireless help during the development of the program, but moreover for his friendship

and his notorious psychoanalytical abilities.

Thanks also to all the lads from the football and basketball teams for their

companionship and especially to Raz "main man" Ashraf (respect), "cool" Fanis

Antoniou, Evangelos "backshot" Mavrikis and Csilla "sweet wrist" Szabo. In

addition my thanks go to Christian Habeck, Sandra (Sandrula) Rothwell, Vicky

Malandraki, Panos Kokkonis, Rory Barr, Anna Korea, Adnan Bashir, Alex Iskandar

and Haluk Bayracdar, whose friendship made my residence in Durham more

V

interesting. Special thanks to Andrew "get one together" Shrubsall for preparing the

knot of the tie.

Finally, I dedicate this thesis to my parents, whose care, support, but most important

love, helped me to realise all my plans so far. I want you both to know that you are

very special to me and I love you.

vi

CONTENTS

CHAPTER 1 	 1

Introduction 	 1

1.1 General 	 1

1.2 Overview of the thesis 	 3

CHAPTER 2 	 6

The application of Knowledge-Based Systems to the estimation of ground

properties 	 6

2.1 Introduction 	 6

2.2 KBS components 	 8

2.3 Development stages of KBS. 	 9

2.4 KBS in Geotechnical Engineering. 	 15

2.5 Discussion. 	 20

2.6 Conclusions 	 22

CHAPTER 3 	 23

Development tools. 	 23

3.1 Introduction 	 23

3.2 The ProKappa software. 	 23

3.2.1 Objects, slots, facets and applications 	 24

3.2.2 Programming languages 	 27

3.2.3 User interface development tools. 	 31

vii

3.2.4 Monitors and Active Relations. 	 34

3.3.5 Summary 	 	 38

CHAPTER 4 	 39

Representing the ground and its properties 	 39

4.1 Introduction 	 39

4.2 A model for representing the ground 	 41

4.2.1 Rocks 	 42

4.2.2 Soils 	 46

4.3 A model for representing ground parameters. 	 49

4.4 Implementation in the system 	 54

4.5 The representation of "typical" values. 	 56

4.6 User interface facilities 	 62

4.7 A knowledge acquisition module for typical values. 	 69

4.8 Summary 	 78

CHAPTER 5 	 81

Representing correlations in a structured form 	 81

5.1 Introduction 	 81

5.2 Representing correlations in a structured form 	 85

5.2.1. Variables 	 85

5.2.2. The estimation procedure 	 88

5.2.3. Applicability 	 88

5.2.4. Reliability 	 90

5.2.5. Comments 	 92

5.3 Implementation in the system 	 92

5.3.1 The Correlation application 	 93

viii

Introduction 	 93

Variable slots 	 95

Parameter slots 	 97

Data_Check! slot 	 100

The Estimation Procedure 	 104

Applicability Slots 	 105

Reliability 	 106

5.3.2 The Correction module 	 106

5.3.3 The CorrUI module 	 107

5.4 Summary 	 119

CHAPTER 6 	 123

A knowledge acquisition module for the implementation of correlations. 	 123

6.1 Introduction 	 123

6.2 Establishment of the basic parameter 	 124

6.3 Variables and parameters 	 129

6.4 Implementation of estimation procedures. 	 140

6.5 Applicability definition. 	 145

6.6 Reliability definition. 	 151

6.7 Comments 	 152

6.8 Updating correlations. 	 152

6.9 Overview of the Update module. 	 154

CHAPTER 7 	 156

Discussion - Future development 	 156

7.1 Discussion. 	 156

7.1 Future development 	 162

ix

CHAPTER 8 	 165

Conclusions 	 165

References 	 167

Appendix A 	 A-1

Correlations and Corrections 	 A-1

Part 1: Correlations. 	 A-1

Part 2: Corrections 	 A-38

References 	 A-43

Appendix B 	 B-1

Typical values for ground properties 	 B-1

Appendix C 	 C-1

The ProTalk Code 	 C-1

x

LIST OF TABLES

Table 4.1 The representation scheme for ground parameters 	 51

Table 4.2 The facets of the PHIpeak slot of the poorly graded sand, very

loose well graded sand and angular dense well graded sand objects 	 61

Table 5.1 Basic variables slots and their facets 	 97

Table 5.2 Intermediate parameters slots and their facets 	 99

Table 5.3 An example of a one to one representation for a three variable

correlation 	 102

xi

LIST OF FIGURES

Figure 4.1 Representation of sedimentary rocks. 	 44

Figure 4.2 Representation of igneous and metamorphic rocks 	 45

Figure 4.3 Representation scheme for soils 	 48

Figure 4.4 The slots and facets of the Su_CIUC and Plas objects 	 55

Figure 4.5 The representation of "typical" values of peak effective angle of

friction, PHIpeak for pure clay. 	 58

Figure 4.6 The object hierarchy for the representation of typical values of

angle of friction for clean sand (depending on grading, relative density and

angularity) 	 61

Figure 4.7 Figure 4.7 The "menu" dialog box 	 63

Figure 4.8 The dialog box for browsing the ground types object base 	 64

Figure 4.9 A dialog box displaying typical values of dry density for silty

sands 	 67

Figure 4.10 The "Parameters search" dialog box. 	 68

Figure 4.11 The dialog box for selecting parameters to update 	 70

Figure 4.12 The dialog box for specifying the parameters to implement. 	 71

Figure 4.13 The dialog box for selecting required parameters. 	 71

Figure 4.14 The dialog box for assigning a required parameter. 	 72

Figure 4.15 The facets of the UserData slot 	 74

Figure 4.16 The "Required parameters preview" dialog box 	 75

Figure 4.17 The dialog box for implementing typical values of the

coefficient of volume compressibility, my, for a high plasticity pure clay. 	 76

Figure 5.1 The slots of the Su7LI correlation object 	 94

Figure 5.2 The facets of the LI slot of the Su7LI correlation object 	 95

xii

Figure 5.3 The facets of the Parameter slot of the Su7LI correlation object

Figure 5.4 The representation of applicability 	

Figure 5.5 The "search" dialog box 	

Figure 5.6 The dialog box for specifying the correlation's/correction's

parameters 	

Figure 5.7 The search settings preview dialog box 	

Figure 5.8 The Preview search results dialog box 	

Figure 5.9 The display correlations/corrections dialog box 	

Figure 5.10 A correlation dialog box 	

Figure 5.11 An example of the "Applicability" dialog box 	

Figure 5.12 An example of the "Reliability" dialog box 	

Figure 5.13 An example of the "Comments" dialog box 	

Figure 6.1 The Step 1 dialog box 	

Figure 6.2 Parameter information display dialog boxes 	

Figure 6.3 The dialog box for defining a new qualitative parameter 	

Figure 6.4 The dialog box for defining a new quantitative parameter 	

Figure 6.5 The Step2 dialog box 	

Figure 6.6 The dialog box for specifying applicability range of a

quantitative variable 	 131

Figure 6.7 The dialog box for specifying the permissible values of a

qualitative variable 	 132

The dialog box for implementing quantitative intermediate

The dialog box for implementing quantitative intermediate

	 136

An example for the Show Preview dialog box 	 137

Estimation procedure definition for intermediate variables 	 140

142

	 98

106

108

109

111

112

112

113

117

118

119

124

126

127

127

129

Figure 6.8

variables 	

Figure 6.9

parameters

Figure 6.10

Figure 6.11

134

Figure 6.12 The dialog box displaying mathematical functions in ProTalk 	

Figure 6.13 The "estwin" dialog box 	 144

Figure 6.14	 The dialog box displaying the permissible values of

compressibility 	 145

Figure 6.15 The dialog box for defining applicable ground types 	 146

Figure 6.16 The dialog box for selecting parameters for applicability

restrictions 	 147

Figure 6.17 The dialog box for defining applicability restrictions for a

quantitative parameter 	 148

Figure 6.18 The dialog box for defining applicability restrictions for a

qualitative parameter 	 148

Figure 6.19 The "Preview Applicability definition" dialog box 	 150

Figure 6.20 The "Reliability definition" dialog box 	 151

Figure 6.21 The dialog box for implementing comments 	 152

xiv

CHAPTER 1

Introduction.

1.1 General.

Geotechnical engineering aims to describe the behaviour and performance of the

ground as a construction material. The assessment of the engineering behaviour of

the ground requires the evaluation of its properties. This in turn can be achieved by

means of the following methodologies [Kulhawy, 1992]:

• direct measurements, obtained from either laboratory or field tests;

• back analysis of either reduced or full-scale loading tests (for performance

properties; e.g. strength or deformation);

• from the measurement of other ground properties, through established empirical

correlations based on statistical interpretations of observations in similar past

cases;

• by using published summaries for the estimation of "typical", "average", or

"representative" values;

• by using well-founded theoretical models (e.g. using Cam clay to estimate the

properties of a real clay);

• and by using assumptions of material behaviour within a particular model,

which then dictates the values of other properties (e.g. assuming undrained

saturated isotropic linear behaviour to infer that the Poisson's ratio, v = 0.5 and

the elastic modulus, E = 3G).

1

The most common way for evaluating ground properties is through geotechnical

testing (either in-situ or in the laboratory). Geotechnical testing is probably the

most reliable source of information for ground properties, but it is also a very costly

and time consuming process. Furthermore the testing conditions may not simulate

the ground conditions in-situ and errors may occur as a result of ground disturbance

or sample cutting, storage and preparation etc. The same applies to the other

methodologies. Therefore, a combined approach to the property evaluation problem

would provide more certainty in the prediction and also the ability to cross-check

the results of different methodologies.

Extensive geotechnical testing of specific ground types (having specific geological

origins) has led to the accumulation of empirical knowledge about their properties.

The application of statistical techniques to this knowledge has led to the

establishment of "typical" ranges of values of a property for a specific ground type

and also empirical relations between ground properties have been defined within a

specific ground type. The former are described as "typical" values of ground

properties and the latter as correlations between ground properties. Both are used as

means for estimating ground properties. Despite the uncertainties associated with

their use they provide a cheap and quick means for assessing ground properties and

cross-checking geotechnical test results.

The work described here focuses on the use of correlations and published summaries

of "typical" values. The aim of this work is to provide a framework for storing and

using correlations and "typical" values for the estimation of ground properties. It is

thought that this framework, which should be used in conjunction with the other

methodologies, will provide a geotechnical engineer with a decision-support tool in

the property evaluation problem.

2

Furthermore the project presented in this thesis aims to demonstrate the applicability

of knowledge-based system technology to the area of ground properties estimation

from correlations and "typical" values. Knowledge-based system technology

provides a medium that can accommodate the representation and use of the

knowledge required for the estimation of ground properties.

A knowledge-based system has been developed to provide a tool for storing and

using empirical knowledge for the estimation of ground properties. The

development of this system involved: the identification, collection and

representation of the domain knowledge (relevant to the ground, ground properties,

"typical" values and correlations); the implementation of the process that makes use

of this knowledge (development of the inference engine); the design and

implementation of a user interface to facilitate the use of the system; and finally the

design and implementation of knowledge acquisition modules for updating the

existing knowledge, to ensure that the system will maintain its usefulness in the

future.

In the following section a brief description of the remaining chapters in this thesis is

presented.

1.2 Overview of the thesis.

An introduction to knowledge-based system technology is presented in Chapter 2,

followed by a review of existing applications in the area of ground properties

estimation. The chapter concludes with a general discussion on the development of

these applications.

3

The selection of the development tools (hardware and software) is discussed in

Chapter 3. In the last part of the chapter, a detailed description of the ProKappa

software (the software used) is presented. It is intended that the reader will become

familiar with ProKappa concepts and terminology which are subsequently used in

the remaining chapters.

The design and implementation of three of the system's knowledge bases is

presented in Chapter 4. These are the Ground, Ground parameters and "Typical"

values of ground properties knowledge bases. The chapter concludes with a detailed

presentation of the user interface facilities relevant to the use of these knowledge

bases and the knowledge acquisition module for "typical" values (including example

consultations with the system).

A discussion on the usefulness and limitations from the use of correlations for the

estimation of ground properties is presented in the first section of Chapter 5. This is

followed by the description of a formal way of representing correlations. Finally,

the last section of the chapter is concerned with the description of the part of the

system for storing correlations and the user interface facilities for using correlations

to infer estimations of ground properties.

In Chapter 6 a detailed description of the knowledge acquisition procedures for

implementing new correlations in the system, as well as for updating those already

implemented is presented.

Chapter 7 consists of a general discussion of the work presented in this thesis. The

main features of the system developed are briefly reviewed followed by

recommendations for future improvements. The conclusions resulting from the

development of the knowledge-based system for the estimation of ground properties

4

are presented in Chapter 8. A list of references included within the main text,

follows Chapter 8.

Appendix A contains the correlations stored in the system, including a separate

reference list. "Typical" values of ground properties are included in Appendix B.

Finally, the ProTalk code of the system for the estimation of ground properties is

presented in Appendix C.

5

CHAPTER 2

The application of Knowledge-Based Systems to the

estimation of ground properties.

2.1 Introduction.

Geotechnical engineering is a discipline of civil engineering, dealing with the

properties of the earth's crust as they relate to construction. The inherent variability

of the ground, both spatially and in time, along with the large number of factors

affecting ground conditions, and the complexity arising from their combination,

have made geotechnical engineering rely heavily on practical experience and

empirical knowledge.

Also it is common, in problems related to the ground, that the engineer has to cope

with incomplete and/or uncertain data and methodologies. These problems are

usually termed ill-defined or ill-structured problems, and sound engineering

judgement based on past experience is again a crucial factor.

The knowledge of an area of expertise is generally of two types: the facts of the

domains, which is commonly shared declarative knowledge, and the heuristic

knowledge, which is knowledge that constitutes the rules of expertise, the rules of

good practice, the judgement rules of the field, and the rules of plausible reasoning

[Feigenbaum, 1983]. Because of its nature, formalisation of heuristic knowledge

using algorithmic programming techniques, has never been entirely successful.

6

Furthermore, procedural programs can not deal with incomplete data, or ill-defined

problems.

Therefore, a need for computer programs that will be able to incorporate heuristic

knowledge arises, which can handle ill-defined problems with incomplete and/or

uncertain data.

Knowledge-based systems (KBS) are computer programs that contain domain

specific knowledge and inference procedures for the solution of ill-structured

problems. If these systems operate at an expert's level (simulating the expert's

reasoning), they are termed expert systems. Mullarkey [1987], notices that the term

knowledge-based systems is a more accurate descriptor of most current systems,

since a complete representation of the expert's reasoning scheme is a very complex

procedure.

Various other descriptions exist in the literature [Adeli, 1988], but most of them do

not necessarily distinguish knowledge-based systems from many conventional

programs. Maher and Allen [1987] present some of the distinguishing

characteristics. The most important of these are:

• Separation of knowledge and control in ICBS, while in conventional programs

knowledge and control are integrated.

• Heuristic (inferential) procedures are used in KBS versus algorithmic in

• conventional programs.

• KBS systems are oriented towards symbolic processing, in contrast to

conventional programs which are oriented towards numerical processing.

7

In the following sections of this chapter a brief account of KBS fundamentals will

be presented, followed by a review of some existing KBS applications for the

estimation of ground parameters.

2.2 KBS components.

One of the basic features of a KBS is the separation of the domain knowledge from

the control of the execution. This leads to the identification of two main

components of a KBS, the knowledge base and the inference mechanism.

The knowledge base contains the domain specific knowledge, usually in the form of

facts and heuristics. Implementation of the knowledge should be performed in a

way that will provide transparency of the knowledge base, so that it can be easily

accessed and modified. The latter is a crucial requirement for KBS, since

knowledge needs to be continuously updated and modified.

The inference mechanism is the part of a KBS that controls the reasoning process

(execution) of the system. It uses the knowledge in the knowledge base, to infer

conclusions about the solution of the selected problem. All the conclusions inferred

by the system, together with the input for a specific problem, form another part of a

KBS, usually termed the context.

The context, also known as the working memory of the system, initially contains the

data defining the problem to be solved by the system, but as the reasoning process

continues it changes dynamically to incorporate all the intermediate results as well

as the solution. At any point during the execution, the amount of information stored

in the context, reflects the state of the problem currently being solved by the system.

8

A typical variation to the basic architecture described above is the blackboard

model, which is usually preferred when the problem to be solved requires multiple

sources and/or levels of knowledge. In this case the knowledge base is separated

into a number of different knowledge sources, that communicate through the

blackboard, which also serves as the context of the system.

Additional components of a KBS are the user interface, the knowledge acquisition

module and the explanation facility. The user interface is the module that allows

users to communicate with the system. Three major requirements for the

development of a powerful and easy-to-use user interface are simplicity of form,

clarity of expression, and aesthetics. The user interface should also be combined

with an explanation facility, that will help users to understand the reasoning process,

enabling them to check the conclusions or to learn from the system.

Finally the importance of the development of a knowledge acquisition model is

reflected in its dual function; as a means of implementing the knowledge in the

system during the development stage, and to ensure updateability of the knowledge

after the system's completion.

2.3 Development stages of KBS.

In this section the basic development stages of a KBS are presented as a linear

ordered process. This is only done for reasons of simplicity of presentation since it

is widely accepted that one does not build a KBS in a simple linear manner, rather

the development of such a system is a cyclical and incremental process.

The first part in the development procedure of a KBS is the selection of a project

and the identification of the specific tasks to be dealt with by the system. The tasks

9

to be modelled in the system must be fairly narrow, clearly defined, and domain

intensive [Dym, 1987].

After the definition of the project's aims, all the domain specific knowledge needed

for tackling the imposed tasks, should be collected. The process of obtaining this

knowledge by using text books, Design Standards, Codes of Practice, other available

literature, existing knowledge-based systems, as well as by interaction with human

experts is known as the knowledge acquisition stage [Miles and Moore, 19941.

Knowledge elicitation is the subsection of knowledge acquisition, which covers the

acquisition of knowledge by interaction with human experts. Formal methodologies

for knowledge elicitation though many, are usually complex and their use is rather

limited. Some of these methods are focused or structured interviews and are based

on cognitive psychology techniques (e.g. Cooke and McDonald, 1986). Cordingley

[1989], considers three major factors affecting the choice of knowledge acquisition

techniques: the nature of the source of the knowledge; what form the knowledge

takes; and what is allowed to drive the selection of relevant knowledge and the

elicitation process itself. In most geotechnical KBS, knowledge is usually acquired

from the technical literature, from structured or unstructured interviews with domain

experts, or from questionnaires.

The next development stage is the implementation of the KBS, which consists on

software and hardware selection (or in some cases software development),

knowledge representation and inference model adoption.

KBS's building tools can be categorised according to hardware sophistication and

software system complexity [Mullarkey, 1987]. In terms of hard y« are, almost all

types of computers, from microcomputers up to special purpose workstations, can

be useful for building KBS. The selection of hardware always depends on the

specific software to be used, but one should bear in mind that climbing the scale of

10

sophistication increases the capabilities of the system, but may also obstruct its

widespread commercial use.

The available software for building ICBS can be subdivided into three main

categories, namely general purpose programming languages, general purpose

representation languages, and expert system shells [MuHarkey, 1987].

The first category includes the conventional programming languages, such as C,

FORTRAN, Pascal etc. Their major advantage is portability and compatibility, but

since they are mainly oriented towards numerical processing, they do not provide

the best environment for 'CBS development.

General purpose representation languages, such as LISP and PROLOG, are more

oriented towards symbolic processing since they were created for building ICBS.

These are declarative languages in which information is presented in a descriptive

form and they provide greater flexibility in implementing KBS.

The third category includes specially developed packages for the rapid prototyping

of ICBS. These packages usually provide knowledge representation forms and

inference mechanisms. Depending on their origin, they could be divided into

domain-derived and domain-independent.

In the first case the shell consists of the inference engine and probably the

knowledge representation scheme and other components of an existing KBS, such as

EN/1 7CIN, [Van Melle, 1979] and EXPERT [Weiss and Kulikowski, 1979]. These

systems lack in flexibility and are mostly used for the same class of problem as the

original system.

11

Domain-independent frameworks, on the other hand, are more flexible since they

were not developed for a specific application domain. These frameworks may

contain multiple forms of knowledge representation and several inference models,

and sometimes additional modules, such as explanation facilities. Expert system

development environments are the most sophisticated tool for developing KBS.

They include features such as: integrated editors, system browsers, debugging tools,

user interface and explanation system development facilities. Such systems are

usually fully developed system building workbenches. They provide maximum

flexibility in KBS development, but they have high software costs, they can only be

used on special purpose hardware, and they require trained users.

The next development stage, is the implementation of the knowledge and the control

strategy (adoption of inference models) to be used in the system. Knowledge

implementation is usually preceded by the development of a knowledge acquisition

module. The most common knowledge representation schemes are, logic-based,

rule-based and network-based representation (a more detail review of alternative

methods for knowledge representation can be found in Gevarter, 1987).

In a logic-based representation scheme, knowledge is represented as assertions in

logic. In a rule-based representation scheme, knowledge is represented in the form

of rules, usually consisting of an IF part (premise or condition of the rule), a THEN

part (conclusion or action) and an optional ELSE part (alternative). These rules are

usually termed production rules. They have the advantages of simplicity,

homogeneity (of the represented knowledge), and are easily inspected and extended.

Their main disadvantage is that general relations between pieces of knowledge are

difficult to express.

In a network-based representation scheme, knowledge is represented as nodes, and

relations between pieces of information are represented as links between nodes.

12

Frames, are a generalisation of networks. A frame represents a more general

concept about a piece of knowledge which contains attributes (represented as slots),

and their values (slot values). Frames can sometimes be structured in a hierarchical

mode, enabling the lower level frames to inherit attributes and values from their

ancestors. Objects are very similar to frames (sometimes these two terms are used

as synonymous in the literature), in that they also contain slots, but are different

since they are always structured in a hierarchical mode. Furthermore in objects, slot

values can also be pointers to other objects or attached procedures for computing the

values of other slots.

The control strategy of a KBS depends on the nature of the problem the system

deals with, and the knowledge representation scheme used. The most commonly

used inference models, especially in conjunction with a rule-based representation

scheme, are forward chaining and backward chaining, but object-based

representation schemes can also be coupled with the above techniques.

A forward chaining, or data driven, inference engine works from an initial state of

facts to a goal state (conclusions). A backward chaining (deductive reasoning), or

goal driven, inference engine assumes a goal state and then reasons back to known

facts or data, to check the validity of the assumption. A combination of the above

techniques, called mixed chaining, is also allowed in some systems. No formal

methodology exists for the selection of an inference model, but forward chaining

best simulates a generative (or formative) reasoning process which is usually met in

design problems (formation approach), while backward chaining reasoning best

simulates diagnostic problems (derivation approach).

The models described above can be combined with other control strategies which

dictate the order of activation of the applicable rules (in a rule-based KBS). The

most common ones are breadth first search, where all the applicable rules are

13

executed in turn before failure or success is tested for each one, and depth first

search, where the first of the applicable rules is exhaustively explored before

examining the next one.

Finally object-oriented programming is an approach in which both information

about an object and the appropriate procedures are grouped together in the same

data structure (the object), and procedures can be invoked by messages sent to the

object from a central controller, or another object. The major advantages of object-

oriented programming are that it allows for a truly modular programming

environment, where redundancies in coding are kept to a minimum and provides a

means of managing large programming projects by breaking up large problems into

smaller, independently functioning, highly visible parts [Tello, 1989].

A very important requirement for a KBS is the ability to reason with uncertainty.

Uncertainty may be present in the factual and heuristic knowledge implemented in

the system and in the input data provided by the user. The most common ways to

model uncertainty in data and inference are probability theory, Dempster-Shafer

theory of evidence and fuzzy reasoning. A critical review of the above methods can

be found in a paper by Groothuizen [1986]. It should be further noted, that

uncertainty assessment and modelling in ICBS is still a very active and controversial

area of research. The main reason for this controversy is that no agreed model of

how the human mind processes uncertainty in the real world exists, and inevitably

there can be no single method with which this uncertainty can be represented [Miles

and Moore, 1994]. Consequently, they recommend that the decision to include or

not Uncertainty in a KBS (and if yes, which model of uncertainty should be used)

should only be made by the system's developer.

In the concluding development stage the user interface, usually coupled with some

form of explanation facility, is implemented, followed by the evaluation of the

14

system's performance. The most common types of user interfaces are question and

answer, menus, icons, form filling, command languages and natural language. Each

of the above types are associated with advantages and disadvantages which are

discussed by Sutcliffe, [1988].

2.4 KBS in Geotechnical Engineering.

KBS technology has been applied in the area of geotechnical engineering and

several systems have been developed that deal with a wide variety of problems

encountered in the area. A detailed review of many of these systems is given by

Moula et al [1994]. This section is focused only on KBS that deal with estimation

of ground properties.

CASS (Computerised Adviser on Soil Strength) [Gillette, 1991], is an expert system

to provide advice on the selection of soil shear strength parameters for use in slope

stability analysis.

CASS can help in the interpretation of the results of triaxial confined and

unconfined compression, direct shear, and field vane tests. According to the

information regarding soil type, test procedures, and the results (provided by the

user), the system attempts to infer shear strength parameters for use in slope stability

analysis. In the case of field vane tests a correction is applied to the results (e.g.

Bjerrum, 1972), while in triaxial tests performed without back-pressure saturation,

an empirical method is used to account for the effects of capillarity in the test

specimen, on the values of c' and V.

15

If no test results are available the system can estimate possible ranges for strength

parameters, from soil descriptions and from correlations with classification

parameters, such as grading, plasticity etc. The system also cross-checks the various

inputs and highlights inconsistencies (e.g. when a soil is described as slightly

plastic, yet a plasticity index of 40 is provided by the user), allowing the user to

correct them at the stage of their identification without having to restart the

consultation. Finally it provides the user with recommendations involving general

information and warnings relevant to the soil and test types (if any) in question.

Knowledge was implemented in the system using the rule-based expert system shell

Personal Consultant Plus (PC+) and runs on an AT-class personal computer having

extended memory. The shell consists of a backward chaining inference engine

which drives the rules to infer the desired conclusions, a development interface

which translates rules written in a "near English" form into LISP, and a user

interface which can display graphics as a part of queries and conclusions. The

knowledge was acquired from the technical literature and from interviews with a

domain expert (an experienced USBR employee having nearly 50 years of service)

and was translated into rules for PC+.

Davey-Wilson [1991], presents a KBS for the estimation of peak effective angle of

friction of non-cohesive soils, supplemented by a simulation of the execution of the

shear box test.

The system is able to estimate the peak effective angle of friction of a non-cohesive

soil, to a perceived maximum accuracy of ±1 0, using as input descriptive soil

parameters such as: particle size distribution, grain size, in-situ density and

homogeneity. The level of accuracy of the parameter in question depends on the

quality of the input soil description (the more information available the higher the

16

accuracy of the value of the parameter). The knowledge was acquired from the

literature [Terzaghi and Peck, 1967] and was implemented in the knowledge base in

a simple rule-based structure of if-then-else statements. The same system can also

simulate the execution of the laboratory shear box test with step by step interaction

with the user. The author suggests that the educational part of the program could be

further developed by adding sound effects or digitised photographs, or even by

linking it with a video.

The system was implemented using the object oriented software HyperCard, and

runs on an Apple Macintosh computer. The HyperCard software is a series of cards,

each of which is a separate object, that can be filled in with pictures or text. A stack

of cards (application) can contain up to 32000 cards and can be easily combined

with other stacks. HyperCard enables an easy construction of a highly graphical

environment, and also includes an object oriented language, called HyperTalk.

The system incorporates a graphical interface which allows the selection of the

parameters required by the system (such as angularity of the grains), to be made

from comparisons with pictures of soil grains and their size, type and distribution.

CONE [MuHarkey, 1986; Mullarkey and Fenves, 1986] is a development prototype

KBS, for the interpretation of raw Cone Penetration Test data (measuring the

resistance generated by pushing a cone into the ground).

The function of the system incorporates a validity scan of the raw CPT data (the

cone resistance qc and the local side friction fs), classification of the soil types,

including profiling of the layers, and inference of the effective angle of friction of

sands and undrained shear strength of clays. Soil type classification is based on the

use of two soil classification systems - Dutch [Begemann et al, 1982] and Douglas

17

& Olsen [1981] classification systems - plus a third one, which is a fuzzy set

representation of the raw data from the Douglas & Olsen classification system. The

shear strength parameters of sands and clays are estimated using empirically and

rationally based methods.

Both linguistic data (soil classification) and numerical data (4: 0 ', Su), along with their

incorporated uncertainties (vagueness and statistical variability respectively), are

represented as fuzzy sets with respect to the linguistic variable. The soil type for

example, is represented as a three element fuzzy set (sand, silt, clay) along with the

corresponding numerical values indicating the membership of each element in it

(encryption process). The appropriateness of a soil classification system (with

respect to site location), the accuracy of the system in respect to certain soil types

(Belief), and the relative importance of the inferred information (Weight) are also

expressed as linguistic variables (fuzzy sets represented over a five-valued

universe). The Belief and Weight are used as fuzzy set modifiers incorporating the

uncertainty in a certain piece of information (soil type, or shear strength

parameters). Finally, during the translation process, the modified fuzzy set is

translated to a verbal (soil type) or numerical (4i, Su) descriptor accompanied with

its belief value.

Cone has been implemented using OPS5 rules, grouped according to their specific

subtasks (as rulesets), and LISP functions. The system, is classified as a

development prototype, and has been validated using published cases and proved to

be fairly reliable (80% accuracy). A typical run of CONE may take up to 1.5 hours

on a lightly loaded Dec-20, depending on the length of the CPT log.

The Rock Mass Classification system, RMC [Juang and Lee, 1989], is an expert

system for the assessment of the engineering behaviour of rock masses.

18

The knowledge in the system was predominately based on Bieniawski's [1976]

geomechanics classification scheme. According to this knowledge, there are six

major parameters affecting the classification of a rock mass: strength of the intact

rock material, rock quality designation (RQD), spacing and condition of joints,

groundwater condition, and joint orientation. Knowledge was implemented as facts

and rules, and was stored in external databases. The system may be grouped into

five sections: the declaration section, the rules section, the input section, the parallel

processing section, and the consolidation section.

After the declaration section, the system, using the facts in the database and 11

initial meta-rules, generates 182 production rules for subsequent use. In the next

stage, the problem specific data is input to the system through an external program,

called GETDATA, which is actually a user interface. During the parallel processing

stage, rules are processed enabling some preliminary conclusions (for the values of

the factors affecting classification) to be reached. In the last stage, an external

program called FUZZY, performs a fuzzy manipulation of the results, incorporating

the different supports for the preliminary conclusions, arriving thus at the final

conclusions.

The system has been developed in the expert system shell FLOPS, (Fuzzy LOgic

Production System) and runs under the MS-DOS environment on microcomputers.

FLOPS features approximate reasoning, using fuzzy logic, deductive and inductive

reasoning, and supports both forward and backward chaining inference mechanisms.

It employs a relational structure for data stored on a blackboard, and has the ability

to call other programs and exchange data through the blackboard (thus overcoming

the limitations of using a small computer).

The system was tested for a limited number of case studies and its results compared

favourably with domain experts' opinions. Some future developments include

19

further testing and calibration by experts, and the incorporation of additional

geological factors.

2.5 Discussion.

The systems presented above deal with specific areas of estimation of ground

properties. Their major characteristic is that they address a very restricted area of

application; Cass deals with estimation of shear strength parameters for slope

stability, Davey-Wilson's KBS with the estimation of peak friction angle of non-

cohesive soils, Cone with the interpretation of CPT results and the RMC system,

which has relatively the most extended area of application, with the engineering

classification of a rock mass.

Another common feature of the systems is that they employ empirical or semi-

empirical procedures to estimate ground properties. Cass employs semi-empirical

and empirical procedures to correct the results of field and laboratory tests and, as

well as Davey-Wilson's system, uses soil descriptions to produce estimates of shear

strength parameters. Cone uses both empirical and rationally-based methods for the

interpretation of CPT results. Finally the RMC system generates its results relying

completely on an empirical procedure (Bieniawski's engineering rock mass

classification).

The use of empirical procedures is accommodated with uncertainty that should be

incorporated either into the knowledge directly, or in the inference procedure. This

is a crucial requirement, since the inclusion of uncertainty of the estimated

parameters will provide an evaluation of the risk involved with their subsequent use

in analysis or design. Of course there are many aspects of uncertainty in the

estimation of ground parameters and the identification and evaluation of each one

20

(along with their combined effects on the estimated parameter) is no trivial task. An

attempt to identify the different aspects of uncertainty, associated with ground

properties estimation, can be found in Kulhawy, [1992] and will be discussed

further in Chapter 5.

In the systems presented above different methods for incorporating uncertainty have

been used. In Cass the results of field and laboratory tests are corrected in order to

provide a conservative design value (to be used in slope stability analysis). The

correction procedures actually produce a range of values for the desired parameters,

but the user is only presented with a value that falls in the lower band of this range

(conservative estimation), which might be "safe", in terms of design, but may in fact

prove to be uneconomical. Furthermore the system allows the user to input only

one value to describe a series of tests (probably with different results), thus

eliminating consideration of the spatial variability, which otherwise could be useful

for identifying "weak" spots in the ground.

In Davey-Wilson's system, uncertainty is introduced in the inference mechanism as

an amount proportional to the quantity of information provided by the user. It is

supposed by the system that four descriptive qualitative parameters are adequate to

produce an estimate of peak effective angle of friction of non-cohesive soils with an

accuracy of ±1°. This of course is not always the case, because there are many more

factors affecting the angle of friction of a soil which are not included in the

inference, and because the friction angle of special soil types (such as sands with a

small percentage of fines) cannot be estimated correctly from a procedure based on

data obtained from typical soils (e.g. clean sands).

In contrast to the above the Cone and RMC systems employ a more formal way of

representing uncertainty in the inference. In Cone all the estimated information

(soil type, shear strength parameters) is represented as fuzzy sets, and the variables

21

Weight and Belief (the reliability and applicability of the estimation) are used as

modifiers, to incorporate uncertainty into the inferred parameter. Each estimated

value for a parameter is accommodated with its belief, which serves as a measure of

the quality of the information.

In the RMC system, fuzzy logic is used to incorporate the different supports for the

preliminary conclusions. Therefore all the inferred information is combined with

respect to its relative importance and uncertainty, thus providing a weighted

combination of the factors affecting engineering rock mass classification.

2.6 Conclusions.

The systems developed in the area of estimation of ground properties are few,

having a restricted area of application, are predominately based on empirical

procedures, and employ different methods of incorporating uncertainty in their

inference mechanisms.

There is a need for development of new applications, that will address a wider area

of application (instead of relying on a limited number of estimation procedures), in

order to provide a more general framework for estimating ground properties. This

framework should be based on a consistent and complete representation scheme for

ground properties and procedures for their estimation. The latter should be

represented in a form that will allow for the inclusion of the quality to the inferred

information, and also for updating, as well as implementing new estimation

procedures, ensuring that the system will maintain its usefulness in the future.

22

CHAPTER 3

Development tools.

3.1 Introduction.

The system for the estimation of ground properties was implemented using the

ProKappa software, running under X windows on a Sun Spark 2 workstation. The

main reasons were that this software and hardware were available at the time and

that it was thought that they could provide a favourable environment for the

development of the desired system application. The advantages and drawbacks of

implementing a KBS using an expert systems development environment on a

workstation are discussed in §2.3.

In the remaining sections of this chapter an introduction to the ProKappa software

will be presented. This is done in order that the reader will become familiar with

the terminology used and to illustrate some of the ProKappa features that have been

used in the development of the system.

3.2 The ProKappa software.

ProKappa is a C-based software development system that integrates object-oriented

programming, rule-based reasoning and SQL database access in an easy to use

graphical environment. The ProKappa system incorporates a number of features for

23

the rapid prototyping and development of systems applications. These features are

presented in the following sections. The ProKappa software is discussed in greater

detail in the ProKappa User's Guide [Intellicorp, 1991].

3.2.1 Objects, slots, facets and applications.

Objects are structures that provide a formal way of organising related pieces of data.

They can represent templates for sets of real world entities or individual entities.

Objects are used to hold descriptive data about the entity, thing, item, concept,

category or template being represented. They can also contain special functions

called methods, which define behaviour for the entity being represented.

The ProKappa system has two kinds of objects: classes and instances. Classes are

templates for sets of entities with common characteristics. Instances represent

individual objects in the application domain. Classes and instances are organised

hierarchically so that information specified in a class is inherited by its instances.

Object hierarchies may have any number of levels. The terms subclass and

superclass are used to describe the relationships between objects at different levels

in the hierarchy. For a class object all the classes in lower levels of the hierarchy

are its subclasses and all in higher levels, its superclasses. In addition to the terms

class, subclass, superclass and instance, the following terminology is used to

describe possible relationships among objects:

parent The object directly above a specified object in the hierarchy, also

referred as a direct superclass. An object may have more than one

parents.

child	 The object directly below a specified object in the hierarchy, also

referred as a direct subclass or a direct instance.

24

ancestor	 A superclass of an object.

descendant	 A subclass or instance of an object.

Both classes and instances contain slots, which are used to represent characteristics

or attributes of objects. Slots represent three types of information:

• Attributes, or descriptive information about an object.

• Actions, called methods, that the object can perform.

• Relationships to other objects in the system.

According to their values, slots can be subdivided into the following categories:

single-value slots, multi-value slots and method slots. The two former are used to

store values as symbols (a sequence of alphanumeric characters including

underscores and exclamation marks), strings (a sequence of characters and spaces

surrounded by double quotes), numbers, lists, arrays or pointers to other objects.

Method slots store values which are pointers to procedures that define behaviour for

the object.

The ProKappa object system supports inheritance. There are two types of

inheritance: slot inheritance, which is the inheritance of the existence of a slot to its

subclasses and instances; slot value inheritance, which is the inheritance of slot

values from the slot of the parent object to the slot of the subclass or instance. Slot

or slot value inheritance may be blocked at any level in the object hierarchy,

preventing the slot or slot value(s) from being inherited further down. The

ProKappa system also provides complex types of slot value inheritance. For

example an object with multiple parents can inherit values from one or more of its

parents (the latter only applies to multi-value slots). Finally it should be noted that

slots can only be created at class level, since they represent structures common to all

instances of a class.

25

The information stored in slots can be further refined by the use of facets. Facets,

which can be regarded as slots into slots, are used to include additional information

about slots or slot values. Facets have the same types as slots (single-value or multi-

value) and can be inherited. The differences between slots and facets are that facet

values cannot be pointers to methods and that facets can be created both at class and

instance level.

The ProKappa object system supports arbitrarily complex hierarchies of objects. A

collection of one or more object hierarchies forms an object base. An object base

together with the functions, rules and user interface form the integral parts of a data

structure, called a ProKappa application. When an application is loaded or saved all

of its associated objects and files (containing functions and rules) are loaded or

saved respectively.

Applications may be subdivided into modules and sub-applications. Modules are

much like applications themselves; they may contain an object base, functions and

all the other components that make up applications. However, unlike applications,

modules must always be part of another application. Sub-applications are

applications which are required or used by other applications. For example, an

application may either require or use its sub-applications, depending on whether the

application's objects are children of those in the sub-application or not. The main

advantage in using sub-applications and modules is that a large and complex task

(that must be dealt with by the application) can be broken down to several less

complex tasks, each of which is dealt with by a module or a sub-application. The

resulting reduction in the complexity of the task makes the overall application easier

to implement, develop and update.

It should be noted that in the rest of the thesis applications, modules and objects are

expressed with bold characters and slots and facets with italics.

26

3.2.2 Programming languages.

The ProKappa environment provides two languages that can be used for adding

actions to, or performing tasks in applications. These are the C language (as

extended by ProKappa) and the ProTalk language.

The ProKappa environment supports an ANSI standard compatible version of the C

programming language plus several libraries of C functions for use specifically

within a ProKappa application.

The ProTalk language is a special language for writing functions and rules within

the ProKappa environment. Just like any other programming language, it has its

own syntax. It is particularly suited for writing functions and rules that access and

update information in a ProKappa object base. The ProTalk language has the

following features:

• A set of predefined functions for interacting with ProKappa applications,

objects, slots and facets and performing tasks such as:

Creating applications, objects, slots and facets.

Performing utility functions such as sorting lists.

Obtaining input from users.

Printing.

• Syntax for referring to information stored in an object base that can be used for:

Accessing or modifying values in slots and facets.

Creating and modifying relationships between objects.

Retrieving information about objects, slots and facets.

Sending messages to objects.

27

• Programming constructs such as:

Assignment of values to variables.

Basic arithmetic operators.

Comparison operators.

Conditional statements.

Iteration constructs.

• Ability to call C functions and incorporate C code.

• Built-in backtracking mechanism (non-deterministic language).

The ProTalk language provides a type of expression called a knowledge expression,

for referring to information in an object base (objects, slots, facets and applications).

The major types of knowledge expressions are:

• Slot values: object.slot

• Facet values: object.slot..facet

• Instances of a class: instanceof class

• Subclasses of a class: subclassof class

• Ancestors of an instance: classof instance

• Ancestors of a class: superclassof class.

The last four knowledge expressions can be modified by the use of direct, to restrict

the expression to the "direct" instances, classes, subclasses or superclasses, where

direct means one level below or above in the object hierarchy.

The ProTalk language also provides value changing operators and comparison

operators, that can be used in conjunction with knowledge expressions to change the

information in an object base, or compare the values of two knowledge expressions.

28

find 1:

find:

Knowledge expressions can also be used in conjunction with search modifiers to

retrieve information from an object base. Retrieval can happen either

deterministically or non-deterministically. Statements that perform deterministic

searches must always have exactly one solution, and they never fail. If a

deterministic search is performed for a statement with more than one solutions, it

will create an error. Statements that perform non-deterministic searches can have

zero, one or multiple solutions, and they can fail. The ProTalk search modifiers are:

Deterministic approach:

no modifier:
	

For use with single-value slots and facets only. Generates a

single value, or Null if there is no value.

all:
	

Generates a list of all the values, or the empty list '() if there

are no values.

Non-deterministic approach:

find N

Generates one solution. Fails if there is no value.

Generates one solution each time the statement is executed.

Fails if there is no solution. Can be re-entered if the system

backtracks to it.

Generates one solution each time the statement is executed.

Fails if there is no solution. Can be re-entered if the system

backtracks to it, at most N times.

The ProTalk language can be used for writing functions and rules. A ProTalk

function is made up of one or more ProTalk statements. Each simple statement ends

in a semicolon (;). A compound statement is a sequence of zero or more statements

wrapped in a pair of curly brackets ({ }). Each statement consists of some

combination of ProTalk operators (value changing, comparison or search operators

listed above), expressions (e.g. knowledge expressions), programming constructs,

29

function calls and variables. A function is defined by placing the keyword

"function" in front of the function name, which is followed by a pair of parenthesis

enclosing the function's arguments, separated by commas. A pair of curly brackets

encloses the body of the code. Additional features of ProTalk functions are:

• Local variables do not need to be declared.

• Functions may or may not return values.

• All arguments are ProTypes (symbols, strings, numbers, lists, arrays, dates,

objects, slots or facets).

When a function is pointed to by an object's method slot it is called a method.

Methods are functions stored in an object which specify the actions that this object

can perform. The difference between methods and functions are that the former are

defined by the keyword "method" and that they contain by default two arguments.

The first argument (?self) is bound to the object that contains the method and the

second (?slot) to the method slot that contains the pointer to the method.

The ProKappa system allows the writing of rules to reason about objects, their

relationships and their attributes. Rules can only be written in the ProTalk

language. They are a combination of statements grouped together in rulesets. The

two main approaches in using rules in ProKappa are the forward chaining or the

backward chaining approach. When appropriate a mixed chaining (forward and

backward interchanging) approach can also be used.

30

3.2.3 User interface development tools.

The ProKappa system allows the building of customised graphic end-user interfaces

to applications. It contains two system supplied applications for their development:

the Active Images and the Dialog Box applications.

The Active Images system application is a tool for building business and

instrumentation images to represent slot values graphically. The images in the

Active Images application provide a variety of graphic displays for both viewing

(output images) and modifying (input images) slot values in objects. These images

are specialised objects that can be attached to one or multiple slots (the slots may

even belong to different objects) and display their values in a variety of forms.

Images are displayed inside image panels, which are customised X windows. This

tool has not been utilised for the development of the user interface of the system for

the estimation of ground properties. Therefore it will not be discussed in any further

detail.

The Dialog Box system application is used for creating windows, called dialog

boxes, which are used for obtaining arguments or specifying options required by a

process about to be executed and for displaying information (e.g. on the progress of

a certain processing action).

Each dialog box is represented in the ProKappa environment as an instance of either

the DialogBoxPositional or the DialogBoxAuto class object, depending on whether

the dialog box is created programatically (a set of system supplied functions can be

utilised in the C or ProTalk languages for creating and manipulating dialog boxes)

or by using the Interface Workbench (a ProKappa browser which allows interactive

creation and manipulation of dialog boxes). These two objects belong to the Dialog

Box application.

31

A dialog box obtains its functionality from its components, which are called the

dialog box controls. Each control is also represented as an instance of an

appropriate control class in the Dialog Box application. These classes represent the

types of dialog box controls supported by the ProKappa environment. Dialog box

controls can be subdivided into the following three categories:

Display Controls

Text Display: It displays a value or a set of values to the user. If more than

one value is specified, each value is displayed on a separate

line.

Pixmap Display: Used to display bitmap images.

Input Controls

Entry Box:	 It allows the user to type a value into the dialog box. The user

can start entering text after selecting the entry box with the

mouse.

Radio Buttons: These are used when the user must specify "one-of-many"

possibilities. One button is selected at all times and only one

button can be selected. When the user selects a new button

the old is automatically deselected. Finally the developer is

allowed to specify which button is selected by default.

Check Buttons: They allow the user to select several choices out of many.

Check buttons are selected and deselected by toggling; the

first click with the mouse selects them, the second deselects

them, the third reselects them and so on.

List Box: A list box holds a list of items which the user can select. The

display capacity, which is by default set to five lines, can be

set to the desired number by the developer. By default, a list

box allows single selection; if the user selects an item, any

32

other selected item is deselected. The developer is allowed to

specify whether single or multiple selections are allowed. In

the latter case selection and deselection of an item is

performed by toggling.

Option Menu: An option menu displays the currently selected value out of a

number of possible values. Clicking on an option menu pops

up a list of all possible values, from which a new value may

be selected.

Action Controls

Push Button: A ProKappa push button simulates a physical push button. It

displays a label, and it is "pushed" by clicking on and

releasing the mouse. Whatever activity is associated with the

push button is performed at the time it is pushed.

Push Button Row: The push button row allows specification of a row of push

buttons with one object. The system creates as many push

buttons as specified and arranges them in a horizontal row.

All dialog boxes have by default a push button row control

which is called command row control and contains two

buttons, labelled "OK" and "Cancel". Additional command

row buttons can be created and the labels of the default ones

can be changed. The buttons are used to either initiate or

cancel the behaviour of the dialog box.

As mentioned earlier each control is represented as an object. All control objects

contain slots which hold information associated with their title, values (labels, or

selection items), foreground and background colours, fonts (of both their title and

values), horizontal and vertical positions (in the dialog box), and the dialog box to

which they belong. Furthermore, different types of control contain additional slots

33

which are associated with the control's specific characteristics and functionality (e.g.

a maximum number of lines slot for a list box). The user interface developer has to

set or manipulate the values of these slots to obtain the desired outcome. Each

dialog box and dialog box control object also contains a UserData slot which can be

used for storing user-supplied data. Finally each non-display control has an

associated React! method slot which can be used to define what happens when the

user interacts with the control, e.g. invoke an action when a push button is

depressed.

3.2.4 Monitors and Active Relations.

Monitors, also called active values or demons, execute behaviour whenever the

value of the slot to which they are attached is either accessed or modified. They are

represented as ProKappa objects with one or more specialised method slots.

Monitor objects are created as subclasses or instances of either the SmallMonitor or

the LargeMonitor classes in the system supplied application, SystemApplication.

They are attached to slots using facets on the slot (which they create). Their

behaviour is specified as the value of the method slot in the monitor object (a

function that must be supplied by the application developer). The developer is

allowed to specify that their behaviour occurs as follows:

• When slot values are accessed (WhenNeeeded monitors). This monitor type is

typically used: to provide reports or alarms; to convert a value from one format

'to another; to calculate a value only when the value is needed by the application.

• When slot values are changed, before the new value(s) are placed into the slot

(BeforeChanged monitors). Some typical uses of BeforeChanged monitors are:

checking that a value falls into a specified range; coercing a value type (e.g. if

the value is an object); converting a value from one format to another.

34

• When slot values are changed, after the new value(s) go into the slot

(AfterChanged monitors). AfterChanged monitors can be used to: make

changes to dependant information in the application (e.g. changing the values of

other slots when the value of the monitored slot reaches a critical threshold) and

to provide reports or alarms.

• When a monitor is attached to a slot (WhenAttached monitor)

• When a monitor is detached from a slot (WhenDetached monitor)

The Active Relations application provides tools to make slots responsible for

calculating their own values and for certain other properties of their values. It

allows slots to function like cells of a spreadsheet program, gathering up data from

other slots and using that data to compute the value(s) for this slot. Also like a

spreadsheet, constraints can be imposed to slots, in the type of value that they may

contain. The system consists of four parts: value type enforcement, value type

coercion, slot value inverses and slot formulas.

Value types are declarative mechanisms for specifying that a slot's value must be of

a particular ProType (e.g. a ProKappa list, symbol, object etc.), or that its value

must come from a specified list of values. Additional conditions in the value may

also be specified, such as its range (for a numerical value), or, if it is an object,

whether it is a class or an instance, and the class of which the object is a descendant

may also be specified. The Active Relations application can take one of four

different types of action if a value that does not conform to the value type is entered

into the slot. The four enforcement types are:

• Allow enforcement means that the value acts merely as a comment to the slot;

the system does no validation of added values.

• Discard enforcement means that invalid values are discarded by the system, but

no message or warning is given.

35

• Convert enforcement means that the system attempts to convert bad values; if it

cannot convert them, they are discarded silently. It must be noted that these

conversions are very simple; more complex conversions can be dealt with by the

value check system.

• Alarm enforcement means that the system prints a message or puts up an alarm

dialog box when an invalid value is entered. The alarm enforcement type may

also be set to call a function (specified by the developer of the application)

which handles bad values, or raises an exception.

The value check system allows the developer to specify arbitrary ProTalk code

which the system uses to validate new values for the slot. The code is executed

whenever a new value is entered into the slot. In addition to validating a value, the

code can modify the new value before the slot is updated, perhaps converting from

one representation to another, for example. The value check system is most useful

when the preset value types provided by the system are not adequate to fully

represent the value allowed in the slot. It is also useful when the conversions

offered by the value type system are not flexible enough.

An inverse links two objects bidirectionally, representing an "is-associated"

relationship between the two objects: "object A is associated with object B". To

create an inverse between two objects, one may simply give each object a slot whose

value is the other object. Setting up inverses between particular objects in this way

is easy. However, in many cases, inverses exist between potentially large numbers

of objects, with the inverse defined not on the objects themselves but on the classes

from which the objects descend.

The slot formula tool is used for attaching a ProTalk code fragment to a slot whose

purpose is to calculate the value of that or any other slot. This calculation may use

other slot values, do queries over the object base, or simply make a mathematical

36

calculation. The slot formula system maintains links between the slot containing a

formula and any slots mentioned in the code of the formula, allowing a change in a

mentioned slot's value to cause the formula slot's value to update ("set-mode"

formula). A "get-mode" formula is run in response to an operation that "gets" the

value of the slot. The slot formula uses the ProTalk language pattern matching

capability to loop implicitly over all values satisfying it, relying on ProTalk's

backtracking capabilities to generate multiple values and to search through the

object base. The most common use for slot formulas is to step through a simulation

or a "real-time" monitoring system: one slot is updated and slot formulas update all

the others. This works even if the next value of a slot depends on its current value:

if a formula contains an implicit dependency on its own value, the system intercepts

this potentially infinite loop and cuts it off after one iteration (if required more

iterations can be specified).

Slot formulas are represented as objects, which belong to modules automatically

generated by the system. These modules are attached to the application that the slot

formula is created. For example if a slot formula is attached to a slot in the

correlation application, the system will automatically generate an AR_correlation

module (Active Relations in the correlation application) and all the slot formula

objects will be stored there.

Slot formulas are attached as facets to the slot in which they are created. If any

other slots are referenced in the slot formula function, then facets are also attached

to these. These facets are used as links between the slot formula object and the slots

that are required for the evaluation of the slot formula slot.

For example a slot formula can be attached to an Area slot of an object. The slot

formula incorporates a function for calculating the area of a rectangle, based on the

values of the width and length slots, also attached to the same object. A slot formula

37

object will be created which contains a function (the slot formula function) for

calculating the area of a rectangle. A number of facets is also attached to the Area,

width and length slots, linking them with the slot formula object. Therefore each

time the slot formula needs to be executed, the required values are obtained from the

width and length slots and the result of the calculation is placed in the Area slot.

3.3 Summary.

The system was implemented using the ProKappa software, running under X

windows on a Sun Spark 2 workstation.

ProKappa is a C-based software development system that incorporates object-

oriented programming in an easy to use graphical environment. Hierarchically

structured objects, which contain slots and facets are used for representing data,

stored inside applications. The ProKappa system also incorporates ProTalk, a

special language for writing functions and assigning behaviour to objects, slots and

facets. It also provides the Dialog Box system application, a special tool for

building customised end-user graphics interfaces to applications.

Finally, the ProKappa system incorporates tools, which can be used by real-time

monitoring applications. These are Monitors and Active Relations. The former are

used for monitoring values of slots (and execute behaviour whenever the value of

the monitored slot is either accessed or modified), and the later provide tools to

make slots responsible for the calculation of their own values. The slot formula tool

(part of the Active Relations system) was utilised in the development of the system

for the representation of the estimation procedures of correlations (§5.3.1).

38

CHAPTER 4

Representing the ground and its properties.

4.1 Introduction.

The first stage in the development of a KBS for the estimation of ground properties

was the collection of correlations and published summaries that provide "typical"

values of properties. Both of these were obtained from searches in the relevant

technical literature.

The knowledge acquisition stage lasted for more than a year. During this period a

large volume of technical papers and textbooks was examined for correlations and

summaries of typical values. The main sources of correlations and "typical" values

were a report and a textbook: the "Manual on Estimating Soil Properties for

Foundation Design" [Kulhawy and Mayne, 1990], and "Correlations of Soil

Properties" [Carter and Bentley, 1991], respectively.

Also, databases containing measurements for ground properties were examined for

possible relations between the incorporated ground parameters. In one case,

regression analysis of the variables resulted in the establishment of a new correlation

(estimation of constant volume effective angle of friction for sands and gravels,

from mineralogy and angularity of grains; data from Stroud, 1988). The knowledge

collected is presented in Appendices A (correlations) and B (typical values of

ground properties).

39

When an adequate amount of correlations and published summaries was available, it

became apparent that a representation of the ground and its parameters was

essential. The need to represent the ground can be demonstrated by the fact that

each correlation or set of typical values is relevant to a limited range of the ground

spectrum. Furthermore, correlations merely describe the interrelationships between

ground parameters. Therefore a representation scheme for ground parameters is

also required by the system. Hence, the second part of the knowledge acquisition

stage concerned the collection of the knowledge that is required for the

establishment of representation schemes for the ground and its properties.

The ground is a highly variable and complex material and its behaviour is

influenced by a wide range of factors. The problems arising from the variability of

the ground can be reduced by subdividing it into more specific types, or classes, of

ground. This subdivision is based on certain characteristics (usually a few, easily

measured ground parameters), which are common for the members of the same class

of the ground. The implementation of this concept in ground related problems has

led to the establishment of ground classification systems.

In the case of soils, the most common classification systems are the Unified

Classification [A.S.T.M. Standards, 1983] and the British Soil Classification [B.S.

5930, 19811 systems. Identification and classification in both systems is based on

grain size (particle size distribution), liquid limit, plasticity index and organic

content. The reason for the widespread use of classification systems lies in the

assumption that members of the same class will have a similar pattern of behaviour.

This can be demonstrated from:

a. the existence of correlations between parameters, applicable to specific classes

b. the existence of "typical" ranges of values of certain parameters within a class.

40

It should be stressed that knowledge of a few ground parameters and the

identification and classification of a ground type are not adequate to fully describe

its behaviour. Furthermore, correlations and "typical" values are merely

approximations, and the assessment of ground behaviour should always rely on the

actual measurements of ground parameters (based on geotechnical testing). A more

detailed analysis of the usefulness and drawbacks from the use of correlations and

"typical" values as a means for estimating values for ground parameters, is presented

in Chapter 5.

In the following sections of this chapter a ground representation scheme will be

presented, followed by the implementation of a Ground Types Knowledge Base,

which in conjunction with a Ground Parameters Knowledge Base, provide a means

for storing knowledge for the estimation of ground parameters. This is followed by

the representation of "typical" values in the system. The chapter concludes with the

presentation of the user interface and knowledge acquisition facilities provided by

the system.

4.2 A model for representing the ground.

The ground is subdivided into two fundamental categories: soil and rock. From an

engineering point of view the distinguishing characteristics between the two are

structure, strength and degree of lithification. Soil is any naturally occurring loose

or soft material resulting from the mechanical and chemical disintegration of rock or

the decay of vegetation, whilst rock is any hard, indurated or consolidated massive

geological material [West, 1991].

This and various other definitions in the literature, do not provide a clearcut

distinction between soil and rock and allow for the possibility of overlap; e.g.

41

strongly cemented sands and very stiff clays are close to the definition for rock,

while a weak completely decomposed rock is close to the definition for soils.

Nevertheless the distinction between soil and rock is a fundamental one in

geotechnical engineering and despite a few transitional ground types it is otherwise

adequately defined.

Further refinement of these two fundamental ground classes for the purposes of a

complete ground representation scheme was predominately based on the British Soil

classification system and the identification scheme of rocks for engineering

purposes [B.S. 5930, 1981]. The choice of the two systems was made so that the

complete ground representation scheme will be in accordance with the code of

practice for site investigation in the UK. In the two systems, both soils and rocks

are classified according to grain size (particle size distribution for soils), but soils

are also classified from plasticity and organic content, whereas rocks are classified

based on their formation process and mineralogy.

The basic principle during the development of this ground representation scheme

was that ground classes should be represented in a hierarchical form, initiating with

the most general classes and developing towards the more specific. Furthermore,

each new class level was specified with either the introduction of a new

classification parameter or with the specification of a more restricted range of

evaluation (compared to the range of the parent class).

4.2.1 Rocks.

Rock is subdivided into sedimentary, igneous and metamorphic, based on the

introduction of mode of formation at that level of classification. The rocks

classified under the heading sedimentary were originally soils which have

42

subsequently been lithified by the geological process of consolidation and

cementation. Igneous rocks are formed from solidation of molten rock material,

generated within the earth's crust, which may have been injected into the rocks of

the crust as intrusive masses, or may have found its way to the surface as lava.

Finally, metamorphic rocks, are formed from already existing sedimentary, igneous,

or other metamorphic rocks by recrystallization in the solid state, under conditions

predominately controlled by heat and/or stress.

Sedimentary rocks are subdivided into siliceous, calcareous, carbonaceous and

saline, based on their mineralogy. Siliceous sedimentary rocks are further

subdivided into elastic and pyroclastic depending on the origin of their fragments

(the latter originate from volcanic rocks). Both clastic and pyroclastic sediments are

further refined, according to the size of their grains, as rudaceous (consisting of

gravel, cobble and boulder size grains), arenaceous (sand size grains), and

argillaceous (silt and clay size grains). Clastic sediments also comprise amorphous

or cryptocrystalline sediments, such as chert or flint. Calcareous sedimentary rocks

are subdivided according to grain size into the same first three divisions. Finally

saline rocks comprise rock types such as gypsum, anhydrite, halite etc. (formed by

deposition of salts due to evaporation of salt rich waters in an enclosed basin).

Igneous rocks are subdivided according to their mineralogy into acid (much quartz),

intermediate (some quartz), basic (little or no quartz) and ultra basic. Each of these

four groups is further subdivided, based on crystal size considerations, into coarse

(>2mm), medium (0.6-2mm), fine (<0.6mm) and amorphous (no crystals).

Finally, metamorphic rocks are subdivided, based on their structure, into foliated

and massive. Of these two only the former class is further subdivided, according to

grain size, into coarse, medium, fine and amorphous.

43

All the specific rock types fall into one or sometimes more of the lower level rock

classes defined above. For example, conglomerate and breccia are classified within

the rudaceous class of the clastic sedimentary rocks; volcanic glass is classified

within both the basic and intermediate amorphous classes of igneous rocks, thus

identifying that its mineralogy can be described either as intermediate or basic. The

representation scheme for rocks is presented in Figures 4.1 (sedimentary) and 4.2

(igneous and metamorphic).

t

Toot View

groundrap App

.4.n 	 :ON,	,,,NNNNV nNNNV ON	 NW	 NNW. X VN. N'S̀ NV,	 %NV j

Figure 4.1 Representation of sedimentary rocks.

44

[Object Edit View kistsoment 	 •
.	 .

ground_rep App

interminfiate antorplious : ::: 	 yolCanigrass.:1
intermediate.	 	 . 	
intermediate medium:. .:.—inic-rodionte.	 .	 .

intennethide caorsey::.: iiiiittOttt.

acid amoiplitins7::—Obsidian.:

acid

kid Medium :::—intertigrand::

imarse :::Lgranite;

Boos acid

'foliated aiiierpluitni.":::—rnylenite,	 .•	

foriateit rine'

foliated me

foliated coarne..;:-.

Rock
000$ iittra bask • —ultra bask' igiorse

	 tinririottte

amorptioun

basic rine,
basic Malin ;:.—itoleti‘ii

coarse

Nitis balk'

igneous

eous Intermediate

WttoW.Wtitt.WL. 	

Tool View

• Wtt.n.WWwWeed.wfWed.WWWW.WW..t.W.W.W.WW.W.W,WW.WW.W.W.WWW....WW,WWWW,....WWW.WWWWWWWWWWW.WW!.

Figure 4.2 Representation of igneous and metamorphic rocks.

45

4.2.2 Soils.

Soil can be primarily subdivided, in terms of its origin, into naturally occurring and

artificial soil. The reason for this is that artificial soils such as waste (material with

usually extremely variable composition), or backfill (mainly compacted soils) are

frequently encountered in geotechnical problems (e.g. stability analysis of waste

tips, embankment construction etc.).

Naturally occurring soils are further refined, based on their organic content

percentage, to inorganic and organic. This distinction is necessary, since soils that

are classified as organic show markedly different engineering behaviour from

inorganic soils, usually expressed as much higher compressibility and in the case of

fine organic soils, as very high liquid limits. Both organic and inorganic soils are

further refined, based on grain size considerations.

Inorganic soils are subdivided into inorganic very coarse, inorganic coarse and

inorganic fine. These different classes are defined according to the grain size of

their major constituent. Accordingly, very coarse inorganic soils are defined as soils

for which the grain size of their major constituent is more than 60 mm. The

corresponding range for coarse soils is 0.06-60 mm and for fine grained soils 0-0.06

mm. These classes can be further refined based on the specification of smaller grain

size ranges within each class. Hence, very coarse soils are subdivided into boulders

(grain size of major constituent greater than 200 mm) and cobbles (grain size

ranging between 60 and 200 mm). Coarse soils are subdivided into gravel (2-60

mm) and sand (0.06-2 mm). Finally, fine soils are subdivided into silt (0.002-0.06

mm) and clay (less than 0.002 mm).

These classes can be further subdivided based on the inclusion of secondary

constituents (indicated by a -y ending, e.g. silty, sandy etc.) in the new classes

46

definitions. Gravel can be further subdivided into clean gravel (main constituent

gravel, no secondary constituent), sandy gravel (sand being the secondary

constituent, or equally the grain size of the secondary constituent ranging between

0.06 to 2 mm), silty gravel, clayey gravel etc. The same refinement can be applied

to the sand, silt and clay classes. The prefix clean is used to indicate the lack of any

secondary constituent for gravel, sand and silt. The prefix pure is correspondingly

used for clays.

Further refinement of the clean gravel class, based on the adoption of smaller grain

size ranges, leads to the establishment of three new subclasses namely: coarse gravel

(grain size ranging between 20 and 60 mm), medium gravel (6 to 20 mm) and fine

gravel (2 to 6 mm). For clean sand the corresponding subclasses are: coarse sand

(0.6 to 2 mm), medium sand (0.2 to 0.6) and fine sand (0.06 to 0.2 mm). Finally

clean silt can be subdivided into coarse silt (0.02 to 0.06 mm), medium silt (0.006 to

0.02 mm) and fine silt (0.002 to 0.006 mm).

Organic soils are subdivided into coarse and fine. The definitions for the two

subclasses coincide with the definitions for the corresponding subclasses of the

inorganic class. The former can be further refined to organic sand and the latter to

organic silt and organic clay. The organic gravel and organic very coarse classes

were not included in this representation scheme mainly due to the lack of relevant

information. Finally the organic class comprises fibrous soils (e.g. peat) that cannot

be classified based on grain size considerations. These soils are classified separately

under the organic soil class.

The complete representation scheme for soils is presented in Figure 4.3.

47

00110::-

Tool View
• f • A 5. •• n• n ••,.y.t.f. sAw.swA 	 •••,•..“,,,j,,,,,,GeLt• 4,4 fe,....,0,04,,,,exputtreey	 t

Object Edit View Instrument

SIS.N.S.Vü,...6nNS,,,,X,DOM:\X\VN:\VON•n••X•i•WnVM.Nis\Wi•Nsis\\:\\ViSNS,N,SkSXVON\WOis\\\X40.<\\<\\NiONSVNVOns,s,sisX,,X.Z.M•0nV,S, \\V N.N.N.\\\\\\\NiV 	•n.\\\Vi..\\V .\\\N \\••.\\••:\\\X‘ \\Ws	 X••n••,\Nit vs.

•InCirtjalliC CoarSe

clayey sand

Figure 4.3 Representation scheme for soils

48

It should be noted that the soil representation scheme can be further expanded with

the inclusion of major (indicated by the "prefix" very, e.g. very sandy gravel) and/or

minor (indicated by the prefix "slightly", e.g. slightly silty sand) constituents in the

definitions of soil classes. Equally these modifiers can also be added to more

specific soil classes, such as coarse sand (e.g. clayey coarse sand). Furthermore, a

detailed soil description can contain combinations of even more than one major,

secondary and minor. However, for the purposes of a soil representation scheme

that is used for the estimation of soil parameters, such a level of refinement cannot

be justified, since most of the available knowledge is not oriented towards such

complex soil types.

4.3 A model for representing ground parameters.

The assessment of the engineering behaviour of the ground can be made through the

evaluation of ground parameters. This in turn requires the establishment of a

ground parameters representation scheme. The main difficulty associated with this

task is the number of parameters used to describe various aspects of engineering

behaviour in conjunction with the lack of any formal representation schemes.

The representation scheme for ground parameters utilised here, was based on the

principle that parameters can be classified into groups, or parameter categories. For

the purposes of a representation scheme that forms part of the basis of a system for

the estimation of ground parameters, this was thought to be a beneficial

requirement. The main reason for this is that a search for a specific parameter can

be significantly limited if its category is first identified, and secondly because it

ensures homogeneity in the representation with relation to the ground representation

scheme.

49

The terminology used for the established parameter categories is in accordance with

the terminology used in the literature, thus ensuring that their names are meaningful

and it is easy to understand which parameters are classified under each of them.

Each parameter category can be linked, either directly or indirectly, to one or more

different aspects of the engineering behaviour of the ground. An example of a

direct parameter category is strength parameters, which are direct expressions of the

strength of the ground. An example of an indirect parameter category is stress

parameters (e.g. vertical and horizontal effective stress). These have an indirect (but

similar) effect on various aspects of ground behaviour, for example they have an

effect on the evaluation of strength parameters.

Another problem that was encountered during the implementation of this scheme,

was associated with the representation of parameters whose evaluation depends on

the actual testing conditions and procedure. For example the undrained shear

strength of a specific soil can take different values if this is measured by means of a

triaxial compression, a triaxial extension, or a direct shear test. The reason for this

is that different responses of a soil are to be expected when subjected to different

stress and strain conditions. Therefore, in order to avoid misinterpretations, each

type of undrained shear strength was represented as a different parameter (e.g.

undrained shear strength in triaxial compression, triaxial extension, direct simple

shear etc.). The same principle was applied to other performance parameters, such

as effective angle of friction, Young's modulus, shear modulus etc.

Finally, the parameters contained in this representation scheme are distinguished in

terms of their evaluation, as either quantitative or qualitative. The former are the

ones, which are evaluated by numbers, while the latter are evaluated through verbal

descriptors. The inclusion of qualitative parameters in the representation scheme,

was dictated by the fact that frequently in geotechnical engineering qualitative

descriptions are used for various aspects of the engineering behaviour of the ground.

50

The parameter categories and their corresponding parameters currently implemented

in the system are presented in table 4.1.

Parameter category: Strength parameters

Parameter Description

Su Peak undrained shear strength

Su_CAUC Peak undrained shear strength from anisotropic

consolidation triaxial compression tests

Su_CIUC Peak undrained shear strength from isotropic consolidation

triaxial compression tests

Su_DSS Peak undrained shear strength from simple shear tests

SU_FV Peak undrained shear strength from field vane tests

Surem Remoulded undrained shear strength

PHI_peak Peak effective angle of friction

PHI_TC Peak effective angle of friction in triaxial compression

PHI_rem Remoulded effective angle of friction

PHI_cv Constant volume effective angle of friction

PHI_res Residual effective angle of friction

c_peak Peak effective cohesion intercept

c_res Residual effective cohesion intercept

St Sensitivity number

(ratio of peak over remoulded shear strength)

Sens Sensitivity (qualitative)

consist Consistency (qualitative, e.g. "soft", "firm" "stiff" etc.),

Parameter category: Stress history parameters

Parameter Description

age Age of a deposit (in years)

Age Qualitative evaluation of the age of a deposit (e.g. "young")

51

sigma_p Preconsolidation pressure

OCR Overconsolidation ratio

OC_state Overconsolidation state (qualitative, e.g. "NC")

Parameter category: Deformation parameters

Parameter Description

nu_d Drained Poisson's ratio

E Elastic modulus (Young's modulus)

E_d Drained elastic modulus

E_ds Drained secant elastic modulus

E_dt Drained tangential elastic modulus

M Constraint modulus

M_dt Drained tangential constraint modulus

M_ds Drained secant constraint modulus

G Shear modulus

Parameter category: Compressibility parameters

Parameter Description

my coefficient of volume compressibility

Cc compression index

Cr recompression index

comp compressibility (qualitative)

Parameter category: Flow parameters

Parameter Description

Cv coefficient of consolidation

.	 k coefficient of permeability

Parameter category: Particle size distribution parameters

Parameter Description

d50 grain size corresponding to 50% passing

d10 grain size corresponding to 10% passing

52

Ccur coefficient of curvature

Cu coefficient of uniformity

grading grading (qualitative e.g. "well graded")

Parameter category: Density parameters

Parameter Description

e void ratio

n porosity

gamma_dry dry unit weight

gamma_sat saturated unit weight

gamma_bulk bulk unit weight

d_dry dry density

d_sat saturated density

d_bulk bulk density

MDD maximum dry density (compacted)

Dr relative density

Relative_density relative density (qualitative e.g. "very loose")

Parameter category: Stress parameters

Parameter Description

ko coefficient of earth pressure at rest

sigma_vo effective overburden pressure

sigma_ho effective horizontal pressure

sigma_m mean effective stress = (sigma_vo+2sigma_ho)/3

category: Field test parametersParameter

.	 Parameter Description

N_S PT Number of blows from SPT

qc Cone resistance from CPT

qT Corrected cone resistance from CPTU

K_D Dilatometer horizontal stress index

53

mu_2D Field vane shear strength correction factor, after Bjemim

mu_3D Field vane shear strength correction factor,

(including 3D end effects)

mu_Aas Field vane shear strength correction factor, after Aas

Parameter category: miscellaneous

Parameter Description

wtp water table location (qualitative e.g. "above water table")

Table 4.1 The representation scheme for ground parameters

4.4 Implementation in the system.

The representation schemes for rock and soil were implemented in the system as an

object base, which is a part of the ground representation application. This otAect

base is made up of a top level object, Ground, which has two subclasses, Soil and

Rock. Below these two objects are the specific classes of soil and rock,

hierarchically structured in the order shown in Figures 4.1, 4.2 and 4.3.

The representation scheme for ground parameters was also implemented in the

system as an object base, part of the GPar (Ground Parameters) application. It

consists of the top level object Parameters. The subclasses of the Parameters

object, are the parameter categories, and the subclasses of each one of the parameter

categories are the corresponding parameters (in accordance with Table 4.1).

The object names for parameters are shorthand descriptions of the actual parameter

names. For example the name of the object representing the undrained shear

strength from triaxial isotropically consolidated compression tests is Su_CIUC.

Each object contains a slot, name, which contains a string with a more detailed

54

description of the parameter. Each parameter object also contains a format slot

which, depending on the evaluation of the parameter, can be bound to either

"quantitative", or "qualitative". In the first case, the format slot contains a units

facet, with the units of the parameter (if any). In the second case, a multi-value

facet named per_val (permissible values) is attached to it, containing one or more

lists with the permissible values, which are used to qualify the parameter. For

example, the qualitative parameter plasticity can be evaluated form either the list

(low, intermediate, high, very high, extremely high), or alternatively from the

(lower, upper) list. It should be noted that qualitative parameters can only be

evaluated from the qualifiers defined in the permissible values facet. Of course, the

user has the ability to modify these lists of permissible values. The slots and facets

of a quantitative and a qualitative ground parameters are presented in Figure 4.4.

Slots name .	 format

Slot vatueS Undrained shear strength from isotropical

consolidation triaxial compression tests

quantitative

Fact/ units

Facet Tall* "kPa"
Plas

Slots , name format

, Slot values Plasticity qualitative

•	 Facets per_val

Facet vaiuts ("low", "intermediate", "high", "very high",

"extremely high"), ("lower", "upper")

Figure 4.4 The slots and facets of the Su_CIUC and Plas objects.

55

4.5 The representation of "typical" values.

As mentioned in §4.1 there exist typical ranges of values for certain parameters

within a ground class. Bearing in mind that a ground class is defined by specifying

ranges of values for the parameter or parameters the classification system is based

upon, it becomes apparent that typical values describe relations between these and

the parameter they evaluate. Furthermore, the extent of the range of typical values

of a parameter is usually in direct proportion to the degree of refinement of the

corresponding ground class. This can be explained by considering that the more

specific is a ground class, the smaller the range of values of the classifying

properties becomes. This subsequently leads to a decrease in the range of typical

values.

It should be stressed that, taking for example the case of soils, whose classification

is predominately based on organic content and grain size, there are very few

relations that merely rely on these two ground parameters (and these are crude).

The establishment of more reliable relations requires the evaluation of yet more

ground parameters (especially parameters related to soil or rock descriptions); for

example grading and relative density for coarse soils or plasticity for fine soils.

These properties can be easily evaluated either from visual inspection, or from

simple classification tests. A common characteristic of these parameters is that they

are mostly of a qualitative format. Therefore they are evaluated from one of the

specified lists of qualifiers (the permissible values, see §4.4).

During the collection of published summaries of typical values it became apparent

that the estimated parameters were mostly of a quantitative format (e.g. angle of

friction, dry density etc.). This observation along with the above remarks form

together the requirements that a representation of typical values of ground

parameters should meet.

56

Two additional requirements affecting the selection of the representation type are

the ability to alter the estimated values of the parameter and to add new parameters

that affect this parameter's evaluation. The former requirement is dictated by the

nature of this type of knowledge, which is empirical. Therefore, as new knowledge

is accumulated the ranges of values for a parameter may need to be reconsidered.

The latter is necessary in cases where the influence of a new parameter affecting the

evaluation of the parameter that is being estimated, is quantified. For example the

effective angle of friction for a sand depends on its grading and relative density. It

is also affected by the angularity of its grains but currently this effect cannot be

quantified. If in the future this knowledge becomes available the system needs to be

able to update the representation for the angle of friction of sand without having to

reimplement all the knowledge (rather to add to that already existing).

The typical values of a ground parameter for a specific ground type are represented

as a slot in the object representing that ground type. The slot is named after the

shorthand description of the parameter. Since the estimated parameters are mostly

of quantitative format, the slot's value is a list containing their minimum, average

and maximum values. If any of this information is not available it is substituted

with the letter "u" (indicating that the corresponding value is unknown).

If a parameter can be estimated more precisely based on the evaluation of other

parameters (for a specific ground type), then the system creates a number of objects,

each of which corresponds to one of the permissible values of these other

parameters. The typical values are stored in the slots of these created objects. In the

case of a single parameter with n permissible values, the system will create n objects

as subclasses of the ground type object. Each object will correspond to one of the n

values of the quantifying parameter and the typical values for it will be stored in the

estimated parameter's slot, which is inherited from the ancestor ground type class.

57

Slot
	

PHI_peak

Slot value
	

(26, 31, 36)
I

Facets Required _par Plas

Facet values Null "lower plasticity"

Slot
	

PHI_peak

Slot value (19, 27.5, 36)

Slot PHI_peak

Slot value (19, 23.5 28)

The representation of "typical" values of peak effective angle of friction (PHIpeak)

for a pure clay, is presented in Figure 4.5. These depend on plasticity (Plas) which

is evaluated from the ("lower plasticity", "upper plasticity") set of permissible

values. Therefore two objects are created: lower plasticity pure clay and upper

plasticity pure clay.

r--- - - - - - - - - - - - - - - - - -I 7 - — - — - — - — - — - — - — — --,

ground_representation application 	 est module

Facets Required _par Plas

Facet values (Plas) ("lower plasticity",
"upper plasticity")

Facets Required _par Plas

Facet values Null "upper plasticity"

- - -	 - -

Figure 4.5 The representation of "typical" values of peak effective angle of friction,

PHIpeak for pure clay.

These created objects are stored in the object base of the est (estimate) module

which belongs to the ground_representation application, so that they can be

distinguished from the actual ground type objects (stored in the object base of the

ground_representation application). It should be noted here that the ProKappa

software allows objects that belong to an application or module to have parents or

children that belong to a different application or module (in this case the ground

type object which belongs to the ground_representation application, has subclass

objects which belong to the est module).

58

When these objects are created, two or more facets are created, attached to the slot

which represents the parameter to be estimated (in the original ground type object):

the Required_par facet, which contains the names of the parameters affecting the

evaluation of the estimated parameter; and the parameters' facets, each of which

represents a required parameter and contains a list of permissible values for this

parameter. The value of the Required_par facet in the descendants of the ground

type object is set to "Null". The values of the parameters' facets are set to the

permissible value of the parameters that the object represents, or to "Null"

otherwise.

In the example shown in Figure 4.5 the PHI_peak slot on pure clay shows the

minimum, average and maximum typical values for that object (19, 27.5, 36).

However, the Required_par facet on the PHIpeak slot in pure clay is set to (Plas)

indicating that plasticity affects the evaluation of PHI_peak. The Plas facet then

contains the list ("lower plasticity, "upper plasticity") indicating permissible values

for plasticity. On the subclasses lower plasticity pure clay and upper plasticity

pure clay the PHl_peak values are specific to the quantifying parameter Plas with

values of (26, 31, 36) for the "lower plasticity" range. The facets on that slot

indicate Required_par set to "Null" and the Plas facet set to "lower plasticity".

In the case of two or more required parameters the object hierarchy created by the

system has as many levels of descendants as the number of the required parameters

and the direct subclasses of the ground type object are as many as the sum of the

permissible values of all the required parameters. This can be demonstrated by the

following example: as mentioned earlier the effective angle of friction of sands

depends on grading, with permissible values: ("well graded", "poorly graded"),

relative density, with values: ("very loose", "loose", "medium dense", "dense", "very

dense") and angularity of grains, with values: ("rounded", "angular"). The objects

59

that are created by the system (the complete object hierarchy is shown in Figure 4.6)

can be divided in three groups:

• The first group (area II in Figure 4.6) contains two objects that correspond to the

permissible values of the parameter grading (well graded sand and poorly

graded sand). The grading facet of each object is set to the permissible value

of grading they represent. The other two parameter facets are set to "Null" (see

Table 4.2). The values of effective angle of friction, they contain correspond to

well graded and poorly graded sand respectively.

• The second group (area III in Figure 4.6) contains 15 objects relevant to the

evaluation of the relative density parameter. Five of these are created as direct

subclasses of the sand object and correspond to the evaluation of relative density

of a sand (Note that the symbol ... is used in the figure to indicate the presence

of objects which are not all shown). The other ten are created as five subclasses

of the well graded sand object and five of the poorly graded sand object. For

each of these ten objects two required parameters are evaluated, namely relative

density and grading. Therefore the values of their corresponding facets are set

to the appropriate qualifiers of the two parameters (see Table 4.2).

• Finally the third group (area IV in Figure 4.6) which covers the evaluation of the

angularity of grains parameter, contains 36 objects. Two of these are direct

subclasses of the sand object, 10 are direct subclasses of the objects

corresponding to the evaluation of relative density (the five former objects of the

previous group), 20 are direct subclasses of the objects corresponding to the

evaluation of both grading and relative density (the 10 latter objects of the

previous group) and finally four are subclasses of the well graded sand and

poorly graded sand objects respectively.

60

rounded very loose poorly graded sand /
very loose poorly graded sand

poorly graded sand angular very loose poorly graded sand

rounded very loose well graded sand

vi,	 	 angular very loose well graded sandrey

6

well graded sand

rounded well graded sand

angular sand

rounded sand

clean sand

rounded very dense sand

Figure 4.6 The object hierarchy for the representation of typical values of angle of

friction for clean sand (depending on grading, relative density and angularity).

Facets Objects

poorly graded

sand

(II)

very loose well

graded sand

(III)

angular dense well

graded sand

(IV)

Required_par Null Null Null

grading "poorly graded" "well graded" "well graded"

relative density Null "very loose" "dense"

angularity Null Null "angular"

Table 4.2 The facets of the PHl_peak slot of the poorly graded sand, very loose

well graded sand and angular dense well graded sand objects.

The representation of typical values is thought to be both efficient and adequate.

The representation is adequate because its structure provides the ability to estimate

the parameter in question (in this case the effective angle of friction) even when

information for all the three required parameters is not available: e.g. when only

61

information of grading and angularity of grains is available; it is also efficient

because the desired information can be retrieved directly from the slot, whose facets

are set to the user specified values: e.g. grading is set to "well graded", angularity of

grains is set to "angular" and relative density is set to "unknown" (or is not set at

all).

Furthermore, it satisfies the imposed requirements (ease of modification and

expandability) since the values of each slot can be easily accessed and modified; and

also new parameters can be added to the "Required parameters" slot and all the

corresponding objects will be created at the end of the already existing object

hierarchy.

4.6 User interface facilities.

A user interface has been developed that allows the user of the system to browse and

update the ground and ground parameters object bases. It is also used for accessing

and displaying typical values of ground parameters for a selected ground type. The

user interface has been developed based on the DialogBox system provided by the

ProKappa environment (§3.2.3).

The user interface session initiates with the appearance of the "menu" dialog box

(Figure 4.7). This dialog box incorporates a list box which contains six options.

Each of these options initiates a different section of the user interface. Selection of

the first or second option (by clicking on to the desired option and pressing the

"OK" button in the command row of the dialog box) will result in the appearance of

one of the dialog boxes which have been created for browsing and updating the

ground and ground parameters object bases.

62

View ground types and typical values of their properties
'View/Update ground parameters
Estimate ground parameters from correlations/corrections
Implement new correlationskorrections

1 Update implemented correlations/corrections
Update ground types and typical values of their properties

Select an option:

OK Cancel

Figure 4.7 The "menu" dialog box.

Each of these dialog boxes contains a list box for displaying the objects of the object

hierarchies and three push button controls (labelled "Forward", "Back" and "Reset"

respectively) for moving forward and backward in the hierarchies. The list box

displaying ground types initially contains two items: "Soil" and "Rock"; the

parameters display list box initially contains all the parameters categories.

The user may select a ground type or a parameter category (by clicking on it with

the mouse) and then press the "Forward" button. This will invoke the execution of a

function that will search the appropriate object hierarchy for the direct subclasses of

the selected object. For example if "Soil" has been selected, the list box will display

the objects "organic", "inorganic" and "artificial".

Correspondingly, if a parameter category has been selected the list box will display

the parameters classified under it. Pressing the "Back" button will cause the list box

to display the items of the previous level (e.g. "Soil" and "Rock", or the parameter

categories). The dialog box for browsing the ground types object base is shown in

Figure 4.8.

63

r"

clayey sand
gravelly sand
clean sand

1

Back	 Forward: Reset 5•

New ground typej Delete ground type),

r Display Implemented Parameters for the selected ground type

Parameters list. Select to examine

Peak effective ante of friction in team! compression, PHI TC
D densit ,d d

144:

Select a ground type:

Parameter	 Update
search	 ;I:	 Parameters:: Help

•

Dismiss

Figure 4.8 The dialog box for browsing the ground types object base.

In the case of the ground hierarchy, since it incorporates more than two levels of

subclasses, the system keeps track of the selection history. When the user is moving

forward in the ground hierarchy, the system stores all the previous levels in the

UserData slot (§3.2.3) of the list box object. Each level is represented as a list,

which contains the selection items of that level. The lists are ordered according to

their selection history. Subsequently the system can display these levels in a reverse

order if required by the user. Furthermore, each time a previous level is displayed,

the item that had been selected is displayed first, demonstrating the exact route the

user has followed.

The dialog box shown in Figure 4.8 can also be used for creating new ground types

and removing existing ones. The "New ground type" push button is used for the

former task and the "Delete ground type" for the latter.

64

When the "New ground type" button is pressed a dialog box appears on screen

asking the user to specify a name for the new ground type and its parent ground

type(s). When the user supplies the dialog box with the required input he/she may

press the "Create" push button (in the command row of the dialog box). This in turn

will invoke a function which checks if a name is specified, if another object with the

specified name already exists and if at least one parent ground type object has also

been specified. If no inconsistencies exist, a new object will be created, whose

parents are the user specified ground type objects. The newly created object is

stored in the object base of the expand module which belongs to the

ground_representation application. As with objects used for storing "typical"

values (which belong to the est module), user defined ground types are stored in the

expand module so that they can be distinguished from system supplied ground

types (stored in the ground_representation application).

The reason for providing the ability to create "user defined" ground types is to allow

the user of the system to store ground types which are geographically and/or

geologically defined; e.g. London clay. Typical values data can be added to these

objects, thus allowing the creation of a user defined (project specific) knowledge

base.

The "Delete ground type" button can be used for removing user defuled ground

types from the ground hierarchy (stored in the expand module). The system

supplied ones cannot be deleted. This is done in order to preserve the integrity of

the system's knowledge base. The removal of a ground type is a three staged

procedure: initially a ground type must be selected from the ground types display

list box; then the "Remove ground type" button must be pressed; and finally the

system pops up a dialog box asking the user to confirm the requested action. It

should be noted that if the selected ground type object is a parent of other ground

type objects, a dialog box will pop up on screen informing the user that the selected

65

objects is a parent object and ask him/her if he/she still requires the object's

removal, since this will cause the removal of all the lower level objects. A similar

dialog box appears on screen when the object to be removed is used for storing

parameters' typical values data. The dialog box warns the user that removal of the

object will result in the loss of this data and asks him/her to either proceed with or

cancel the requested action.

Finally the ground types display dialog box (Figure 4.8) incorporates a check button

control ("Display implemented parameters for the selected ground type"), which is

used to display the parameters for which typical values exist, for a selected ground

type. If this button is clicked on, a second list box appears within the dialog box,

which is used to display parameters (this is shown in Figure 4.8). If then a ground

type is selected in the ground types display list box, the former will display the

parameters, for which "typical" values have been implemented in the system (if any

exist). The user then may select from this list a parameter to estimate (by clicking

on it with the mouse). This in turn will cause a new dialog box to appear on screen.

The dialog box for estimating typical values of dry density for a silty sand is shown

in Figure 4.9.

This dialog box contains a list box for each required parameter. Each of these list

boxes displays the parameter's permissible values. The appropriate data is obtained

from the Required_par and the parameters facets (in this case the Relative_density

facet) attached to the estimated parameter's slot (d_dry) of the ground type object.

The user then may evaluate the required parameter (select one of the displayed

permissible values) and click on the "Estimate" button to obtain the minimum mean

and maximum values for the dry density of silty sand. The relevant information is

retrieved from the d_dry (dry density) slot of the subclass of the silty sand object,

whose Relative_density facet is set to "medium dense" (the name of this object is

medium dense silty sand). If no value for the relative density is specified and the

66

;:firouttOt'll"	irtwwti paiabOtinra

r;;;;;;Tiro,;;;._

very dense
unknown

itryrnmirmni
loose
dense

Dry density, d_dry	 (higire3)

min value	 :	 1.51

average value :	 1.68

max value 1.06

Estimate

Relative_density

Dismiss

"Estimate" button is pressed, the min., mean and max. values displayed will be

retrieved from the d_dry slot of the silty sand object (the same will happen if the

value "unknown" is selected).

Figure 4.9 A dialog box displaying typical values of dry density for silty sands.

The user interface of the system also provides the ability to search for ground types

for which a ground parameter value meets some user defined requirements. For

example a search can be performed for ground types for which the angle of friction

is greater than a user supplied value. This task is handled by the dialog box shown

in Figure 4.10. This dialog box can be called from the dialog box displayed in

Figure 4.8, by clicking on the "Parameter search" button in its command row.

The dialog box shown in Figure 4.10 contains a list box that displays parameters,

for which typical values have been implemented in the system. The user may select

any of these parameters and then specify a value (type a number in the entry box)

and a search criterion (click on the appropriate radio button). The search criteria

provided cover the following cases: searching for ground types for which the user

67

Enter a value for the
selected parameter:

Search for:	 Basic ground types Specific ground types

Dismiss

supplied value of the selected parameter is either greater (than their minimum

value), lower (than their maximum value), or "in range" (greater than the minimum

and lower than the maximum). After the user specifies the value and search

criterion, he/she may click on to the "Search for:" push button controls to initiate the

search. The "Basic ground types" button invokes a function which searches for

system supplied objects (ground types in the ground_representation object base)

that contain a slot named after the selected parameter and the slot's values meet the

specified requirements. Correspondingly, the "Specific ground types" performs a

similar search for user defined objects (in the object base of the expand module).

Set search criterion:	 In range	 Lower than	 Greater than

Figure 4.10 The "Parameters search" dialog box.

The results of the search are displayed in the list box below the "Search" push

button. A button labelled "More Detail" also appears below the list box. If one of

the displayed ground types is selected and the "More Detail" button is pressed, the

list box will now display more detailed descriptions of the selected ground type that

68

meet the user defined search requirements; e.g. if clean sand is selected and the

"More Detail" button is pressed, the list box may display descriptions such as: well

graded clean sand, or very dense well graded clean sand etc. (Note that the

"More detail" objects belong to the est module). Furthermore, the label of the

"More Detail" button will change to "Back". If the user clicks on the "Back" button

the initial list of ground types will be displayed in the list box and the button label

will again change to "More Detail".

4.7 A knowledge acquisition module for typical values.

A most important requirement for a KBS is the development of a knowledge

acquisition module. Knowledge acquisition modules are useful both during the

development stage to enter the necessary knowledge into the system and after this as

a means of updating the existing knowledge, so that the system will maintain its

functionality in the future. In section 4.6 the ways in which the ground and ground

parameters object bases could be updated were presented. In this section the module

for updating the typical values of ground parameters will be presented. This module

was developed, based on the DialogBox system, provided by the ProKappa software

(§3.2.3). It is used for adding typical values of ground properties to selected ground

types as well as to update the already existing ones.

The implementation of new sets of typical values of parameters, or the updating of

already implemented ones is invoked from the dialog box for browsing the ground

types object base (Figure 4.8). The user must first select a ground type from the

ground types display list box and then click on the "Update Parameters" push

button, on the command row of this dialog box. If the button is pushed without

previously selecting a ground type a "warning" dialog box will appear on screen

prompting the user to select a ground type.

69

Peak effective angle of friction in biaxial compression, PHI IC
Bulk density, d hulk

Select a parameter:

Update Add
Parameter Dismiss

Minor&

Clicking on the "Update Parameters" button will invoke a function that searches for

parameters, for which sets of "typical" values (for the selected ground type) have

been implemented. If the search is successful, then the parameters that can be

estimated will be retrieved and displayed inside the list box, contained in the dialog

box shown in Figure 4.11.

Figure 4.11 The dialog box for selecting parameters to update.

If the desired parameter is displayed in this list, the user may select it and press the

"Update" button in the command row. Otherwise, he/she should click on the "Add

Parameter" button. This last action will result in the appearance of the dialog box

shown in Figure 4.12. This dialog box also appears if the initial search for

implemented parameters fails (i.e. no "typical" values for any parameter have been

implemented for that ground type).

The dialog box displayed in Figure 4.12 is very similar to the dialog box used for

browsing the ground parameters object base. This dialog box is used for specifying

the parameter for which "typical" values will be provided. The user must locate the

parameter (using the parameters display list box and the "Back", "Forward" and

"Reset" button) and then select it. If the parameter does not exist in the ground

parameters object base, then it must be created. This can be done by means of either

70

Update
AYI.YLIAhbld.61,66L6IAnadd.

jinr406iWitijii*S40/......	 .

Index properties
stress history parameters
strength parameters

Select a parameter:	 deformation parameters
compressibility parameters

! flow parameters •	 •
particle size distribution parameters

Back	 forward: Reset
5	 .

New quantitative parameter] New qualitative parameter

„

•
Dismiss

AASK,`,1&A,„, \\,444kxt tte'ketiutred ptame

I
	 #

State of overconsolidation, OC state tSelect the required parameters k
Relative density, Relative_density
water table location, wtp
Compressibility, comp

; Angularity of grains, ang

Update:	 Show	 .,Cancel t	 Help

sensitivity, sans
Sttucture, strue

the "New quantitative parameter", or the "New qualitative parameter" push button in

the dialog box.

Figure 4.12 The dialog box for specifying the parameter to implement.

After the parameter has been selected the user must click on the "Update" button to

continue with the implementation procedure. This action will result in the

appearance of a dialog box on screen which is used for specifying the required

parameters for the estimation of the selected parameter. The "Required parameters"

dialog box is displayed in Figure 4.13.

Figure 4.13 The dialog box for selecting required parameters.

71

t t 	 7.=tglItY

high plasticity
intermediate plasticity
low plasticity
unknown
non-plastic

Remove selected	 Show alternative set

Add a new value in the list:

Assign I	 Detach l	 Canc He
{	

List of Permissible values:

Before the "Required parameters" dialog box appears on screen, a function is

executed which searches the ground parameters object base and retrieves all the

qualitative parameters. This is done in accordance with the observation that

required parameters are mostly of a qualitative format (§4.5). The identified

parameters are displayed in the dialog box's list box.

When a parameter is selected (from the list box) a function is invoked which

retrieves the permissible value set(s) for the parameter. This is followed by the

appearance of a dialog box displayed in Figure 4.14 (in this case the selected

parameter is plasticity).

Figure 4.14 The dialog box for assigning a required parameter.

This dialog box contains a list box displaying a set of permissible values for the

parameter. If more than one sets exist, then all the remaining sets (except the one

being displayed in the list box) will be stored inside a list in the UserData slot of the

Hsi box object. A push button with the title "Show alternative" (set of permissible

values) will appear below the list box. This button incorporates a function for

displaying (inside the list box) all the sets of permissible values for the variable.

Each time this button is pressed the currently displayed set of permissible values is

72

placed at the end of the UserData slot list. The first element of that list (another set

of permissible values) will be taken off the list and its values will be displayed

inside the list box. In this way the user can alternatively view all the sets.

The dialog box also contains an entry box incorporating a method for adding new

values to the permissible values list box. The new value is typed inside the entry

box and by pushing the "Enter" button (on the keyboard), it appears inside the list

box. Finally the dialog box also incorporates a "Remove selected" button for

removing selected items from the list box. These last two functions allow the user

to redefine the permissible values of the parameter. In this case, i.e. if a new set of

permissible values is defined, it will be added to those already existing in the

per_val (permissible values) facet of the format slot of the parameter object (in the

GPar object base).

Finally the dialog box incorporates a command row with an option for assigning the

parameter under examination as a required parameter ("Assign"), an option for

detaching the parameter ("Detach") from the required parameters' list (if the

parameter has already been defined as a required parameter) and an option for

dismissing the dialog box without performing any action ("Cancel"). If the

"Assign" button is pressed, a temporary facet is created in the UserData slot of the

required parameters display list box object (Figure 4.13). This facet is named after

the shorthand description of the selected parameter and contains a list with the user

specified permissible values. Furthermore the name of this facet is added to the list

of values of a facet, named Required_par, which is also attached to the same slot.

The facets of the UserData slot are presented in Figure 4.15. Finally the dialog box

shown in Figure 4.15 is taken off screen and control of the execution is returned to

the dialog box for selecting required parameters (Figure 4.13).

73

List Bo

UserData

Required_parameters Has

(Plas) ("unknown", "non-plastic", "low plasticity",

"intermediate plasticity", "high plasticity", ...)

Figure 4.15 The facets of the UserData slot.

The procedure described above may be repeated until all the required parameters are

specified. The user may then wish to view the specified required parameters. This

can be done by pressing the "Show" button in the command row of the Figure 4.13

dialog box. A "Required parameters preview" dialog box will appear on screen

containing a list box which displays the required parameters (Figure 4.16). From

there the required parameters can be selected for examination. The selection of a

parameter will result in the reappearance of the dialog box of Figure 4.14. This

time the contained list box will display the specified set of permissible values. The

user may then alter the displayed set, remove the parameter from the required

parameters list (click on the "Detach" button), or dismiss the dialog box ("Cancel").

It must be noted that in the case of updating the typical values of a parameter that

already exist in the system, the "Required parameters preview" window will also

display the existing required parameters, even if these are not specified during the

current required parameter selection stage.

Finally when the required parameters settings are complete, the user may click on

the "Update" button to proceed with the implementation of the typical values. The

"Required parameters preview" dialog box will reappear on screen, this time

74

Select a parameter to examine F update

Plasticity, gas
Required parameters

Continue	 Reset

prompting the user to confirm the requested action. If the user wishes to continue,

he/she must click on the "Continue" button at the command row of the dialog box.

To cancel the requested action the user must click on the "Reset" button. The

"Required parameters preview" dialog box is displayed in Figure 4.16.

Figure 4.16 The "Required parameters preview" dialog box.

The control of the execution is then passed to a function which retrieves the

appropriate information from the Requiredpar and the parameters facets (stored in

the UserData slot of the required parameters display list box object). This

information is used for the establishment of the object hierarchy which will be used

for storing the typical values of the selected parameter.

Initially a dialog box appears on screen asking the user to specify the min., mean

and max. values of the parameter for the selected ground type (e.g. the coefficient of

volume compressibility, mv for pure clay). The user may then supply the requested

information (or parts of it; e.g. only the min. value) and press the "OK" button to

update the ground_representation application. The requested information can be

supplied by typing into the appropriate entry boxes (Figure 4.17).

The procedure will continue with the reappearance of the Figure 4.17 dialog box;

this time the user will be requested to provide information for the typical values of

the parameter for the object representing a more specific ground type (in this case a

75

"

min vote:

mean value:

max value:

• WY

pure day

Plasticity: high plasticity

OK I	 canceii

pure clay of intermediate plasticity). This process will be repeated until the

typical values of the estimated parameter for all the combinations of the permissible

values of the required parameter(s) have been evaluated.

Figure 4.17 The dialog box for implementing typical values of the coefficient of

volume compressibility, my, for a high plasticity pure clay.

The course of action of the function which is responsible for the creation of the

necessary object hierarchy, is described in detail below. This function is called with

one argument (?parents_list), which initially is set to a list that contains the basic

ground type object, e.g. (pure clay). The function then accesses the first required

parameter (from the Required_par facet of the ground type object). Subsequently it

creates all the objects which correspond to the established set of permissible values

for the first required parameter (each one in turn). Each time an object is created

the dialog box of Figure 4.17 is put on screen, prompting the user to specify the

"typical" values for the newly created object. After the "OK" or "Cancel" button is

pressed the control of the execution is returned back to the function, which

continues with the creation of a new object. Furthermore the function sets the

Required_par facet value to a list which contains the rest of the required parameters

(for all the created objects, including the basic ground type object).

76

After all the objects, which correspond to the permissible values of the first required

parameter have been created, the control of execution is passed to another function.

This function checks the Required_par facet of the ground type object and its new

subclasses, to determine whether or not any contain values. If they do not, it will

stop the updating procedure. Otherwise, the initial function will be invoked, this

time with the ?parents_list argument set to a list containing both the basic ground

type object and its subclasses. Each of these objects will be used as a parent for the

objects that correspond to the permissible values of the second required parameter.

The procedure will continue until the Required_par facet in all the objects no longer

contain any more required parameters.

It should be noted that the initial function will be called as many times as the

number of required parameters. Each time, it will create a set of objects that

corresponds to the permissible values of a required parameter. An illustration of

these sets of objects can be found in Figure 4.6 (each set corresponds to one of the

II, III and IV areas).

The procedure for updating the typical values of parameters that have already been

implemented is the same as that described above. It should be mentioned that if a

set of typical values of a parameter for a ground type (which may be further

described by the evaluation of a number of required parameters) already exists, then

these values will be retrieved from the corresponding objects and will be displayed

inside the appropriate entry boxes as default values (in the dialog box of Figure

4.12). The user is allowed to either confirm or alter the default set of values and

update the corresponding object with this information.

77

4.8 Summary.

A representation scheme for the ground is presented in this chapter. The various

ground types are hierarchically structured, based on a limited number of

classification parameters. The ground hierarchy initiates with the more general

classes (e.g. soil, rock) and develops towards the more specific (e.g. sand,

claystone). Each new class level is specified by either the introduction of a new

classification parameter, or by the specification of a more restricted range of

evaluation for this parameter (compared to the range of the parent class).

Furthermore, a representation scheme for ground parameters is also presented in this

chapter. The various ground parameters are grouped into parameter categories,

which correspond to different aspects of engineering behaviour. The ground

parameters are distinguished in terms of their evaluation as either quantitative or

qualitative. The former are evaluated by numbers, the latter through verbal

descriptors.

Both schemes were implemented in the system as object bases, which belong to the

ground_representation and GPar applications respectively. Each ground class,

parameter or parameter category is represented as an object. The parameter objects

contain a format slot, which is either bound to "quantitative" or "qualitative". In the

first case two facets are attached to the slot, containing the units and the number of

decimal points that should be used for the expression of the parameters values. In

the second case a per_val (permissible values) facet is attached to the slot,

containing one or more sets of qualifiers for the parameter.

An analysis of "typical" values of ground properties revealed that each set of typical

values corresponds to a specific ground class and the estimated parameter is always

of quantitative format. It should also be noted that more restricted ranges of typical

78

values can be established for more specific ground classes. For example the range

of variation for dry density of a well-graded, medium dense clean sand is smaller

than the corresponding range for clean sand (because the evaluation of dry density

of clean sand depends on grading and relative density). When additional parameters

are used for the specification of more restricted ranges of "typical" values, then

these parameters (called the required parameters) are invariably of qualitative

format.

Typical values of ground properties are represented in the system as the value of a

slot, named after the estimated parameter (e.g. dry density, d_dry), which is attached

to a ground class object (e.g. silty sand). The value of this slot is a list, that

contains the minimum, mean and maximum values of the property for the ground

class.

When a number of required parameters is introduced, the system creates an object

hierarchy for the representation of "typical" values. This hierarchy initiates with the

ground class (the basic ground type, e.g. sand). Below that a number of subclasses

is created, each corresponding to a "more detailed" ground type, defined from the

evaluation of one or more of the required parameters (e.g. well-graded medium

dense clean sand). The "typical" values for each of these "more detailed" ground

types are represented as the value of the estimated property slot, that is inherited

from the basic ground type object. The "more detailed" ground types are created in

the object base in a module (called est) in order to distinguish them from the basic

ground types (which belong to the ground_representation application).

A user interface has also been created for browsing the ground types and ground

parameters knowledge bases. It is also used for displaying the "typical" values of

properties for selected ground types.

79

Finally, knowledge acquisition modules have also been implemented in the system

for creating new ground types, ground parameters and implementing new sets of

"typical" values as well as for updating the already implemented ones.

80

CHAPTER 5

Representing correlations in a structured form.

5.1 Introduction.

The process of correlation is that of identifying the mutual relationship between

objects under examination. When referring to the ground, these objects are the

ground properties, and a correlation between any number of them is a measure of

their statistical interdependency.

The most common way for evaluating ground properties is through geotechnical

testing (either in-situ or in the laboratory). But even when test results are available,

there might be a need to interpolate or extrapolate the available results in order to

predict the values of the desired parameters in positions, times, or under conditions

that have not been considered during testing, for various reasons (such as cost-

effectiveness; lack of time or equipment for additional testing etc.). Furthermore it

is well known that no laboratory or field test accurately simulates the boundary

conditions, modes of loading and stress paths followed in a field problem, and

calibration of the results against observations of the performance of the ground is

required to account for the discrepancies between measured and actual values of the

parameters in question.

Therefore, the extensive use of correlations in the area of geotechnical engineering

primarily arises from the need to give predictions for the ground behaviour when

81

limited or no relevant test results are available. Also empirical correlations are used

for calibrating test results against observations of field performance, thus

rationalising the selection of parameters for design; to provide comparisons between

the results of different tests for the same parameter; and as a means of linking field

test parameters with other ground parameters, which exhibit similar general trends

but because of the boundary conditions being dissimilar, a theoretically-based

linkage is very difficult to achieve. The last case can be extended to incorporate all

those cases where a similar general trend between two parameters is identified, but

because of complexity of ground conditions, or because of inability to identify and

quantify all the influencing factors, an empirical correlation is used to describe their

relation (e.g. when relating undrained shear strength (Su) with SPT N value

measurements).

Another major advantage from the use of correlations in the design process is cost-

effectiveness. During preliminary design, where very accurate predictions of the

design parameters is not a basic requirement, ground parameters can be estimated

from correlations together with a limited number of tests. During the final design

stage, correlations, suitably validated from test results, can be used for site

variability assessment, reducing the amount of testing required for the site.

Finally correlations can be used for cross-checking the consistency of test results,

thus identifying variations from normal behaviour. In summary, correlations are

simple, easy to use and they provide a cheap, if crude, means for the rapid

estimation of ground properties.

Of course the use of correlations can have some important drawbacks, mainly due to

their empirical nature, or due to lack of appreciation of the restrictions associated

with their use.

82

When trying to correlate two or more parameters, it is very important that an

understanding exists as to why these parameters should be correlated, in other words

to establish the physical meaning of the correlation. Correlating is certainly not

only plotting a best fit curve from a series of data, because the lack of physical

explanation in a phenomenological relationship can lead to erroneous results, when

applied to practice.

Secondly the data that will be used for the correlation should be of "good quality".

It should be checked for inconsistencies and for "suspicious" values, to ensure that it

does not add to the uncertainty of the correlation. In the case where test results are

used, coherence of the data can be achieved if standardisation of test types and test

conditions is established. Otherwise the increase in the uncertainty of the

correlation will reflect the differences between test types and conditions used.

Unfortunately there are many correlations in the literature made from "low quality"

data, that originate from a mixture of test types and procedures (e.g. correlations of

plasticity index with angle of friction for clays, obtained from a mixture of isotropic

and anisotropic triaxial compression tests).

It should also be emphasised that the more empirical the nature of the correlation,

the higher will be the uncertainty and the more likely that significant deviations

from the actual value of the estimated parameter will be observed in the field. A

common example demonstrating the above is the use of SPT N value (Nsi,r)

measurements for the prediction of almost every performance property of both sands

and clays. For decades engineers have tried to establish relations for a broad range

of properties (from friction angle and relative density of sand to undrained shear

strength and elastic modulus of clay, and a few others) by simply using the dynamic

driving resistance of a particular sampler size. Most of these relations naturally

show a large degree of scatter, which is to be expected when parameters that are not

directly related are linked through an empirical relation.

83

Another important point is the age of the correlation. It is very common that young

or immature correlations change rapidly when used in practice and as the

understanding of the correlated parameters improves [Kulhawy, 1992]. For

example the correlation between relative density, Dr and Nspr from Terzaghi and

Peck [1948], was subsequently altered by many researchers, to incorporate

additional components that improved its precision. In its current form it

incorporates nine parameters [Skempton, 1986], most of them in the form of

corrections that account for different testing procedures, and the state of the tested

soil. Therefore one should be very cautious when using a correlation which has not

been extensively validated against field cases.

The most common source of error originates from the extrapolated use of a

correlation; i.e. when a correlation is used for ground types and conditions that are

different from those that were accounted for during its development. The associated

risk in such cases should be quantified, or at least be the subject of sound

engineering judgement. This of course implies a knowledge of the theoretical

background of the correlation (if any), and the realisation of the need to cross-check

the correlation's results against information from more reliable sources. Again the

extensive use of a correlation in field cases will provide a better feel for its

reliability and its limitations.

In conclusion, correlations can be a very useful means for estimating ground

parameters, if the negative implications from their use are minimised. The basic

requirements towards this direction should be:

• When creating correlations, avoid non rationally-based relations between

parameters and use good quality data obtained through standardised procedures.

84

• When using correlations, avoid those that have not undergone extensive

validation, and appreciate the theoretical background and the limitations of the

relation.

5.2 Representing correlations in a structured form.

A correlation contains many pieces of information. The summation of these

describes the relation between a number of parameters. If these different pieces of

information are isolated from each other, the parts that form the correlation can be

identified as distinct entities, and subsequently categorised into the following

groups:

• The correlation's variables

• The estimation procedure

• The correlation's applicability

• The correlation's reliability

• Comments on the correlation

It is believed that these five parts adequately represent the information associated

with a correlation. They will be presented in more detail in the following sections.

5.2.1. Variables.

The term variables is used here to describe both the independent and dependant

variables of the correlation.

85

The independent variables, henceforth called variables for reasons of simplicity,

represent all the input information, required for the execution of the correlation.

Variables are usually, but not exclusively, ground properties, either alone or in a

combination of more than one. Therefore they can be further subdivided into basic

and intermediate variables. The term intermediate is here used to underline that

these variables are the product of a combination of basic variables, and therefore

need to be evaluated indirectly.

Also variables can be divided into those which have numerical values and those

which are described through verbal descriptors. The former will be termed

quantitative, and the latter qualitative variables. It should be noted here that

intermediate variables can only be quantitative, while basic variables can be either

of the two types.

A quantitative basic or intermediate variable can be fully described by its name,

units (if any), and the maximum and minimum values, defining the limits of

application of the correlation with respect to the variable. The range of

applicability, can be any subgroup of the range from which the variable can be

evaluated; e.g. there are correlations [Lerouiel et al 1983] for which plasticity index

can only take values between 5 to 70, even though it can generally take values

between 0 and 140 or more. This is imposing a restriction on the correlation

preventing extrapolation outside its limits of application. Therefore this information

should never be neglected.

It should also be emphasised, that by distinguishing between basic and intermediate

variables, restrictions at both levels can be explicitly incorporated into the body of

the correlation.

86

A qualitative basic variable can be fully described by its name and a list of words,

henceforth termed the permissible values, which are used as its qualifiers. These

values can either be translated into numbers, and therefore directly incorporated in

the execution procedure, or used as pointers to invoke alternative estimation

procedures. In the first case, translation will be performed through a mapping

function, the definition of which should be incorporated into either the description

of the variable, or the estimation procedure.

The dependant variables, henceforth called parameters, represent the totality of the

results produced by the correlation's execution. In most cases there is only one

parameter that is to be estimated, but there are also correlations which produce

additional results. The term intermediate parameters will be used to describe all the

additional results, generated through a multi-staged procedure, towards the

estimation of the basic parameter.

A correlation proposed by Aas et al [1986] demonstrates the need to identify and

describe intermediate parameters as parts of a correlation. This correlation is used

for estimating the average undrained shear strength of clays in triaxial compression,

extension, and direct shear, from field vane shear strength, plasticity index and

effective overburden pressure. The estimation is performed as a two-staged

procedure. In the first stage the variables are used to produce an estimation of the

state of overconsolidation of the clay. Depending on whether the clay is classified

as normally consolidated or overconsolidated, different relations are used in the

second stage, in order to produce an estimate of S uav • The intermediate parameter,

state of overconsolidation, is an essential requirement for the execution of the

second stage, and is also yet another piece of information obtained through the

correlation. This can possibly be used in further analyses, cross-checking of data, or

even as a variable in another correlation.

87

It should also be noted, that intermediate parameters and the parameter of the

correlation are also subdivided into quantitative and qualitative.

5.2.2. The estimation procedure.

This is the part of the correlation describing the interdependency of variables and

parameters in a mathematical and/or logical form. In its simplest form, it consists of

a single formula linking the basic variables with the parameter of the correlation. In

its most complex form, it becomes a three-staged procedure. During the first stage,

the intermediate variables are calculated from the corresponding basic variables,

through their predefined functions. In the second stage all the intermediate

parameters are estimated. Finally the basic parameter of the correlation is estimated

in the concluding stage of the estimation procedure.

The estimation procedure can also be simple or complex in terms of its incorporated

mathematical form. Usually it features simple equations, but often iterative

procedures are used for the estimation of the basic variable; e.g. the relative density

of sands can be estimated from cone penetration test results, through an iterative

procedure, [Jamiolkowski et al, 1985]. Irrespective of its simplicity or complexity,

the estimation procedure is the most suitable and straightforward part of a

correlation for algorithmic representation.

5.2.3. Applicability.

The applicability is the part of a correlation containing the restrictions that define

the limits of its application. There are many different kinds of restrictions

associated with a correlation, the ground type(s) for which the correlation applies,

88

being the most typical of these. The applicable ground types can be very broad

categories (e.g. all coarse soils, clays), or in some cases very specific (e.g. relatively

uniform, inorganic, clean, fine to coarse sands).

Furthermore, the state of the ground, as described from a number of ground

properties (density, plasticity, mineralogy, ageing, overconsolidation state etc.), can

impose additional restrictions to the application of a correlation. For example, a

correlation for the estimation of relative density from the cone tip resistance from

CPT tests [Jamiolkowski et al, 19851, is relevant to relatively uniform (grading),

clean, normally consolidated (overconsolidation state), predominately quartz

(mineralogy) sands where k. (the earth pressure at rest), is about 0.45. Therefore,

the definition of its applicability requires an evaluation of the above ground

properties (stated inside brackets).

There even exist correlations for which an initial assessment of the parameter in

question is required in order to confirm its applicability. For example there are

correlations for the estimation of the undrained shear strength applicable only to soft

clays. To identify a clay as soft, one needs to actually perform an evaluation of its

undrained shear strength (in this case to assume S u <40 lcPa). Fortunately, most of

the above parameters can be easily assessed through visual inspection and simple

classification and strength tests.

It becomes apparent that in order to apply a correlation with confidence, for a

specific ground type, one has to compare its type and properties with the applicable

types and properties of the correlation. This in turn requires information about the

ground type and at least a crude evaluation of the properties relevant to the

restrictions.

89

For a formal evaluation of the applicability of a correlation, each comparison could

be assigned a weight, that would provide a measure of its relative importance, and a

score, describing the goodness of the comparison. Detailed comparisons with

weights and scores, would require a quantitative evaluation of how the applicability

of the correlation alters, when departing from the predefined standards (the

restrictions of applicability). Unfortunately, very rarely is such information

incorporated into correlations, and even then, it is inadequate for quantitative

evaluation. For example, it is known that if correlations for the estimation of

compressibility of inorganic clays are used to estimate the compressibility of

organic clays, they will tend to produce much lower values, but a quantitative

assessment of how much lower is not feasible.

Therefore, even though comparisons for checking the applicability of a correlation

should always be performed, formal methodologies for assessing applicability that

incorporate quantitative aspects, can not be applied, for the above reasons.

Alternatively, the applicability of a correlation with respect to specific ground types

and properties restrictions could be expressed in terms of a linguistic variable, which

can accept the values low, medium and high applicability. In this way it is ensured

that qualitative information with respect to the applicability will be represented in

the system. For example, with consideration of the previous example, the

applicability of the correlation for inorganic clays can be described as high, while

for organic clays it would be low.

5.2.4. Reliability

The reliability of a correlation is a measure of the validity of the estimated results,

with respect to the uncertainties associated with the estimation process, and the risk

involved with their subsequent use for analysis, or design.

90

Uncertainties are always introduced in any evaluation process, and therefore also in

correlations. Some represent the inherent material and property variability, some

represent measurement errors, and some represent modelling inadequacies, or

inaccuracies (transformation error) [Kulhawy, 1992]. In correlations especially,

further uncertainties are introduced when a mixture of results from different soil

types and test types and procedures is used in the dataset for the establishment of the

correlation. Even though the individual effects of each type of uncertainty are

difficult to assess and quantify, their overall effect results in a scatter of the data

points around the correlation's function. This scatter can be represented by the

coefficient of fit, r2 and the standard deviation, a (statistical interpretation). The

reliability of a correlation can be further described by the number of data points, n,

since larger datasets provide a more reliable estimation of the above statistical

parameters.

The extent of evaluation and the age of a correlation are also crucial factors for

assigning values to its reliability. The use of an "immature" correlation, that has not

been extensively evaluated in field problems, is always associated with higher risks,

and therefore lower reliability. Of course these risks can not be easily quantified,

but equally they should not be neglected when assessing reliability.

Therefore the evaluation of reliability can involve both quantitative and qualitative

aspects. The former will be represented through statistical parameters (r2, a, n),

wherever such information is available. The latter is expressed in terms of a

linguistic variable (reliability score) with verbal descriptors, such as low, medium

and high. The qualitative evaluation of reliability may be based on information

obtained from the literature (either from the authors of the correlations, or from

others, who have subsequently used and modified the original correlation).

91

Finally, it should be noted that reliability will be decreased as a result of the

extrapolated use of the correlation outside of the predefined ranges as described by

restrictions on the correlation's variables. The same applies when the correlation is

used for ground types and conditions different from those described by the

correlation's applicability.

5.2.5. Comments.

Comments are all the additional information relevant to a correlation that cannot be

included in any of the above categories. This information will be presented in a

textual form. It can be in the form of explanations, that will help the user

understand the background of the correlation; additional warnings with respect to

the applicability and reliability of the correlation; and recommendations relevant to

the subsequent use of the correlation's results for analysis and design. The reason

for including comments in the correlation's body, is to increase the confidence of the

user and to warn him/her when necessary.

5.3 Implementation in the system.

Correlations have been implemented in a hierarchically structured object base,

which forms a part of the Correlation application. This application is

supplemented with three application modules (ProKappa applications and modules

are presented in §3.2.1). The Correlation application and the Correction module

(corrections are discussed in §5.3.2) are used for storing correlations in the system.

The CorrUI module is the correlation's user interface and the Update module is a

knowledge acquisition module for implementing new correlations in the system (or

updating those already existing). In the following sections of this chapter a detailed

92

review of the Correlation application and the Correction and CorrUI modules will

be presented, with emphasis on the functionality of the system as a whole. The

knowledge acquisition module is presented in Chapter 6.

5.3.1 The Correlation application

Introduction.

Each correlation is represented as an object in the object base of the Correlation

application. This object base consists of a top level object (Correlations) and all its

subclasses, which are the correlations. Each correlation object contains all the

necessary information, featuring variables and parameters, estimation procedure,

applicability, reliability and comments of the correlation, in the form of slots and

facets (slots and facets are presented in §3.2.1) attached to the object. All of the

slots and their facets will be presented in detail in this section. All correlation

objects contain the following slots:

• Variable slots. Each variable (basic or intermediate) will have its own slot for

input of values.

• A Parameter slot, which contains a detailed description of the basic parameter.

• Parameters slots. Each parameter (basic or intermediate) will have its own slot

for output of values.

• A Data_Check! slot. A method slot for performing a check on the values of

variables.

• Applicability slots, for storing the applicability restrictions.

• A Reliability slot, for storing the reliability information.

• An error slot, for storing errors and warnings.

• A Comments slot, containing the comments of the correlation in a textual form.

93

Tabta

Tool View

i Slot Edit View Instrument
	 	

Su7_11

Comments(mv)	 ?

Data_Check:

error(mv)

High_Applicability(mv)

LI

Low_Appiicability(mv)

Medium_Applicability(mv)

ICorrelations.Data Check!

?

(clay@ground_rep, sens)

•Parameter

Pararneters_neecied(mv)

•Reliability

Su(mv)

winname

•wintitle	 ;: "Su f(LI), Skempton arid Northey, 1952"

1"Undrained shear strength, Su"

"Su from Liquidity index, LI, Skempton and Northey, 1952 (7)."
•

'low'

(01.0, 97.0 ...), (6.0, 9.0 ...)

Su7

• A Parameters_needed slot, containing a string with a description of the

parameter and the basic variables of the correlation followed by the correlation

reference.

• A winame slot, containing the name of the dialog box object through which the

correlation will be represented at the interface stage (§5.3.3) and

• A win title slot, containing the title of the dialog box, which also has an author

facet (the correlation's author(s) and date) attached to it.

All the above slots (except the Variable slots and Parameter slots) and their

corresponding facets are defined in the Correlations object and inherited by every

correlation (since every correlation object is a subclass of Correlations). The

DataCheck method (the value of the Data_Check! slot) is also defined in the

Correlations object. An example showing the slots of a correlation object (Su7LI)

is presented in Figure 5.1.

Figure 5.1 The slots of the Su7LI correlation object

94

Variable slots.

Each variable of the correlation is represented as a single value slot. The slot name

is a shorthand description of the variable (e.g. LI, for liquidity index) and its value is

either a list of numbers (one or more values for a quantitative variable), or a string

(for a qualitative variable). A number of facets is also attached to the variable slot,

defining the type (basic or intermediate variable) and the format (quantitative or

qualitative) of the variable, the type and name of interface control (required by the

interface module, as will be shown in §5.3.3), a facet, named variable, containing a

string with a more detailed description of the variable (e.g. the variable facet of the

slot LI, is bound to "liquidity index, LI"), and finally facets containing the

restrictions of applicability relevant to the variable. An example of the facets for the

LI slot of the Su7LI correlation object is given in Figure 5.2.

pi Tool View
'

-Su7_IJ . LI	 L.......e—

1

LID

V

,

Facet Edit View Instrument

1 Quantitative
i" 	
.'.Su7LI,	 .:

11

.

BV_descripbon

ebname

Zi	».,...............

max...value

inin_value

units

variable
,.	 .„4: 	

• 	 •• • •• ---••- ,,,,,, • ,

10
, 14 N

I

z." "Liquidity index, LI"
„ 	

•	 `-`,*0-• ' ,,,,......................,.....1.14.1.....4

V. ''' "':''. ',',11,..",1" ? " ',Y. '....'„"'„a ‘, '.'	 1.;.:ik's•'-..)vX,.:',<:v.„:.','„?N...11!%."	 ;..',:-.)::.::.:,:.!.:r): A:-:::,Y-..r:!

Figure 5.2 The facets of the LI slot of the Su7LI correlation object

In the case of a basic variable, a single-value facet named BV description (Basic

Variable description), is created, which depending on the format of the variable, can

95

accept the values qualitative or quantitative. In the case of an intermediate variable,

a facet named IV description (Intermediate Variable description), is created, that

can only accept the value quantitative (as mentioned in §5.2.1).

If the BV description or IV description facet of the variable is bound to

quantitative, then four more facets are created in the slot, namely the max value

facet, containing the maximum value of the variable for which the correlation

applies, the min_value facet, containing the minimum value, the units facet

containing the units of the variable, and the ebname facet (entry box name),

containing the name of the entry box object, through which the variable will be

represented at the interface stage (this is discussed in §5.3.3). In the case of an

intermediate variable the facet is called tdname (text display name) containing the

name of the Text Display object, through which the variable will be represented at

the interface stage. The maximum and minimum values define the range of

applicability of the correlation with respect to the variable, and the inclusion of units

in the definition of the variable minimises the danger of errors, as a result of using

wrong units. An example of a quantitative basic variable slot and its corresponding

facets is shown in Table 5.1. It should be noted that an intermediate variable slot

also contains the same facets, the only distinguishing characteristic being that the

BV description facet is substituted with the IV description facet.

If the format facet is bound to qualitative, a facet named per_val (permissible

values) is created, containing a list with the permissible values of the variable; e.g.

in a correlation for the estimation of relative density, the quantitative variable

compressibility is introduced, which can take the values low, medium, and high,

[Jamiolkowski et al, 1985]. A second facet, lbname (list box name), is also created,

which contains the name of the list box object, through which the variable will be

represented at the interface stage (see §5.3.3). An example of a qualitative basic

variable slot and its corresponding facets is presented in Table 5.1.

96

uantitative basic variable Qualitative basic variable

LI (0.8, 0.9) Plas "low"
.	 .. .

etnaru aeetv ues eetnit	 	

BV description Quantitative BV description Qualitative

ebname Su ILI lbname SulPlas

variable "liquidity index, LI" variable "Plasticity, Plas"

max_value 1.2 per_val ("low", "intermediate",...)

min_value 0.0

units

Table 5.1 Basic variables slots and their facets.

Parameter slots.

The basic parameter of the correlation is represented by two slots. The name of the

first, which is a multi-value slot, is a shorthand description of the parameter and its

values can be ordered lists of triples or series of strings, depending on the format of

the parameter.

The second (single-value slot), is named Parameter and its value is a string with a

more detailed description of the basic parameter. A parameter facet, which contains

a pointer to the multi-value parameter slot, along with facets containing control

objects names (see §5.3.3), and a format facet, describing the parameter's format,

are attached to the Parameter slot. If the format facet is bound to quantitative, then

a units and a num_of dec (number of decimal points) facets are also created. The

Parameter slot also incorporates a SlotFormula facet, which contains a pointer to

the slot formula object used for the representation of the estimation procedure and

an estp facet containing the user defined text for the creation of the estimation

procedure function (both are discussed in the Estimation Procedure section).

97

..
Pivb6.?'

Su7_Ll . Parameter

IFacet Edit View Instrument

Su7cr

"?max pow° 0, 0.02*pow(?Ll, 3).

Quantitative

0

Su

corr_Sul __Para_50 @correlation

Way	Su7av

cr

estp(mv)

format

num_of_dec

parameter

SlotFormula

tdmam	 Su7mam

tdmax	 Su7max

tdmin	 Su7minim

tdname	 Su7nam

units

Finally, the Parameter slot also includes facets containing names for Text Display

objects for the representation of the correlation's results and a cr facet which

contains the name of the command row of the dialog box which is used for

representing the correlation at the interface stage (see §5.3.3). If the basic parameter

is of quantitative format, it will contain the tdname, tdmin, tdmax, tdav and tdmam

facets (representing the name, minimum, maximum, average and overall min., mean

and max. values of the parameter respectively). Otherwise, the Parameter slot only

contains a tdname facet. An example of the facets of the of the Parameter slot on

the Su7LI correlation object is given in Figure 5.3.

‘k	"':"."‘• "	 ‘k:W,Y0' "	 ,Vit" "

Figure 5.3 The facets of the Parameter slot of the Su7LI correlation object

98

Intermediate parameters are represented as multi-value slots with names that are

shorthand descriptions of the parameter. The slots and facets for a quantitative and

a qualitative intermediate parameters are presented in Table 5.2.

Quantitative intermediate parameter Qualitative intermediate parameter

Slut name.... '''	 "	 lot valne	 	 	 Slot name Slut value

mu (0.8, 0.82, 0.85),

(0.83, 0.85, 0.87), ...

OC state "normally consolidated",

"lightly overconsolidated"

aFacet names,	 „ „	 .. 	 ' Facet values	 ,, niCei names Facet values

IP_description Quantitative IP_description Qualitative

parameter "Field vane correction

factor, after Bjerrum"

parameter "Overconsolidation state"

tdname Sul lmunam tdname SulOOC_statetd

tdmin Sul lmumin

tdmax Sul lmumax

tdav Sul lmuav

tdmam Sullmumam

units ?

,	 num_of dec 2

Table 5.2 Intermediate parameters slots and their facets.

A facet, IP_description is attached to the slot, which is either bound to quantitative

or qualitative, depending on the format of the parameter. For quantitative

parameters, the slot values are lists of ordered triples, each of which contains the

estimated minimum, average, and maximum values of the parameter, for a set of

single values of the variables. For qualitative parameters, their slot values are a

series of strings, each obtained from a set of single values of the variables. A

parameter facet, containing a more detailed description of the parameter, and facets

containing names for text displays (tdname, tdmin, tdmax, tdav, tdmam) for the

representation of the correlation's results (see §5.3.3), are also attached to the

parameter slot. Finally, if the parameter's format is quantitative, a facet, named

99

units, containing the parameter's units, and a facet num_of dec, containing the

number of decimal points that will be used in the expression of the results, are also

created. The number of decimal points is in accordance with the expected accuracy

of the correlation's results and the relative magnitude of the parameter (e.g. relative

density, usually ranging between 0.0 and 100.0, is presented with one decimal point,

and dry unit weight, usually between 1.00 and 2.50, with two).

Data_Check! slot.

Each correlation object inherits a Data_Check! method slot to provide the relevant

value checking functions. The Data_Check! slot contains a method (implemented in

ProTalk and stored in a file, which is a part of the Correlation application), which

checks the variables' values. The method can be invoked if a message is sent to that

slot. The course of action of the method follows a number of stages which are

associated with functions, called from the DataCheck method, to perform different

value checks. An outline of these stages is presented here followed by an analytical

description of the checking procedures.

• search for quantitative basic variables

• format checking of quantitative basic variables

• check basic variables' values are in range

• list length checking for all basic variables

• search for intermediate variables

• calculate values for intermediate variables

• check intermediate variables calculated values are in range

Initially, the DataCheck method searches the correlation object for quantitative basic

variables. These are identified by searching for slots of the correlation object which

contain a facet BV description, the value of which is bound to quantitative.

100

Following the identification of a variable slot, a format check function is invoked.

The values of the slot are assessed and checked for being of the correct list format

(numbers inside brackets, separated by commas). If this is not the case, or if the slot

does not contain any values, a message, informing of the observed inconsistency,

will be sent to an error slot, which is also attached to the correlation object. The

control will be passed back to the method and execution will continue with the

check of another variable.

If no error exists in the format, the method will call another function that checks

each of the values of the initial variable, by comparing them with the minimum and

maximum values, as these are stated in the min_value and max_value facets (if these

facets contain any values). Every inconsistency will be reported to a warnings facet,

which is a multi-value facet attached to the errors slot. All warnings are explicit to

each of the values outside the variable's applicability range: e.g. if the list (-1, 1, 2.2)

is assigned to the variable liquidity index, with range of applicability 0 to 2, then

two strings will be added to the warnings facet: "the value of LI equal to -1 is not

between 0 and 2" and "the value of LI equal to 2.2 is not between 0 and 2".

After checking the first variable, another basic quantitative variable will be

identified and the checking procedure will be repeated for it, until all the basic

quantitative variables of the correlation have been checked. Backtracking of the

method's execution is based on a non-deterministic search, using the ProTalk search

modifierfind (described in §3.2.2).

The last action of the method, incorporates a call to a third function which checks

the number of values in the list for each of the basic variables. If all the basic

variable lists do not contain the same number of values, an error will be generated

because then a one to one representation of the variables' list values is impossible.

This can be illustrated if the variables' list values are arranged in a matrix format,

101

with number of columns equal to the number of variables, and number of rows

equal to the number of values of each variable. In this way, each row provides one

result set for the correlation's parameters, and the number of rows is equal to the

number of the estimated result sets of the correlation's parameters. An example for

a correlation with three basic variables, each of which is bound to a list with n

elements is shown in table 5.3.

variable 1 variable 2 variable 3 parameters

result set 1value 11 value21 value31

value 12 value22 value32 result set 2

value 13 value23 value33 result set 3

• . . :

value in value2n value3n result set n

Table 5.3 An example of a one to one representation for a three variable correlation.

After the DataCheck method has finished checking the quantitative basic variables,

and if no errors or warnings have been reported to the corresponding slot and facet,

it will try to establish the existence of intermediate variables. If the search for

intermediate variables proves successful, a message will be passed on to the function

contained into a slot formula object.

Intermediate variables are associated with a slot formula, which is used to store their

estimation procedures (slot formulas are presented in §3.2.4). This slot formula is

pointed to by a SlotFormula facet in the Parameters_needed slot. The value of this

facet is a pointer to a slot formula object, which is stored in the AR_Correlation

application module (Active Relations in the Correlation application).

The slot formula object contains a user supplied function which is used for the

calculation of the values of the intermediate variable. This function is implemented

in ProTalk and uses as input the values of the basic variables to calculate values for

102

the intermediate variable. An example of part of the ProTalk code could be: "?IV_1

= ?Su_FV/?sigma_vo;", which would calculate the values of intermediate variable 1

(?IV_1) as the ratio of the undrained shear strength from the field vane test

(?Su_FV) and the overburden pressure (?sigma_vo). It should be further noted that

no uncertainty is associated with the calculation of intermediate variables

(intermediate variables are calculated rather than estimated).

The calculation function also has to manipulate multi-value lists to produce all the

values of intermediate variables, so that each set of values of the basic variables will

produce one value. The slot formula object also incorporates a slot which contain

references to all the slots, whose values are required by the slot formula for the

calculation of the intermediate variable's values (the relevant basic variables slots).

The detail of the implementation of slot formulas is presented in §6.4.

After the calculation of the values of all the intermediate variables, control is passed

back to the DataCheck method. The method now tries to identify slots that contain

/V description facets, and calls the function that checks if each one of their values

falls within the range defined by the minimum and maximum values of applicability

of the variable (the format check is now omitted since errors are impossible at that

stage). Any observed inconsistency is again reported to the warnings facet.

If at the end of the checking procedure the error slot contains any values, then all the

corresponding errors should be corrected before proceeding with the estimation

procedure. However, the existence of warnings does not prevent the execution of

the correlation. In contrast to errors, the decision is totally dependant upon the user

of the system, highlighting the need to distinguish between errors and warnings.

The former occur when the values of the variables are not of the correct format, or

when the sets of the variables' values cannot be defined, thus making the execution

impossible. On the other hand warnings are merely extrapolations outside the limits

103

of the correlation's application, which should not impede its execution. Of course

the estimated results may prove erroneous, but the user would be informed about the

associated risk. Furthermore, he/she will also be able to assess the correlation's

performance outside its applicability limits, and in some cases even reconsider these

limits. Finally, it should be remembered that these limits are not always clearly

defined and sometimes were determined as a result of inadequately extended testing

procedures. For example, a correlation for the estimation of the sensitivity of clays

[Skempton and Northey, 1952] is applicable only to clays with a liquidity index, LI,

ranging between 0 and 1.2. There is a possibility that this correlation can also

provide meaningful results for larger or lower values of LI, but probably because no

test results are available, the applicability limits of LI are restrained to the above

range.

The Estimation Procedure.

The next step, after the checking of the basic and intermediate variables, is the

execution of the estimation procedure of the correlation. The estimation procedure

is a user supplied ProTalk function, contained in the slot formula object, pointed to

by the SlotFormula facet in the Parameter slot. The function's input consists of all

the basic and intermediate variables' values. The body of the function is an

algorithmic representation of the correlation's estimation procedure (stored in the

estp facet in the Parameter slot). This procedure is contained in a loop, which is

executed as many times as there are values in the list for the variable, producing

thus an equal number of values (or triples of values) for the correlation's parameters.

When information for the variation of the values of quantitative format parameters

(either in terms of standard deviation, or minimum and maximum limits of variation

etc.) is available, this is included in the function. The output of the estimation

procedure consists of ordered triples (in the order: minimum, average, and

maximum) of values for quantitative parameters, or simple strings for the qualitative

104

ones. All the output is directly placed in the corresponding slots in the correlation

object. The implementation of slot formula functions for the estimation of the

correlation's parameters is presented in §6.4.

Applicability slots.

The applicability of the correlation is represented by three multi-value slots. These

are the High_Applicability, Medium Applicability and Low Applicability slots.

Each of these slots may contain one or more lists. Each list should contain at least

one element, which is an applicable ground type, and if more elements exist, the

ground type will always be the first element of the list. This element is a pointer to

an object in the ground_representation object base.

Further restrictions on applicability are represented as multi-value facets attached to

the relevant applicability slot. Each facet is named after a shorthand description of

the parameter (a pointer to the parameter object in the GPar object base; see §4.4)

imposing the restriction and this name is also included in the slot. The descriptors

of that restriction are either a range of numbers, or some of the permissible values of

the parameter (depending on whether this parameters is of quantitative or qualitative

format). These descriptors are placed in a list, which in turn is placed in the

parameter's facet. The first element of this list is the applicable ground type,

followed by the restriction descriptors. In this way each of the restrictions for a

specific parameter is linked to the corresponding ground type.

The parameter facet is created as a multi value facet so that it can also accept other

lists of restrictions, which correspond to other, also applicable, ground types. For

example a correlation which is highly applicable to well-graded sands and poorly-

graded gravels, will be represented by two lists in the High Applicability slot

(Figure 5.4).

105

Slots
	

High_Applicability (my)

Slot values (sand, grading), (gravel, grading)

Facets grading (my)
Facet values (sand, "well graded"), (gravel, "poorly graded")

Figure 5.4 The representation of applicability.

The first list contains the element sand and the element grading. The second

contains the elements gravel and grading. Finally a facet, named grading is

attached to the High Applicability slot. This facet contains a list with the element

sand followed by "well graded", and a list with the element gravel followed by

"poorly graded".

Reliability.

The reliability of the correlation is represented as a single-value slot, which is bound

to either "low", "medium", or "high", as described in §5.2.4. The facets sd (standard

deviation, a), r2 (coefficient of fit, r2), and n (the number of data points) are

attached to the Reliability slot and contain the appropriate information, whenever

this is available.

5.3.2 The Correction module.

A special case of correlations are those which describe the relation between two

different modes of the same parameter. For example, relations exist between the

field vane undrained shear strength and average field undrained shear strength of an

embankment or a cutting (e.g. Bjerrum, 1972, Azzouz et al, 1983, and Aas et al,

1986). Similar relations also exist between undrained shear strengths or peak

effective friction angles, obtained through different testing procedures (triaxial

106

compression, triaxial extension, direct shear, plane strain shear etc.). These

relations are usually termed corrections, because the estimation of one type of

undrained shear strength from the other, is made through multiplication of the latter

with a correction factor (which can be a constant number, or a function of other soil

properties). Corrections are implemented in the system, in exactly the same way as

correlations. All corrections are subclasses of the Correlations object, but they are

separated from them, since they belong to the Correction module. In the rest of

this chapter as well as in the following chapter the term correlations will be used to

cover both correlations and corrections, unless it is specifically mentioned

otherwise.

5.3.3 The CorrUI module.

The Correlation application and the Correction module together form. the

knowledge base of the correlations system. The CorrUI module is a user interface,

which provides a means of assessing and using correlations to estimate ground

properties and present them to the user. Its implementation is based on the

DialogBox application, provided by the ProKappa software (§3.2.3).

The interface session starts with the appearance of the "menu" dialog box (Figure

4.7). If the user selects the "Estimate ground properties from correlations /

corrections" option (and click on to the "OK" button), a dialog box will appear on

screen, which is used for searching the Correlation and Correction object bases.

This dialog box, named "search", is presented in Figure 5.5. The "search" dialog

box contains a list box, with various options for performing restricted searches in

the correlation object base. These restrictions are associated with:

• the specification of the correlation's basic parameter,

107

Evaluate any of the following search criteria to obtain a list
of correlations/corrections

;'the parameter(?) to estimate
the variable(s) of the correlation/correction

Define: 1 the applicable ground type(s)
the reliability of the correlation/correction

1 the reference of the correlation/correction

Search for	 Correlations only -4- Corrections only A' Roth

Search l Preview search settings Clear all settings

Cancel

• the specification of the correlation's variables

• the specification of the correlation's applicable ground types

• the specification of the correlation's reliability

• the specification of the correlation's reference (author - year)

Figure 5.5 The "search" dialog box.

If the "Define the parameter(s) to estimate" option is selected, this invokes the

execution of a function, which searches all the correlation and correction objects for

the values of their Parameter slots. A dialog box, containing a list of the basic

parameters of all the correlations and corrections, will then appear on screen, shown

in Figure 5.6.

The user can select as many of these parameters as is required and then press the

"Update" button, to include this restriction in the search criteria. The function of the

"Update" button is to store the selected parameters in a par (parameters) facet

attached to the UserData slot of the "Search" push buttons object. From there they

can be assessed and used as input by a search function.

108

The following list contains all the parameters that
can be estimated by correlations or corrections.
Select the desired parameter(s) anti then press
Update.

Coefficient of horizontal stress, ko
OPP OPP OPP PIP OPP OPP VP/ OPP P. OPP POO POO

' Constant volume effective angle of friction, PHl_cv
Drained Poisson's ratio, nu d
Dry unit weight, gamrna_dry
Field vane shear strength, Su_P.1
Peak effective angle of friction in triaxial compression, PHI_TC
Peak effective angle of friction, PHI_peak
Relative density, Dr
Remoulded effective angle of friction, PHI rem
Remoulded undrained shear strength, Su rem

Update	 Cancel

Orretallorestcorretliiiie

Figure 5.6 The dialog box for specifying the correlation's/correction's parameters.

If after this, the user clicks on the "Search" push button (in the dialog box in Figure

5.5), a search function will be invoked, which will identify all the correlations and

corrections that have one of the specified parameters as the basic parameter.

If the "Define the variable(s) of the correlation/correction" option is selected, a

similar function is used to produce the list of basic variables. This function searches

all the correlation objects for slots that contain a BV description facet. A dialog

box, containing a list of the basic variables of all the correlations and corrections,

will appear on screen. If some of the listed variables are selected and included into

the search criteria (stored in a var facet in the UserData slot of the "Search" button

object), then a search in the correlation and correction object bases will produce a

list of correlations, which will contain at least one of the specified variables.

In the case of setting restrictions in terms of the applicable ground types, the

corresponding search function will not only search for the correlations and

corrections that contain the specified ground types in their applicability slots, but

109

also for the ones that contain subclasses of each of those. For example if a search is

performed for correlations and corrections applicable to gravel, then the search

function will also try to establish correlations and corrections that are applicable to

sandy gravel, clean gravel etc. The reason for this is that for example clean gravel is

a specific case of gravel and therefore each correlation applicable to gravel, is by

definition applicable to clean gravel as well.

It should also be mentioned that applicability parameter restrictions are not included

in the applicability search criteria (only ground types), because it was thought that

their inclusion would affect the functionality of the search module, making it

cumbersome and in effect slower. This can be explained by considering that in

order to define parameter applicability restrictions, one has first to define the

parameters that impose the restrictions and then their restriction descriptors. This is

already a three-stage process (selection of the ground type, selection of the

parameter and specification of the parameters values or descriptors) which would

have to be repeated when defining a second set of applicability restrictions.

Another option for a restricted search for correlations/corrections, is by defining the

reliability score(s). The user can specify one or more of: "high", "medium" and

"low" reliability score values. Finally, search restrictions can be made by specifying

the author-date reference of the correlation. Selection of the last option produces a

list of authors-dates references from which the user can select the desired ones.

It should also be noted that the "search" dialog box contains a radio buttons control

which can be used to limit the search to either the correlation or correction object

base. By default its value is set on "Search for both" (correlations and corrections).

110

Reference(s):
unspecified

Reliability score(s):
high
medium

Ground type(s):
sand

Variable(s):
Number of blows from SFr, N_SPT
Mean effective stress, sigma_m
Dry density, d_dry

Parameter(s):
Relative density, Dr
Peak effective angle of friction, PHl_peak
Dry unit weight, gamma_dry

Dismiss
•	

After defining all the search criteria, the user may press the "Preview search

settings" button to check the restrictions settings. This action results in the

appearance of the dialog box shown in Figure 5.7.

Figure 5.7 The search settings preview dialog box

After dismissing the dialog box which displays the search criteria, the user may

change the settings, or press the "Search" button to activate the search function.

This function first assesses all the defined restrictions, which have been stored in the

appropriate facets of the UserData slot of the "Search" button object. Then the

appropriate parts of the search function are executed one after the other. The results

of each individual search are stored as lists of correlations and/or corrections

(depending on the value of the limit search radio buttons) in the UserData slot.

After this, the result lists are combined to produce an overall list of

correlations/corrections, that are common to all of the result lists.

Finally a dialog box appears on screen (see Figure 5.8) that contains the number of

correlations and/or corrections identified for each search and also the number for the

overall search results. The user may update the search settings and repeat the

111

Parameters search results: 20 M(s)
Variables search results: 11 hit(s)
Applicability search results: 18 hit(s)
Reliability search results: 29 hit(s)

Overall search results: 3 hit(s)

To use the identified set of correlations andlor corrections,
press Correlate

Correlate Dismiss

PHl_peak from Number of blows from 3PT, ti_SPT, wtp, Peck, R.B. at al, 1974 (a).
Plil_peak from Plasticity index, 131, Winer' and Simons, 1960 (11),
Plil_peak from Plasticity 	 Pt Antall, 1976 (12).
PHl_peak from Relative density, Dr. Giuliani, F. and Giuliani, F,L, 1962 (1).
PIll_peak from Relative density, Dr, Schnierbitann, J.H., 1978 (2).

Select conatations:

Co,Telate	 Dismiss

search, or press the "Correlate" button (see Figure 5.8) to obtain a list of the

identified correlations.

Figure 5.8 The Preview search results dialog box.

If the "Correlate" button is pressed a dialog box (Figure 5.9) appears on screen,

which contains a list of the identified correlations. The user may choose from this

list any number of correlations to use. Therefore the user is allowed to

simultaneously consult more than one correlations for the estimation of a parameter

and compare the results (if more than one correlations for that parameter exists).

After selecting the desired ones, the user should press the Correlate button. This

button activates a function that creates the dialog boxes and dialog box controls,

which are used to represent each of the selected correlations.

Figure 5.9 The display correlations/corrections dialog box.

112

	 siann smaigVaanlictittcovniq.0

1(10000,.1a000)

1(500„ 60)

fi unknown
medium

high

(2.65051, 2.69011)

Estimate

Each correlation, is represented as a dialog box window, containing the basic and

intermediate variables and parameters and a command row control, for executing

the correlation, and displaying its applicability, reliability and comments. The name

of the dialog box is obtained from the winame slot of the correlation object. The

dialog box title is built up from the shorthand descriptions for the basic parameter

and variables of the correlation, which are followed by the correlation's reference

(obtained from the wintitle slot). The information displayed in the title is thought to

be adequate for identifying and distinguishing between correlations. An example

for a correlation window is presented in Figure 5.10.

Cone penetration resistance from CPT, qc
(kPa)

Effective overburden pressure, sigma_vo
(kPa)

Compressibility, comp

Logl Ofqc/Pow(sigma vo, 0.5)J

Relative density, Dr

max:

average:

Overall min, mean, max:

(74,9,

(78.9,

(76.9,

(74.9,

77.5)

81.5)

79.5)

78.2, 81.5)

Applicability)	 Reliability
„„„„„„„„. ,,,,,, „,,J•

Comments Dismiss

Figure 5.10 A correlation dialog box.

Inside the correlation window and following a top to bottom order, the following

features can be identified:

113

• the quantitative basic variables, which are represented as entry boxes. Figure

5.10 shows two of these (qc and sigma_vo). The name for each of these entry

box objects is obtained from the ebname (entry box name) facet of the variable's

slot. The title of the entry box is the name of the variable, followed by a list of

values. If the slot of the variable in the correlation object contains any values

(data may have been imported either manually, or from a data import module),

these will be passed on to the entry box as default values. Of course the user can

change any of the values before execution of the correlation takes place.

• the qualitative basic variables, which are represented as list boxes. Figure 5.10

shows a list box for compressibility. The name for each of these list box objects

is obtained from the lbname (list box name) facet of the variable's slot. These

list boxes contain a number of options for evaluating the variable, the totality of

which are the permissible values contained in the corresponding facet of the slot

representing the variable in the correlation object. The use of a list box for the

representation of qualitative variables is justified by the way that such variables

are defined. That is they can only accept values contained in the permissible

values list. Furthermore, the use of list boxes (instead of entry boxes) simplifies

the checking procedure, since incorrect entries are impossible. Finally it should

be noted that only one value can be selected each time (single selection list

boxes are used).

• the quantitative intermediate variables, which are represented as single line text

displays, composed of the title, which is the name of the variable

(Log 10[qc/Pow(sigma_vo, 0.5)] in Figure 5.11), and after the execution of the

correlation, the calculated values of the variable. The name for each of these

text display objects is obtained from the tdname (text display name) facet of the

variable's slot It should be remembered that no uncertainty is present in the

calculation of intermediate variables from the basic variables, since the former

114

are simply mathematical combinations of the latter (intermediate variables are

calculated, rather than estimated).

• the quantitative intermediate parameters, which are represented as five text

display objects. The first obtains its name from the value of the tdname facet,

attached to the intermediate parameter's slot. It displays the full name of the

intermediate parameter. The following three obtain their names from the tdmin,

tdmax and tdav facets of the intermediate parameter's slot. These are used to

display the minimum, maximum, and average estimated values of the parameter

(each set of three corresponds to a single set of basic variables). Finally the last

one (obtaining its name from the tdmam facet), contains values representing the

overall minimum, average (defined as the arithmetic mean of all the average

values) and maximum for the parameter.

• the qualitative intermediate parameters, which are represented as single line text

displays (obtaining their name from the tdname facet of the parameter's slot),

composed of the title, which is the name of the parameter and the estimated

parameter values, which are expressed in a textual form.

• the basic parameter of the correlation, which depending on its format is

represented in the same way as intermediate parameters (either quantitative or

qualitative). Figure 5.10 shows values for the relative density parameter.

• the command row, containing buttons for executing the correlation ("Execute"),

displaying the applicability, reliability and comments of the correlation

("Applicability", "Reliability", and "Comments", respectively) and a button for

dismissing the correlation window ("Dismiss"). Actions are invoked by clicking

on the appropriate button.

115

The "Execute" button invokes a function which identifies the correlation object and

sends all the values of the quantitative and qualitative basic variables, contained

inside the corresponding entry and list boxes of the correlation window, to the

appropriate slots. It then invokes the DataCheck function which checks the

imported data for inconsistencies. If any inconsistencies are identified, the

DataCheck function fails and execution is passed back to the initial function, which

now tries to identify the existence of errors or warnings in the corresponding slot

and facet respectively of the correlation object. If the error slot contains any values,

then all these are passed on as text to an "Error" window, which subsequently

appears on screen. Execution of the correlation stops and the user is prompted to

correct the observed inconsistencies, before retrying to re-execute the correlation.

If no errors exist, then all the warnings are passed on as text to a "warning" dialog

box window, which subsequently appears on screen. Execution of the correlation is

paused but not stopped. The user now has the option to continue the execution of

the correlation, without correcting the inconsistent values (by clicking on the

"Continue" button in the "warning" window), or to halt the execution (by clicking

on "Reset").

If the user selects to continue (or if no warnings or errors exist), then a message will

be sent to the function of the slot formula that calculates intermediate variables (if

the correlation contains any intermediate variables). The calculation of the

intermediate variables will be followed by the execution of the DataCheck function,

which now will check the generated intermediate variables for possible

inconsistencies. If no warnings are generated (errors are impossible at that state, as

noted in §5.3.1), execution will continue with the estimation of the correlation's

parameter(s). This is done by invoking the function of the slot formula attached to

the Parameter slot (see §5.3.1). The estimated values for the intermediate

parameters and the basic parameter will be stored in the appropriate slots in the

116

High Applicability:

clean sand with:
Ko between 0.4 and 0.5
miner quartz
OC state: NC
graTi: uniformly graded

correlation object, and from there will be imported into the correlation window as

values of the corresponding text displays.

It should be further noted that the system allows for easy modifications of the data

contained in the entry boxes and the selected values in the list boxes. The user can

alter any number of the input values and then execute the correlation to get an

alternative set of results. Sensitivity checking of each variable can therefore be

performed easily and quickly.

The "Applicability", button is used to access and display the applicability of the

correlation. By clicking on this button a function is invoked which searches the

High_Applicability, Medium Applicability and Low Applicability slots of the

correlation object. The information contained in these slots is retrieved and the

appropriate text is automatically generated by the function. The generated text is

displayed inside an "Applicability" dialog box. An example of the "Applicability"

dialog box for a correlation, highly applicable to uniformly graded, normally

consolidated, quartz clean sands, with horizontal stress ratio at rest (ko) between 0.4

and 0.5 [Jamiolkowski eta!, 1985] is presented in Figure 5.11.

Figure 5.11 An example of the "Applicability" dialog box.

117

Reliability scam: roe

Coefficient of /It: 66

Noir:tier of (tali

The "Reliability" button invokes a function which retrieves the relevant information

from the Reliability slot (and its facets) of the correlation object and displays it

inside a "Reliability" dialog box. The "Reliability" dialog box for the same

correlation is presented in Figure 5.12.

Figure 5.12 An example of the "Reliability" dialog box.

Finally, the "Comments" button activates a function, which searches all the basic

and intermediate quantitative variables for applicability ranges. This is done by

searching for slots that contain a BV desciption or an IV description facet whose

value is set to "quantitative". Subsequently, the max value and min_value facets of

each one of the identified variables are accessed. The function, depending on

whether the maximum, or minimum, or both values are defined, will generate the

appropriate expression. For example if the variable "liquidity index, LI" has an

applicability range of 0 to 1.2, the generated expression will consist of the variable's

full name ("liquidity index, LI") followed by "should be between" "0" (the

minimum value) "and" "1" (the maximum value).

This generated text is appended to the text contained in the Comments slot and is

placed inside a "Comments" dialog box. An example of the "Comments" dialog box

is presented in Figure 5.13.

118

...;1(foi;. ile4,00filtnt, .	 .
HOone 'penetrate:in toSistante frodial*.ri„qt.siteuld
•Ilinre than 0	 • :	 •
Effective overburden pressure, signie vó should be• -
more than 0 kile. •••:. • • .. ,•• 	•	 • .	 .
iAgiopiciPow(signut,,:vo, 	 shouitt b%I

	

471 and 11111	 • .	

•4

:•• IL should be noted that comprOsibility . i$ greeter;
where the sand Is uniform, the grains are angular:::

...and there is an appreciable mica content.:Ore.::::::::-'•
.-ShOuld he taken When the relative density of a thin.
•sand layer Is estitnaled because the hal
resistance may not have developed. ..For OC Sands
the Seine relationship may no mod if ino iniuo
horizontal stress sigma ho Is used Instead

ma Va. The possible furor in this teSe s IR'.
the Order of +-20% and therefore the. estimated 	

:value of Dr should be cosidered as an approximation...

Disriass

Figure 5.13 An example of the "Comments" dialog box.

5.4 Summary.

The evaluation of ground properties is one of the most important problems in

geotechnical engineering. A common methodology for addressing this problem is

by using correlations. Correlations are simple, easy to use and they provide a cheap,

if crude, means for the rapid estimation of ground properties. The main

disadvantages of correlations are the use of non rationally-based relations, the use of

relations that have not undergone extensive validation and extrapolations outside

their limits of application.

A substantial amount of correlations has been collected and subsequently analysed.

The purpose of this analysis was to identify the knowledge types, that describe all

the different pieces of information contained in a correlation. The result of this

analysis was the identification of the following parts:

• The correlation's variables

119

• The estimation procedure

• The correlation's applicability

• The correlation's reliability

• Comments on the correlation

The correlation's variables are both the dependant and independent variables. The

former are called parameters and the latter variables. Variables can be divided

into basic and intermediate, the former being simple ground or test parameters,

while the latter are mathematical combinations of two or more of the former.

Equally, parameters are divided into the basic parameter and the intermediate

parameters. The former is the parameter that is estimated by the correlation and the

latter are expressions of all the intermediate results produced during the estimation

of the basic parameter. Finally, the basic variables along with the basic and

intermediate parameters can also be divided into quantitative and qualitative (the

former are evaluated numerically, the latter through textual descriptors).

The estimation procedure is the part of the correlation that describes the

interdependency of variables and parameters in a mathematical and/or logical form.

The applicability of a correlation refers to the ground types (e.g. clean sand), and

also any parameter restrictions (e.g. grading: well-graded), for which the correlation

is applicable. A ground type along with its associated parameter restrictions define

an applicability set. The applicability of a correlation is expressed as a combination

of these sets with their applicability scores (one of "high", "medium" and "low").

The applicability score is a qualitative expression of the applicability of the set, with

which it is associated.

Furthermore, each variable is associated with an applicability range (quantitative

variables) or a set of qualifiers (the permissible values of a qualitative variable).

120

The specification of these ranges or sets of values also defines the limits of the

correlation's applicability.

The reliability of a correlation is expressed quantitatively: as a range of variation

around the estimated value, from the standard deviation, the coefficient of fit and

the number of data points used for the creation of the correlation; and qualitatively:

from the reliability score (with values "high", "medium" and "low").

The comments of a correlation are used to represent any additional information (in a

textual form) relevant to a correlation that cannot be included in any of the above

categories.

A generic form for the representation of correlations has been developed. Each

correlation is represented as an object (in the object base of the correlation

application), which contains slots and facets, which in turn are used for representing

the various knowledge types contained in the correlation (e.g. slots for representing

variables, parameters, applicability etc.). The only exception is in the representation

of the correlation's estimation procedure (which is represented as a function).

Finally, a user interface module has been developed for the use of correlations for

the estimation of ground properties. The development of the system is based on the

DialogBox system application provided by ProKappa.

The user interface provides the user with the ability to perform restricted searches in

the correlation application. A number of options is provided by the system which

can be used for specifying criteria in a correlation's search (e.g. search for

correlations that contain a specific variable or parameter or have specific reliability

score etc.). A list of correlation is subsequently presented to the user, who has the

option to simultaneously use any number of them.

121

Each correlation is represented as a dialog box window, containing the variables and

their values, and the parameters. This dialog box contains a button, which is used

for the execution of the correlation. It also features three options for displaying the

applicability, reliability and comments of the correlation.

122

CHAPTER 6

A knowledge acquisition module for the

implementation of correlations.

6.1 Introduction.

The Correlation application (presented in §5.3.1) is supplemented by the Update

module, which is the system's knowledge acquisition module. The Update module

is used for importing new correlations into the system, as well as for updating the

already implemented correlations. Similar to the CorrUI module (§5.3.2),

implementation of the Update module was based on the DialogBox application, so

that it can be considered as a part of the system's user interface.

The implementation of a new correlation in the system is a six stage procedure.

During the first stage the correlation object is created and the basic parameter is

implemented. The second stage covers the implementation of the variables and

parameters of the correlation. This is followed by the implementation of the

correlation's estimation procedure. Finally, the last three stages cover the definitions

of applicability, reliability and comments, respectively.

In the following sections of this chapter a detailed description of the updating

procedures will be presented.

123

/117,A/1= 41.4W 7 4WA

INew Correlation

; Coefficient of horizontal stress, ko
Constant volume effective angle of friction, PHl_tv
Drained Poisson's ratio, nu
Dry unit weight, gamma _dry
Field vane shear strength, Su _Pi
Peak effective angle of friction in triaxial compression, PHI TC
Peak effective angle of friction, PHI _peak
Relative density, D

Remoulded effective angle of friction, PHI rem
; Remoulded undrained shear strength, Soren,

Residua/ effective angle of friction, PHI res
Sensitivity, St

Select the Basic
Parameter:

')‘ Show implemented	 Show other

Create a new parameter Quantitative Quafitative

OK	 Cancel
	

Help

New Correction

6.2 Establishment of the basic parameter.

The implementation of a new correlation in the system is initiated by selecting the

"Implement new correlations/corrections" option in the Figure 5.7 dialog box. This

action results in the appearance of the dialog box (Step 1), which is used for defining

the correlation's basic parameter. The Stepl dialog box is shown in Figure 6.1.

Figure 6.1. The Stepl dialog box.

This dialog box contains a radio buttons control which prompts the user to specify if

the new object will be a correlation or correction. The default value of the radio

buttons is set to "New Correlation", so unless the user clicks on the "New

Correction" button, a new correlation object will be created.

124

Below the radio buttons there is a list box initially containing all the ground

parameters that have been used as basic parameters in the correlations and

corrections which have already been implemented. The radio buttons control below

the list box, which is initially set to "Show implemented", can be used for viewing

an alternative set of parameters. By clicking on the "Show other" button, the list

will now display all the parameters contained in the Parameters object base (§4.4),

except those listed previously.

It should be noted that by clicking on the radio buttons (which control the selection

items of the parameter display list box), a function is activated which executes a

non-deterministic search to produce the appropriate list of parameters. The search

for the "implemented" parameters (invoked by clicking on "Show implemented") is

performed by retrieving all the values of the Parameter slot contained in every

correlation and correction (duplication of information is not allowed; so even if a

parameter can be found in two or more correlations, it will produce only one

selection item). The remaining parameters (search invoked by clicking on "Show

other") are obtained by excluding the "implemented" parameters from all the

parameters contained in the GPar (parameters) object base.

If the basic parameter to be used in the new correlation is contained in any of the

two parameters lists, it can be specified by selection (clicking with the mouse). If a

parameter is selected, a dialog box containing information about the selected

parameter will appear on screen. In the case of a qualitative parameter this

information is the name and the shorthand description of the parameter, while for a

quantitative parameter it will also include the units and the number of decimal

points (§5.3.1). The information dialog boxes for a quantitative and qualitative

parameter are displayed in Figure 6.2

125

State of overconsolidation, OC state
Format: Qualitative

OK
	

Cancel

As can be seen (in Figure 6.2), the information dialog boxes contain a command

row control with "OK" and "Cancel" buttons. If the user clicks on the "Cancel"

button, the control will return back to the Stepl dialog box without any other action.

On the other hand, the "OK" button will activate a function that will create a new

object in either the Correlation application, or in the Correction module

(depending on the value of the relevant radio buttons control). The name of the new

object will be correl_temp, which is a temporary name. It will be shown in §6.3

that the object's permanent name is established after the implementation of the

correlation's variables.

'

Peak effective angle of friction, Plityeak
Format: Quantitative.
Units: degrees.
Number of decimal points: 1.

OK	 Cancel

Figure 6.2. Parameter information display dialog boxes.

The newly created object automatically inherits all the slots and facets, contained in

the top level Correlation object (§5.3.1). The displayed information about the

basic parameter (contained in the information dialog box) will be passed on to the

Parameter slot and its corresponding facets (described in §5.3.1). Furthermore, a

multi-value slot, named after the shorthand description of the basic parameter, will

be created in the correl_temp object. This slot will be used for storing the basic

parameter's estimated values (§5.3.1). Finally, both the parameter information and

the Stepl dialog boxes are taken off screen and the implementation procedure

continues with the establishment of the correlation's variables and parameters

(described in §6.3).

126

Kffr

Full Name:

Sorthand Description:

%Compressibility

comp

i index properties ri
I stress history parameters 	 1 i
1 strength parameters	 ' 4
1 deformation parameters 	 v•.•
:

Select the
parameter
category;

em wessibilit arameters

OK 1	 Cancel

ttew Qamttlatkve

Full Name:

Sorthand Description:

Units:

Relative density

Select the number of decimal points: 	 1

compressibility parameters
Select the	 flow parameters
parameter !particle size distributionparameters
category:	 lensit arameters

miscellaneous

OK	 Cancel!

If the parameter is not already present in the GPar object base, then it can be

specified by the "Create a new parameter:" push buttons control (Figure 6.1). In the

case of a new qualitative parameter, a dialog box will appear on screen (Figure 6.3)

Figure 6.3. The dialog box for defining a new qualitative parameter.

Figure 6.4. The dialog box for defining a new quantitative parameter.

127

This dialog box prompts the user to specify the full name and a shorthand

description of the parameter, as well as the parameter category (see §4.3).

In the case of a quantitative parameter (Figure 6.4) the user may also specify the

units and number of decimal points of the parameter.

By clicking on the "OK" button, a check will be performed (to see if the name,

shorthand description and parameter category have been specified, or if the

parameter has already been defined). If the check produces any errors, these will be

reported inside an ERROR dialog box, and the user will be asked to correct them

before continuing any further.

If no errors exist, a new object will be created in the GPar object base, as a subclass

of the specified parameter category object. The information provided by the user

will be passed on to the appropriate slots and facets of the newly created parameter

object. The name of the object will be the specified shorthand description of the

parameter and the full name will be placed in its name slot (parameter objects and

their slots are presented in §4.4). In the case of a quantitative parameter the format

slot is bound to "Quantitative" and the units and the number of decimal points will

be placed into the corresponding facets. Furthermore, a new correlation object

(correl_temp) will be created and the specified information for its basic parameter

will be passed on to the appropriate slot and facets.

Finally both the parameter definition and the Stepl dialog boxes are taken off screen

and 'the implementation procedure continues with the establishment of the

correlation's variables and parameters.

128

pr. ime Nold low' fro Ia. 'ioir ••••• v aeoP' ,4"....."'.4"11."am,Yr."*."1.1".se,sey me" ••nn•

of the deposit, Age
z Coefficient of uniformity, 0.1

Cone penetration resistance from CPT, qc
Dilatometer horizontal stress index, K_D
Dry density, iLdry

Select the Quantitative
Basic Variables of the
correlation I correction:

Show:	 implemented other	 Create new

Select the Qualitative
Basic Variables of the
correlation I correction

Angulanty of grains, ang
! Compressibility, romp

Show:	 implemented	 other	 Create new

create an ihterroethate Variable Quarititative:s„

Create an Intermediate Parameter	 Quantitativel Qualitative

Enter the correlation's I correction's
reference e.g: Bjerrum, B. J. 1974

OK	 Cancel
	

Preview
	 Help

6.3 Variables and parameters.

After the definition of the new correlation object and its basic parameter, a new

dialog box window appears on screen (Figure 6.5). This window (Step2) contains

two list boxes, each supplemented with radio button controls and push button

controls, used for the implementation of the quantitative and qualitative basic

variables of the correlation. It also contains two push button controls for the

implementation of intermediate variables and parameters and an entry box for

defining the correlation's reference.

. I	 1
tipti4t1;SOrttifalion*'„Steta.:7-1,%,CeUZ:fM>,, /r

hfineralogy, miner
SPT equipment, SPT eq

Figure 6.5. The Step2 dialog box.

129

Each of the list boxes initially contains all the parameters, quantitative and

qualitative respectively, that have been used as basic variables in correlations and

corrections which have already been implemented. The radio button controls

("Show implemented", "Show other") below each of the list boxes are used to

activate functions, which control the parameters displayed in the list boxes. The

radio button values are initially set to "Show implemented". Clicking on the "Show

other" button, will cause all the remaining quantitative or qualitative parameters in

the GPar object base, that have not been used as basic variables, to be displayed in

the corresponding list box. The activated functions search for slots in all the

correlation objects that contain a BV description facet (indicating that the slot is

used for representing a basic variable), whose values are bound to either

"Quantitative" or "Qualitative".

If the parameter to be used as a basic variable can be found among the selection

items of the list box, then it may be selected. The selection of the parameter invokes

a function, which depending on whether the parameter has or has not been used as a

basic variable in existing correlations, performs a different search. In the first case

the function will search for a slot (through which the variable has been represented)

in any of the correlations objects. When the first slot meeting the search criterion is

identified, the search will stop and the information contained in the slot (and its

facets) will be retrieved. In the second case the function will search for an object in

the ground parameters object base, whose name slot contains the selected parameter

name. Consequently, the necessary information will be retrieved from the slots and

facets of the parameter object. The retrieved information will be displayed in a

dialog box.

If the variable is of quantitative format, then the dialog box will contain a text

display, displaying the name, shorthand description and the units (if any) of the

variable, and two entry boxes for defining the minimum and maximum values of the

130

thwatUtattvweesteiftlabte-tittftitta

Mean effective stress, sigma m

Units: kPa

min value:	 .5(3

max value:

OK	 CancW

AZIETIMMIMINV	

variable (if any) for which the new correlation or correction applies. These entry

boxes may contain, as default values, the values of the min_value and max_value

facets of the identified slot (if the parameter has already been used as a basic

variable in an already implemented correlation). The default values are displayed to

provide a typical range of values for the selected variable and they are not intended

to be kept unaltered. They may be altered in order to meet the requirements for the

new correlation or correction. An example of a dialog box for defining quantitative

variables is shown in Figure 6.6.

Figure 6.6. The dialog box for specifying applicability range of a quantitative

variable.

If the variable is of qualitative format, then the dialog box shown in Figure 6.7 will

appear on screen. This dialog box contains a text display with the name and a

shorthand description of the parameter and a list box containing a set of permissible

values for the parameter. The displayed set of values is retrieved from the per val

(permissible values) facet, attached to either the variable slot in a correlation object

(if the parameter has already been used as a variable), or otherwise from the format

slot of the parameter object (in the GPar object base).

131

eastc,NartoillorAltitirlitie

grading, grad

ow1 grade(!

well graded
List of Permissible values:

Remove Selected:. Show alternative set.:......... „ „

Add a new value in the list:
r„,„„„„„„„„„„,„,„„,„,„„,„„„,„„

OK
	

Cancel
..... s ..

Figure 6.7 The dialog box for specifying the permissible values of a qualitative

variable.

If the permissible values facet of the format slot of the object by which the

parameter is represented in the GPar object base, contains more than one sets of

permissible values, then all the remaining sets (except the one being displayed in the

list box) will be stored inside a list in the UserData slot of the list box object. A

push button with the title "Show alternative" (set of permissible values) will appear

below the list box. This button incorporates a function for displaying (inside the list

box) all the sets of permissible values for the variable. Each time this button is

pressed the currently displayed set of permissible values is placed at the end of the

UserData slot list. The first element of that list (another set of permissible values)

will be taken off the list and its values will be displayed inside the list box. In this

way the user can alternatively view all the sets.

The dialog box also contains an entry box incorporating a method for adding new

values to the permissible values list box. The new value is written inside the entry

box and by pushing the "Enter" button (on the keyboard), it appears inside the list

box. Finally the dialog box also incorporates a "Remove Selected" push button for

132

removing items from the list box (one item may be removed each time by selecting

it and then pressing the "Remove Selected" button). These last two functions allow

the user to redefine the permissible values of the variable in accordance with the

correlation restrictions. In this case, i.e. if a new set of permissible values is

defined, it will be added to those already existing in the per val (permissible values)

facet of the format slot of the parameter object (in the GPar object base).

The user then has the option either to update the correlation object by pushing the

"OK" button, or simply dismiss the dialog box ("Cancel") and return the control of

the execution back to the Step2 window (which is insensitive while the variable

dialog box is on screen). The correlation object is now updated by the creation of a

single value slot (the name of which is the shorthand description of the variable) and

its corresponding facets (described in §5.3.1) containing the information provided

by the user in the dialog box.

If the required parameter is not already contained in the GPar object base then a

new parameter must be defined using the "Create new" push buttons (below the list

boxes in the Step2 dialog box, Figure 6.5). The definition of a new parameter that

will also serve the new correlation as a basic variable, is a two step procedure.

Initially a dialog box appears on screen which is used for creating the parameter

object in the Parameters object base. The "New Qualitative Variable" dialog box is

the same as that presented in Figure 6.3 and the "New Quantitative Variable" dialog

box is the same as that presented in Figure 6.4. The user should supply the dialog

box with the required information and then press the "OK" button. The user

supplied information will be checked for inconsistencies. If no errors exist, a new

parameter object will be created in the GPar object base. Otherwise, an ERROR

dialog box will appear on screen, prompting the user to correct all errors before

proceeding any further.

133

..*A4i.wift.#.4yr9v4M***001..00ffiCZ,i,,

 SuIsIrfla .yOVO

min value:
	

if)

max value:

OK Cancel

Units:

Then a second dialog box will appear on screen, either for specifying the minimum

and maximum values of the variable (if the new parameter is of quantitative format,

see Figure 6.6), or the permissible values (if the new parameter is of qualitative

format, see Figure 6.7). It should be noted that the entry boxes (or list box) in this

dialog box will not contain any default values, since the parameter is not predefmed.

After the applicability range (or the set of permissible values) is specified, the user

must press the "OK" button to update the correlation object with the new variable.

Intermediate quantitative variables can also be added to the correlation object, using

the "Create an Intermediate Variable" push button control, in the Step2 dialog box

(Figure 6.5). If the user clicks on the "Quantitative" button, the "Quantitative

Intermediate Variable Definition" dialog box appears on screen (Figure 6.8).

Figure 6.8. The dialog box for implementing quantitative intermediate variables.

This dialog box is used to defme the name, units and minimum and maximum limits

of applicability for the intermediate variable. The shorthand description of

intermediate variables (which is used as the name of the slots that represents the

variable) is created by the system and takes the form IV_number. The number is

134

produced by incrementing the number of intermediate variables in the correlation

object by one. For example the first intermediate variable slot is named IV_1; the

second IV_2 etc. There are two reasons for the automatic definition of the

shorthand description of intermediate variables. The first is that intermediate

variables are "dummy" parameters and they are not included in the Parameters

object base. Therefore, there is no need to define both a shorthand description and a

full name. Furthermore their shorthand description is never presented to the user at

any stage. The second reason is to avoid slot names that may contain illegal

characters, such as "/". For example a possible shorthand description for the

intermediate variable undrained shear strength over effective overburden pressure is:

Su/sigma_vo, which contains the illegal character "1".

After the requested information about the intermediate variables is placed into the

appropriate entry boxes, the user should click on the "OK" button to update the

correlation object. The input information is checked for inconsistencies, or missing

information. If the check produces any errors, these are reported to the user. The

user is prompted to correct all errors before proceeding. If no errors exist the

correlation object is updated and a new dialog box appears on screen. This dialog

box (Figure 6.11), is used for implementing the function for calculating the values

of the intermediate variable. The implementation of estimation procedures for

intermediate variables is discussed later in §6.4.

Finally, intermediate parameters can also be added to the correlation object, by

using the "Create an Intermediate Parameter" push buttons controls (Step2 dialog

box; Figure 6.5). If the "Quantitative" button is pushed, a dialog box appears on

screen (Figure 6.9).

This dialog box contains the same controls (a list box, radio buttons and push

buttons) that are used for the definition of basic variables. Intermediate parameters

135

titatlY0 inionnediale braMeter 	 ftkOvtg,„;;„4

Correction factor including 3D analysis effects, mu 3D
Bjernim's field vane correction factor, mu_2D
Aas' field vane correction factor, mu _Ms

Select an intermediate
parameter:

Show implemented	 Show other

New Quantitative Intermediate Parameter Create::

OK	 Cancel

	ANL

can be implemented in the system by selection. It should be noted that there is no

need to define applicability ranges (for quantitative parameters), or sets of

permissible values (for qualitative parameters). If a parameter, displayed in the list

box, is selected, then an information dialog box will appear on screen (similar to one

of the information dialog boxes for basic parameters, shown in Figure 6.2). If the

"OK" button, in the information dialog box is pressed, the selected intermediate

parameter will be added to the correlation object (the representation of intermediate

parameters is covered in §5.3.1). If the parameter is not contained in the Parameters

object base, then it must be created by using the "Create new" push button control.

The procedure for creating a new intermediate parameter is the same as the

procedure for defining new basic parameters (§6.2).

Figure 6.9. The dialog box for implementing quantitative intermediate parameters.

It should be mentioned that the implementation of a parameter, either as a variable

or a parameter of the correlation, activates a function which excludes this parameter

from all the display lists of variables and parameters. This function prevents the

same parameter being implemented twice in the same correlation object.

136

.0mm:11m Preview*Vmk*ii;V*

rel ow ow'	 y

Basic parameter	 '1;elative density, Dr:

Cone penetration resistance from CPT, qc
Quantitative basic variables:	 Effective overburden pressure, sigma vo

Overconsolidation ratio, OCR

Qualitative basic variables:	 I Compressibility, comp

Figure 6.10. An example for the Show Preview dialog box.

Dismiss

Intermediate variables:

When the implementation of variables and parameters of the correlation is over, or

at any stage during their implementation the user can examine them by using the

"Show Preview" option (in the command row of the Step2 dialog box, shown in

Figure 6.5). By pushing this button a function is invoked which searches the

correlation object to identify all the implemented basic, intermediate variables and

parameters in the correlation object. These are displayed in the dialog box shown in

Figure 6.10.

The correlation's variables and parameters are placed into list boxes based on

whether they are basic or intermediate, quantitative or qualitative. From there they

can be examined by selection (clicking with the mouse).

The selection of a variable invokes a function that puts a dialog box on screen. For

quantitative variables this dialog box is the same as that shown in Figure 6.6, while

for qualitative same as that in Figure 6.7. In the first case the entry boxes display,

as default values, the specified min. and max. values for the variable, and in the

second case the list box displays the specified set of permissible values. The user

137

can therefore modify the applicability range, or set of permissible values of the

variable. By pressing "OK" the correlation object is updated with the modified

information. The command row of these dialog boxes also contains a "Remove

variable" option, which can be used to remove the variable from the correlation

object (by deleting the slot which represents the variable). The selection of a

parameter causes a parameter information display dialog box to appear on screen

(similar to one of those shown in Figure 6.2). The command row of this dialog box

is also supplemented with a "Remove Parameter" option, for removing the

parameter from the correlation object.

After all the correlation's variables and parameters have been implemented, the user

should type the correlation's reference inside the reference entry box (in the Step2

dialog box, Figure 6.5). It is recommended, without being restrictive, that this

should be done in an authors-date order (as in the example in the entry box title),

thus preserving homogeneity in the representation.

Finally the user should press the "OK" button in the command row of the Step2

dialog box. Pushing of the "OK" button will invoke a function that performs a few

checks in the correlation object and updates its name and some of its slots and their

facets. The first action of this function is to check if at least one quantitative or

qualitative basic variable has been implemented. If no basic variable is found, an

error dialog box will appear on screen prompting the user to define at least one basic

variable before continuing. Secondly, it checks the reference entry box to ensure

that a reference has been supplied. If the reference entry box is empty, the ERROR

dialog box (mentioned above) will appear on screen, asking the user to supply a

reference for the correlation.

If the above checks are successful, then the function counts all the correlations and

corrections, which have the same basic parameter as the correlation under

138

examination. The maximum number is then incremented by one (henceforth the

correlation's number) and is appended as a string to the shorthand description of the

basic parameter (also expressed as a string). The resulting string is converted into a

symbol (by removing the quotes around it) and placed in the winame slot of the

correlation object. For example if five correlations and/or corrections exist for the

estimation of undrained shear strength ("Su"), then the value of the winame slot of a

sixth correlation will be Su6. This name will be used as the dialog box object name

(as mentioned in §5.3.1 and §5.3.3), by which the correlation will be represented in

the interface session. This name, which is obviously unique, is used as the initial

part of all the dialog box control names (these controls are used to represent

variables and parameters, §5.3.3). In the case of variables, the values of their

ebname and lbname facets respectively (§5.3.1), are made up from the winame slot

value and the shorthand description of the variable. For example the value of the

ebname facet of the liquidity index (LI) variable will be Su6LI. For the

overconsolidation ratio (OCR) quantitative intermediate parameter the values of the

tdname, tdmax, tdmin and tdmean facets will be Su6OCR, Su6OCRmax,

Su6OCRmin and Su6OCRmean respectively. In this way all the names for the

dialog box and its controls are unique. This is an essential requirement since object

names in ProKappa must be unique.

The function also creates a string with the parameter and the basic variables of the

correlation (their full names) followed by the correlation's reference and the

correlation's number, and places it in the Parameters_needed slot (§5.3.1). A

similar string (containing shorthand descriptions for the basic variables) is placed in

the .wintitle slot. The reference is stored in the authors facet (§5.3.1). The last

action of this function is to take off screen the Step2 dialog box. The updating

procedure will continue with the implementation of the correlation's estimation

procedure (described in §6.4).

139

Deane the lommila tor ihe

Field vane shear strength, Su_FV
Select a Quantitative

Basic Variable:
Effective overburden wessure, sit ma VO

Select the Intermediate
Variable:

Su FV/sit ma vo

Always finish each statement with a semicolon (;)

Enter the
formula: 11

Select a line
	 ?IV _1 - ?Su_FV/?sigrna vo;

to examine:

	

•-• •-• •	 •

Update 	 Cancel
	

View Functions	 Help,

If the user clicks on the "Cancel" button in the Step2 dialog box, the implementation

procedure will return to the previous stage. The Step2 dialog box will be taken off

screen and the Stepl dialog box will appear on screen. Furthermore the correlation

object will be deleted as well as all its slots and their corresponding facets.

6.4 Implementation of estimation procedures.

The implementation of intermediate variables is a two stage procedure. The first

stage was presented in §6.3. The second stage is the implementation of the

estimation procedure for the variable. Estimation procedures for intermediate

variables can be implemented in the system by means of the dialog box displayed in

Figure 6.11.

Figure 6.11 Estimation procedure definition for intermediate variables.

This dialog box contains two list boxes. The first displays the names of all the

quantitative basic variables of the correlation. Therefore, it is recommended that the

basic variables should always be implemented before intermediate variables. The

140

second contains the intermediate variable, which is currently being implemented.

The dialog box also includes an entry box where the estimation procedure code is

written and a list box for displaying this code.

The code of the estimation procedure should be written in ProTalk syntax. The

dialog box incorporates features for the fast and syntactically correct writing of

simple ProTalk statements. These are presented below:

• The two list boxes, which contain the basic variables and the intermediate

variable. Whenever the user wants to write a reference to any of the above

variables, he/she should select the desired one (click on with the mouse), and

this will be presented inside the entry box in a ProTalk variable format. For

example, assume that the user wants to write the statement: IV_1 =

Su_FV/sigma_vo; he/she has to first select the intermediate variable from the

list box. A ?IV_1 expression appears inside the entry box (which is a reference

to the intermediate variable in a ProTalk variable format). Then he/she should

enter in the entry box the "=" (set equal to) operator. The second step is to select

the field vane undrained shear strength variable from the list box. A ?Su_FV

expression appears in the entry box. Then he/she should add the "/" (divide)

operator, select the effective overburden pressure variable from the list box and

finally type a ";" (semicolon) at the end of the statement. The ProTalk

expression inside the entry box is now: "?IV_1 = ?Su_FV/?sigma_vo;".

• A text display (below the list boxes, see Figure 6.11), reminding the user to

finish each statement with a semicolon ";".

• A "View Functions" option in the command row of the dialog box (see Figure

6.11). Whenever pressed, a dialog box appears on screen (Figure 6.12),

displaying most of the mathematical functions that can be used within ProTalk.

141

APPARWPWe'.7,;',..4':fV/W"i7,1ff07 IA.	 „b	 A

Select function: pow(lx, ?y)I Exp(?x)1 in(?x)I	 (Tx)!; 	

sin(?x)1 cos(?x): tan(?x) Arcsin(.1)5)1 Arccos(?x)1 prctan(?x)1

Export Cancel

The user may select the desired one (click on with the mouse), press the

"Export" button and this will appear inside the entry box.

Figure 6.12. The dialog box displaying mathematical functions in ProTalk.

After the end of a statement the user should press the Enter button (on the keyboard)

to add it into the display list box. The display list box incorporates a function that

allows the user to examine the displayed ProTalk statements. The user can select

any statement to examine and this will appear inside the entry box, where it can be

edited. After updating the statement the Enter button should be pressed and the

updated statement will be redisplayed, in its original position, inside the display list

box. When the code is complete the user should press the "Update" button in the

command row of the dialog box (Figure 6.11).

The invoked function appends all the items of the display list box in a string. The

system will then generate some more statements and append those to that string. In

its final form the updated string contains a complete ProTalk function that can be

used for the calculation of the intermediate variable's values. The user supplied

statements are placed inside a for-do loop so that the function can generate a list of

values for the intermediate variable (as mentioned in §5.3.1). With reference to the

previous example the complete function will be as follows:

bound inputs;

?list = '();

142

/* ?list is defined as the empty list */

for ?i from 0 to ListLength(?self.Su_FV)-1;

/* ?self is a variable bound to the correlation object */

do { ?Su_FV = ListNth(?self.Su_FV, ?i);

?sigma_vo = ListNth(?self.sigma_vo, ?i);

?IV_1 = ?Su_FV/?sigma_vo;

?list = AppendLists(?list, s (?IV_1)); }

?self.1V_1 = ?list;

1

Finally a slot formula is created, which is attached to the. Parameters needed skot

(see §5.3.1), and the string is passed to it as its function. The system will then try to

compile this function. If the function compiles, an information dialog box appears

on screen, informing that the installation of the slot formula function was successful.

Otherwise a message informing of the compilation failure is displayed and the user

is asked to correct all errors, before trying to recompile.

The estimation procedure of the correlation itself is implemented by means of the

dialog box (named estwin) displayed in Figure 6.13. This dialog box is used for

implementing or updating the estimation procedures of correlations. The structure

of this dialog box is the same as that of the dialog box for the implementation of the

estimation procedures of intermediate variables (Figure 6.11). The main difference

is that the display list box in the estwin dialog box contains all the variables and

parameters of the correlation (rather than only the quantitative basic variables).

The selection of a qualitative basic variable from the display list box will cause:

a. the appearance of the variable, in a ProTalk variable format, inside the entry box

143

iiti1treiatiWsitorreeti 	 Wim protiidures'Z '
•	 ,,

Effective overburden pressure, sigma vu
Cone penetration resistance from CPT, qc
Compressibility, comp

00/Pow(sigma von 00, 0.5)
Relative density, Or

Select the variables/parameters
of the correlation/correction:

Overconsalidation ratio, OCR

AJwayS finish your statements with a semicolon(;)

Enter the code for the
estimation procedure:

rib ' 441	 able lib imri	 ' 4.10	 ' .441. ' fib VA	 we	 mi

:select (case: ?comp ..110"; ?Qc . 0.91; '
case: ?comp := "medium";".? al 1.0;
case: ?comp =JR low"; ?Qc .09;}

?d '11V_1/(305*?Qc*pow(?0CR, 0.10));

Select any line
to examine:

	=I=
Cancel View Functions :i	 HelpUpdate

Figure 6.13. The estwin dialog box.

b. a dialog box to appear on screen, containing a list box with all the permissible

values of the variable. Selection of any of these values results in their appearance

inside the entry box. This dialog box is useful as a reminder of the set of

permissible values and as a means of minimising manual entry, (reducing the risk

of typing errors). An example of the dialog box, displaying the permissible

values for the compressibility variable of the same correlation is presented in

Figure 6.14.

144

Permissible values:
Select to copy

medium"
"le—w"

I "high"

Dismiss

res

Figure 6.14 The dialog box displaying the permissible values of compressibility.

All other functions and procedures are similar to those described above (for

estimation procedures of intermediate variables). If the slot formula function (now

attached on the Parameter slot) compiles, the implementation of the new correlation

will continue with the definition of applicability.

6.5 Applicability definition.

The definition of the applicability for correlations is a four stage procedure. The

first is relevant to the definition of an applicable ground type. The second to the

selection of the parameters that impose applicability restrictions (for the selected

ground type). The third to the definition of the restrictions for each of the

parameters. Finally, the assignment of an applicability score for the specified

applicability set (the selected ground type and its associated parameter restrictions)

is performed in the fourth stage. This procedure must be repeated for each

applicability set.

The dialog box used for the selection of the applicable ground types, is shown in

Figure 6.15.

145

Select a ground type:

Back t Forward Reset	 Select 5

Define new ground type

; OK	 Cancel	 Preview	 Help

Figure 6.15 The dialog box for defining applicable ground types.

The list box and the first three push buttons ("Forward", "Back", "Reset") are used

for searching the ground object base (see §4.4). When the desired ground type is

found and displayed in the list box, it must be selected (click on with the mouse)

and then the "Select" button should be pressed. If the desired ground type cannot be

found, it should be created by using the "Define new ground type" push button

(defining new ground types is presented in §4.5). After the new ground type is

created it should be displayed in the list box and from there it should be selected.

Once a ground type has been selected a new dialog box will appear on screen, which

inquires of the user if the selected ground type will be supplemented with parameter

related restrictions. If the answer is negative, the procedure will continue with the

assignment of an applicability score to the selected ground type. Otherwise a dialog

box for selecting parameters (in order to define parameter associated restrictions)

will appear on screen. This dialog box is displayed in Figure 6.16.

146

z/ANtritthit)**Attitit4j010000000#004 Zl

% index properties
stress history parameters
strength parameters

Select a parameter ; deformation parameters
I compressibility parameters

flow parameters
particle size distribution parameters

Back t Forward! Reset % Select

New quantitative parameter! New qualitative parameter!

OK	 Cancel
	

Help

Figure 6.16. The dialog box for selecting parameters for applicability restrictions.

The list box (of the dialog box in Figure 6.16) initially contains all the parameter

categories (obtained from the Parameters object base). The user should select the

desired parameter category and then press the "Forward" button. The parameters

classified under the selected parameter category will be displayed in the list box. If

the desired parameter is found among the displayed parameters, it should be selected

(click on with the mouse and then press the "Select" button). If the desired

parameter is not contained in the Parameters object base, it should be created. New

parameters can be created by means of the "New quantitative parameter" and "New

qualitative parameter" push buttons. The procedure for creating new quantitative or

qualitative parameters is presented in §6.2 (Figures 6.3 and 6.4). If a parameter is

selected or created, then the applicability restrictions are defined by means of the

dialog box shown in Figure 6.17 (for a quantitative parameter), or the dialog box

shown in Figure 6.18 (for a qualitative parameter).

The dialog box in Figure 6.17 displays the name and units of the selected (or

created) parameter. The user must specify the min. and max. values defining the

applicability range for the parameter by typing into the appropriate entry boxes.

147

17%
	

MIME=

Enter the minimum value for the selected parameter:

Enter the maximum value for the selected parameter

Units:

OK	 Cancel!
5

"grA0

1 gap graded

Select the parameter's values for which
the correlation/correction is applicable:

iniformly ratted
veil ratted

Show alternative I Delete 1

Enter a new petmissil3le value:

OK
	

Cancel':	 Help

Figure 6.17. The dialog box for defining applicability restrictions for a quantitative

parameter.

Figure 6.18. The dialog box for defining applicability restrictions for a qualitative

parameter.

If a qualitative parameter is selected, the invoked function will retrieve all the sets

of permissible values for the parameter (stored in the per_val facet attached to the

format facet of the parameter's object. The set that is retrieved first is displayed in

the list box (Figure 6.18). If more than one set exists, then all the remaining sets are

stored in the UserData slot of the push buttons control object (below the list box).

The "Show alternative" button is used to display alternatively the sets of permissible

148

values (see §6.3). The user can redefine any set using the "Delete" button (removes

a selected item from the list box) and the entry box for entering new permissible

values. When the desired set of permissible values is displayed, the user may select

the appropriate ones and then press the "OK" button.

A temporary facet will be created, named after the shorthand description of the

selected parameter. The value of this facet is a list, either containing the min. and

max. values defining the applicability range (for a quantitative parameter), or the

selected permissible values (for a qualitative parameter). The dialog box for

defining the parameter restrictions will be taken off screen and the control of the

execution is returned to the dialog box for selecting parameters (Figure 6.16). The

user may select another parameter and repeat the procedure.

When all the parameter associated restrictions for the selected ground type have

been defined, the user should click on the "OK" button (in the command row of the

Figure 6.16 dialog box). A new dialog box will appear on screen which is used for

assigning an applicability score to the specified applicability set.

This dialog box contains a list box with the options "high", medium" and "low".

The user will select the applicability score and then he/she should press the "OK"

button to update the correlation object. The information contained in the

applicability set will be passed to the appropriate applicability slot and facets (the

representation of applicability is discussed in §5.3.1). Finally both the dialog boxes

for selecting parameters and applicability scores are taken off screen and control of

the execution is returned to the dialog box for defining applicable ground types

(Figure 6.15).

The user may define a new applicability set following the course of action described

above. He/she may also preview the already defined applicability sets by clicking

149

:z.'••••/77/7
Ground type: sand

OC_state

Additional restrictions:
(select to examine)

Applicability score: 	 high

Show next
	

Remove
	

Dismiss	 Help 	 5

on the "Preview" button (in the command row of the Figure 6.15 dialog box). The

"Applicability Preview" dialog box appears on screen (see Figure 6.19), displaying

the settings for the applicability set defined first.

Figure 6.19. The "Preview Applicability definition" dialog box

This dialog box can display one applicability set at the time. In order to view

another set the user must click on the "Show next" button (in the command row of

the "Applicability Preview" dialog box). In this way the user can exhaustively

examine all the applicability sets.

The user may also examine any of the parameters (displayed in the list box).

Selection of the parameter will cause one of the dialog boxes, shown in Figures 6.17

and 6.18 respectively, to appear on screen. These dialog boxes will contain the

defined parameter restrictions as default values. The user is allowed to redefine the

applicability range, or the set of the selected permissible values. The "OK" button

should then be pressed for the correlation object to be updated with the altered

information. Finally, the "Applicability Preview" dialog box contains a "Remove"

push button for removing the currently displayed applicability set from the

applicability definition of the correlation object.

150

•-•-•-••••n

Oetinitt0410 00ltabilit

low
Select reliability score:

high

Coefficient of fit (%):

Standard deviation:	 i2A

Number of points:	 544

z
OK	 Cancel

When all the applicability sets are defined, the user may click on the "OK" button in

the dialog box for selecting applicable ground types. The invoked function checks

the applicability definition of the correlation object. If no values exist in any of the

applicability slots, an information dialog box appears on screen, warning the user

that the applicability of the correlation must be defined before proceeding.

Otherwise, the dialog box is taken off screen and the updating procedure continues

with the definition of reliability.

6.6 Reliability definition.

The reliability of the correlation is defined by means of the dialog box displayed in

Figure 6.20. This dialog box contains a list box for defining the reliability score of

the correlation. The user must choose one of the displayed reliability scores.

Furthermore, any additional information in terms of coefficient of fit (a percentage),

standard deviation (a positive number) and number of data points (used for the

correlation), may also be specified by typing into the corresponding entry boxes.

Figure 6.20. The "Reliability definition" dialog box.

151

47.4 1,A0	 JJ),r4V44#7.

Comments	 This correlation is based on the results o124 sets

This torretation is based on the results of 24 sets
of calibration test chambers in sand, in which the
values of tic were Corrected for the effects of
boundary conditions.

OK	 Cancel
„

6.7 Comments.

The last stage of the procedure for implementing new correlations is the

implementation of comments. This is done with the dialog box shown in Figure

6.21.

Figure 6.21. The dialog box for implementing comments.

The "Comments" dialog box contains an entry box where the user types the

correlation's comments. This entry box incorporates a text manipulating function,

which breaks down the text to lines of about 40 characters. The text is then

displayed in a text display (below the entry box). Finally, if the "OK" button is

pressed, the displayed text will be placed in the "Comments" slot of the correlation

object.

6.8 Updating correlations.

The Update module is also used for updating correlations that have already been

implemented in the system. The updating procedure initiates by selecting the

"Update implemented correlations/corrections" option in the Figure 5.7 dialog box.

This action results in the appearance of the "search" dialog box (Figure 5.2), used

152

for identifying the correlation to update.. Performing searches in the correlation and

correction object bases is covered in §5.3.3.

The actual updating of the correlation commences with the activation of a function

that renames the correlation object from its original name to correltemp. The

Step2 dialog box (Figure 6.5) then appears on screen. The author-date reference is

also retrieved from the author facet of the winame slot of the correlation object.

This is displayed in the appropriate entry box (of the Step2 dialog box) as a default

value.

The user may click on the "Preview" button to view the parameters and variables of

the correlation. As mentioned in §6.3 any of these parameters can be examined by

selection. Therefore, applicability ranges, or sets of permissible values of basic

variables may be redefined. Furthermore, intermediate parameters and variables

may be removed and new ones may be implemented.

If the user clicks on the "OK" button, the correlation object will be renamed (and all

the other actions described in §6.3 will also take place) and the "estwin" dialog box

(Figure 6.13) will appear on screen. The correlation's estimation procedure will be

retrieved from the string slot of the slot formula object (§6.4) and will be displayed

inside the list box. From there any statement can be examined, updated or deleted

and new statements may also be included in the code.

In the next stage the user may examine, alter, or reimplement the applicability sets

for the correlation object. The updating procedures concludes with the reliability

and comments stages. The corresponding dialog boxes will display the already

implemented information, contained in the appropriate slots and facets of the

correlation object. This information may be examined and altered if required by the

user.

153

6.9 Overview of the Update module.

The implementation of new correlations in the system as well as the updating of

already implemented correlations is a staged procedure. Each of these stages

corresponds to one of the five integral parts of a correlation's definition, as these

were identified in §5.2.

The only diversion from this methodology is noted in the implementation of the

variables and parameters of a new correlation, which takes place in two stages

(specifically the basic parameter definition is the first stage and the implementation

of the variables and intermediate parameters is a second separate stage). The reason

for the introduction of two stages in the implementation of a correlation's variables

and parameters is to ensure that the basic parameter cannot be altered during an

updating of this correlation. The need for this can in turn be explained by

considering that the updating of a correlation may be relevant only to one or more of

the following cases: the inclusion of new variables that affect the estimation of the

correlation's parameter; alterations to the estimation procedure as a result of either

the inclusion of new knowledge or reconsideration of the variables' effect;

modifications to the applicability, reliability and comments definitions as a result of

new empirical knowledge. On the other hand modification of the basic parameter is

meaningless, because this will result in a fundamentally different correlation, which

should rather be implemented as a new correlation. Therefore, the implementation

of the basic parameter in a separate stage and the omission of this stage during the

correlation's updating procedure was thought to be the best way to preserve the

correlation's identity.

Furthermore the necessity for the first stage in the implementation of new

correlations may also be demonstrated by the fact that it incorporates the selection

of whether the new object will be a correlation or a correction, which is also

154

irrelevant to the updating procedures. Consequently, the development of an initial

stage to handle these two tasks (basic parameter implementation, choice between

correlation and correction) during the implementation of new correlations and its

omission during the updating procedures, allows the rest of the interface to be used

for both purposes without the need for modifications.

The implementation of new correlations and the updating of already implemented

ones are linear reversible procedures. Each stage of these procedures is based on a

central or execution control dialog box, which either contains the appropriate

controls for performing all the necessary actions, or it can call other dialog boxes to

perform these actions. The central dialog boxes for each stage are: the Step! dialog

box (Figure 6.1; only applicable to the implementation of new correlations); the

Step2 dialog box (Figure 6.5); the estwin dialog box (Figure 6.13); the dialog box

for defining applicable ground types (Figure 6.15); The Reliability definition dialog

box (Figure 6.20); and the Comments dialog box (Figure 6.21).

Each of these dialog boxes contains a "Cancel" button in their command row

control, which can be used for reversing the flow of the procedure. In this way, the

user is allowed to move backwards one stage, each time the button is pressed, in

order to correct possible inconsistencies or entry errors.

Finally it should be noted that similar controls in different dialog boxes perform

similar actions. For example an "OK" or "Update" button will always result in the

execution of the requested action and will pass the control of the execution to the

next stage or sub-stage of the procedure. It is believed that the consistency in the

implementation of the interface will help future users to become quickly familiar

with the system.

155

CHAPTER 7

Discussion - Future development.

7.1 Discussion.

The evaluation of ground properties is one of the most important, yet difficult

problems in geotechnical engineering. The variety in the material and geological

conditions, in conjunction with the extended range of geotechnical problems, has led

to the development of a considerable number of methodologies for ground

properties evaluation (§1.1).

The work described here aims to provide a framework for storing and using

correlations and "typical" values for the estimation of ground properties. It is

thought that this framework, which should be used in conjunction with the other

methodologies, will provide a geotechnical engineer with a decision-support tool in

the property evaluation problem.

The first stage in the development of such a tool was the identification of the

requirements that should be met by it. These are outlined below:

• The ability of storing empirical knowledge (correlations, "typical" values) and to

use this knowledge to infer estimations for ground properties.

• The ability to incorporate symbolic processing (e.g. so that the developed system

will be able to deal with qualitative parameters, applicability of correlations etc.)

156

• The ability to update the existing knowledge as well as to add new knowledge,

so that it will maintain its usefulness in the future.

• To incorporate some expression for the quality of the inferred information

(uncertainty assessment).

Knowledge-based system technology can be applied to the property evaluation

problem, as it provides a medium that can accommodate the representation and use

of empirical knowledge. Furthermore, it can also incorporate symbolic processing,

the ability to update the system's knowledge and ways to represent uncertainty

(§2.1, §2.2).

The second stage in the development of a KBS for the estimation of ground

properties was the collection of correlations and "typical" values of properties.

It should be noted that during the knowledge elicitation stage, the assessment of the

quality of the inferred information was not always an easy task. The main reason

for this was the lack of relevant information and sometimes the existence of

conflicting information. Problems of this nature were handled by the adoption of a

conservative approach for uncertainty assessment.

In the case of correlations, if inadequate information was available, low values of

reliability were adopted and when conflicting information existed the pessimistic

approach was preferred (high values of uncertainty). The adoption of this strategy

in the reliability evaluation is intended to make the user of the system aware of the

variatiOn associated with the estimation of ground properties from empirical

procedures. Furthermore, it was thought that it is better to provide larger ranges of

variation for the value of a property, thus increasing the possibility that its actual

value will fall within that range, rather than doing the opposite. The user of the

system must then consider any additional information about the correlation provided

157

by the system and use his/her engineering judgement for selecting a fixed value for

the property in question. This is in accordance with the intention that the developed

system should function as a decision-support tool rather than taking decisions for the

user.

Another problem that was encountered during the acquisition of correlations was the

lack of a mathematical expression for the incorporated relation. Unfortunately, a

significant number of correlations is expressed through graphs that contain a single

line function describing the relation between the variables and the estimated

parameter. Furthermore, the omission of the data points that were used for the

establishment of the relations has also an effect on the assessment of the associated

uncertainty and the reliability of the correlation.

When an adequate amount of correlations and "typical" values of ground properties

had been collected, this was subsequently analysed in order to produce generic

forms of representation. The result of this analysis was the identification of the

components that are needed to adequately represent all the knowledge associated

with a correlation and the "typical" values of a property respectively (§5.2, §4.5). It

also revealed the need for acquiring additional knowledge which is essential for

their representation. This was knowledge relevant to the classification of the ground

and its properties (§3.2, §4.1, §4.2, §4.3).

The representation forms for "typical" values of ground properties (described in

§4.5) and for correlations (described in §5.2) were developed in accordance with the

requirements that were identified in the initial stages of the system's development.

Specifically, they both are structured representation forms, which can be used for

implementing a large number of correlations and "typical" values in a consistent

way, rather than individual pieces of code having to be written to handle each

158

correlation or set of "typical" values. Furthermore, they incorporate all the different

knowledge types which are necessary for an adequate and complete representation

of the domain knowledge.

Moreover, they also incorporate expressions for the quality of the inferred

information. In the "typical" values representation the associated uncertainty is

expressed as a range of variation around the "typical" value. In the correlation

representation, uncertainty is expressed both quantitatively: as a range of variation

around the estimated value, from the standard deviation, the coefficient of fit and

the number of data points used for the creation of the correlation; and qualitatively:

from the reliability score (§5.2.4).

The knowledge acquisition and the development of representation forms for that

knowledge was followed by the system's implementation. The system was

implemented in the ProKappa software (described in §3.4), running under X

windows on a Sun Spark 2 workstation.

The ProKappa software provided a favourable environment for the development of

the system for the estimation of ground properties. The user-friendly DUI

(Developer's User Interface) which incorporates an object browser (with graphical

displays of object hierarchies), code debuggers (C and ProTalk workbenches) and an

interface development workbench, and the excellent model engine are two of the

major advantages of the software.

The extensive use of the software during the system's development has also revealed

some of its shortcomings. The most important of these was the instability of the

software after long periods of use. In particular, the appearance of internal errors

that were usually followed by the automatic shutdown of the software, which were

not associated with any form of improper use of the software.

159

Furthermore the manipulation of large object bases through the object browser

significantly slowed down the performance of the system. Finally, the use of the

Active Relations application (described in §3.4.4) during development sessions

caused break-downs in the software due to memory allocation problems. The most

probable reason for that is that Active Relations is not fully integrated into the

ProKappa software, rather it is called by it as an external compatible program.

In either case, these problems were only encountered during the development of the

system and not during its use. Hence, the overall performance of the ProKappa

software can be described as satisfactory, at least with respect to the developed

system.

The implementation of the knowledge in the system was based on the object-

oriented approach, which is a feature supported by the ProKappa software. The use

of objects for the representation of the domain knowledge proved to be particularly

advantageous for the imposed task. This can be demonstrated by various aspects of

the developed system. These are presented in more detail in the following

paragraphs.

The system incorporates five knowledge bases (specifically: the basic and specific

ground types, ground parameters, "typical" values and correlations knowledge

bases), which are contained in three separate ProKappa applications and a ProKappa

application module (ground_representation, expand, GPar, est and correlation,

respectively). Each of these applications (or modules) contains a number of objects,

which incorporate the domain specific knowledge and whenever required, the

appropriate behaviour as well.

The main advantage provided by this representation form is that a relatively large

task (in this case the estimation of ground parameters) can be broken down into a

160

number of smaller subtasks, which can be handled with greater ease by the system

developer, since these are inherently less complex than the original task.

At the object level, the use of slots and facets allows for the incorporation of the

relevant knowledge (properties and behaviour through method slots) in the object's

definition. Each slot or facet is used to represent a specific chunk of the knowledge

associated with the object (explicit representation of knowledge). Therefore, each

individual chunk of knowledge can be accessed, retrieved and modified simply

through the assessment of the appropriate slot or facet. The benefits from this are:

the transparency of the knowledge base; and that the part of the inference

mechanism which is responsible for the manipulation of the system's knowledge is

consequently reduced down to the relatively simple task of slot and facet

assessment.

A clear separation between the knowledge bases and the inference mechanism has

been achieved. New correlations or "typical" values can be added to the system

without any need to modify the inference mechanism.

The coupling of the object oriented approach with generic representation forms

provides the ability of adding new knowledge in the system. This can be

demonstrated by the existence of the knowledge acquisition facilities incorporated in

the system (§4.7, chapter 6).

For example, each correlation is represented as an object, containing a number of

slots and facets, the totality of which is used to represent all the aspects of the

incorporated knowledge. Each of these slots and facets is associated with a slot or

facet type, which in turn corresponds to a specific type of knowledge: e.g. slots and

facets that represent: variables, parameters, applicability etc.). Therefore, in order

to add a new correlation to the system, the user must specify the necessary slot and

161

facet types and then supply the system with the relevant information for each one of

them.

Furthermore, the inference mechanism is based on the identification of a specific

slot or facet type and the execution of the action that is associated with it. Hence,

both the knowledge and inference in the system are implemented in a modular

manner.

The advantage of this implementation can be demonstrated in the case of adding

new knowledge types to the existing ones. This would be the only case where the

inference mechanism would require changes to achieve this.

Each new knowledge type would need to be represented by one or more new slot

and/or facet types. The necessary updating of the inference mechanism is merely

relevant to the addition of the appropriate action, which must follow the occurrence

of the new knowledge type. Therefore, the modularity in the representation and

inference allows the inclusion of new knowledge types without the need for

reimplementation of the system.

7.1 Future development.

The system has been developed as a stand-alone module. It is intended that in the

future it will form a part of another knowledge-based system, currently being

developed at the University of Durham for interpreting geotechnical information

from a site investigation [Toll and Oliver, 1993].

The system, known as SIGMA, is being developed in a modular manner, operating

around a central database of site investigation information and making use of

162

general knowledge about geotechnical engineering organised in individual

knowledge bases. The site investigation database contains the geotechnical data

(results from laboratory and field tests, engineering descriptions of the ground)

which requires interpretation. This data can be used as the necessary input for the

correlation and "typical" values knowledge bases to produce estimates for the

required parameters.

This process can be easily automated, with the implementation of a function that

will access all the data available for a particular layer (soil types, measurements of

ground properties etc.). This data will be used as the criterion for searching the

correlations object base (the functions for searching the correlation object base have

already been implemented and are presented in §5.3.3) for the appropriate

correlations, which will subsequently be presented to the user of the system. A

similar process for an automated parameter search can be applied to the "typical"

values knowledge base (this time using the ground type and any additional

measurements of ground properties as the necessary input).

An important aspect for the enhancement of the presentation of the correlations

results would be the inclusion of graphical routines in the system. For example, a

two-dimensional representation of the estimated values of a property versus depth,

will provide a better feel for the variation of the parameter's values, rather that a

presentation of a list of numbers (especially when continuous measurements along

the soil profile for a correlation variable are performed; e.g. in correlations that

incorporate field test parameters).

Finally, the knowledge included in the system can be further extended with the

inclusion of definitive relations between qualitative and quantitative parameters.

For example, the translation of qualitative descriptors for relative density or

163

undrained shear strength to ranges of values for the corresponding quantitative

parameters (Dr and Su).

Explicit ranges of values exist for each descriptive term. These relations are merely

relevant to the properties they involve and do not depend on ground type.

Therefore, they can be represented in the appropriate parameter objects (in the

parameters object base) as slots and facets.

The slot that will be used for representing the relation may be attached to the

qualitative parameter and its value may be set to be a pointer to the object of the

corresponding quantitative parameter. A number of facets may also be attached to

it, each of which will be named after one of the qualitative parameter's permissible

values and its value will be set to a range of values for the corresponding

quantitative parameter. This representation can be supplemented by a piece of code

that will search and retrieve the corresponding range of values, given a qualitative

descriptor. Furthermore, if a number for the quantitative parameter is given, the

system will search for the facet containing the range that this value falls into and

retrieve the corresponding permissible value of the qualitative parameter (which is

the name of that facet). It should be noted that no uncertainty assessment is relevant

in this case, since the represented relations are definitions.

164

CHAPTER 8

Conclusions

The evaluation of ground properties is one of the most important problems in

geotechnical engineering. Even though geotechnical testing is probably the most

reliable source for obtaining values for ground properties, other methodologies such

as the use of correlations and published summaries of "typical" values are also used

to address the same problem.

The work described here aims to provide a framework for storing and using

correlations and "typical" values for the estimation of ground properties, that will

provide geotechnical engineers with a decision-support tool to assist with the

property evaluation problem.

Knowledge-based system technology has been employed for tackling the imposed

task as it provides a medium that can accommodate the representation and use of

empirical knowledge; it also incorporates symbolic processing, the ability to update

the system's knowledge and ways of representing uncertainty in the inference. The

developed system makes use of all these features and demonstrates the applicability

of knowledge-based systems in the area of ground property evaluation.

The system was implemented in the ProKappa software, running under X windows

on a Sun Spark 2 workstation. It incorporates four knowledge bases which store

information for the ground, its properties, correlations and "typical" values.

165

Implementation of the knowledge in the system was based on the object-oriented

approach which is a ProKappa supported feature. The main advantage gained from

this representation was the transparency of the knowledge bases.

The system also incorporates an inference mechanism and user interface facilities,

which allow the user of the system to interrogate the knowledge bases and to use

this knowledge for the estimation of ground properties.

Generic forms of representation were developed for correlations and "typical"

values of ground properties, allowing the implementation of large numbers of the

two knowledge types to be made in a consistent way. The utilisation of structured

representation forms allows new correlations and sets of "typical" values to be

implemented in the system even after the completion of the development stage.

Furthermore, each individual chunk of knowledge contained in a correlation (or a

set of "typical" values) can be accessed, retrieved and modified (if necessary),

allowing for an easy updating of the already implemented knowledge. To ensure

ease of modification and addition of new knowledge, the system has been

supplemented with four knowledge acquisition facilities (each of these corresponds

to a different knowledge base). In this way it is ensured that the system will

maintain its functionality in the future.

166

References

Aas, G., Lacasse, S., Lunne, T. and Hoeg, K., (1986), "Use of in-situ tests for

foundation design on clay", ASCE Spec. Conf. In-situ '86, Use of in-situ tests

in Geotechnical Engineering, Blacksburg Virginia, USA, pp. 1-30.

Adeli, H. (ed.), (1988), "Expert Systems in Construction and Structural

Engineering", Chapman and Hall, London.

American Society for Testing and Materials (A.S.T.M.) (1983), "Annual Book of

ASTM Standards", Section 4: Construction, Volume 04.08, Philadelphia.

Azzouz, A. S., Baligh, M. M., and Ladd, C. C., (1983), "Corrected field vane

strength for embankment design", Journal of Geotechnical Engineering, Vol.

109, pp. 730-734.

Begemann, H. K. S. Ph., Jousta, K., te Kamp, W. G. B., Krajicek, P. V. F. S.,

Heijnen, W. J. and van Weele, A. F., (1982), "Cone Penetration testing",

Civiele and Bouwkundige Techniek, pp. 3-59.

Bieniawski, Z. T., (1976), "Rock mass classification in rock engineering", Proc.

. Symp. Expl. Rock Eng., Johannesburg, pp. 97-106.

Bjemim, L., (1972), "Embankments on soft ground", state-of-the-art report, Proc.

American Society of Civil Engineers, Spec. Conf. on Performance of Earth

and Earth-supported Structures, Lafayette, Ind., USA, Vol. 2, pp. 1-54.

167

British Standard (B.S.) 5930, (1981), "Code of Practice for Site Investigations",

British Standards Institution, London.

Carter, M. and Bentley, S. P., (1991), "Correlations of soil properties", Pentech

Press, London.

Cooke, N. M. and McDonald, J. E., (1986), "A Formal Methodology for Acquiring

and Representing Expert Knowledge", Proceedings of the IEEE, October

1986, pp. 1422-1430.

Cordingley, E. S., (1989), "Knowledge elicitation techniques for knowledge-based

systems", from Knowledge Elicitation: principles, techniques and application

(ed. Diaper, D.), pp. 89-173.

Davey-Wilson, I. E. G., (1991), "Geotechnical Laboratory Test Simulation using Al

Techniques, in Artificial Intelligence and Civil Engineering" (ed. Topping B.

H. V.), CIVIL-COMP Press: Edinburgh, pp. 119-124.

Douglas, B. J. and Olsen, R. S., (1981), "Soil Classification Using the Electric Cone

Penetrometer.", in Cone Penetration Test Experience, (eds. Norris, G. M. and

Holtz, R. D.), ASCE, pp. 209-227.

Dym, C. L., (1987), "Implementation Issues in the Building of Expert Systems",

Expert Systems for Civil Engineers, ASCE, New York, pp. 35-45.

Feigenbaum, E. A., (1983), "Knowledge Engineering: The Applied Side", in

"Intelligent Systems; The Unprecedented Opportunity", (ed. Hayes J. E.), Ellis

Horwood Limited, Chichester, UK, pp. 37-55.

168

Gevarter, W. B., (1987), "The Nature and Evaluation of Commercial Expert System

Building Tools", Computer, pp. 24-41.

Gillette, D. R., (1991), "An Expert System for Estimating Soil Strength

Parameters", Proc. Geotechnical Engineering Congress, in Geotechnical

Special Publication, Vol. 1, No. 27, (eds. McLean, F. G., Campbell, D. W. A.

and Harris, D. W.), ASCE: Boulder, Colorado, pp. 276-287.

Groothuizen, R. J. P., (1986), "Inexact Reasoning in Expert Systems - An

Integrating Overview", National Aerospace Laboratory NLR, Report No. NLR

TR 86009 U.

IntelliCorp, (1991), "ProKappa User's Guide", Inc. Version 2.0, Publication No:

PK2.0-UG-2.

Jamiolkowski, M., Ladd, C. C., Germaine, J. and Lancellota, R., (1985), "New

developments in field and laboratory testing of soils", 11th ICSMFE.

Juang, C. H. and Lee, D. H., (1989), "Development of an Expert System for Rock

Mass Classification", Civil Engineering Systems, 6, pp. 147-156.

Kulhawy, F. H. and Mayne, P. W., (1990), "Manual on Estimating Soil Properties

for Foundation Design", Rpt. EL-6800, Electric Power Res. Inst., Palo Alto.

Kulhawy, F. H., (1992), "On the evaluation of static soil properties", Slopes and

Embankments, pp. 95-115.

169

Leroueil, S., Tavenas, F. & Le Bihan, J. P., (1983), "Propri6tes charact6ristiques des

argiles de l' est du Canada" Canadian Geotechnical Journal, Vol. 20 (4), pp.

681-705.

Maher, M. L. and Allen, R., (1987), "Expert Systems Components", in "Expert

Systems for Civil Engineers", (ed. Maher M. L.), ASCE: New York, pp. 3-14.

Miles, J. C. and Moore, C. J., (1994), "Practical Knowledge-Based Systems in

Conceptual Design.", Springer-Verlag, London.

Moula, M., Toll, D. G., Vaptismas, N., (1994), "Knowledge-Based Systems in

Geotechnical Engineering", Geotechnique, (in press).

Mullarkey, P. W., (1987), "Languages and Tools for Building Expert Systems", in

"Expert Systems for Civil Engineers", (ed. Maher M. L.), American Society of

Civil Engineers, New York, U.S.A., pp. 15-34.

Mullarkey, P. W. and Fenves, S. J., (1986), "Fuzzy logic in a geotechnical

knowledge based system: CONE", Civil Engineering Systems, 3, 2, pp. 58-81.

Mullarkey, P. W., (1986), "A Geotechnical KBS Using Fuzzy Logic", in

"Applications of A.I. in Engineering Problems", (eds. Sriram D. and Adey R.),

Springer-Verlag, Vol. 2, pp. 847-859.

Skernpton, A. W. and Northey, R. D., (1952), "The sensitivity of clays",

Geotechnique, No. 3, pp. 30-53

170

Skempton, A. W., (1986), "Standard Penetration Test Procedures and the Effects in

Sands of Overburden Pressure, Relative density, Particle Size, Ageing, and

Overconsolidation", Geotechnique, Vol. 36, No. 3, Sept. 1986, pp. 425-447.

Stroud, M. A., (1988), "The Standard Penetration Test - Its application and

interpretation", Proceedings of the Institution of Civil Engineers

Geotechnology Conference, Birmingham, 6-8 July 1988, pp. 29-51.

Suttclife, A., (1988), "Human-Computer Interface Design", Macmillan Education

Limited.

Tello, E. R., (1989), "Object-Oriented Programming for Artificial Intelligence: a

guide to tools and system design", (ed. Addison-Wesley), pp. 15-35.

Terzaghi, K. and Peck, R. B., (1948), "Soil Mechanics in Engineering Practice",

John Wiley and Sons, New York, 584 p.

Terzaghi, K. and Peck, R. B., (1967), "Soil Mechanics in Engineering Practice", 2nd

Ed., John Wiley and Sons, New York, 729 p.

Toll, D. G. and Oliver, A. J., (1993), "SIGMA: a Knowledge-Based System for the

Interpretation of Geotechnical Information", Proc. SERC Conf. on Informing

Technologies for Construction, Civil Engineering and Transport, (eds Powell

J.and Day R.), Brunel University, London, pp. 245-254.

Van Melle, W., (1979), "A Domain Independent Production-Rule System for

Consultation Programs", Proc. 6th IJCAI, August 1979, pp. 923-925.

171

Weiss, S. M. and Kulikowski, C. A., (1979), "EXPERT: A System for Developing

Consultation Models", Proc. 6th IJCAI, August 1979, pp. 942-947.

West, G., (1991), "The Field Description of Engineering Soils and Rocks",

Geological Society of London Professional Handbook.

172

Appendix A

Correlations and Corrections

Part 1: Correlations.

1. Correlations for the estimation of peak effective angle of friction, cp'.

1.	 11)'-= f(Dr)

Reference:	 Giuliani and Giuliani, 1982.

Estimation procedure:V. Arctan [0.575 + 0•361(R/100)1 0.866

Required parameters: Relative density, Dr, with range of values: 0 - 100. cif

ranges from 30 0 to 43°.

Applicability: all coarse soils, especially sands.

Reliability:	 low (more consistent testing is required).

2.	 0 1 = f(D„ pd)

Reference:	 U.S. Navy, 1982.

Estimation procedure: dependent on Dr as follows:

D 	 0 and 25: Cc= 2.5pd + (0•86pd - 0.2)1)/25 + 23.2

Dr between 25 and 50: O iTc= 4.36pd + (2•28pd - 0.8)D/25 + 23.4

Dr between 50 and 75: (V.i.c= 6.64pd + (1•79pd - 0.73)D/25 + 22.6

D 	 75 and 100: Cc= 8.43pd + (1•5pd - 0.4)1)/25 + 21.87

Required parameters: D r , relative density with values ranging between 0-100,

Pd in t/m3 (Mg/m3). The range of pd depends on the

value of relative density as follows:

Dr between 0 and 25: 0.004*D, +1.2< pd <0.0044*Dr +1.89

Dr between 25 and 50: 0.004*D, +1.3< pd <0.0048*D, +1.89

D between 50 and 75:r 0.0036*Dr +1.4< pd <0.004*D, +2.12

Dr between 75 and 100: 0.0036*D, +1.5 < pd <0.0039*D, +2.22

Applicability: all inorganic coarse soils, including inorganic non-plastic silt.

Reliability:	 low to medium

A-1

Required parameters: y', the state parameter of sand, is defined as the

distance of the line e - logI 1 (I I : first stress invariant)

from the steady state line (SSL) in an e - logi i plot,

ranging from -0.3, to +0.1. The corresponding ranges

of O ITC are: O lit max from 31.6° to 49.7° 4:0 1 	. from
TC nun

28.2° to 44.6°, and.1°.
OITC mean from 29.9° to 47

Applicability: sands, silty sands, sand-silt mix.

Reliability:	 high (for range of (1)': 24 - 48) provided the value of y' is

accurately measured.

Comments: The angleV estimated from this correlation corresponds to the

drained angle of shearing resistance in triaxial compression

(V,).

O ipsC' VTC = f(De 	 Oic)

Reference:	 Bolton, 1986.

Estimation procedure:

for plain strain compression: Vpsc =	 5{Dr[Q - ln(1001Y/Pa)V100 - 1)

for triaxial compression:
	

Crc =	 + 3 tDr[Q - ln(100P7Pa)1/100 - 1

if mineralogy = quartz, feldspar	 Q=10

if mineralogy = limestone 	 Q=8

if mineralogy = anthracite 	 Q=7

if mineralogy = chalk 	 Q=5.5

Required parameters: critical state angle, O' cv , in degrees, relative density, D„

soil mineralogy and compressibility coefficient, Q,

mean principal effective stress at failure, in kPa,

and the atmospheric pressure, p a--100 kPa.

Applicability: clean sands.

Reliability:	 medium.

Comments: For preliminary estimations, if the value of p' f is not known it

can be assumed to be p' f = 2a'v0, which should typically lead

to an estimated value of (1)' within 10 to 2° of the actual value.

However, for final design, the value of p' f corresponding to

the specific loading conditions (initial stress state, stress path

to failure, test conditions and field problem specifications)

should be used.

6.	 •:1:•'= f(NspT, soil type)

Reference:	 Peck, Hanson and Thorburn, 1974.

Estimation procedure:

a. Sands:	 (1)'=[(Nsp,)619 + 21.6]/0.868

b. Sandy gravels: 	 01= -0.002(N5pT)2 +0.44(NspT) + 28.4

Required parameters: NspT from Standard Penetration Tests, ranging from

less than 4, up to more than 50 blows.

Applicability: all coarse soils.

Reliability:	 low to medium.

Comments: For fine sands, silty sands and silts below the water table. a

correction is required for N values greater than 15 according

to the following formula: Isf= 15+0.5*(N-15), (after Terzaghi

and Peck, 1967).

7.	 1:1;Tc= f(Nsvr, a)

Reference:	 Schmertmann, 1975.

Estimation procedure: (0',.,= Arctan[N 5p//(12.2 + 20•3crapa)r.34

Required parameters: NspT from Standard Penetration Tests, ranging from

less than 4 up to more than 60 blows and effective

overburden pressure, a'v., ranging between 0 and 300

kPa.

A-4

Applicability: all coarse soils.

Reliability:	 low to medium.

Comments: the estimated values of angle of friction in triaxial

compression are conservative. The use of this correlation

should be avoided in very shallow depths (cs',. < 30 kPa).

8. 4 f(q)

Reference:	 Meyerhof, 1963.

Estimation procedure: IV= 0.75(q c/10)" + 23.9

Required parameters: cone penetration resistance q c in kPa.

Applicability: all coarse soils.

Reliability:	 low.

9. f(qc, crivo)

	

Reference:	 Durgunoglu and Mitchell, 1975.

Estimation procedure: 4)'=b i - 2(a - a1)/(a1. 1 -

for	 i = 1 to 7:

= {46, 44, 42,40, 38,36, 34)

= (1.833, 3.25, 5.5, 8.68, 13.05, 19.01, 26.74, 36.5)

a = 1000a'aqc	and	 ai < a < ai.i.

Required parameters: qc from CPT in kPa and range of applicability: 0-

60000 kPa, °Co, effective overburden pressure in kPa,

and range of applicability: 20 - 50 kPa.

Applicability: medium and medium-to-coarse, clean, uniform sand, NC,

predominately quartz with some feldspar and perhaps a small

amount of mica, particle shape varying from rounded to sub-

angular.

	

Reliability:	 medium.

Comments: The value of 4; from this correlation is usually a lower bound

for these types of sand. The correlation does not take into

account the effects of soil compressibility. Therefore for the

more compressible ones (also with angular grains, higher

content of mica, more uniform) 4; may be higher by up to 2

degrees. However, the presence of compressible sands can be

detected from their friction ratios (if R f 0.5). For cemented

sands the value of 4; is also underestimated. For OC sands IV

(measured as a secant angle) is overestimated by 1 to 2

degrees. To include the effect of a curved strength envelope,

corrections should be made at high confining stresses. The

reduction of 4; depends on Dr as follows:

<13,<35
	

4; less by 0 to 1 degree.

35 < Dr < 65
	

4; less by 2 to 3 degrees.

65< Dr < 85
	

4; less by 3 to 5 degrees.

85< < 100
	

4; less by 5 to 8 degrees.

10.	 Cc= f(qc, a')

Reference:	 Robertson and Campanella, 1983.

Estimation procedure: 4)'= Arctan [0.1 + 0.38 log(q/a1,0)]

Required parameters: qc from CPT in kPa and range of applicability: 0 -

50000 kPa and,	 effective overburden pressure in

kPa, and range of applicability: 50 - 400 kPa.

Applicability: NC, uncemented, quartz sands.

Reliability:	 medium.

Comments: The remarks made for the previous relation [Durgunoglu and

Mitchell, 1975] apply to this relation as well.

11. O ITc = f(c1T, atho)

Reference:	 Houlsby and Wroth, 1989.

Estimation procedure: O IT,,,,in= [1n(q1Icfh0) - 0.4[/0.16 + 9

4fTc .= [1n(q1/dh0) + 0.6]/0.16 + 9

(1)1Tc mean= ln(q1Jdh.)/0.16 + 9

Required parameters: qv from piezocone tests, in kPa, cy'ho, horizontal

effective stress, in kPa. Ln(Vo tho) ranges from 3 to 7,

while 4fTc ranges from 300 to 50°

Applicability: sands

Reliability:	 medium.

12. slf= f(PI)

Reference:	 Bjerrum and Simons, 1960.

Estimation procedure:V= - 0.0005PI 2 - 0.1044PI + 34.1

Required parameters: the plasticity index PI ranges from 5 to 100, while

clf peak ranges from 19° to 34 0 •

Applicability: NC, uncemented insensitive clays.

Reliability:	 low. The maximum deviation of the value of cifpeak is ±4°.

Comments:	 = O'peak = Oc,„ for NC clays.

13. s:V= f(PI)

Reference:	 Mitchell, 1976.

Estimation procedure:14f= Arcsin[0.8 - 0.094 lnPI]

Required parameters: the plasticity index PI ranges from 6 to 100, while

O lpeak ranges from 20° to 39°.

Applicability: NC, uncemented insensitive clays.

Reliability:	 low. The maximum deviation of the value of O' peak is ±4°.

2. Correlations for the estimation of critical state angle, (V,

f(angularity, d 10 , C., Dr, mineralogy).

Reference:	 Koerner, 1970.

Estimation procedure: V c,=-- 36° + .64 1 + ,642 + A03 + 6,04 + 1X45

A4 i = - 6°	 for high sphericity and subrounded shape

A0 1 = +2°	 for low sphericity and angular shape

- 11°	 for d 10 >2.0 mm

Alf:12= - 9°	 for 2.0 mm>d io >0.6 mm

A02= - 4°	 for 0.6 mm>d io >0.2 mm

AO2= 0°	 for 0.2 mm>d io >0.06 mm

,643= - 2°	 for C. >2

A03 = - 1°	 for C. =2

A03 = - 1°	 for C. <2

A04= - 1°	 for O<D, <50

44= 0°	 for 50<13, <75

.644= +4°	 for 75<l), <100

45= 0°	 for quartz

45= 0°	 for feldspar, calcite, chlorite

45= 0°	 for muscovite mica

Required parameters: angularity, with values subrounded and angular,

particle size of 10% passing, d m, coefficient of

uniformity, C., relative density, De and mineralogy

with values, quartz, feldspar, calcite, chlorite and

muscovite mica.

Applicability: single mineral soils from fine sand to gravel.

Reliability:	 medium

Comments: According to Bolton's theory of dilatancy, relative density

should not influence Vc, and therefore A04= 0°. It should also

A-8

be noted that the presence of some silt in a sand deposit will

lower the value of Cy.

2.	 1:0'cv= f(mineralogy, angularity).

Reference:	 Data from Stroud, 1988.

Estimation procedure:

4) 1,= 0.96(ang) + 0.11(ang)2 -2.46(min) + 0.83(min)2 -0.06(min) 3 + 30.3±1.6

Note: ang stands for angularity and min for mineralogy.

Required parameters: Mineralogy of the soil and Angularity of the grains.

The values assigned to these parameters can be

inferred from the following table:

Mineralogy. Mineralogy number Angularity Angularity number

quartz. 1 well rounded 1

quartz with some feldspar. 2 rounded 2

quartz and feldspar 4 sub-rounded 2.5

feldspar and quartz 6 sub-angular 3

feldspar 8 angular 4

very angular 5

Applicability: sands and gravels either quartz or feldspar, or combinations of

the two.

Reliability:	 medium to high. r2=94%, sd=1°

Comments: This correlation was produced by the author using data from

Stroud [1988]. The scales used for both the mineralogy and

the angularity are arbitrary.

3. Correlation for the estimation of remoulded angle of friction, Ot„.•

1.	 O'rem= f(PI)

Reference:	 Gibson, 1953.

Estimation procedure: 0 1„m= 79.9/PI + 0.00066PI2 - 0.1634PI + 27

Required parameters: the plasticity index PI ranges from 12 to 120, while

O'rem ranges from 15° to 32°.

Applicability: all fine soils.

Reliability:	 low.

4. Correlation for the estimation of residual angle of friction, Vres.

1.	 Vres= f(PI)

Reference:	 Gibson, 1953.

Estimation procedure: q= 0.00224PI2 - 0.432PI + 30.96

Required parameters: the plasticity index PI ranges from 0 to 110, while (v.
ranges from 8° to 31°.

Applicability: all fine soils.

Reliability:	 low.

5. Correlations for the estimation of undrained shear strength, S.

1.	 Su = f(LI)

Reference:	 Skempton and Northey, 1952.

Estimation procedure: Probable upper limit: S u ...10(o.°21-2+°.81-2-1.8L1+2.05)

4.137L13+1.37L12-2.39LI+1.91)Probable lower limit: S u mi. =10

Required parameters: Liquidity index LI, ranging between 0 and 1.0, while

Su ranging between 5 and 120 kPa.

Applicability: clays of low to moderate sensitivity with natural moisture

contents below their liquid limit (LI < 1).

Reliability:	 low.

Comments: the correlation presented above is a combination of

correlations obtained from Skempton and Northey's original

work.

2. S 	 f(civo, PI)

Reference:	 Skempton and Bjerrum, 1957.

Estimation procedure: S 	 ci„0(0.11 + 0.0037*PI)

Required parameters: effective overburden pressure, a' ‘,., and plasticity

index, PI.

Applicability: NC clays.

Reliability:	 low.

Comments: Skempton's correlation can be useful for preliminary

estimations and for cross-checking laboratory data, since the

required parameters are relatively easy to obtain. The S.

obtained corresponds to field vane shear strength, S.

3. S, = ft.:Yip, PI)

Reference:	 Chandler, 1988.

Estimation procedure: S 	 a'p(0.11 + 0.0037*PI)/(1 ± 25%)

Required parameters: effective preconsolidation pressure, alp and plasticity

index, PI.

Applicability: OC clays, not fissured, organic, or sensitive.

Reliability:	 low (accuracy ± 25%).

Comments: Chandler suggest that the Skempton and Bjerrum [1957]

correlation can be applied to OC clays if the effective

overburden pressure is substituted with the preconsolidation

pressure.

4. S 	 f(alp, PI)

Reference:	 Leroueil, Tavenas and Le Bihan, 1983.

Estimation procedure: Su, = cip(0.2 + 0.0024*PI)

Required parameters: plasticity index PI with range of application: 5 - 60%

and preconsolidation pressure, a 'p, in kPa. Su„kip,

ranges from 0.2 to 0.35.

Applicability: soft clays from Eastern Canada with PI < 60.

Reliability:	 low.

Comments: this correlation cannot have global applicability. It is mainly

applicable to soft clays with low to medium values of

plasticity index.

5. Suit = f(ali , PI)

Reference:	 Wroth and Houlsby, 1985.

Estimation procedure: Suir ci1(0.129 + 0.00435*PI)

Required parameters: the effective overburden stress after isotropic

consolidation, a and plasticity index, PI.

Applicability: NC clays.

Reliability:	 low.

Comments: the undrained shear strength estimated from this correlation,

corresponds to conditions of triaxial compression after

isotropic consolidation, SuT.,.

6. Sums = f(aip)

References: Jamiolkowski, Ladd, Germaine and Lancellota, 1985.

Mesri, 1989.

Estimation procedure: a. Sums = (0.23 ± 0.04)dp

b. Sums = 0.22crip

Required parameters: effective preconsolidation pressure, afp.

Applicability: low OCR clays with low to moderate PI.

Reliability:	 low.

Comments: undrained shear strengths obtained from the above

relationships, corresponding to direct simple shear conditions

can only be considered as approximations.

7. Su = f(1, OCR)

Reference:	 Jamiolkowski, Ladd, Germaine and Lancellota, 1985.

Estimation procedure: S u = a',0*(0.23 + 0.04)*ocRo.8

Required parameters: effective overburden pressure, a' vo, in kPa and the

overconsolidation ratio, OCR.

Applicability: non-cemented clays with a plasticity index less than 60%.

Reliability:	 low

Comments: this correlation can be used for preliminary estimations, or to

cross-check other estimation methods.

8. SuCIUC, SuCAUC Raivot (IC)

Reference:	 Kulhawy and Mayne, 1990.

Estimation procedure: a. S ucnic = 0.012(rmatv0

Suaucuun = 0.01Ccevo and Sum, „,,, = 0.015401aivo

b. SucAuc = 0.0117Ccalvo

Suowcuun = 0.014:1 1.,,cdvo and SucAuc max = 0.014.rca",..

Required parameters: effective overburden pressure, a'„, in kPa and the

angle of friction in triaxial compression, 11) 1,c, ranging

between 20 0 and 50°.

Applicability: intact NC clays.

Reliability:	 medium. r2 = 0.686, sd= 0.055*&„..

Comments: data bases of 81 intact and 1 fissured clays, and 71 intact and

1 fissured clays respectively were used to produce the two

relations. The undrained shear strength estimated from the

first relation, corresponds to conditions of triaxial

compression after isotropic consolidation, Sucluc, whilst the

second to triaxial compression after anisotropic consolidation,

SucAuc

procedures, or estimated k0 stresses, or finally, some general

anisotropic stress which may or may not correspond to k.

conditions). The reliability of the correlations increases for

(1) 1,rc >20°.

9.	 Suit f(a'„, OTC)

References: Wroth and Houlsby, 1985.

Estimation procedure: SuTc = a' 00.5743(3 + sin4'. c)/(3 - sin'.)

Required parameters: effective overburden pressure, a',,o, in kPa and the

angle of internal friction from triaxial compression

tests, Oirc

Applicability: NC. clays.

Reliability:	 low to medium.

Comments: the undrained strength estimated from this correlations

corresponds to undrained strength obtained from triaxial

compression tests, SuTc.

, (consolidation to either k0 stresses using special testing

10. S.„ = f(evo, C ', 0 1 , kw Af)

Reference:	 Thorne, 1984.

Estimation procedure: Suit = (c'coseptit - Uosin(0 1.0/[1 - (1 - 2Adsin4'i.c]

U. = - a'v0(1 + 2k0)/3

Required parameters: the effective cohesion, c', the angle of internal

friction, (1)', Skempton's A parameter at failure, Af and

the parameter U. relating to the average effective

stress, a' m = 1/3*(a' 0 + 2(4.) as follows: U. = - crim

Applicability: both NC. and OC. clays.

Reliability:	 low to medium.

Comments: the undrained strength estimated from this correlations

corresponds to undrained strength obtained from triaxial

compression tests, Suit.

11. Su = f(KD,d,u)

References: Marchetti, 1980.

Lacasse, and Lunne, 1988.

Estimation procedure: Marchetti: 	 S, = 0.22(0.51(1)1.25

Lacasse and Lunne: S. = a(0.51Q1.25

for triaxial compression, (Suit) a=0.20

for direct shear, (SuDSS) a=0.14

for field vane strength, (S) 0.17<a<0.21

Required parameters: Effective overburden pressure, a 0, in 1cPa and the

dilatometer horizontal stress index, KD, ranging from 1

to 20.

Applicability: soft clays.

Reliability:	 medium.

Comments: the Marchetti correlation was found to be off by a factor of 2

in stiff, old, UK clays, while in soft clays, it works reasonably

A-15

well. The Lacasse and Lunne correlation depends on the type

of test used to establish the shear strength.

6. Correlation for the estimation of remoulded undrained shear strength, Sure,„.

1.	 Su rem = f(LI)

Reference:	 Leroueil, Tavenas and Le Bihan, 1983.

Estimation procedure: Su rem = 1/(LI - 0.21)2

Required parameters: liquidity index, LI with range of application: 0.4 -

3.0, while the remoulded shear strength, S u rein , ranges

from 0.1 to 30 kPa.

Applicability: soft clays.

Reliability:	 medium to high.

Comments: the values of liquidity indices were obtained using the cone

penetrometer. The relation between LI and Su rem is very well

defined within the range of application. The data set consists

of a large number of soft clays from North America, Sweden

and Norway, fitting closely to the recommended curve. It can

also be noted that with an estimation of the clay's sensitivity

the above correlation can be used for producing an estimate of

the intact shear strength.

7. Correlation for the estimation of sensitivity, St

1.	 St = f(LI)

Reference:	 Skempton and Northey, 1952.

Estimation procedure: St = e(0.64LI3 - 1.28LI 2 + 2.88LI - 0.186)

A-16

LI <= 0.4:	 no correction.

0.4> LI <=0.8:	 Sens = range (Sens - 2, Sens +2)

0.8> LI <=1.2:	 Sens = range (Sens - 2, Sens + 4.5)

Required parameters: the liquidity index LI.

Applicability: relatively moderate sensitivity clays with natural moisture

contents below their liquid limit.

Reliability:	 medium.

8. Correlations for estimation of relative density, Dr

1	 Dr = f(Nsvr.,

References: a. Gibbs and Holtz., 1957.

b. Bazaraa, 1967.

Estimation procedure: a. Dr= 1.5 (Nsp/F)° .222 _ 0.6,

and F= 0.000065(0 1)2 + 0.168(a1,0) + 14

b.	 R=0.2236{Ns0a + b(a' 0/10)] }"

and if a' 0>=150	 a=1	 and	 b=0.2

else a' 0<=150	 a=3.25 and	 b=0.05.

Required Parameters: the number of blows, N from the SPT and dvo the

effective overburden pressure in kPa.

Applicability: sands.

Reliability:	 low.

Comments: the relationships presented here were obtained from regression

of the variables from Giuliani and Giuliani [1982], based on

the earlier work from Bazaraa [1967] and Gibbs and Holtz

[1957].

2.	 Dr = f(N, cr',0 , Cu, OCR)

Reference:	 Marcuson and Bieganousky, 1977.

Estimation procedure:

Dr = 100*(12.2 + 0.75*[222Nspr+2311-7110CR-779(0',0/100)-50Cu2]°.5 I

Required Parameters: the number of blows N obtained from the SPT, a',.,0

the effective overburden pressure in kPa, the

coefficient of uniformity, Cu (scalar), and the

overconsolidation ratio OCR

Applicability: unaged sands, with OCR equal to 1 or 3.

Reliability:	 medium. r2 = 0.77.

Comments: the relationship describing the correlation was obtained from

regression analysis of the data from collected from Marcuson

and Bieganousky, referring to unaged, NC or lightly OC

sands.

3•	 Dr = f(N, cy ',,, D50, t, OCR, ER, d, SM, I)

Reference:	 Skempton, 1986.

Estimation procedure:

Dr = (CERCBCsCRCNNs„) / (CBCACocR).

The coefficients of the above relation are given in the following table:

Factor Equipment variables Term Value

Energy ratio Pilcon, Dando, UK C,,,, (ER) 1.0

old standard, UK 0.8

Safety hammer, USA 0.9

Donut hammer, USA 0.75

Factor Equipment variables Term Value

Borehole diameter 65 mm<d<115 mm CI, (d) 1.0

d=150 mm 1.05

d=200 mm 1.15

Sampling method Standard sampler Cc, (SM) 1.0

Sampler without liner 1.2

Rod length 1>10 m CR, (1) 1.0

6 m<1<10 m 0.95

4 m<1<6 m 0.85

3 m<1<4 m 0.75

for fine medium dense NC sand:	 CN = 2/(1 + crid100),

for coarse dense NC sand: 	 CN = 3/(2 + aid100),

and for fine OC sand:	 CN = 1.7/(0.7 + cy'0I100),

= 60 + 25logD50, CA = 1.2 + 0.05log(t/100), and	 Cooz= ocR0.18.

Required parameters: the correction factors CER , CB , Cs, CR are related to

field procedures and are defined in the above table,

the vertical effective overburden pressure a',0,

ranging between 50 and 300 kPa, the particle size of

the sand at 50% finer, the time t (in years) describing

the age of the deposit, and the overconsolidation ratio

OCR

Applicability: NC sands and fine OC sands

Reliability:	 medium.

Comments: the value of N is initially corrected for field procedures to an

average energy ratio of 60%, to produce N60, then a correction

is applied to take account of effective overburden pressure,

producing (N' 1)60, and final adjustments for mean particle

size, age of deposit and overconsolidation ratio, producing a

value of N directly correlated to the square of Dr. The

relations describing the effects of particle size, ageing and

OCR, were obtained from [Kulhawy and Mayne, 1990].

4•	 Dr = f(qc, cr im , K.)

Reference:	 Baldi, Bellotti, Ghionna, Jamiolkowski and Pasqualini, 1986.

Estimation procedure: Dr= ln q/[205(cC/1000)" 1] }/2.93

Required Parameters: cone resistance qc in kPa and mean effective stress

airn in kPa, where atm= + 2o'h0)/3. The range of

(lc is 0 to 80000 kPa and the corresponding range of

arm is 50 to 500 kPa.

Applicability: sands both NC and OC

Reliability:	 medium to high

Comments: the determination of D r requires an estimation of K.. This can

be made from additional measurements in the CPT or from

other means.

5.
	

Dr = f(qc,, a

Reference:	 Jamiolkowski, Ladd, Germaine and Lancellota, 1985.

Estimation procedure: Dr= -98 + 66*log 10[1 0*q/(10*a1,0)°.5]

kq=1 + 0.2(131 - 30)/60

The procedure is as follows:

Step 1: determination of Dr from the formula.

Step 2: determination of Kg from the calculated value of Dr

Step 3: determination of Dr again with q 'e (Like until no

further variation of the value of D is observed.

Required parameters: the cone resistance (lc and the effective vertical

overburden pressure	 The units for both

A-20

parameters are kPa and qc/(a'vo)" ranges from 95 to

6325 while Dr ranges from 15 to 100%.

Applicability: relatively uniform, clean, NC, predominately quartz sands

where the in-situ horizontal stress ratio, K., is about 0.45.

Reliability:
	

high for the type of sands quoted here.

Comments: the correlation was based on data from calibration chambers

for five different NC sands. The relationship between relative

density, Dr and cone resistance, q., of a sand is greatly

affected by its compressibility. The value of Dr from the

formula is applicable to sands of moderate compressibility.

For the more compressible ones the value should be increased

by up to 6.5. The opposite is true for the less compressible

ones. Compressibility is greater where the sand is uniform,

the grains are angular and there is an appreciable mica

content. It should also be mentioned that in a thin layer of

sand an underestimate of the value of D, may be obtained,

because the full cone resistance may not have developed. For

OC sands, the same relationship may be used, if the initial

horizontal effective stress a'ho is used instead of evo. The

possible error in this case is in the order of ± 20%, and

therefore the value of Dr obtained should be considered as an

approximation.

6.	 Dr = f(q., , a v., compressibility, OCR)

Reference:	 Kulhawy and Mayne, 1990.

Estimation procedure: (D/100)2=(q/100)/[305*(vocRo.18*(dv./100)(15]

where Qc, the compressibility factor and

if compressibility = high	 Qc=0.91

compressibility = medium Qc=1.0

A-21

compressibility = low	 (4=1.09

Required parameters: the cone resistance q c, the effective vertical

overburden pressure the compressibility factor,

Qc, and the overconsolidation ratio, OCR The units

for qc and crvo are 1cPa and (4=(qc/100)/(aW100)0.5

ranges from 0 to 450. OCR ranges between 1 and 15.

Applicability: sands.

Reliability:	 medium. r2=77.6%, and standard deviation, sd=13.

Comments: the correlation is based on the results from 24 sets of

calibration test chambers in sand, in which the values of qc

were corrected for the effects of boundary conditions.

8. Correlation for estimation of dry unit weight, yd

1.	 yd = f(Dr, Cu)

Reference:	 Giuliani and Giuliani, 1982.

Estimation procedure: yd =1.33*(1 + 0.0023Dr)*cuo.1

Required parameters: relative density Dr and coefficient of uniformity Cu

which can be obtained from the P.S.D. of the soil.

Applicability: sands.

Reliability:	 low to medium.

9. Correlation for estimation of drained Poisson's ratio, vd.

1.	 vd= f(Crc).

Reference:	 Trautmann. and Kulhawy, 1987.

Estimation procedure: v d= 0.1 + 0.3(4C - 25°)/(45° - 25°)

A-22

Required parameters: the angle of friction in triaxial compression, 01,re,

ranging between 25° and 45°.

Applicability: all coarse soils.

Reliability:	 low.

Comments: the correlation reflects that denser soils (higher effective

friction angle), have higher values of vd.

10. Correlations for the prediction of coefficient of earth pressure at rest k..

1. ko = f(O'Tc).

Reference: My, 1944.

Estimation procedure: k0 = 1 - Otrc

Required parameters: the angle of friction in triaxial compression,

ranging between 10° and 50°.

Applicability: all NC soil types.

Reliability:	 medium.

Comments: A regression analysis of 124 different specimens of various

soil types by Mayne and Kulhawy [1982], showed a similar

relation with ko. 0.97(1 - sinep'Tc), and r2 = 70%, standard

deviation, sd = 0.06 (90% of the points fall in the range of k.

es, ± 0.1).

2. k. = f(a'v. , KD , O.

Reference:	 Baldi, Bellotti, Ghionna, Jamiolkowski and Pasqualini, 1986.

Estimation procedure: k. = 0.376 + 0.095KD - 0.0046(qi&v0)

Required parameters: the cone resistance q c, the effective vertical

overburden pressure a'	 and the dilatometervo

horizontal stress index KD. The units for (lc and a'w,

are kPa. KD should be between 1 and 20.

Applicability: sands

Reliability:	 low to medium.

3. k. = f(qc, De

Reference:	 Kulhawy, Jackson and Mayne, 1989.

Estimation procedure:

ko=(qc/pa) 1.25 / [35eav2c9 (paievo) i ,	-a,,p 100 kPa

Required parameters: cone resistance q e, effective overburden pressure

both in IcPa, and relative density Dr, ranging between

20 and 100.

Applicability: both NC and OC sands.

Reliability:	 low to medium.

Comments: the correlation was obtained from calibration chamber tests

data.

4. k.= f(PI) or f(LL)

Reference:	 Larsson, 1977.

Estimation procedure:k o=0.0077*PI + 0.3±0.1

k0=0.0072*LL + 0.15±0.12

Required parameters: plasticity index, PI, ranging between 0 and 60, or

liquid limit, LL, ranging between 0 and 90.

Applicability: NC inorganic soft Swedish clays.

. Reliability:	 low to medium for the type of clay quoted above.

Comments: the correlation was based on data from soft inorganic Swedish

clays (local correlation). Organic clays deviate significantly

from the above relation. A similar analysis [Kulhawy and

Mayne, 1990] with more clays from worldwide, demonstrated

the lack of correlation between Ice and PI (r2=14.7%).

5. ke= f(LI, a',0)

Reference:	 Kulhawy and Mayne, 1990.

Estimation procedure:

k0.0.5[(pia',0)0.510(O.56-0.81L1)1	 pe-100 kPa.

Required parameters: liquidity index, LI, and effective overburden

pressure, cr tve, in kPa.

Applicability: NC inorganic clays.

Reliability:	 low.

Comments: this is an indirect correlation, and therefore it involves double

uncertainty. It should only be used as a first order estimator

of Ice.

6. k0 = f(ai vo , KD , Se).

Reference:	 Lunne, Powell, Hauge, Uglow and Mokkelbost, 1990.

Estimation procedure:

for young clays (Se/crive)�0.8:	 ke=aKDQ54,	 0.28 a 0.38

for old clays (Se/a/v0) �0.8:	 ke=0.68K:34

Required parameters: the undrained shear strength S e, the effective vertical

overburden pressure a lve and the dilatometer horizontal

stress index KD, ranging between 2 and 30.

Applicability: clays.

Reliability:	 medium.

Comments: the accurate determination of the quotient S eha've is not

required for the execution of the correlation. It is merely used

as an indicator of the age of the clay. The uncertainty relevant

to the estimation of Ic e in young clays is ±20%.

A-25

11. Correlations for the prediction of overconsolidation ratio OCR

1. OCR = f(lco,

Reference:	 Schmertmann, 1983.

Estimation procedure: OCR = [ko/(1 - sin (1:11Tc)1(1.25/sinVTO

Required parameters: the horizontal stress index k 0 and the angle of internal

friction corresponding to triaxial compression (r.r•

Applicability: sands

Reliability:	 low to medium.

Comments: the angle of friction can be estimated from dilatometer tests

and corresponds to that measured in a drained triaxial

compression test. k0 can also be estimated from the

dilatometer test.

2. OCR = f(c5 1 „0, LI).

Reference:	 Wood, 1983.

Estimation procedure: OCR = 101 1 - 2.5*LI - 1.25*log(cT'v&pa)]

Required parameters: effective vertical overburden pressure, a'‘,0, in kPa and

liquidity index, LI, ranging between - 0.2 and 1.

Applicability: unstructured, low sensitivity fine soils.

Reliability:	 low to medium.

Comments: the original relation contains the critical state parameter A,

which is assumed equal to 0.8. The correlation is applicable

only to insensitive soils at the critical state, but it can also be

considered as a useful approximation for the types of soils

quoted above.

3. OCR = f(Suauc, a'vo, Cre) or f(SucAuc, a'vo, (Vir)

Reference:	 Mayne, 1988.

A-26

Estimation procedure: OCRmc = [(Suoudcri v.)/0.75*sinq„] 1.43 , or

OCItcAuc = [(SucAudaivo)/0.67*sin4 t Tc] 1.28

Required parameters: undrained shear strength from isotropically, or

anisotropically consolidated triaxial compression

tests, Suciuc, and SucAuc, respectively, effective

overburden pressure a,„, (both in kPa) and effective

angle of friction in triaxial compression,

Applicability: clays.

Reliability:	 low to medium.

Comments: the relation was based on data obtained from isotropically and

anisotropically consolidated triaxial compression tests.

4. OCR = f(a',0, KD, Su).

Reference:	 Lunne, Powell, Hauge, Uglow and Mokkelbost, 1990.

Estimation procedure:

for young clays	 (Sje„0)�0.8: OCR=0.31(131-17±30%

for old clays	 (Sjdv0)�0.8: OCR=2.7KD1-17-1-30%

Required parameters: the undrained shear strength S., the effective vertical

overburden pressure a' v0 and the dilatometer horizontal

stress index KD , ranging between 2 and 30.

Applicability: clays.

Reliability:	 medium.

Comments: the accurate determination of the parameter Sic'„ is not

required for the execution of the correlation. It is merely used

as an indicator of the age of the clay.

5. OCR = f(Su,, a',0)

Reference:	 Mayne and Mitchell, 1988.

Estimation procedure: OCR = 3.22*S/alv0

A-27

Required parameters: field vane undrained shear strength, S up,„ and

effective overburden pressure a',„, both in kPa. Their

quotient ranges between 0.1 to 10.

Applicability: intact clays.

Reliability:	 low to medium. r2= 80.6%.

Comments: the relation was based on a sample of 96 intact clays (209

observations).

12. Correlations for the estimation of effective preconsolidation stress, a'p.

1. 0'1 = f(LI)

Reference:	 Stas and Kulhawy, 1984.

Estimation procedure: a'/100/100 = 10 (1.11 - 1.62*LI) +0.4.

Required parameters: the liquidity index, LI, ranging between - 0.2 and 1.4.

Applicability: clays with sensitivity between 1 to 10.

Reliability:	 medium, r2= 74%, and sd = 0.33.

Comments: the correlation was obtained from 150 data points from clays

of various sensitivities.

2. a'p = f(S)

Reference:	 Kulhawy and Mayne, 1990.

Estimation procedure:

a'p= 3.54*Sup„

Required parameters: field vane undrained shear strength, S uFv ranging

between 10 and 500 kPa.

Applicability: intact clays.

Reliability:	 medium. r2= 83.2% (number of data points, n=205).

a' p	 2*S uFv	 r,a'	 = 6*Srmax	 uFv

Comments: This correlation was produced using data from clays

worldwide. The sample consisted of 96 intact clays and 1

fissured, which deviates significantly from its estimated value.

3. dp = f(Isls,).

Reference:	 Kulhawy and Mayne, 1990.

Estimation procedure: cep = a*Nspr*pa,

pa--. 100 kPa.

a=0.25,	 an.=0.47,	 a=1max

Required parameters: the number of blows, Nsi,r.

Applicability: intact clays.

Reliability:	 low. r2= 69.9 (number of data points, n=126).

Comments: This correlation is useful only as a first order estimator of

preconsolidation pressure. 49 intact and 2 fissured clays were

tested.

4. dp = f(q)

Reference:	 Kulhawy and Mayne, 1990.

Estimation procedure: a' p = 0.29*Q. &mi. = 0.12*qc	 (yip = 0.5*Q

Required parameters: the cone penetration tip resistance, Q, ranging

between 100 and 20000 kPa.

Applicability: intact clays.

Reliability:	 low to medium, r2= 85.8 (number of data points, n=113).

Comments: 39 intact and 10 fissured clays were tested. Preconsofidation

stress of fissured clays can not be estimated from this relation.

5. dp = nqp atv.)

Reference:	 Tavenas and Leroueil, 1987.

Kulhawy and Mayne, 1990.

A-29

Estimation procedure: alp = 0.33 (a*.	 aiV0).

a ipmin = 0.2*(qT - alvo) and a'pmax = 0.55*(qT - dvo)

Required parameters: the cone penetration tip resistance, Q, ranging

between 60 and 10000 kPa, and the effective

overburden pressure, a 'v,„ (also expressed in kPa).

Applicability: intact clays.

Reliability:	 medium. r2= 90.4 (number of data points, n=102).

Comments: 26 intact and 9 fissured clays were tested. The

preconsolidation stress of fissured clays can not be estimated

from this relation.

6.	 alp = f(p)

Reference:	 Kulhawy and Mayne, 1990.

Estimation procedure: (T ip = 0•45*pL &pfl = 0.3*pL	cr'proax = 0.6*pL

Required parameters: the limit stress from the self boring pressumeter test,

pL,ranging between 40 and 5000 kPa.

Applicability: intact clays.

Reliability:	 medium, r2=91%.

Comments: 35 intact and 6 fissured clays were tested. Preconsolidation

stress of fissured clays can not be estimated from this relation.

13. Correlations for estimation of constrained modulus, M.

1.	 M = f(dvo, Aav, cic).

Reference:	 Lunne and Christoffersen, 1983.

Estimation procedure: for NC sands:

Mo = 4qo	for	 qc<10 MPa.

Mo = 2qc + 20	 for	 10 MPa<qc<50 MPa.

50	 cMo = 120 MPa	 for	 MPa<q.

M=M0Ra'v0 + Ac5v)/atv0r5

for OC sands:

for	 qc<50 MPa.M0 = 5q c

M = 250 MPa	 for 50 MPa<qc.0

Required parameters: the cone resistance qc, the effective vertical

overburden pressure a', 0 and the stress difference

Auv. The units for (lc are MPa .

Applicability: sands

Reliability:	 medium (conservative results).

Comments: the values of M obtained are conservative. The relationship

for obtaining M along stress range (cr ivo, al vo + Acc) is valid

only for NC sands. For OC sands the exponent decreases with

OCR and becomes 0 for heavily overconsolidated sands (OCR

> 4).

2.	 M = f(a'aa, OCR, De qc).

Reference:	 Jamiolkowsld, Ghionna and Lancellotta, 1988.

Estimation procedure: M= qcC0pa(u'olpa)(OCR)c2(10)c3pr

Co = 14.48, C I = - 0.116, C2 = 0.313, C3 = - 1.123

and pa = 100 kPa.

Required parameters: the cone resistance q c, the mean effective stress a'.

the overconsolidation ratio, OCR and the relative

density Dr. The units for (lc are MPa and for a'. kPa.

D should be between 20% and 80%. a' should ber	 m

between 100 and 500 kPa.

Applicability: sands.

Reliability:	 medium.

Comments: the correlation was obtained from calibration chamber tests on

Ticino sand. The ratio of M/q c was found to vary between 3

and 22. Relative density can be assessed from the Baldi et al

[1986] correlation.

3.	 Mat = f(Dr, cic).

Reference:	 Kulhawy and Mayne, 1990.

Estimation procedure: NC sands:
Mdt = qc10 1.09 - 0.0075D1±0.2

OC sands:	 Mdt = cic10178 -
0.0122Dr±-0.24

Required parameters: the cone resistance qc and the relative density, De

Applicability: NC and OC sands

Reliability:	 low to medium. For the first relation, r2= 0.678, sd = 0.14, n =

9 sands, and for the second, r2= 0.734, sd = 0.18, a = 4 sands.

Comments: both correlations were obtained from data from calibration

chamber tests. They do not take into account the effect of

stress level. The estimated value of M, corresponds to tangent

drained constrained modulus, Mdt'

4.	 Mds = Rclp

Reference:	 Kulhawy and Mayne, 1990.

Estimation procedure: Mds =8.25(q r - al vo)/Pa	 pa-100 kPa

Required parameters: the cone resistance (lc, the effective vertical

overburden pressure evo . (qT - crevo) ranges between 0

and 6000 kPa.

Applicability: clays

Reliability:	 medium.

Comments: the values of Mds , drained secant constrained modulus, were

obtained from 12 sites tested by the piezocone.

Estimation procedures:

after Bjerrum S u =1.t2D*SuF, where: 1.12D=4.76/PI + 0.67±0.18

after Azzouz S u =113D*Supv where: j.t3D=3.86/PI + 0.62±0.15

Required parameters: plasticity index PI ranging from 0 to 120.

Applicability: clays, mainly aged NC.

Reliability:	 medium

Comments: Bjerrum's correlation was produced using data from back

analysis of embankment failures and although there is a

considerable scatter, it is a very useful and valid correlation.

Azzouz et al revised Bjerrum's correlation, using a 3-D

method of slope analysis, including end effects. Their

correlation is more conservative than Bjerrum's and seems to

be preferable, for design purposes (embankments, cuttings).

2.	 Su = f(SuFv , PI, evu)

Reference:	 Aas, Lacasse, Lunne and Hoeg, 1986.

Estimation procedure:

young clays: PIyoung= 850(SuFv/a lv0)2 ± 83(SuFv/o",,0) - 4.7

aged clays:	 P'aged= 710(SuFlaI v0)3-436.2(SuFv/a),0)2+173.4(SuFv/c40)- 14.3

The calculated values of PI are compared with the original PI value:

if Piaged <= PI < PIyoung

else if P1> PIaged

If clay is NC, then:

If clay is OC, then:

and

then the clay is considered as NC

then the clay is considered as OC

liNc=1/[1.5(S uFla ivo) + 0.759]

Roc=1/[2.58(SuFv/0',0) + 0.638]

su ai*su„,

Required parameters: effective overburden pressure, evo in kPa, field vane

shear strength, SuFv , in 1cPa and plasticity index, PI.

The quotient SuFv / cy 'vo ranges from 0 to 1 and PI

ranges from 0 to 100%.

A-41

14. Correlations for estimation of the drained elastic modulus, Ed.

1. 	 Edt = f(d1, a'3 , 0 1,rc, soil type, grading)

Reference:	 Duncan and Chang, 1970.

Estimation procedure:

Edt= K pa(a'3/par[l - Rf(1 - sinCc,)(a l i - a'3)/(2a'3sinCre)]2

K300(0 1Tc - 25)1(45 - 25)

Rf = 0.7 for well-graded sand or gravel

0.8 for poorly-graded sand or gravel

n =	 1/3 for gravel

1/2 for sand

2/3 for low plasticity silt

Required parameters: effective major and minor stresses, a' i and a'3 , in

kPa, the effective friction angle in triaxial

compression, (1) tit, soil type, with values gravel, sand

and silt and grading, with values well-graded and

poorly-graded.

Applicability: all coarse soils

Reliability:	 low

Comments: the validation of the parameters tc, Rf and n was made from

Trautmann and Kulhawy [1987] and Kulhawy et al [1983].

The estimated value of Ed corresponds to the drained tangent

modulus, Ede

2.	 Ed = f(N60)

Reference:	 Kulhawy and Mayne, 1990.

Estimation procedure: Ed--5pa(N60)

E6-10p.(N60)

Ed-15pa(N60)

sand with fines

clean NC sands

clean OC sands

A-33

Required parameters: the number of blows from SPT test, corrected for test

procedures, N60, pa-100 kPa.

Applicability: sands, NC and OC, silty sands, clayey sands

Reliability:	 low

Comments: the values of Ed estimated from this correlation are only first

order estimators.

15. Correlations for the estimation of shear modulus, G.

1.	 G. f(e, OCR, S. am, v)

Reference:	 Hardin, 1983.

Estimation procedure: Gniax=pa S*OCR"(aVpa)"/[2(1 + v)(0.3 + 0.7e2)]

pa-100 kPa a'. = 1/3*(al v0 + 2cY'ho)	 °Ce=1

S ranges between 1200 and 1500 for clean sands

G=5% to 10%G.

Required parameters: void ratio, e, ranging between 0 and 2,

overconsolidation ratio, OCR, stiffness coefficient, S

and mean principal effective stress, e rn, in kPa.

Applicability: clean sands

Reliability:	 low.

Comments: the correlation was based on shear wave velocity

measurements from the resonant column test. The shear

strains in this test are in the range le% to 10 -1 %, where G-

O., whereas for shear strains in the order of 1% (static

loading), G=5% to 10%G.. OC1e=1 is an assumption,

made by Hardin for convenience of the estimation.

2.	 G= f(e, OCR, PI, al.)

Reference:	 Hardin and Drnevich, 1972.

Estimation procedure:G max=pa [3210Cle(a i m/pa) 3(2.97 - e)2/(1 + e)]

pa=1001"a	 a', = 1/3*(a',0 + 2a' ho)

M=0.947857(PI/100) - 0.44642(PI/100)2

0=5% to 10%G.

Required parameters: void ratio, e, ranging between 0 and 2,

overconsolidation ratio, OCR, plasticity index, PI and

mean principal effective stress, a',, in kPa.

Applicability: clays

Reliability:	 low

Comments: the correlation was based on shear wave velocity

measurements from the resonant column test. The shear

strains in this test are in the range 10-4% to 10-1 %, where &-

Gm., whereas for shear strains in the order of 1% (static

loading), 0=5% to 10%Gmax.

2.	 G= f(Nsm.)

Reference:	 Wroth, Randolph, Houlsby and Fahey, 1979.

Estimation procedure: Gmax =pa l2ONs,°37 60paNs,13.71<Gmax<300paNs,"

and pa-1001cPa	 G=5% to 10%Gm.

Required parameters: the number of blows, Nsin.

Applicability: clays

Reliability:	 low

Comments: the correlation was based on a number of relationships for

Gruaa at dynamic strains versus Nspr. The necessary correction

for shear strain effect leads to 0=5% to 10%Gmax.

16. Correlations for the estimation of compression index, C.

1.	 Cc = f(LL)

Reference:	 Skempton, 1944.

Terzaghi and Peck, 1967.

Estimation procedure:

a. Skempton	 Cc.= 0.007(LL - 10)

b. Terzaghi and Peck Cc.= 0.009(LL - 10) ± 30%

Required parameters: liquid limit, LL. In the second relation 0 < LL < 100.

Applicability: for the second relation inorganic clays with sensitivity less

than 4.

Reliability:	 low

Comments: both relations can only provide with an approximation of the

compression index.

2.	 Cc = f(PI, Gs), or f(PI)

Reference:	 Wroth and Wood, 1978.

Estimation procedure:

Cc = 0.5 PI Gs ,	 and for: Gs=2.7:	 Cc = PI/74

Required parameters: plasticity index, PI, ranging between 0 and 100 and

specific gravity, G.

Applicability: inorganic clays.

Reliability:	 low. For the simplified expression r 2=66.3% and sd=0.16.

Comments: no account is taken of the effect of sensitivity to the value of

C.

17. Correlation for the estimation of recompression index, Cr.

1.	 Ct. = f(PI)

Reference:	 Kulhawy and Mayne, 1990.

Estimation procedure: C r = PI / 385

Required parameters: plasticity index, PI, ranging between 0 and 100.

Applicability: inorganic clays.

Reliability:	 low. r2= 44.8% and sd = 0.051.

Comments: two assumptions underlying this correlation: critical state

parameter A = 0.8 (for natural clays) and specific gravity of

solid particles, Gs = 2.7.

Part 2: Corrections.

1. Interrelationships between effective stress friction angles from different tests.

1. OITE = f(Cc)

Reference:	 Kulhawy and Mayne, 1990.

Estimation procedure: a. for coarse soils:	 (VTE —1 . 1 24:1'm

b. for intact clays:
	

4;77 = 1.22

Required parameters: effective angle of friction in triaxial compression (I), . 'iv

Applicability: first relation: all coarse soils.

second relation: intact clays.

Reliability: first relation: 	 medium

second relation:	 low, r2= 84.3%, sd = 5.3°, n = 70 (55 intact

clays).

2. (Vpsc = f(4)1Tc)

Reference:	 Kulhawy and Mayne, 1990.

Estimation procedure: a. for coarse soils: 	 4)Ipsc = 1.120'm

b. for intact clays:	 Csc = 1.1001.,,

Required parameters: effective angle of friction in triaxial compression, 4;11C.

Applicability: first relation: all coarse soils.

second relation: intact clays.

Reliability:	 first relation: medium

second relation: medium, r 2= 87.1%, sd = 2.2°, n = 18 (12

intact clays).

3. OINE = f((lC)

Reference:	 Kulhawy and Mayne, 1990.

A-38

Estimation procedure: a. for coarse soils: 	 4)IpsE = 1•25Cc

b. for intact clays: 	 I:Vpss = 1.34(Vit

Required parameters: effective angle of friction in triaxial compression (I)9 • ITC.

Applicability: first relation: all coarse soils.

second relation: intact clays.

Reliability:	 low for both relations.

Comments: these are indirect correlations, and as such they involve double

uncertainty. For the first relation 1.25 = 1.12, (for PSC/TC) x

1.12 (for TE/TC), and similarly for the second 1.34 = 1.10 x

1.22.

4.	 cli'as = f(•:Vpsc, (1) 1c,), or f(qTc, SOicv)

Reference:	 Kulhawy and Mayne, 1990.

Estimation procedure:qc6 = Arctan(tanCsccostli'cv)

Vps = Arctan[tan(1.1201Tdcos4,1

Required parameters: constant volume effective angle of friction and plain

strain compression effective angle, 91:,',, sc, or effective

angle of friction in triaxial compression, (1)',.

Applicability: all coarse soils

Reliability:	 medium

2. Interrelationships between undrained shear strengths from different tests.

1.	 SUPSC= f(SuCK0UC)

Reference:	 Kulhawy and Mayne, 1990.

Estimation procedure: S upsc= 1.12 SucK u,
o

Required parameters: undrained shear strength from C1coUC tests.

Applicability: intact clays

A-39

Reliability:	 low, r2= 72.4%, sd = .026, n = 10 (10 intact clays).

2. SuPSE= f(SUCK0UE)

Reference:	 Kulhawy and Mayne, 1990.

Estimation procedure: S ur,.= 1.29 SuacouE,

Required parameters: undrained shear strength from Ck 0UE tests.

Applicability: intact clays

Reliability:	 low, r2=63.9%, sd=0.030, n=6 (6 intact clays).

3.
SLID,Ss= f(SuCK0UC)

Reference:	 Kulhawy and Mayne, 1990.

Estimation procedure: Sums= 0.67 SucKou,

Required parameters: undrained shear strength from CkoUC tests.

Applicability: intact clays

Reliability:	 low, r2= 40.0%, sd = 0.030, n = 44 (40 intact clays).

4. SucK0UE,= f(SuCK0UC)

Reference:	 Kulhawy and Mayne, 1990.

Estimation procedure: SUCK uet-. 0.487 SuCK UC0

Required parameters: undrained shear strength from CkoUC tests.

Applicability: intact clays

Reliability:	 low.

3. Corrections for the estimation of the in-situ undrained shear strength, S u field

1.	 Su = f(Su,, PI)

References: Bjerrum, 1972.

Azzouz, Baligh and Ladd, 1983.

o

A-40

Estimation procedures:

after Bjerrum Su =12D*Supv where: P4.76/PI + 0.67±0.18

after Azzouz S u =1.13D*Supv where: PiD=3.86/PI + 0.62±0.15

Required parameters: plasticity index PI ranging from 0 to 120.

Applicability: clays, mainly aged NC.

Reliability:	 medium

Comments: Bjerrum's correlation was produced using data from back

analysis of embankment failures and although there is a

considerable scatter, it is a very useful and valid correlation.

Azzouz et al revised Bjerrum's correlation, using a 3-D

method of slope analysis, including end effects. Their

correlation is more conservative than Bjerrum's and seems to

be preferable, for design purposes (embankments, cuttings).

2.	 Su .-- f(S, PI, a'n)

Reference:	 Aas, Lacasse, Lunne and Hoeg, 1986.

Estimation procedure:

young clays: PI young=1495(Suwks'vd2 - 175.8(S u1 ia'v0) + 16.44

aged clays:	 PIaged= 1453.8(Suwhiv0)3-1386.8(Supjalvo)2+544.6(Suplain)-

58.44

The calculated values of PI are compared with the original PI value:

if P'young <= PI < PIaged 	 then the clay is considered as NC

else if PI >. Piaged 	 then the clay is considered as OC

If clay is NC, then:	 1-1Nc=1/[1.5(SuFv/cr i vo) + 0.759]

If clay is OC, then: [toc=1/[2.58(Supievo) + 0.638]

and	 Su =1.t*Sup,

Required parameters: effective overburden pressure, a'„ in IcPa, field vane

shear strength, Suw , in kPa and plasticity index, PI.

Applicability: clays both NC and OC, aged and young.

Reliability:	 medium to high for the range of application.

Comments: the correction factor i.i is referenced to an "average laboratory

strength", Su 9=[SuTc + Supss ± SuTE]/3, measured on

specimens anisotropically consolidated to the initial in-situ

stresses (ko conditions). The correlation is in good agreement

with measured values for excavations (base failures) and

cm bankments.

References to Appendix A.

Aas, G., Lacasse, S., Lunne, T. and Hoeg, K. (1986), "Use of in-situ tests for

foundation design on clay", ASCE Spec. Conf. In-situ '86, Use of in-situ tests

in Geotechnical Engineering, Blacksburg Virginia, USA, pp. 1-30.

Azzouz, A. S., Baligh, M. M., and Ladd, C. C. (1983), "Corrected field vane

strength for embankment design", Journal of Geotechnical Engineering, Vol.

109, pp. 730-734.

Baldi, G., Bellotti, R., Ghionna, V. N., Jamiolkowski, M. and PasquaKill, E. (1986),

"Interpretation of CPT's and CPTU's. 2nd part: drained penetration of sands.",

Fourth International Geotechnical Seminar, Singapore, pp. 143-156.

Bazaraa, A. R. S. S. (1967), "Use of the SPT test for estimating settlement on

shallow foundations on sand.", PhD Thesis, University of Illinois.

Been, K. and Jefferies, M. G. (1985), "A state parameter for sands", Geotechnique

No 35, pp. 99-112.

Bjerrum, L., and Simons, N. E. (1960), "Comparison of shear strength

characteristics of N.C. clays", Proceedings of the Research Conference on

Shear Strength of Cohesive Soils, Oslo, pp. 711-726.

Bjerrum, L. (1972), "Embankments on soft ground", state-of-the-art report, Proc. of

the American Society of Civil Engineers Special Conferance on Performance

of Earth and Earth-Supported Structures, Lafayette, Ind., USA, Vol. 2, pp. 1-

54.

A-43

Bolton, M. D. (1986), "The Strength and Dilatancy of Sands", Geotechnique, Vol.

36, No. 1, pp. 65-78.

Chandler, R. J. (1988), "The In-situ measurement of the Undrained Shear Strength

of Clays Using the Field Vane", Vane Shear Strength Testing in Soils: Field

and Laboratory Studies (STP 1014) ASTM, Philadelphia, pp. 13-44

Duncan, J. M. and Chang, C. Y. (1970), "Nonlinear Analysis of Stress and Strain in

Soils", Journal of the Soil Mechanics and Foundation Divisions, ASCE, Vol.

96, No. SM5, Sept. 1970, pp. 1629-1653.

Durgunoglu, H. T., and Mitchell, I. K. (1975), "Static penetration resistance of

soils.", Proceedings of Conference on In-situ Measurement of Soil Properties,

Am. Soc. Civ. Engrs. Raleigh, N. Carolina, June 1975, Vol. 1, pp. 151-188.

Gibbs, H. J. and Holtz, W. G., (1957), "Research on determining the density of

sands by spoon penetration testing", IV ICSMFE, London Vol. 1, pp. 35-39.

Gibson, R. E. (1953), "Experimental determination of the true cohesion and true

angle of internal friction in clays", Proceedings of the 3rd International

Conference on Soil Mechanics and Foundation Engineering, Zurich, pp. 126-

130.

Giuliani, F. and Giuliani F. L. N. (1982), "New analytical correlations between SPT,

overburden pressure and relative density", Proceedings of the Second

European Symposium of Penetration testing, Amsterdam, 24 - 27 May 1982.

Hardin, B. 0. (1983), "Modulus of Subgrade Reaction: New Perspective", Journal

Geotechnical Engineering, ASCE, Vol. 109, No. 12, Dec. 1983, pp. 1591-

1596.

Hardin, B. 0. and Drnevich, V. P. (1972), "Shear Modulus and Damping in Soils:

Design Equations and Curves", Journal of the Soil Mechanics and Foundation

Divisions, ASCE, Vol. 98, No. SM7, July 1972, pp. 667-692.

Houlsby, G. T. and Wroth, C. P. (1989), "The influence of soil stiffness and lateral

stress on the results of in-situ soil test", 12th Int. Conf. of Soil Mechanics and

Foundation Engineering. Session 2. Rio de Janeiro, Brazil.

Jaky, J. (1944), "The Coefficient of Earth pressure at rest", Journal of the Society of

Hungarian Architects and Engineers, Budapest, Oct 19 64, pp. 355-35%.

Jamiolkowski, M., Ghionna, V. N. and Lancellotta, R., (1988), "New correlations of

penetration tests for design practice", International Symposium of Penetration

Testing ISOPT-1. Orlando, USA. Proc., Vol. 1, pp 263-296.

Jamiolkowski, M., Ladd, C. C., Germaine, J. and Lancellota, R. (1985), "New

developments in field and laboratory testing of soils", 11th ICSMFE.

Koerner, R. M. (1970), "Effect of Particle Characteristics on Soil Strength", Journal

of the Soil Mechanics and Foundations Division, ASCE, Vol. 96, No. SM4,

July 1970, pp. 1221-1234.

Kulhawy, F. H. and Mayne, P. W. (1990), "Manual on Estimating Soil Properties

for Foundation Design", Report. EL-6800, Electric Power Res. Inst., Palo

Alto.

Kulhawy, F. H., Jackson, G. S., and Mayne, P. W. (1989), "First Order Estimation

of k. in Sands and Clays", Foundation Engineering Current Principles and

Practices, (ed. F. H. Kulhawy), ASCE, New York, pp. 121-134.

Kulhawy, F. H., Trautmann, C. H., Beech, J. F., O'Rourke, T. D., McGuire, W.,

Wood, W. A. and Capano, C. (1983), "Transmission Line Structure

Foundations for Uplift-Compression Loading.", Report EL-2870, Electric

Power Res. Inst., Palo Alto.

Lacasse, S. and Lunne, T. (1988), "Calibration of dilatometer correlations.", Proc.

of International Symposium on Penetration Testing ISOPT-1, Orlando,

Florida, U.S.A., Vol. 1, pp.539-548.

Larsson, R. (1977), "Basic Behaviour of Scandinavian Soft Clays", Report 4,

Swedish Geotechnical Institute, Linkoping, pp. 125.

Leroueil, S., Tavenas, F. & Le Bihan, J. P. (1983), "Propridtes charactëristiques des

argiles de l' est du Canada" Canadian Geotechnical Journal, Vol. 20 (4), pp.

681-705.

Lunne, T., Powell, J. J. M., Hauge, E. A., Uglow, I. M. and Mokkelbost, K. H.

(1990), "Correlation of dilatometer readings to lateral stress", Speciality

Session on Measurement of Lateral Stress, 69th Annual Meeting of the

Transportation Research Board, Washington DC, USA.

Lunne, T. and Christoffersen, H. P. (1983), "Interpretation of some cone

penetrometer data for offshore sands", Norwegian Geotechnical Institute,

Oslo, Report 52108-15.

Marchetti, S. (1980), "In-situ tests by flat dilatometer" ASCE. Journal of

Geotechnical Engineering. Vol. 106, No. GT3, pp. 299-321.

Marcuson, W. F., III and Bieganousky, W. A.(1977), "SPT and Relative Density in

Coarse Sands", Journal of the Geotechnical Engineering Division, ASCE, Vol.

103, No. GT11, Nov. 1977, pp. 1295-1309.

Mayne, P. W. (1988), "Determining OCR in Clays from laboratory strength",

Journal of Geotechnical Engineering, ASCE, Vol. 114, No. 1, Jan. 1988, pp.

76-92.

Mayne, P. W. and Kulhawy, F. H. (1982), "ko - OCR Relationships in Soil", Journal

of the Geotechnical Engineering Division, ASCE, Vol. 108, No. GT6, pp.851-

872.

Mayne, P. W. and Mitchell, J. K. (1988), "Profiling of Overconsolidation Ratio in

Clays by Field Vane", Canadian Geotechnical Journal, Vol. 25, No. 1, Feb.

1988, pp. 150-157.

Mesri, G. (1989), "A Re-evaluation of the su(nob) - 0.22 (T ip using Laboratory

Shear Tests", Canadian Geotechnical Journal, Vol. 26, No 1, pp. 162-164.

Meyerhof, G. G. (1963), "Some recent research on bearing capacity of foundations",

Canadian Geotechnical Journal, Vol. 1, pp. 16-26.

Mitchell, J. K. (1976), "Fundamentals of Soil Behavior", John Wiley and Sons, New

York, pp. 422.

Peck, R. B., Hanson, W. E. and Thorburn, T. H. (1974), "Foundation Engineering",

John Wiley, London, pp. 514.

Robertson, P. K. and Campanella, R. G. (1983), "Interpretation of Cone Penetration

Tests. Part I: Sand", Canadian Geotechnical Journal, Vol. 20, No. 4, Nov.

1983, pp. 718-733

Schmertmann, J. H. (1975), "Measurement of In-Situ Shear Strength", Proceedings,

ASCE Speciality conference on In-Situ measurement of Soil Properties, Vol.

2, Raleigh, pp. 57-138.

Schmertmann, J. H. (1978), "Guidelines for cone penetration test: performance and

design", U.S. Dept. of Transp., Fed. Highways Admin., Offices of Research

and Development, Washington DC, Report FHWA-TS-78-209, July 1978.

Schmertmann, J. H. (1983). Revised procedure for calculating K. and OCR from

DMT's with ID > 1.2 and which incorporates the penetration force

measurement to permit calculating the plane strain friction angle. DMT Digest

No. 1. GPE INC, Gainsville, Florida, USA.

Skempton, A. W. (1944), "Notes on the Compressibility of Clays.", Quart. Journ.

Geol. Soc., 100, pp. 119-135.

Skempton, A. W. and Northey, R. D. (1952), "The sensitivity of clays",

Geotechnique, No. 3, pp. 30-53

Skempton, A.W. and Bjerrum, L. (1957), "A contribution to the settlement analysis

of foundations on clay" Geotechnique, No. 7, pp. 168-178.

Skempton, A. W. (1986), "Standard Penetration Test Procedures and the Effects in

Sands of Overburden Pressure, Relative density, Particle Size, Ageing, and

Overconsolidation", Geotechnique, Vol. 36, No. 3, Sept. 1986, pp. 425-447.

Stas, C. V. and Kulhawy, F. H. (1984), "Critical Evaluation of Design Methods for

Foundations Under axial Uplift and Compression Loading", Report EL-3771,

Electric Power Research Institute, Palo Alto, Nov 1984, 198 p.

Stroud, M. A. (1988), "The Standard Penetration Test - Its application and

interpretation", Proceedings of the the Institution of Civil Engineers

Geotechnology Conference, Birmingham, 6-8 July 1988, pp. 29-51.

Tavenas, F. and Leroueil, S. (1987), "State-of-the-Art on Laboratory and In-Situ

Stress-Strain-Time Behaviour of Soft Clays Proceedings, International

Symposium on Geotechnical Engineering of Soft Soils, Mexico City, pp. 1-

46.

Terzaghi, K. and Peck, R. B., (1967), "Soil Mechanics in Engineering Practice", 2nd

Ed., John Wiley and Sons, New York, 729 p.

Thorne, C. P. (1984), "Strength assessment and stability analysis for fissured clays",

Geotechnique 34, No 3.

Trautmann, C. H. and Kulhawy, F. H. (1987), "CUFAD - A Computer Program for

Compression and liplift Foundation Analysis and Design", Report EL-4540-

CCM, Vol. 16, Electric Power Research Institute, Palo Alto, Oct. 1987, 148 p.

U.S. Navy (1982), "Design Manual: Soil Mechanics, Foundations and Earth

Structures", NAVFAC, U.S. Naval Publications and Forms, Alexandria, pp.

355.

Wood, D. M. (1983), "Index Properties and Critical State Soil Mechanics",

Proceedings, Symposium on recent Developments in Laboratory and Field

Tests and Analysis of Geotechnical Problems, Bangkok, Dec. 1983, pp. 301-

309.

Wroth, C. P., Randolph, M. F., Houlsby, G. T. and Fahey, M. (1979), "A Review of

the Engineering Properties of Soils with Particular emphasis to the Shear

Modulus", CUED/D-SOILS TR 75, University of Cambridge, 79 p.

Wroth, C. P. and Wood, D. M. (1978), "The Correlation of Index Properties with

Some Basic Engineering Properties of Soils", Canadian Geotechnical Journal,

Vol. 15, No. 2, May 1978, pp. 137-145.

Wroth, C. P. and Houlsby, G. T. (1985), "Soil mechanics - property characterisation

and analysis procedures", 11th ICSMFE, Vol. 1, San Francisco, pp. 1-55.

Appendix B

Typical values for ground properties.

Soils

• Peak effective angle of friction, Ss', and dry density, ddry for normally

consolidated inorganic gravels, sands and non-plastic silts.

Reference: U.S. Navy (1982), Design Manual: "Soil Mechanics, Foundations and

Earth Structures", NAVFAC, U.S. Naval Publications and Forms,

Alexandria, 355 p.

,

Soil type Effective angle of friction

4)' (in degrees)

Dry density, ddp,

(Mg/m3)

gravel (27, 36, 46) (1.69, 2.02, 2.36)

well-graded gravel (28, 37,46) (1.82, 2.09, 2.36)

very loose well-graded gravel (28, 29, 30)

4

(1.82 ,1.86 ,1.95)

loose well-graded gravel (29.5, 31, 33) (1.87 ,1.95 ,2.03)

medium dense well-graded gravel (32.5, 35.5, 38.5) (1.95, 2.06, 2.18)

dense well-graded gravel (37, 39.5, 42) (2.00, 2.13, 2.27)

very dense well-graded gravel (41, 43.5, 46) (2.17, 2.26, 2.36)

poorly-graded gravel (27, 35.5, 44) (1.69, 1.97, 2.25)

very loose poorly-graded gravel (27, 28, 29.5) (1.69, 1.78, 1.87)

loose poorly-graded gravel (29, 30.8, 32.6) (1.74, 1.84, 1.95)

medium dense poorly-graded gravel (31.8, 34.5, 37.6) (1.81, 1.95, 2.09)

dense poorly-graded gravel (36, 38.5, 41) (1.93, 2.07, 2.18)

very dense poorly-graded gravel (39, 41.5, 44) (2.00, 2.12, 2.25)

sand (26, 34, 42) (1.4, 1.76, 2.07)

well-graded sand (27, 34, 42) (1.57, 1.82, 2.07)

very loose well-graded sand (27, 28, 29) (1.57, 1.65, 1.73)

loose well-graded sand (28.6, 30, 32) (1.61, 1.71, 1.81)

Soil type Effective angle of friction

4)' (in degrees)

Dry density, ddry

(Mg/m3)

medium dense well-graded sand (31, 33.5, 36) (1.69, 1.81, 1.93)

dense well-graded sand (35, 37, 39) (1.79, 1.89, 2.00)

very dense well-graded sand (38, 40, 42) (1.87, 1.97, 2.07)

poorly-graded sand (26, 33.5, 41) (1.4, 1.7, 2.00)

very loose poorly-graded sand (26, 27.5, 29) (1.4, 1.54, 1.68)

loose poorly-graded sand (28, 29.5, 31.5) (1.44, 1.59, 1.74)

medium dense poorly-graded sand (30, 33, 36) (1.51, 1.68, 1.86)

dense poorly-graded sand (33.5, 36, 38.5) (1.61, 1.77, 1.93)

very dense poorly-graded sand (36, 38.5, 41) (1.68, 1.84, 2.00)

non-plastic silty sand (26, 33.5, 41) (1.4, 1.7, 2.00)

very loose silty sand (26, 27.5, 29) (1.4, 1.54, 1.68)

loose silty sand (28, 29.5, 31.5) (1.44, 1.59, 1.74)

medium dense silty sand (30, 33, 36) (1.51, 1.68, 1.86)

dense silty sand (33.5, 36, 38.5) (1.61, 1.77, 1.93)

very dense silty sand (36, 38.5, 41) (1.68, 1.84, 2.00)

non-plastic silt (26, 31, 37) (1.26, 1.45, 1.65)

very loose silt (26, 26.8, 27.6) (1.26, 1.32, 1.38)

loose silt (27, 28.5, 30) (1.30, 1.37, 1.44)

medium dense silt (29, 31, 33) (1.36, 1.45, 1.54)

dense silt (32, 33.5, 35) (1.45, 1.52, 1.60)

very dense silt (34, 35.5, 37) (1.52, 1.58, 1.65)

• Peak effective angle of friction (40, natural dry and bulk density (Pd, Pbutk) of

silts and clays.

Reference: Carter, M. and Bentley (1991), S. P., "Correlations of soil properties",

Pentech Press, London.

Soil type 4)'

(in degrees)

(u, u, 32)

dbuik

(Mg/m3)

n\a

ddrv

(Mg/m3)

n\alow-plasticity silt

high-plasticity silt (u, u, 25) n\a n\a

low plasticity clayey silt (u, u, 32) n\a n\a

high plasticity clayey silt (u, u, 25) n\a n\a

sandy clay (u, u, 31) n\a n\a

low plasticity clay (26, 31, 36) n\a n\a

high plasticity clay (19, 23.5, 28) n\a n\a

very soft clays n\a (1.6, 1.65, 1.7)
I

(0.9, 1.0, 1.1)

soft clays n\a (1.7, 1.8, 1.9) (1.1, 1.25, 1.4)

firm clays n\a (1.8, 2.0, 2.2) (1.3, 1.6, 1.9)

stiff clays n\a (2.0, 2.2, 2.4) (1.7, 1.95, 2.2)

• Compacted density (dcomp) and optimum moisture contents (omm) of soils.

Reference: Carter, M. and Bentley (1991), S. P., "Correlations of soil properties",

Pentech Press, London.

Soil type dbuik

(Mg/m3)

omm

(%)

clean gravel or sandy gravel (1.85, 2.0, 2.15) (8, 11, 14)

well-graded (2.0, 2.07, 2.15) (8, 9.5, 11)

poorly-graded (1.85, 1.92, 2.0) (11, 12.5, 14)

B-3

Soil type dnuik

(Mg/m3)

omm

(%)

silty gravel (1.9, 2.02, 2.15) (8, 10, 12)

clayey gravel (1.85, 1.92, 2.0) (9, 11.5, 14)

clean sand (1.6, 1.85, 2.10) (9, 14.5, 21)

well-graded (1.75, 1.92, 2.1) (9, 12.5, 16)

poorly-graded (1.6, 1.75, 1.9) (12,16.5, 21)

silty sand (1.75, 1.87, 2.0) (11, 13.5, 16)

clayey sand (1.7, 1.85, 2.0) (11,15,19)

inorganic silts (1.1, 1.5, 1.9) (12, 26, 40)

low-plasticity (1.5, 1.7, 1.9) (12, 17, 24)

high-plasticity (1.1, 1.3, 1.5) (24, 32, 40)

inorganic clays (1.3, 1.6, 1.9) (12, 24, 36)

low-plasticity (1.5, 1.7, 1.9) (12, 17, 24)

high-plasticity (1.3, 1.5, 1.7) (19, 27.5, 36)

low plasticity organic silt (1.3, 1.45, 1.6) (21, 17, 33)

high-plasticity organic clay (1.05, 1.32, 1.6) (21, 33, 45)

• Compressibility and coefficient of volume compressibility, mv of clays.

Reference: Weltman, A. J. Head, J. M. (1983), "Site Investigation Manual",

Construction Industry Research and Information Association, London,

113 p.

Soil type Compressibility my (m2/MN)

inorganic clay very low to high (0.05, 0.775, 1.5)

very heavily overconsolidated very low (u, u, 0.05)

Soil type Compressibility mv (m2/MN)

heavily overconsolidated low (0.05, 0.075, 0.1)

lightly overconsolidated medium (0.1, 0.2, 0.3)

normally consolidated high (0.3, 0.9, 1.5)

highly organic clays and peats very high (1.5, u, u)

• Compressibility index, Cc of cohesive soils.

Reference: Holtz, R. D. and Kovacs, W. D. (1981), "An Introduction to

Geotechnical Engineering.", Prentice-Hall, New Jersey, 733 p.

Soil type Cc

Normally consolidated medium sensitive clays (0.2, 0.35, 0.5)

Organic clays (4, u, u)

Peats (10, 12.5, 15)

Organic silt and organic clayey silt (1.5, 2.75, 4)

Rocks

• Dry densities, ddry, of some typical rocks.

References: Davis, S. N. and DeWiest, R. J. M. (1966), "Hydrogeology", ed.

Wiley J., New York.

Clark, S. P. (1966) (ed), "Handbook of Physical Constants.",

Geological Society of America, Memoir 97.

Rock ddrv (MOO) Rock dd, (Mg/m3)

0.7-2.0Granite 2.65 Coal

Diorite 2.85 Dense Limestone 2.7

Gabbro 3.0 Marble 2.75

Gypsum 2.3 Amphibolite 2.99

Rock salt 2.1 Rhyolite 2.37

. Basalt 2.77

• Hydraulic conductivities, k, of some typical rocks.

References: Davis, S. N. and DeWiest, R. J. M. (1966), "Hydrogeology", Wiley,

New York.

Brace, W. F., Walsh, J. B. and Frangos, W. T. (1978), "Permeability

of granite under high pressure", J. Geoph. Res. 73, pp. 2225-2236.

Rock k Lab, (cm/s) k Field, (cm/s)

Sandstone (3 x 10-3, 8 x 10-8) (10-3, 3 x 10-8)

Rock k Lab, (cm/s) k Field, (cm/s)

Shale (10, 5 x 1043) (10-8, 10-")

Limestone, Dolomite (10, 10-") (10, 10-7)

Basalt 10'12 (10-2, 10-7)

Granite (10, 10-11) (10-4, 10)

Schist, intact 10-8 2 x 101

Schist, fissured (le, 3 x 10-4) n1a

• Point load strength index of some typical rocks.

References: Broch, E. and Franklin, J. A. (1972), "The point load strength test",

Int. J. of Rock Mechanics and Mining Science 9, pp. 669-697

Rock Point load strength index, (MPa)

Tertiary sandstone and claystone (0.05, 1)

Coal (0.2, 2)

Limestone (0.25, 8)

Mudstone, Shale (0.2, 8)

Volcanic flow rocks (3.0, 15)

Dolomite (6.0, 11)

Appendix C

The ProTalk code.

GREPLptk

/* This file contains the functions and methods for browsing the ground_representation object base
and displaying "typical" values of ground properties. */

#include <prk/math.pth>
#include <prldlib.pth>
/**/

function menu()

{
bound inputs;
/* Puts the "search" dialog box on screen */

parpb("Reset ", slbl @, Ground@);
slb2.Selectionitems = Null;
slb2.MaxNum0fLines = 1;
std.Values = Null;
search .PutOnScreen !O;

}
/*
	 *1

method slbl.React! (?new_value, ?old_value)

{
bound inputs;
/* The method attached to the list box displaying ground types in the "search" dialog box*/

slb2.SelectionItems = Null;
slb2.MaxNum0fLines = 1;
?lpar = all slbl.SelectionItems;

select (

case: (IsString(?old_value);
not {IsString(?new_value);}
?x1 = find direct subclassof ConvertIoSymbol(?old_value);
or (ObjectModule(?xl) == ground_rep@;

ObjectModule(?xl) == expand@;}}
(sib 1 .SelectionItems = Null;
for (find ?x == direct subclassof ConvertToSymbol(?old_value);

or (ObjectModule(?x) == ground_rep@;
ObjectModule(?x) == expand@;} }

do slbl.SelectionItems +== ConvertToString(?x);
?Ipar = DeleteListElmt(?old_value, ?lpar);
?lpar = AppendLists(?lpar, -(?old_value));
sib 1 .UserData = AppendLists(slbl.UserData, '(?lpar)); }

case: (IsString(?new_value);
. find! scb.Values == ?;}

(?new_value = ConvertToSymbol(?new_value);
for (find ?new_value@.?s1== ?;

IsList(?new_value@.?s1);
IsFacet(?new_value@, ?sl, — Required parameters"); }

do {s1b2.SelectionItems += ?sl@.name;}
find ?num = count slb2.SelectionItems;
select (

case: { ?num < 4;

C- 1

?num > 0;}
slb2.MaxNum0fLines = ?num;
case: ?num == 0;
slb2.MaxNum0fLines = 1;

otherwise:s1b2.MaxNum0fLines = 4;1
est2cr.React!("Dismiss");}

otherwise: est2cr.React!("Dismiss");}
}
/* 	 *1

method spb1.React! (?button)

{
bound inputs;
/* The method attached to the, "Back", "Forward" and

"Reset" push buttons in the "search" dialog box. */

parpb (?button, sIbl@, Ground@);

}
/*
	 *1

method spb2.React! (?button)

I
bound inputs;
/* The method attached to the, "New ground type", "Delete

ground type" push buttons in the "search" dialog box. */

select {
case: ?button == "New ground type";

(if IsString(s1b1.Values);
(ngt1b.Selectionitems = sIbl.Values;}

else Ingt1b.SelectionItems = Null;}
ngt.PutOnScreen!();}

case: ?button == "Delete ground type";
delgt();}

}
/*
method ngt1b.React! (?new_value, ?old_value)
{

bound inputs;
/* The method attached to the list box for removing parent

objects in the "New ground type" dialog box*/

if IsString(?new_value);
{ngt1b.SelectionItems -..--- ?new_value;}
else (;)

}
/* 	

	 *1

method ngtpb.React! (?value)
(

bound inputs;
/* The method attached to the "Add parent" push button in the "New ground type" dialog box*/

if IsString(s1b1.Values);
{ngt1b.SelectionItems +== sib 1 .Values; }
else {;}

}
/* 	

	 *1

method ngtcr.React! (?button)

C-2

{
bound inputs;
/* The method attached to the command row of the "New ground type" dialog box*/

select {

case: ?button == "Create";
(?ml = ' 0;
for ?x inlist ModuleClasses(expand);
do collect ConvertToSymbol(?x) into ?ml;
?pl = all ngt1b.SelectionItems;
if (IsString(ngteb.Values);

ListLength(FindListElmt(?ml, ConvertToSymbol(ngteb.Values))) == 0;
ListLength(?pl) > 0;}

(MalceClass(ConvertToSymbol(ngteb.Values), expand@, ?pl, '0);
SaveApp(ground_rep);
ngt.TakeOffScreen!(); I

else (;) }

case: ?button == "Cancel";
ngt.TalceOffScreen!0;)

}
/* 	
	 *1

function delgt()
(

bound inputs;
I* This function checks if the selected ground type can be deleted. */

select (

case: not IsString(sIbl.Values);
{msgtd.Values = "\nSelect first the ground type to delete

and then press Delete ground type.\n";
Msgwin.PutOnScreenAndWait!();}

case: {IsString(slbl.Values);
ObjectModule(ConvertToSymbol(slb 1.Valu es)) == ground_rep@; }

(msgtd.Values = "The ground type selected cannot be deleted
because it is system supplied.";

msgcr.ButtonLabels = "Dismiss";
Msgwin.PutOnScreenAndWait!0;)

case:(IsString(sIbl.Values);
ObjectModule(ConvertToSymbol(slbl.Values)) == expand@; }

(?ob = ConvertToSymbol(sIbl.Values);
?chill = 0;
?chil2 = 0;
for {find ?obt == subclassof ?ob;
. ObjectModule(?obt) == expand@;}
do ?chill = ?chill + 1;
for (find ?obt == subclassof ?ob;

ObjectModule(?obt) == est@;}
do ?chil2 = ?chil2 + 1;

select (
case: ?chill > 0;

(msgtd.Values = "\nThe ground type selected to be deleted is a parent
of other ground\ntypes lower in the hierarchy. Therefore it
should not be deleted,\nbefore examinining its descendants

C-3

for data that might exisOnwhich will be lost. VIIf you still
want to delete it then delete first all it's descendantsAn";

msgcr.ButtonLabels = "Dismiss";
Msgwin.PutOnScreenAndWait!();}

case: { ?chill == 0;
or {findl ?ob.?s1 == ?;

?chil2 > 0;} }
{msgtd.Values = nnThe ground type selected to be deleted has got implemented

data\nwhich will be lost if the ground type is deletedAn
For more information on the excisting data press
Cancel andknthen, the Parameter search optionAnOtherwise
press Delete ground typeAn";

msgcr.ButtonLabels = "Cancel";
msgcr.ButtonLabels +.= "Delete";
Msgwin.PutOnScreenAndWait!();}

case: { ?chill == 0;
not find I ?ob.?s1== ?;
?chil2 == 0;}

delgtconf();}} }
}
/* 	 *1

function delgtconf 0
{

bound inputs;
/* This function deletes any existing subclasses of the ground type to be deleted. */

?pl = all subclassof ConvertToSymbol(sIbl.Values);
for {?x inlist ?pl;

ListLength(all subclassof ?x) == 0;}
do {DeleteObject(?x);}
delgtcheck0;

I
/* 	 *1

function delgtcheck 0
I

bound inputs;
/* This function puts a message dialog box on screen, which

confirms the deletion of the selected ground type. */

?val = ConvertToSymbol(slb I .Values);
if ListLength(a11 subclassof ?val@) > 0;
{killit0;}
else {spb1. —React!"("Back ");

msgtd.Values = AppendStrings("The ground type ", ConvertToString(?val),
"\nhas been deleted");

DeleteObject(?val@);
Msgwin.PutOnScreen!0;}

I
/* 	 *1

method scb.React! (?moused_item, ?selected_values)

{
bound inputs;
/* The method attached to the "Display Implemented parameters for

the selected ground type" push button in the "search" dialog box*/

if findl scb.Values == 7;
{std.Values = "Parameters list. Select to examine";
?new_value = findl sIbl.Values;

C-4

?old_value =
slb1.React!(?new_value, ?old_value);}

else {std.Values = Null;
slb2.MaxNumOlLines = 1;
slb2.SelectionItems = Null;)

}
/*
	 *1

method slb2.React! (?new_value, ?old_value)
{

bound inputs;
/* Puts on screen the dialog box for displaying the typical values

of the selected parameter for the selected ground type. */

if {IsString(?new_value);
IsString(slbl.Values);
?soil = ConvertToSymbol(s1b1.Values);)

{ ?num = 1;
find ?sl.name == ?new_value;
if IsFacet(?sl, format, units);
{ ?units = ?sl.format..units;}
else { ?units = ";}
?sl = ConvertToSymbol(?s1);
est2cr.React!("Dismiss");

select {

case: IsList(?soil.?sl..'"Required parameters");
{for ?x inlist ?soil.?sl..'"Required parameters";
do { ?lb_name = ConvertToSymbol(AppendStrings("est2lb", ConvertToString(?num)));

MakeDialogBoxControl(ListBox, groundrepUI@, ?lb_name);
?lb_nameidentifier = ?lb_name;
?lb_name.Title = ConvertToString(?x);
?lb_name.DialogBox = estimate2@;
for ?val inlist ?soil.?sl..?x;
do {?lb_name.SelectionItems +== ?val;}
if ListLength(?soil.?sl..?x) > 6;
{?lb_name.MaxNum0fLines = 6;}
else {?lb_name.MaxNum0fLines = ListLength(?soil.?sl..?x);}
estimate2@.Contents +== ?lb_name@;
?lb_name.PositionY = estimate2@.UserData;
estimate2@.UserData= 18*?lb_name.MaxNum0fLines + estimate2@.UserData + 25;
?num = ?num +1;
est2cr.UserData +== ?lb_name@;} }

case: {not IsList(?soil.?sl..'"Required parameters");
IsList(?soil.?s1);)

{;}

otherwise: fail;)

MakeDialogBoxControl(TextDisplay, groundrepUI@, est2tdtil);
est2tdtil.Identifier = est2tdtil;
est2tdtil.Title = ?new_value;
if ?units !=
{est2tdtil.Values = AppendStrings("(", ?units, TM
else {;}
est2tdtil.PositionY = estimate2@.UserData;
estimate2@.UserData= estimate2@.UserData + 30;

C-5

}
/* *1

est2tdtil.PositionX = 0;
est2tdtil.DialogBox = estimate2@;
estimate2@.Contents +== est2tdtil@;
est2td("min value	 :", "min");
est2td("average value :", "av");
est2td("max value	 :", "max");
est2cr.UserData..slot = ?s1;
estimate2@.PutOnScreen10;}
else {;}

function est2td(?str, ?nam)
{

bound inputs;

/* Creates the Text Display objects for the min., max. and
mean values of the parameter that is being estimated. */

?td = ConvertToSymbol(AppendStrings("est2td", ?nam));
MakeDialogBoxControl(TextDisplay, groundrepUI@, ?td);
?td.Identifier =?td;
?td.Title = ?str;
?td.PositionY = estimate2@.UserData;
estimate2@.UserData= estimate2@.UserData + 30;
?td.PositionX = 0;
?td.DialogBox = estimate2@;
estimate2@.Contents +== ?td@;

}
/*
method est2cr.React! (?button)
{

bound inputs;
/* Retrieves the typical values of the estimated parameter */

?lblist = Null;
select {

case: ?button == "Estimate";
{ ?lblist = all ?self.UserData;
est2tdtil.UserData = Null;
?str = slb 1.Values;
for ?i from 0 to ListLength(?lblist)-I;
do {?x = ListNth(?Iblist, ListLength(?Iblist)-1-?i);

select {
case: ?x.Values == "unknown";

{?st = ";}
case: find 7x.Values == ?;

{?st = AppendStrings(?x.Values, " ");}
, otherwise: ?st = ";}

?str = AppendStrings(?st, ?str);}
?ob = ConvertToSymbol(?str);
est2tdtil.UserData= FindObject(?ob);
?sl = est2cr.UserData..slot;
if (est2tdtil.UserData I= Null;

find ?ob.?s1== ?;
IsList(?ob.?s1);)

{est2tdmin@.Values = ListFirst(?ob.?s1);
est2tdmax@.Values = ListNth(?ob.?sl, 2);

C-6

est2tdav@.Values = ListNth(?ob.?sl, 1);}
else {est2tdmin@.Values = u;

est2tdmax@.Values = u;
est2tdav@.Values = u;}

case: ?button == "Dismiss";
{est2cr.UserData = Null;
for ?death = find estimate2@.Contents;
do {if ?death != est2cr@;

estimate2@ .Con tents	 ?death @ ;
DeleteObject(?death@);}

else {;) }
est2cr.UserData..slot = Null;
estimate2@.UserData = 10;
estimate2@.TakeOffScreen!0;1

1* 	 *1

method scr.React! (?button)

bound inputs;
1* Performs the actions incorporated in the "search" dialog box command row. *1

select {

case: ?button == "Parameter\n search";
{for find ?win.IsOnScreen == True;
do ?win.TakeOffScreen!();
Par0;}

case: {?button ==" Update\nParameters";
IsString(s1b1.Values);
?ob = ConvertToSymbol(sIbl.Values);
findl ?ob@.?s1==, ?;
IsFacet(?ob@, ?sl, —Required parameters");)

{upsrO.Contents -== upsrOpb1@;
upsiO.Contents -== upsr0pb2@;
upsrOlb.SelectionItems = Null;
for ?sl inlist ObjectSlots(?ob);
do { if {IsList(?ob@.?s1);

IsFacet(?ob@, ?sl, —Required parameters");}
{upsrOlb.SelectionItems +== ?sl.name;}}

upsrcrO.ButtonLabels = "Dismiss";
upsrcrO.ButtonLabels +==" Add\nParaineter";
upsrcrO.ButtonLabels +==" Update";
upsrO.PutOnScreen!();}

case: {?button ==" Update\nParameters";
IsS tring(slb 1 .Values);}

{parpb ("Reset ", upsrOlb@, Parameters@);
upsrO.Contents +== upsrOpb1@;
upsrO.Contents +== upsrOpb2@;
upsrcrO.ButtonLabels = "Dismiss";
upsraO.ButtonLabels +=" Update";
upsrO.PutOnScreen!();}

case: {?button ==" UpdateknParameters";
not IsS tring(slb I .Values);

{msgtd.Values = "Please select a ground type first";

C-7

Msgwin.PutOnScreenAndWaid();}

case: ?button == "Dismiss";
(for find ?win.IsOnScreen == True;
do (?win.TalceOffScreen!();)
mmen.PutOnScreen!0;)

case: ?button == "Help";

{;}}
}
/* 	

	 *1

method msgcr.React! (?button)
{

bound inputs;
/* The method attached to the command row of the "Information" dialog box*/

select (

case: ?button =-- "OK";
steplOK("OK");

case: ?button == "Cancel";
1;1

case: Mutton == "Remove Parameter";
/sSyrnbol(Msgwin.UserData);}

(warncr.UserData = Msgwin.UserData;
?sl = Msgwin.UserData;
warntd.Values = AppendStrings("Do you really want to remove the variable,\n",

corrpre.UserData.?sl..parameter);
warncr.ButtoriLabets -== "Continue";
warncr.ButtonLabels +== "Delete";
Warningwin.PutOnScreenAndWaid0;}

case: ?button == "Delete";
(killit();
msgcr.ButtonLabels = "Dismiss";)

case: ?button == "Remove";
{select {
case: apretd2.Values == high;

?sl = High_Applicability;
case: apretd2.Values == medium;

?sl = Medium_Applicability;
otherwise: ?s1 = Low_Applicability;)

?val = ListNth(aprecr.UserData, ListLength(aprecr.UserData)-1);
if ListLength(?val) > 1;
{for ?x inlist ListRest(?val);
.do {if ListLength(a/1 appliOcr.UserData.?sl..?x) < 2;

(DeleteFacet(appliOcr.UserData, ?sl, ?x);)
else (for ?y inlist all appliOcr.UserData.?sl..?x;

do (if ListFirst(?y) == ConvertToSyrnbol(apretd.Values)@;
(appliOcr.UserData.?sl..?x -== ?y;)

else (;)}}1
if ListLength(all appliOcr.UserData.?s1) > 1;
(appliOcr.UserData.?s1 -== ?val;)
else (appliOcr.UserData.?s1 = Null;))

else (if ListLength(all appliOcr.UserData.?s1) > 1;

C-8

{ appliOcr.UserData.?s1 -= ?val;}
else {appliOcr.UserData.?s1 = Null;))

aprecr.UserData = DeleteListElmt(ListNth(aprecr.UserData, L istLength(aprecr.UserData) -
1), aprecr.UserData);

aprelb.SelectionItems = Null;
apretd.Values = Null;
apretd2.Values = Null;)

case: ?button == "Correlate";
{ ?inst = ModuleInstances(correll @);
for ?x 1 inlist ?inst;
do (DeleteObject(?xl);)
dbcorrlb.SelectionItems = Null;
dbcorrlb.SelectionItems = Null;
?list = '0;
for ?x inlist corspb.UserData;
do {?list = AppendLists(?list, '(?x.Parameters_needed));}
?list = SortList(?list, Alphabetize);
for ?i from 0 to ListLength(?list)-1;
do {dbcorr/b.Selectionitems +== ListNth(?list, ListLength(?Iist)-1-?i);}
dbcorrcr.ButtonLabels = "Dismiss";
dbcorrcr.ButtonLabels +== "Correlate";
for find ?win.IsOnScreen == True;
do {?win.TalceOffScreen!();}
dbcorr.UserData = cors@;
dbcorr.PutOnScreen!0;}

case: ?button == "Update ";
for find ?win.IsOnScreen == True;

do {?win.TakeOffScreen!0;)
S tep2.UserData.. con trol = cors @ ;
upcor(ListFirst(corspb.UserData));}

case: ?button == "Update";
{dbcorrlb.SelectionItems = Null;
?list = '();
for ?x inlist corspb.UserData;
do {?list = AppendLists(?list, '(?x.Parameters_needed));)
?list = SortList(?list, Alphabetize);
for ?i from 0 to ListLength(?list)-1;
do {dbcorrlb.SelectionItems +=--- ListNth(?list, ListLength(?list)-1-?0;}
dbcorrcr.ButtonLabels = "Dismiss";
dbcorrcr.ButtonLabels +== "Update";
for find ?winIsOnScreen == True;
do {?win.TakeOffScreen!();}
dbcorr.UserData = cors@;
dbcoff.PutOnScreen!O;)

)

Msgwin.TakeOffScreen!();
msgcr.ButtonLabels = "Dismiss";
Msgwin.UserData = Null;

}

}
/* *1

GREP2.ptk

/* This file contains the functions and methods associated with the "Parameters search" dialog box. */

#include <prk/math.pth>
#include <prk/lib.pth>
/**/

function par 0
{

bound inputs;
/* Puts the "Prameters search" dialog box on screen. */

parlb 1 .SelectionItems = Null;
parlb2.SelectionItems = Null;
parlb2.MaxNum0fLines = 1;
parpb2.ButtonLabel = Null;

for ?x inlist ObjectSlots(Ground@);
do parlbl.SelectionItems +== ConvertToString(?x);

par.PutOnScreen!();

)
/* 	
method parcr.React! (?button)
{

bound inputs;
/* The method attached to the command row of the "Prameters search" dialog box. */

select {

case: ?button == "Ground tree";
{for find ?win.IsOnScreen == True;
do ?win.TalceOffScreen!();
menu();}

case: ?button == "Dismiss";
{for find ?win.IsOnScreen == True;
do ?win.TalceOffScreen!0;
mmen.PutOnScreen!();}

case: ?button == "Help";
(;)}

*1

method parpb1.React! (?button)

{
bound inputs;
/* Executes a search for the specified ground types (either basic or specific). */

parlb2.SelectionItems = Null;
parlb2.MaxNum0fLines = 1;

if (IsString(parlbl.Values);
IsNumber(pareb1.Values);}

{?s1 = ConvertToSymbol(parlbl.Values);
?num = parebl.Values;

if ?button == "Basic ground types";
{?module = ground_rep@;}
else {?module = expand@;}

select {

case: parrbl.Values == "In range";
{for {find ?gt.?s1 =---- ?;

ObjectModule(?gt) == ?module;
IsList(?gt.?s1);
IsNumber(ListFirst(?gt.?s1));
IsNumber(ListNth(?gt.?sl, 2));
ListFirst(?gt.?s1) <,---. ?num;
ListNth(?gt.?sl, 2) >= ?num;)

do parlb2.SelectionItems +== ConvertToString(?gt);}

case: parrbl.Values == "Lower than";
{for [find ?gt.?s1 . ?;

ObjectModule(?gt) . ?module;
IsList(?gt.?s1);
IsNumber(ListFirst(?gt.?s1));
ListFirst(?gt.?s1) <-.%-. ?num;)

do parlb2.SelectionItems +=. ConvertToString(?gt);}

case: parrbl.Values .= "Greater than";
{for {find ?gt.?sl =-- ?;

ObjectModule(?gt) . ?module;
IsList(?gt.?s1);
IsNumber(ListNth(?gt.?sl, 2));
ListNth(?gt.?sl, 2) >= ?num;)

do parlb2.SelectionItems +. ConvertToString(?gt);} }

mnol();)
else (fail;)

I
1* 	 *1

function mnol()
{

bound inputs;
1* Sets the number of lines of the ground types display list box. *1

find ?numl = count parlb2.SelectionItems;
select {

case: {?numl < 4;
?numl > 0;)

parlb2.MaxNumOiLines = ?numl;

case: ,?numl == 0;
parlb2.MaxNum0fLines =1;

otherwise:parlb2.MaxNum0fLines = 4;)

if find parlb2.SelectionItems == ?;
{parpb2.ButtonLabel = "More Detail";)
else { parpb2.B uttonLabel = Null;)

method parpb2.React! (?value)
{

bound inputs;
/* The method attached to the "More Detail", "Back" push button. */

select {

case: { ?value == "More Detail";
IsString(parlb2.Values); }

{parpb2.UserData = AppendListsC(parlb2.Values), all parlb2.Se/ectionItems);
?a = parlb2.Values;
childval(?a);
mnol();
parpb2.ButtonLabel = "Back";}

case: ?value .= "Back";
(?start = ListFirst(parpb2.UserData);
parpb2.UserData = DeleteListElmt(?start, ListRest(parpb2.UserData));
parlb2.SelectionItems = Null;
for ?x inlist parpb2.UserData;
do parlb2.SelectionItems +.= ?x;
parlb2.SelectionItems +== ?start;
mnol();} }

}
/*
	 *1

function childval(?a)
{

bound inputs;
/* This function searches for ground types that meet the specified criteria

and belong to the est module */

?pl ='();
parlb2.SelectionItems = Null;
parlb2.MaxNum0fLines = 1;

if (IsString(parlb 1.Values);
IsNumber(parebl.Values); }

{ ?sl = ConvertToSymbol(parlb 1 .Values);
for (find ?ob = direct subclassof ConvertToSymbol(?a);

ObjectModule(?ob) == est@;}
do (collect ?ob into ?p1;}

for ?obl inlist ?pl;
do ?pl = AppendLists(?pl, all subclassof ?obl);
?num = parebl.Values;

select {

case: parrbl.Values == "In range";
{for {?gt inlist ?pl;

IsList(?gt.?s1);
IsNumber(ListFirst(?gt.?s1));
IsNumber(ListNth(?gt.?sl, 2));
ListFirst(?gt.?s1) <= ?num;
ListNth(?gt.?sl, 2) >.-- ?num;}

do parlb2.SelectionItems -1--,.= ConvertToString(?gt);}

case: parrbl.Values .. "Lower than";

C-12

{for {?gt inlist ?pl;
IsList(?gt.7s1);
IsNumber(ListFirst(?g0s1));
ListFirst(?gt.?s1) <= ?num;}

do parlb2.SelectionItems +.= ConvertToString(?gt);}

case: parrbl.Values == "Greater than";
{for {?gt inlist ?pl;

IsList(?gt.7s1);
IsNumber(ListNth(?gt.?sl, 2));
ListNth(?gt.?sl, 2) >= ?num;}

do parlb2.SelectionItems +== ConvertToString(?gt);}} }

else { fail; }

/* 	

UPTV.ptk

/* This file contains the functions and methods for the implementation procedures for "typical"
values of ground properties. */

#include <prk/math.pth>
#include <prk/lib.pth>
/***/

method upsrOlb.React! (?new_value, ?old_value)

bound inputs;
/* The method attached to the list box for

specifying the parameter to update. */

parlb(?new_value, ?old_value, upsrOlb@);

method upsrOpb1.React! (?button)

bound inputs;
/* The method attached to "Back" "Forward" "Reset" push buttons. */

parpb (?button, upsrOlb@, Parameters@);

/*
method upsrOpb2.React! (?button)

bound inputs;

/*The method attached to "New quantitative parameter"
and "New qualitative parameter" push buttons. */

select {

case: ?button == "New quantitative parameter";
{pbal("Quantitative ");
nip.Title = "Quantitative Parameter Definition";
nip.PutOnScreenAndWait!();}

C-13

case: ?button == "New qualitative parameter";
{ pba 1 ("Qualitative ");
vip.Title = "Qualitative Parameter Definition";
vip.PutOnScreenAndWaid();} }

}
1*
method upsrcrO.React! (?button)
{

bound inputs;
/* The method attached to the command row of the dialog box

for specifying the parameter to update. */

select {

case: { ?button ==" Update";
IsString(upsrOlb.Values);
find ?obj.name == upsrOlb.Values;
ListLength(all subclassof ?obj) == 0;)

{upsrl.TalceOffScreen!O;
upsr 1 lb 1.SelectionItems = Null;
for {?y inlist SlotFacets(upsrlIbl, UserData);

?y != NoBPFacetNames;}
do DeleteFacet(upsrllbl, UserData, ?y);
for {find ?ob.format == Qualitative;

not findl superclassof ?ob =-- —Field test parameters";}
do {upsrllbl.SelectionItems +== ?ob.name;}
if {IsString(sIbl.Values);

?gt = ConvertToSymbol(sIbl.Values)@;
?par = ConvertToSymbol(?obj);
IsList(?gt.?par..'"Required parameters");)

{for ?x inlist ?gt.?par..'"Required parameters";
do { MakeFacet(upsr 1lb 1, UserData, ?x);

upsr 1 lb 1.UserData..?x = ?gt.?par..?x; } }
else (;}
upsrl.PutOnScreen!();}

case: {?button ==" Update";
not IsString(upsrOlb.Values);}

{msgtd.Values = "Please select a parameter to implement/update.";
Msgwin.PutOnScreenAndWait!();)

case: { ?button ==" Update";
IsString(upsrOlb.Values);
find ?obj.name == upsrOlb.Values;
ListLength(all subclassof ?obj) > 0;1

{msgtd.Values =	 "Only parameters (not parameter categories)\ncan be
implemented/updated";

Msgwin.PutOnScreenAndWait!O; I

case: ?button ==" Add\nParameter";
addpar();

case: ?button == "Dismiss";
upsrO.TakeOffScreen!();)

I
1* ___ *1

C-14

}

function addpar 0
{

bound inputs;
/*The function attached to the "Add Parameter" push button. */

upsrO.TalceOffScreen!();
parpb ("Reset ", upsrOlb@, Parameters @);
upsrO.Contents +== upsrOpb1@;
upsrO.Contents +== upsrOpb2@;
upsrcrO.ButtonLabels = "Dismiss";
upsrcrO.ButtonLabels +==" Update";
upsrO.PutOnScreen!0;

}
/************************** ************* *****************************/

method upsrllbl.React! (?new_value, ?old_value)

{
bound inputs;
/* The method attached to the "Select required parameters" list box. */

uplb(?new_value, ?old_value);

*1

function uplb(?new_value, ?old_value)

{
bound inputs;

rp.UserData = Null;
rplb.SelectionItems = Null;
rplb.UserData = Null;
rppb.ButtonLabel = Null;
rpeb.DefaultValues = Null;

if {IsString(?new_value);
find ?rep.name == ?new_value;}

(?rep = ConvertToSymbol(?rep);
rp.UserData = ?rep;
rp.UserData..name = ?new_value;
rp.Title = ?new_value;
if IsFacet(upsrlIbl, UserData, ?rep);

for ?i from 0 to ListLength(upsrllb 1.UserData..?rep);
do {rplb.SelectionItems +== ListNth(upsr 11b1.UserData..?rep,

ListLength(upsrllbl.UserData..?rep)-1-?i);}
for (?pv = find ?rep @.fonnat..per_val;

?pv != upsrllb 1 .UserData..?rep; }
do { rplb.UserData +== ?pv; }
rplb.UserData = all rplb.UserData;
rplb.UserData = AppendLists(rplb.UserData,

'(upsrllbl.UserData..?rep));
if ListLength(rplb.UserData) > 1;
(rppb.ButtonLabel = "Show alternative set";)
else(;} }

else {?y = findl ?rep @.format..per_val;
for ?i from 0 to ListLength(?y)-1;
do Irplb.Selectionitems +=--1 ListNth(?y, ListLength(?Y)-1-n);

rplb.SelectionItems +== "unknown";)
for {?pv = find ?rep@.fonnat..per_val;

C-15

?pv != ?y;)
do frplb.UserData +== AppendLists(?pv, '('unknown"));)
rplb.UserData = all rplb.UserData;
rplb.UserData = AppendLists(rplb.UserData, '(?y));
if ListLength(rplb.UserData) > 1;
{rppb.ButtonLabel = "Show alternative set";)
else{;} }

rp.PutOnScreenAndWaid();)
)

method rppb1.React! (?button)
{

bound inputs;
/* The method attached to the "Delete selected" push button. */

if ListLength(all rplb.SelectionItems) >1;
{rplb.SelectionItems -=-_. rplb.Values;}
else {rplb.SelectionItems = Null;}

)
/*
	 *1

method rppb.React! (?value)
{

bound inputs;
/* The method attached to the "Show alternative" push button. */

rplb.SelectionItems = Null;
?1 = ListLength(ListFirst(rplb.UserData));
for ?i from 0 to ?1-1;
do {rplb.SelectionItems +== ListNth(ListFirst(rplb.UserData), ?1-?i-1);)
rplb.UserData = ListRest(rplb.UserData);
rplb.UserData = AppendLists(rplb.UserData, '(all rplb.SelectionItems));

)
/* 	
method rpeb.React! (?new_value)

{
bound inputs;
/* The method attached to the "Add a new value in the list" entry box. */

rplb.SelectionItems +=--= ?new_value;
rpeb.Values = rpeb.DefaultValues;

)
/*
	 *1

method rper.React! (?button)

{
bound inputs;
/* The method attached to the command row of the "required parameter" dialog box. */

select {

case: {?button == "Assign";
ListLength(all rplb.SelectionItems) > 0;}

{if findl ?name.name .= rp.Title;
{ ?name = ConvertToSymbol(?name);
upsrlIbl@.UserData..?name = SortList(all rplb.SelectionItems, Alphabetize);
rp.TakeOffScreen!0;)

else{ fail;} }

*1

C-16

case: {?button =. "Assign";
ListLength(all rplb.SelectionItems) ..--. 0;}

{msgtd.Values = "Please define values for the required parameter";
Msgwin.PutOnScreenAndWait!();
fail;)

case: ?button == "Detach";
{if findl ?name.name =. rp.Title;
{ ?name = ConvertToSymbol(?name);
if IsFacet(upsrllb 1 @, UserData,?name);
{DeleteFacet(upsrl1b1@, UserData,?name);
if ListLength(all uplb.SelectionItems) > 1;
{uplb.SelectionItems -== uplb.Values;)
else {uplb.SelectionItems = Null;))
else (fail;))
else (fail;)

rp.TalceOffScreen!0;}

case: ?button == "Cancel";
rp.TakeOffScreen!0;}

1
/**/

method upsrcrl.React! (?button)

I
bound inputs;

/* The method attached to the command row of the "Required parameters" dialog box. */

select {
case: ?button == "Show";

{upsrpreviewcr.ButtonLabels = "Dismiss";
show(0);}

case: {?button == "Update";
not IsString(slb I .Values);)

(msgtd.Values = "Please select first a ground type";
Msgwin.PutOnScreenAndWait!0;
fail;)

case: {?button == "Update";
not IsString(upsrOlb.Values);}

(msgtd.Values = "Please select first a parameter to implement/update";
Msgwin.PutOnScreenAndWaitl0;
fail;)

case: {?button == "Update";
IsString(upsrOlb.Values);
find ?par.name == upsrOlb.Values;
ListLength(all subclassof ?par) > 0;1

linsgtd.Values = "Only parameters (not parameter categories)
can be implemented/updated";

.Msgwin.PutOnScreenAndWait!0;
fail;)

case: {?button == "Update";
IsString(sIbl.Values);
IsString(upsrOlb.Values);}

{ ?ob = ConvertToSymbol(slbl.Values);
if find ?sl.name =-- upsrOlb.Values;
{?s1= ConvertToSymbol(?s1);)
else {?s1 = u;

C-17

fail;}

if or Ifindl upsrllbl.UserData..?fac == ?;
(IsSlot(?ob, ?s1);
IsList(?ob.?sl..'"Required parameters");
ListLength(?ob.?sl..'"Required parameters") > 0;} }

{ upsrpreviewcr.ButtonLabels = "Reset";
upsrpreviewcr.ButtonLabels +== "Continue";

if IsSlot(?ob, ?s1);
{for ?f inlist ?ob.?sl..'"Required parameters";
do (upsrlIbl.UserData..?f = ?ob.?sl..?f;1}

else {;}
show(0);

if upsrlIbl.UserData == 1;
{ upsr 1 lb 1.UserData = Null;
fail;}

else (upsrllb LUserData = Null;}

if IsSlot(?ob, ?s1);

{;}
else (MakeSlot(Ground@, ?s1);

C:{PrkSetSlotInheritance(Ground@, ?sl, PrkSVNoInheritance); }
C:(PrkMalceFacet(Ground@, ?sl, —Required parameters",

PrkMalceRawFacetData(PrIcNull, PrIcDefault, PrkSVNoIrtheritance));}}

if IsList(?ob.?sl..'"Required parameters");
(for (?x inlist SlotFacets(upsrllbl, UserData);

?x != NoBPFacetNames;}
do (if ListLength(FindListElmt(?ob.?sl.. —Required parameters", ?x)) >0;

{;}
else (?ob.?sl..'"Required parameters" = AppendLists(?ob.?sl..'"Required parameters",

sM));111
else { ?list = '0;

for {?x inlist SlotFacets(upsrlIbl, UserData);
?x != NoBPFacetNames;}

do {?list= AppendLists(?list, '(?x));}
?ob.?sl..'"Required parameters" = ?list;)

for (?x inlist SlotFacets(upsrllbl, UserData);
?x != NoBPFacetNarnes;}

do (if IsFacet(Ground@, ?sl, ?x);

{;}
else (C:(PrkMakeFacet(Ground@, ?sl, ?x,

PrkMakeRawFacetData(PrIcNull, PrkDefault, PrkSVNoInheritance));} }
Ground.?sl..?x = Null;
?ob.?sl..?x = upsrllbl.UserData..?x;}

find! ?param.name == upsrOlb.Values;
if (IsFacet(?param, format, units);

?param.format..units != ";}
(updatewin.Title = AppendStrings(ConvertToString(?param),

" (in ", ?param.fonnat..units, ")");}
else {updatewin.Title = ConvertToString(?param);}
sdef(?ob, ?s1);
updatewincr.UserData = ?ob;
updatewintd.Values = ?ob;

C-18

}

updatewin.PutOnScreenAndWait!();
upsrlIbl.UserData..'"Required parameters" = ?ob.?sl..'"Required parameters";
testup2(?ob, ?s1);
test3a();
SaveApp(ground_rep);}

else {if IsSlot(?ob, ?s1);
{;}
else {MalceSlot(Ground@, ?s1);

C:{PrkSetSlotInheritance(Ground@, ?sl, PrkSVNoInheritance);}
C:{PrkMakeFacet(Ground@, ?sl, —Required parameters",

PrkMalceRawFacetData(PrkNull, PrIcDefault,PrkSVNoInheritance));} 1

findl ?param.name == upsrOlb.Values;
if {IsFacet(?param, format, units);

?param.format..units != ";}
{updatewin.Title = AppendStrings(ConvertToString(?param),

" (in ", ?param.format..units, ")");}
else {updatewin.Title = ConvertToString(?param);}
sdef(?ob, ?s1);
updatewintd.Values = ?ob;
updatewincr.UserData = ?ob;
updatewin.PutOnScreenAndWait!();
test3a();
SaveApp(ground_rep);) }

case: ?button == "Cancel";
upsrl.TalceOffScreen!();

case: ?button == "HELP";

{;}
}

}
/* 	 *1

function show (?v)
{

bound inputs;
/* This function makes the appropriate settings for the

"Preview" dialog box and outs it on screen. */

uplb.SelectionItems = Null;
for { ?fac inlist SlotFacets(upsrllbl, UserData);

?fac != NoBPFacetNames;}
do {?f= ?fac@.name;

uplb.SelectionItems +== ?f;}
upsrpreview@.PutOnScreenAndWaid();

*1

method uplb.React! (?new_value, ?old_value)

{
bound inputs;
/* The method attached to the list box of the

"Preview" dialog box. */

uplb(?new_value, ?old_value);

C-19

method upsrpreviewcr.React! (?button)

I
bound inputs;
/* The method attached to the command row of the "Preview" dialog box. */

select {

case: ?button == "Dismiss";
upsr 11b1.UserData = 0;

case: ?button == "Continue";
upsr I lb 1.UserData = 0;

otherwise: upsrlIbl.UserData = 1;
}
upsrpreviewcr.ButtonLabels = "Dismiss";
upsrpreview@.TalceOffScreen!O;

I
/*
	 *1

method updatewincr.React! (?button)

{
bound inputs;

/* The method attached to the command row of the "Update window" dialog box. */

select {

case: {?button == "OK";
or{IsNumber(updatewinebl.Values);

updatewineb I .Values == u;}
or {IsNumber(updatewineb2.Values);

updatewineb2.Values == u;)
or{IsNumber(updatewineb3.Values);

updatewineb3.Values == u;} }
{select {

case: {IsNumber(updatewinebl.Values);
IsNumber(updatewineb2.Values);
updatewinebl.Values > updatewineb2.Values;}

{msgtd.Values = "The specified minimum value is greater than the maximum";
Msgwin.PutOnScreenAndWait!0;}

case: {IsNumber(updatewineb1.Values);
IsNumber(updatewineb3.Values);
updatewinebl.Values > updatewineb3.Values;}

{msgtd.Values = "The specified minimum value is greater than the mean";
Msgwin.PutOnScreenAndWait!0;)

case: {IsNumber(updatewineb2.Values);
IsNumber(updatewineb3.Values);
updatewineb3.Values > updatewineb2.Values;}

. {msgtd.Values = "The specified mean value is greater than the maximum";
Msgwin.PutOnScreenAndWait!();}

otherwise: {?ob = updatewincr.UserData;
updatewincr.UserData = Null;
if find ?sl.name == upsrOlb.Values;
{?s1 = ConvertToSymbol(?s1);)
else {?s1 = u;

fail;)
?ob.?sl = '(updatewinebl.Values, updatewineb3.Values, updatewineb2.Values);

C-20

updatewin.TakeOffScreen!();}} }

case: ?button == "Cancel";
updatewin.TalceOffScreen!();

otherwise: linsgtd.Values =
AppendStrings("the min, max and mean values of the implemented parameter\n",

"should be numbers or the symbol u (u for unknown)");
Msgwin.PutOnScreen!();}

*1

function testup2 (?ini_ob, ?sl)
{

bound inputs;
1* The function that creates the object hierarchy for the representation of "typical" values. *1

?parents_list = s(?ini_ob);
for {find ?ob = subclassof ?ini_ob;

ObjectModule(?ob) == est@;}
do ?parents_list = AppendLists(?parents_list, '(?ob));

for {?x inlist ?parents_list;
IsList(?x.?sl..'"Required parameters");
ListLength(?x.?sl..'"Required parameters") > 0;)

do {?fac = ListFirst(?x.?sl..'"Required parameters");
?rp = ListRest(?x.?sl..'"Required parameters");

for ?y inlist ?ini_ob.?sl..?fac;
do {select {

case: ?y == "unknown";
?x.?sl..'"Required parameters" = ?rp;

case: ?y != "unknown";
{?name = ConvertToSymbol(AppendStrings(?y, " ", ConvertToString(?x)));
?sublist = '0;
for ?sub = find subclassof ?ini_ob;
do Vsublist = AppendLists(?sublist, s(ConvertToSymbol(?sub)));}
if ListLength(FindListElmt(?sublist, ?name)) > 0;

{ ,}
else {MalceClass(?name, est@, '(?x), '0);}
?name.?sl..'"Required parameters" = ?rp;
for {?fa inlist SlotFacets(?name, ?s1);

?fa != "Required parameters";}
do {?name.?sl..?fa = ";}

1* Update Facets. *1

?narn = AppendStrings(ConvertToString(?ini_ob), "\n\n");
if {findl ?parent = direct superclassof ?name;

ObjectModule(?parent) == est@; }
{for {?z inlist SlotFacets(?parent, ?s1);

?z != "Required parameters";}
do {?name.?sl..?z = ?parent.?sl..?z;

if { IsFacet(u psrl lb 1, UserData, ?z);
?z != NoBPFacetNames;
find ?parent.?sl..?z == ?;

C-21

1
/* *1

?parent.?sl..?z !=
(?str = Substring(?z@.name, 0, FindSubstring(?z@.name, ", "));
?nam = AppendStrings(?nam, ?str, ": ", ?parent.?sl..?z, "\n");}

else {;} } }
else {;)
?name.?sl..?fac = ?y;
?str = Substring(?fac@.name, 0, FindSubstring(?fac@.name, ", "));
?nam = AppendStrings(?nam, ?str, ": ", ?)1);

sdef(?name, ?s1);
updatewincr.UserData = ?name@;

wincall(?nam); }
}

}
if ?x.?sl..'"Required parameters" == ?ip;
1;}
else {?x.?sl.."Required parameters" = '0;)

}
testup3 (?ini_ob, ?s1);

}
/* 	 *1

function testup3 (?ini_ob, ?s1)
{

bound inputs;
/* This function checks if the testup2 function should be invoked again or not. */

?pl = AppendLists((?ini_ob), all subclassof ?ini_ob);
?con = 0;
for {?x inlist ?pl;

or I ?x == ?ini_ob;
ObjectModule(?x) == est @;}

IsList(?x.7s1..'"Required parameters");)
do { if ListLength(?x.?sl.. s "Required parameters") > 0;

(?con = ?con +1;)
else { ?con = ?con + 0;))

if ?con > 0;
{ testup2 (?ini_ob, ?s1); }
else(?ini_ob.?sl..'"Required parameters" = upsrllb 1.UserData..'"Required parameters";

updatewintd.Values = Null;
DeleteFacet(upsrlIbl, UserData, —Required parameters");)

function wincall (?name)
{

bound inputs;
/* This function calls the "Update window" dialog box. */

upclatewintd.Values = ?name;
updatewin.PutOnScreenAndWait!();

}
/* 	
function test3a 0
(

bound inputs;
I* This function deletes the estimation objects that do not contain any "typical" values. */

for (?x inlist ModuleClasses(est@);)

C-22

do {if {ListLength(all subclassof ?x) < 1;
not {findl ?x.?s1 == ?;} }
{DeleteObject(?x);}
else {;}}

}
/* -- */
function sdef (?ob, ?s1)
(

bound inputs;
/* This function is used for displaying already implemented

"typical" values in the "Update window" dialog box. */

if {IsList(?ob.?s1);}
{ updatewinebl.DefaultValues = Li5tFirst(?ob.?s1);
updatewineb2.DefaultValues = ListNth(?ob.?sl, 2);
updatewineb3.DefaultValues = ListNth(?ob.?sl, 1);}

else { updatewinebl.DefaultValues = Null;
updatewineb2.DefaultValues = Null;
updatewineb3.DefaultValues = Null;}

}

TESTCOR.ptk

1* This file contains the functions and methods for checking the variables of a correlation. *1

#include <prkilib.pth>
#include <prk/math.pth>
/**/

method Coffelations.Data_Check! 0
{

bound inputs;
1* The method attached to the Data_Check! slot in every correlation object. *1

?error_string =
?warning_string =
?sellerror = Null;
?sellerror..wamings = Null;
?var = ?self.Parameter..parameter;
?self.?var = Null;
for find ?self.?slIPAP_description == ?;
do {?self.?slIP = Null;)
nv_check(?self, BV_description);

if find ?sellerror == ?;
(?error_list = all ?selferror;
for ?xl inlist ?error_list;
do {?error_string = AppendStrings(?error_string, "\n", ?xl);}
errortd.Values = ?effor_string;
Errorwin.PutOnScreen!0;
fail;)

else (;)

nv_checkl(?self, BV_description);
nv_check2(?self, BV_description);

select (

case: find ?self.error == ?;
{?error_list = all ?selferror;
for ?xl inlist ?error_list;
do {?error_string = AppendStrings(?error_string, "VI", ?xl);}
errortd.Values = ?error_string;
Efforwin.Put0nScreen!0;
fail;)

case: find ?self.error..warnings == ?;
{?warning_list = all ?self.error..warnings;
for ?xl inlist ?warning_list;
do {?warning_string = AppendStrings(?warning_string, "\n", ?x 1);}
warntd.Values = ?warning_string;
warncr.UserData = '(?self, 1);
Warningwin.PutOnScreenAndWaid();}

otherwise: {datacheck2 (?self);) I

*1

C-24

function datacheck2 (?self)
{

bound inputs;
/* The driving data-check function. */

?error_string =
?warning_string =
?self.error = Null;
?self.error..warnings = Null;

if find ?self.?sloo..IV_description == Quantitative;
{?self.?sloo = Null;
calculatef(?self, sParameters_needed);
nv_check(?self, IV_desctiption);
nv_checkl(?self, IV_description);
nv_check2(?self, IV_description);}
else {calculatef(?self, 'Parameter);

fail;}

select {

case: find 7self.error == ?;
{?error_list = all ?self.error;
for ?xl inlist ?efforlist;
do {?error_string = AppendStrings(?error_string, "\n", ?xl);}
errortd.Values = ?error_string;
Errorwin.PutOnScreen!O;
fail;}

case: find 7self.error..warnings == 7;
{?waming_list = all ?self.error..wamings;
for ?xl inlist ?warning_list;
do {?warning_string = AppendStrings(?warning_string, "\n", ?xl);}
warntd.Values = ?warning_string;
warncr.UserData = '(?self, 2);
Warningwin.PutOnScreenAndWait!();}

otherwise: calculatef(?self, 'Parameter);}
}
1**1

function nv_check(?self, ?fac)

{
bound inputs;
/* Perorms format checks for quantitative basic variables. */

?vlist = '0;
for find ?self.?sl..?fac == Quantitative;
do {?y = 0;

if {IsList(?self.?s1);
for ?x inlist ?self.?s1;
do {if IsNumber(?x);

{;}
else{?y = ?y + 1;}}

?y == 0;}
{;}

else {?self.error +== AppendStrings("The value(s) of ", ?self.?sl..variable,
"should be in parentheses 0",
"\n separated by commas ,.");} }

C-25

}

/**/

function nv_checkl(?self, ?fac)

{
bound inputs;
/* Checks quantitative variables' values are in range. */

?vlist = '0;
for find ?self.?sl..?fac == Quantitative;
do { ?max = ?self.?sl..max_value;

?min = ?self.?sl..min_value;

select {

case: {IsNumber(?self.?sl..max_value);
IsNumber(?self.?sl..min_value);}

{for ?x inlist ?self.?s1;
do {if {?x <= ?max;

?x >= ?min;}
{;}

else {?self.error..warnings +==
AppendStrings("The value ", ConvertToString(?x), " of the ",

ConvertToString(?sell?sl..variable)," is not between ",
ConvertToString(?min), "and ", ConvertToString(?max));}} }

case: {IsNumber(?self. ?sl..max_value);
not {IsNumber(?self.?sl..min_value);} }

{?vlist = 7self.?s1;
for ?x inlist ?vlist;
do {if ?x <= ?max;

{;}
else {?self.error..warnings +== AppendStrings("The value ", ConvertToString(?x),

"of the ", ConvertToString(?self.?sl..variable)," is greater than ", ConvertToString(?max));}}}
case: {not {IsNumber(?self.?sl..max_value);}

IsNumber(?self. ?sl..min_value);}
{?vlist = ?self.?s1;

for ?x inlist ?vlist;
do {if ?x >. ?min;

{;}
else {?self.error..warnings +== AppendStrings("The value ", ConvertToString(?x),
" of the ", ConvertToString(?self.?sl..variable)," is less than ", ConvertToString(?min));}} }

otherwise:{;}} 1
}
1**1

function nv_check2(?self, ?fac)

{
bound inputs;
/* Checks the number of values for each variable. */

?input_list = '0;
if ?fac == BV_description;
{for find ?self.?sl..?fac == Quantitative;
do {collect ListLength(?self.?s1) into ?input_list;}
for ?i from 0 to ListLength(?input_list)-1;
do {if ListNth(?input_list, ?i) != ListFirst(?input_list);

{?self.error +== "The number of values of each Quantitative\nBasic Variable is not the
same%)

C-26

I

else {;}
else {for find or {?self.?sl..?fac == Quantitative;

?self.?sl..BV_description	 Quantitative;}
do {collect ListLength(?self.?s1) into ?input_list;}
for ?i from 0 to ListLength(?input_list)-1;
do {if ListNth(?input_list, ?i) != ListFirst(?input_list);

{?self.error +== "The number of values of each Quantitative\nVariable is not the
same";}

else {;}

CORRSEARCH.ptk

/* This file contains the functions and methods for searching the correlation object base. */

#include <prk/math.pth>
#include <prk/lib.pth>
/***/

function sstart()

bound inputs;
/* Puts the "correlation search" dialog box on screen. */

for {?x inlist SlotFacets(corsIbl, UserData);
?x != NoBPFacetNames;}

do {corslbl.UserData..?x = Null;}
cors.PutOnScreen!();

method corslbl.React! (?new_value, ?old_value)

bound inputs;
/* The method attached to the list box of the "correlations search" dialog box. */

select {

case: ?new_value == "the parameter(s) to estimate";
{corsplbl.SelectionItems = Null;
?list = '0;
corsplbl.DefaultValues = Null;
for find ?x.Parameter 	 ?;
do {?list = AppendLists(?list, s(?x.Parameter));}
setlbd(?list, corsplbl@, par);
corsp.PutOnScreenAndWait!();}

case: ?new_value = "the variable(s) of the correlation/correction";
{setcorv(Quantitative, corsvlbl@);
setcorv(Qualitative, corsvlb2@);
corsv.PutOnScreenAndWaid();}

case: ?new_value == "the applicable ground type(s)";
{?list = '0;
corsalbl.DefaultValues = Null;
corsalbl.SelectionItems = Null;
for ?x inlist s (High_Applicability, Medium_Applicability, Low_Applicability);

C-27

do (for find ?y.?x == ?;
do (for ?z must all ?y.?x;

do {?list = AppendLists(?list, '(ConvertToString(ListFirst(?z))));})
setlbd(?list, corsalbl@, app);
corsa.PutOnScreenAndWait!(); }

case: ?new_value == "the reliability of the correlation/correction";
(corsrlb.DefaultValues = Null;
if IsList(corslbl.UserData..rel);
(for ?x inlist corsIbl.UserData..rel;
do {corsrlb.DefaultValues +== ?x;))
else (;)
corsr.PutOnScreenAndWait!(); }

case: ?new_value == "the reference of the correlation/correction";
(corsrelb.SelectionItems = Null;
?list = '0;
corsrelb.DefaultValues = Null;
for find ?x.wintitle..author 	 ?;
do { ?list = AppendLists(?list, -(?x.wintitle..author)); }
setlbd(?list, corsrelb@, ref);
corsre.PutOnScreenAndWait!0;}

otherwise: 11;))

/***/

function setlbd(?list, ?lb, ?fac)

bound inputs;
/* This function retrieves all the possible values for each search

criterion (except variables) and places them into a list box. */

?list = SortList(?list, Alphabetize);
for ?i from 0 to ListLength(?list)-1;
do {?lb.SelectionItems +== ListNth(?list, ListLength(?list)-1-?i);}
if IsList(corsIbLUserData..?fac);
(for ?x inlist corsIbl.UserData..?fac;
do (?lb.DefaultValues +== ?x;)}
else (;)

function setcorv(?for, ?lb)

bound inputs;
/* This function retrieves all the possible values

for variables and places them into a list box. */

?lb.SelectionItems = Null;
?list '0;
?lb.DefaultValues = Null;
for ?x infist all subclassof Correlations@;
do (for find ?x.?sl..BV_description == ?for;

do (?list = AppendLists(?list, '(?x.?sl..variable));}
?list = SortList(?fist, Alphabetize);
for ?i from 0 to ListLength(?list)-1;
do {?lb.SelectionItems +== ListNth(?list, ListLength(?list)-1-71);)
if IsList(corslbl.UserData..var);
(for ?x inlist corsIbl.UserData..var;

C-28

do {?lb.DefaultValues +:.-.., 7x;} }
else {?lb.DefaultValues = Null;}

}

method corsper.React! (?button)

{
bound inputs;
/* The method attached to the command row of the "parameters display" dialog box. */

critre(?button, corsplbl@, corsp@, par);
}
/***/

method corsvcr.React! (?button)

{
bound inputs;
/* The method attached to the command row of the "variables display" dialog box. */

select {

case: ?button == "Update";
{?list = AppendLists(all corsvlbl.Values, all corsvlb2.Values);
if ListLength(?list) > 0;
{corslb 1 .UserData..var = ?list;}
else { ;)
corsv.TakeOffScreen!();)

case: ?button == "Cancel";
{corsv.TalceOffScreen!O;) I

}
/***/

method corsacr.React! (?button)

{
bound inputs;
/* The method attached to the command row of the

"applicable ground types display" dialog box. */

critre(?button, corsalbl @, corsa@, app);

}
/***/

method corsrcr.React! (?button)
{

bound inputs;

/* The method attached to the command row of the "reliability display" dialog box. */

critre(?button, corsrlb@, corsr@, rel);

}

method corsrecr.React! (?button)

{
bound inputs;
/* The method attached to the command row of the "references display" dialog box. */

critre(?button, corsrelb@, corsre@, ref);

)
/***/

function critre(?button, ?lb, ?win, ?fac)
{

C-29

bound inputs;
select {

case: ?button == "Update";
{?list = all ?lb.Values;
if ListLength(?list) > 0;

corslb 1 .UserData..?fac = ?list;}
else {corslbl.UserData..?fac = Null;}
?win.TalceOffScreen!O;}

case: ?button == "Cancel";
{?win.TakeOffScreen!O;} }

method corspb.React! (?button)

bound inputs;
/* The method attached to the "Search", "Preview search settings"

and "Clear all settings" push buttons. */

select {

case: ?button == "Search";

{msgtd.Values = ";

?IP = s();
if IsList(corsIbl.UserData..par);
{for ?x inlist corsIbl.UserData..par;
do {find ?ob.Parameter == ?x;

?lp = AppendLists(?1p, s(?ob));}
?lp = obchk(?1p);
msgtd.Values = AppendStrings(msgtd.Values, "Parameters search results: ");
inseres (?1p);}

else {?lp = c;}

?Iv = '();
if IsList(corslbl.UserData..var);
{for ?x inlist corsIbl.UserData..var;
do {for ?y inlist all subclassof Correlations@;

do {find ?y.?sl..variable == ?x;
?Iv = AppendLists(?1v, '(?y));} }

?Iv obchk(?Iv);
msgtd.Values = AppendStrings(msgtd.Values, "Variables search results: ");
inseres (?1v);}

else {?lv = c;}

?la = ' 0;
if IsList(corsIbl.UserData..app);
{for ?x inlist corsIbl.UserData..app;
do {for ?sl inlist s (High_Applicability, Medium_Applicability,

Low_Applicability);
do {for ?y inlist all subclassof Correlations@;

do {for ?z inlist all ?y.?s1;
do {?gt = ListFirst(?z);

if {or {?gt == ConvertToSymbol(?x)@;
find subclassof ?gt =-- ConvertToSymbol(?x)@;}

{?la = AppendLists(?la, '(?y));} }}1}

C-30

?la = obchk(?1a);
msgtd.Values = AppendStrings(msgtd.Values, "Applicability search results: ");
inseres (?1a);}

else {?la = c; }

?lf = s();
if IsList(corslb I .UserData..rel);
(for ?x inlist corslbl.UserData..rel;
do (find ?ob.Reliability == ?x;

?lr = AppendLists(?Ir, s(?ob));}
?lr = obchk(?1r);
msgtd.Values = AppendStrings(msgtd.Values, "Reliability search results: ");
inseres (?Ir);}
else {?lr = c; }

?lt = '0;
if IsList(corsIbl.UserData..ref);
{for ?x inlist corslbl.UserData..ref;
do (find ?ob.wintitle..author == ?x;

?It = AppendLists(?It, s(?ob));}
?It = obchk(?10;
insgtd.Values = AppendStrings(rasgtd.Values, "References search results: ");
inseres (?1t);}
else Pit = c;)

seresult(?Ip, ?Iv, ?la, ?lr, 71);
Msgwin.PutOnScreenAndWait!0;)

case: ?button == "Preview search settings";
(msgtd.Values =
for {?x inlist SlotFacets(corslbl, UserData);

?x != NoBPFacetNames;}
do (select (

case: ?x == par;
?str = AppendStrings(nisgtd.Values, "Parameter(s):\n");

case: ?x == var;
?str = AppendStrings(msgtd.Values, "Variable(s):\n");

case: ?x == app;
?str = AppendStrings(msgtd.Values, "Ground type(s):\n");

case: ?x == rel;
?str :--- AppendStrings(msgtd.Values, "Reliability score(s):\n");

case: ?x == ref;
?str --. AppendStrings(msgtd.Values, "Reference(s): \n"); }

precri(?str, ?x);}

Msgwin.PutOnScreenAndWaid();}

case: ?button == "Clear all settings";
(for {?x must SlotFacets(corsIbl, UserData);

?x != NoBPFacetNames;)
do {corslbl.UserData..?x = Null;} })

I

function obchk (71)
{

bound inputs;
/* The method attached to the "Correlations only", "Corrections only" and "Both" radio buttons. */

C-31

if corsrb.Values ---= "Both";
•;}
else {if corsrb. Values == "Correlations only";

{for ?x inlist ?I;
do {if ObjectModule(?x) == correction@;

{if ListFirst(?1) == ?x;
{?1 = ListRest(?1);}
else { ?I = DeleteListElmt(?x, ?1);} } } }

else {for ?x must 71;
do {if ObjectModule(?x) == correlation @;

{if ListFirst(?1) == ?x;
{?1 = ListRest(?1);}

else {?1 = DeleteListElnit(?x, V); } } } } }
return 71;

}
/***/

function inseres (?1)
{

bound inputs;
/* This function counts the number of hits for indidual criteria. */

corspb.UserData = Null;
for ?x must ?1;
do {corspb.UserData +== ?x;}
71= all corspb.UserData;
corspb.UserData = Null;
?n = ListLength(71);
if ?n >0;
{msgtd.Values = AppendStrings(msgtd.Values, ConvertToString(?n),

" hit(s)\n");}
else {msgtd.Values = AppendStrings(msgtd.Values, "no hits\n");}

}

function seresult (?Ip, ?Iv, ?la, ?lr, ?It)

{
bound inputs;
/* This function counts the number of hits for the combination of all criteria. */

corspb.UserData = Null;
?resl = '0;
?sr = c;
?ol = s0;
for ?x inlist '(?1p, ?Iv, ?la, ?lr, ?It);
do {select {

case: {IsList(?x);
ListLength(?x) > 0;}

{?ol = AppendLists(?ol, '(?x));}

case: {IsList(?x);
ListLength(?x) == 0;}

?sr = "no bits";} }

if IsString(?sr);

{msgtd.Values = AppendStrings(msgtd.Values, "Overall search results: ", ?sr);
fail;)

C-32

if ListLength(?ol) == 0;
{?n = ConvertToString(ListLength(all subclassof Correlations @));
msgtd.Values = AppendStrings(msgtd.Values, "Overall search results: ",

?n, " hits");
corspb.UserData = all subclassof Correlations @i; }

else { for ?x inlist ListFirst(?ol);
do {?count = 0;

for ?y inlist ListRest(701);
do {if ListLength(FindListElmt(?y, ?x)) > 0;

{7count = ?count + 1;))
if ?count == ListLength(ListRest(?ol));
{?res1 = AppendLists(?resl, '(?x));} }

?n = ConvertToString(ListLength(?res1));
msgtd.Values = AppendStrings(msgtd.Values, " knOverall search results: ",

?n, " hit(s)");
corspb.UserData = ?res1;}

if ListLength(corspb.UserData) > 0;
{select {

case: mmenlb.Values == "Estimate ground parameters from correlations/corrections";
{msgtd.Values = AppendStrings(msgtd.Values, "\n\nTo use the identified set of correlations

and/or correctionsAnpress Correlate\n");
msgcr.ButtonLabels +== "Correlate"; }

case: {mmenlb.Values == "Update implemented correlations/corrections";
ListLength(corspb.UserData) == 1;)

{msgtd.Values = AppendStrings(msgtd.Values, "ViViTo update the identified
correlation/correction,\npress Update");

msgcr.ButtonLabels +== "Update ";}

case: {mmenlb.Values == "Update implemented correlations/corrections";
ListLength(corspb.UserData) > 1;}

{msgtd.Values = AppendStrings(msgtd.Values, "\n\nTo update any of the identified
correlations/coffectionsAnpress Update");

msgcr.ButtonLabels +== "Update"; } } I
}

**/

function precri(?str, ?fac)
{

bound inputs;
/* This function creates the appropriate text for the presentation of the search results. */

if IsList(corsIbl.UserData..?fac);
{for ?x inlist corsIbl.UserData..?fac;
do {?str = AppendStrings(?str, " ", ?x, "\n");} }

else {?str = AppendStrings(?str, " ", "unspecified\n");}
msgtd.Values = ?str;

1

method corscr.React! 0
{

bound inputs;
/* The method attached to the command row of the "correlation search" dialog box. */
cors.TakeOffScreen !0;
mmen.PutOnScreen!0;

}

C-33

CORRUI.ptk

/* This file contains the functions and methods for creating and using correlation dialog boxes. */

#include <prk/math.pth>
#include <prk/lib.pth>
#builtin Format (7x) KonvertToFloat(ConvertToFixnum(10*?x + .5)))/10)
#builtin Format3 (?x) ((ConvertToFloat(ConvertToFixnum(1000*?x + .5)))/1000)
#builtin Format2 (?x) ((ConvertToFloat(ConvertToFixnum(100*?x + .5)))/100)
#builtin Format0 (?x) (ConvertToFloat(ConvertToFixnum(1*?x + .5)))
/**/

function startcorr()
{

bound inputs;
/* This function puts the "Correlation Display" dialog box on screen. */

?inst = ModuleInstances(correll@);
for ?xl inlist ?inst;
do (DeleteObject(?xl);}
dbcorrlb.SelectionItems = Null;
for ?x inlist all subclassof Correlations@;
do (dbcorrlb.SelectionItems +--= 7x.Parameters_needed;)
dbcorr.PutOnScreen!O;

}
/**/

method dbcorrcr.React! (?button)
{

bound inputs;
/* The method attached to the conunand row of the "Correlation Display" dialog box. *1

select {

case: ?button == "Correlate";
(?posx = 200;
?posy = 150;
for {?x2 inlist all dbcorrlb.Values;

find ?obje.Parameters_needed == ?x2;}
do {if {findl ?ob.UserData == ?obje;

ObjectModule(?ob) == correll @ ; }
{?ob.PositionX = ?posx;
?ob.PositionY = ?posy;
?ob.PutOnScreen!O;}

else {create_db(7obje, ?posx, 7posy);}
?posx = ?posx + 30;
?posy = ?posy + 30;))

case: ?button == "Dismiss";
• { dbcorr.TakeOffScreen !O;

?ob = dbcorr.UserData;
?ob.PutOnScreen !O; }

case: ?button == "Update";
{select (

case: ListLength(all dbcofflb.Values) > 1;

C-34

{msgtd.Values = "Only one correlation can be updated each timeAnPlease deselect all
others, but the one needs\nto br updated.";

Msgwin.PutOnScreenAndWait!0;}

case: ListLength(all dbcorrlb.Values) < 1;
{msgt(1.Values = "Please select first the correlation to update;
Msgwin.PutOnScreenAndWaid();}

otherwise: {find ?ob.Parameters_needed == dbcorrlb.Values;
dbcorr.TalceOffScreen!();
Step2.UserData..con trol = dbcorr@ ;
upcor(?ob); 1 1) }

}
/**/

function create_db(?obje, ?posx, ?posy)
{

bound inputs;
1* This function creates the dialog boxes and their components for each selected correlation. *1

?winname = ?obje.winname;
MakeDialogBox(correll @, ?winname);
?winname.Identifier = ?winname;
?winname.Title = ?obje.wintitle;
?winname.PositionX = ?posx;
?winname.PositionY = ?posy;

for find ?obje.?s1NBV..BV_description . Quantitative;
do {make_eb(?obje, ?s1NBV, ?winname@);}

for find ?obje.?s1VBV_BV_description == Qualitative;
do {?num_of lines = ListLength(?obje.?s1VBV..per_val);

if ?num_of lines > 4;
{?num_of lines = 4;)
else (;)
make_lb(?obje, ?s1VBV, ?num_of lines, ?winname@);}

for find ?obje.?s1NIV..IV_description == Quantitative;
do {?td_name = ?obje.?sINIV..tdname;

MakeDialogBoxControl(TextDisplay, correll@, ?td_name);
?td_nameddentifier = ?obje.?51NIV..ebname;
if ?obje.?s1NIV..units != ";
{?title = AppendStrings(?obje.?s1NIV..variable, " (", ?obje.?s1NIV..units, ")");}
else {?title = ?obje.?s1NIV..variable;}
string_man(?title, ?td_name, Title, 40);
?td_name.DialogBox = ?winname@;
?winname@.UserData +== ?td_name@;
?td_name.UserData = s"";}

for find ?obje.?s1NIP.IP_description == Quantitative;
do {make_td(?obje, ?s1NIP, tdname, ?winname@);

malce_td(?obje, ?s1NIP, tdmin, ?winname@);
make_td(?obje, ?s1NIP, tdmax, ?winname@);
malce_td(?obje, ?s1NIP, tdav, ?winname@);
make_td(?obje, ?s1NIP, tdmam, ?winname@);}

for find ?obje.?s1NIPAP_description == Qualitative;
do {make_td(?obje, ?s1NIP, tdname, ?winname@);}
if ?obje.Parameter..format == Quantitative;

C-35

}
1* *1

}
/* *1

{make_td(?obje, Parameter, tdname, ?winname@);
make_td(?obje, Parameter, tdmin, ?winname@);
make_td(?obje, Parameter, tdmax, ?winname@);
malce_td(?obje, Parameter, tdav, ?winname@);
make_td(?obje, Parameter, tdmam, ?winname@);}

else {make_td(?obje, Parameter, tdname, ?winname@);}

?cr = ?obje.Parameter..cr;
MalceDialogBoxControl(CommandRow, correll@, ?cr);
?cr.Identifier = ?cr;
?cr.ButtonLabels = "Dismiss";
for ?z inlist '("Comments", "Reliability", "Applicability", "Estimate");
do {?cr.ButtonLabels +== ?z;}
?cr.DefaultButton = "Estimate";
?cr.DialogBox = ?winname@;
?cr.React! = '?activate.React!;
?winname@.UserData +== ?cr@;
?cr.UserData =
for ?con inlist all ?winname@.UserData;
do {?winname@.Contents +== ?con;}
?winname.UserData = ?obje;
?winname@.PutOnScreen!O;

function make_eb(?obje, ?sl, ?winnarne)

{
bound inputs;
/* This function creates the entry boxes (used for representing

basic quantitative variables) for each correlation. */

?eb = ?obje.?sl..ebname;
MakeDialogBoxControl(EntryBox, correll @, ?eb);
?ebidentifier = ?eb;
if {IsFacet(?obje, ?sl, BV_description);

?sl@.format..units !=
{?str = AppendStrings(?obje.?sl..variable, " (", ?sl@.format..units, ")");}
else {?str = ?obje.?sl..variable;}
string_man(?str, ?eb, Title, 40);
?eb.DefaultValues = ?obje.?s1;
?eb.DialogBox = ?winname@;
?eb.RetumType = PrkType;
?eb.Width = 30;
?winname@.UserData +== ?eb@;
?eb.UserData = ?s1;

function make_lb(?obje, ?sl, ?num_of lines, ?winname)
{

bound inputs;
/* This function creates the list boxes (used for representing

basic qualitative variables) for each correlation. */

?lb = ?obje.?sl_lbname;
MakeDialogBoxControl(ListBox, coffell@, ?lb);
?lbldentifier = ?lb;
string_man(?obje.?sl..variable, ?lb, Title, 40);
for ?xv inlist ?obje.?sl..per_val;
do {?lb.SelectionItems +== ?xv;}

C-36

?lb.DefaultValues = ?obje.?s1;
?lb.DialogBox = ?winname@;
?lb.MaxNum0fLines = ?num_of lines;
?winname@.UserData +== ?lb@;
?lb.UserData = ?s1;

}
/* 	 */

function malce_td(?obje, ?sl, ?td, ?winname)
{

bound inputs;
/*This function creates the necessary text displays for each correlation. */

select {

case: ?sl == Parameter;
?par = ?obje.Parameter;

otherwise: ?par = ?obje.?sl..parameter;}

select {

case: ?td == tdmin;
?title = "min:	 u.

,
case: ?td == tdmax;

?title = "max:	 ii;

case: ?td == tdav;
?title = "average:";

case: ?td == tdmam;
?title = "Overall min, mean, max:";

otherwise: { ?title = AppendStrings("Ve, ?par);} }

if ?sl == Parameter;
{?td_name == ?obje.Parameter..?td;}
else {?td_name == ?obje.?sl..?td;}
MakeDialogBoxControl(TextDisplay, correll@, ?td_name);
?td_name.Identifier = ?td_name;
string_man(?title, ?td_name, Title, 40);
?td_name.MaxNurnLines = 15;
?td_name.DialogBox = ?winname@;
?winname@.UserData +== ?td_name@;
?td_name.UserData = '"";

}
/* 	
method activate.React!(?button)

{
bound inputs;
/* The method attached to the command row of each correlation dialog box window.

?corr_obj = ?self.DialogBox.UserData;
select{

case: ?button == "Estimate";
{for ?x inlist all ?self.DialogBox.Contents;
do {if IsSlot(?corr_obj, ?x.UserData, 'SV);

{?slo = ?x.UserData;
?corr_obj.?slo = find ?x.Values;}

else {;}

}

1	

?coff_obj.'"Data_Check!"0;

C-37

*1

for find ?corr_obj.?sloo-IV_description 	 Quantitative;
do {?ebnaine = ?corr_obj.?sloo..tdname;

?ebname.Values = ?corr_obj.?sloo;}
for find ?corr_obj.?sloo..IP_desciiption	 Quantitative;
do {par_result(?corr_obj, ?sloo);}
for find ?coff_obj.?sloo-IP_description == Qualitative;
do {?tdname = ?corr_obj.?sloo..tdname;

?tdname.Values = all ?corr_obj.?sloo;}
if ?corr_obj.Parameter..format == Quantitative;
{par_result(?corr_obj, Parameter);}
else (?tdname = ?corr_obj.Parameter..tdname;

?sll = ?corr_obj.Parameter..parameter;
?tdnaine.Values = all ?corr obj.?s11;))

case: ?button == "Dismiss";
?self.DialogBox.TakeOffScreen!0;

case: ?button == "Comments";
{corcomm.Title = "Comments";
com_creation (?corr_obj);}

case: ?button == "Applicability";
(applipre(?self.DialogBox.UserData);
corcomtd.Values = msgtd.Values;
corcomm.Title = "Applicability";
corcomm.PutOnScreen10;}

case: ?button == "Reliability";
(corcomm.Title = "Reliability";
corcomtd.Values = AppendStrings("Reliability score: '', ?corr_obj.Reliability);
if find ?corr_obj.Reliability..r2	 ?;
(corcomtd.Values = AppendStrings(corcomtd.Values, "\n\n", "Coefficient of fit ",

ConvertToString(?corr_obj.Reliability..r2), "%");}
else{;}
if find ?corr_obj.Reliability..sd == ?;
(corcomtd.Values = AppendStrings(corcomtd.Values, "\n\n", "Standard deviation:

ConvertToString(?corr_obj.Reliability..sd));}
else{;}
if find ?corr_obj.Reliability..n =-- ?;
(corcomtd.Values = AppendStrings(corcomtd.Values, "\n\n", "Number of data points: ",

ConvertToString(?corr_obj.Reliability..n));}
else{;}
corcomm.PutOnScreen!();} }

/***/

function par_result(?corr_obj, ?sloo)

bound inputs;
/* This function retrieves the correlation results from the parameters

slots and places them inside the correlation dialog box window. */

?tdmin = ?corr_obj.?sloo..tdmin;
?tdmax = ?corr_obj.?sloo..tdmax;
?tdav = ?corr_obj.?sloo..tdav;
?tdmam = ?corr_obj.?sloo..tdmam;
Admin@.Values = Null;
?tdmax@.Values = Null;
?tdav @ .Values = Null;

C-38

if ?sloo == Parameter;
(?slo = ?corr_obj.Parameter..parameter;)
else(?slo = ?sloo;)
?val_list = all ?corr_obj.?slo;

for ?i from 0 to ListLength(?val_list)-1;
do {?tdmin@.Values +== ListFirst(ListNth(?val_list, ListLength(?val_list)-1-?i));

?tdmax@.Values +== ListNth(ListNth(?val_list, ListL.ength(?val_list)-1-?i), 2);
?tdav@.Values +== ListNth(ListNth(?vallist, ListLength(?val_list)-1-?0, 1);)

find ?av = sum ?tdav.Values;
find ?num = count ?tdav.Values;

if ListLength(all ?tdmin@Nalues) >0;
{?tdmin@.Values = all ?tdmin@.Values;}
else {?tdmin@.Values = Null;)

if ListLength(all ?tdmax@.Values) > 0;
(?tdmax@.Values = all ?tdmax@.Values;)
else (?tdmax@.Values = Null;

if ListLength(all ?tdav@.Values) > 0;
(?tdav@.Values = all ?tdav@.Values;)
else (?tdav@.Values = Null;)

if ListLength(all ?tdmin@.Values) > 0;
(?min_list = Sort(?tdmin.Values, ">");
?max_list = Sort(?tdmax.Values, "<");

select {

case: ?corr_obj.?sloo..num_of dec == 0;
{?av = ?av/?num;
?av = Format0(?av);

case: ?corr_obj.?sloo..num_of dec == 1;
{?av = ?av/?num;
?av = Format(?av);)

case: ?corr_obj.?sloo..num_of dec == 2;
{?av = ?av/?num;
?av = Format2(?av);}

case: ?corr_obj.?sloo..num_of dec == 3;
{?av = ?av/?num;
?av = Format3(?av);}

otherwise: ?av ?av;

?tdmam.Values = s (ListFirst(?min_list), ?av, ListFirst(?max_list));}
else (?tdmam.Values = Null;)

/*
function com_creation (?obje)

bound inputs;
/* This function creates the comments in the "comments" dialog box. */

C-39

?string =
?string 1 =

for find or {?obje.?sl..BV_description ==. Quantitative;
?obje.?sl..IV_description ..--= Quantitative;)

do {
select {

case: {IsNumber(?obje.?sl..max_value);
IsNumber(?obje.?sl..min_value);
IsString(?obje.?sl..units);}

{?string = AppendStrings(?obje.?sl..variable, " should be between ",
ConvertToString(?obje.?sl..min_value), " and ",
ConvertToString(?obje.?sl..max_value), " ",
?obje.?sl..units, ". ");}

case: {IsNumber(?obje.?sl..max_value);
IsNumber(?obje.?sl..tnin_value);
not IsString(?obje.?sl..units);}

{?string = AppendStrings(?obje.?sl..variable, " should be between ",
ConvertToString(?obje.?sl..min_value), " and ",
ConvertToString(?obje.?sl..max_value), ". ");}

case: {IsNumber(?obje.?sl..max_value);
not IsNumber(?obje.?sl..min_value);
not IsString(?obje.?sl..units);}

{?string = AppendStrings(?obje.?sl..variable, " should be less than ",
ConvertToString(?obje.?sl..max_value), ". ");}

case: {not IsNumber(?obje.?sl..max_value);
not IsNumber(?obje.?sl..min_value);
not IsString(?obje.?sl..units);}

{?string =";)

case: {not IsNumber(?obje.?sl..max_value);
IsNumber(?obje.?sl..min_value);
not IsString(?obje.?sl..units);}

{?string = AppendStrings(?obje.?sl..variable, " should be more than ",
ConvertToString(?obje.?sl..min_value), ". ");}

case: {IsNumber(?obje.?sl..max_value);
not IsNumber(?obje.?sl..min_value);
IsString(?obje.?sl..units);}

{?string = AppendStrings(?obje.?sl..variable, " should be less than ",
ConvertToString(?obje.?sl..max_value), " ",
?obje.?sl..units, ". ");}

case: {not IsNumber(?obje.?sl..max_value);
IsNumber(?obje.?sl..min_value);
IsString(?obje.?sl..units);)

{?string = AppendStrings(?obje.?sl..variable, " should be more than ",
ConvertToString(?obje.?sl..min_value), " ",
?obje.?sl_units, ". ");)

case: {not IsNumber(?obje.?sl_max_value);
not IsNumber(?obje.?sl..min_value);
IsString(?obje.?sl..units);}

C-40

(?string = AppendStrings(?obje.?sl..variable, "is expressed in ",
?obje.?sl..units, ". ");)

}
string_man(?string, step3td, Values, 50);
?stringl = AppendStrings(?stringl, step3td.Values, "\n");

}
if ?stringl != ";
{ ?string 1 = AppendStrings(?string 1, "\n'); }
else {;}

if ListLength(all ?obje.Comments) > 0;
{for ?x inlist all ?obje.Comments;
do {?stringl = AppendStrings(?stringl, ?x);} }
else {if ?string 1 != ";

{?stringl = Substring(?string1, 0, StringLength(?string1)-2);}
else (;) }

corcomtd.Values = ?stringl;
corconun.PutOnScreen!();

1

UPSTEPl.ptk

/* This file contains the functions and methods relevant to the first stage of implementing
correlations. */

#include <prkhriath.pth>
#include <prk/lib.pth>
/**/

function upcor(?name)

{
bound inputs;
/* This function initiates the updating procedure for an already existing correlation. */

PrintLine(?name);
Step2.UserData..name = ConvertToSymbol(?name);
RenarneObject(ConvertToSyrabol(?name), correl_temp);
PrintLine(?name);
Step2aueb.DefaultValues = correl_temp.wintitle..author;
Step2.PutOnScreen!0;

}
/**/

function startup()
{

bound inputs;
/* This function initiates the procedure for implementing a new correlation. */

startup 1 ();
Step2.UserData..control = S tep 1 @ ;
Step1.PutOnScreen!0;

}
/**/

function startupl 0
{

bound inputs;

C-41

/* The second stage in the initiation of the procedure for implementing a new correlation. */

msgcr.ButtonLabels = "Dismiss";
Step_l_lb_LUserData..other = Null;
Step2.UserData = 0;
Step21b1.SelectionItems = Null;
Step21b1.UserData = Null;
Step21b2.SelectionItems = Null;
Step21b2.UserDaLa = Null;
lbslo(Step21b1@, BV_description, Quantitative, variable);
lbslo(Step21b2@, BV_description, Qualitative, variable);
lbslo(nviplb@, IP_description, Quantitative, parameter);
lbslo(nviplb@, IP_description, Qualitative, parameter);
s21b12var (Step21b1@, Quantitative, qtim, qtot);
s21b12var (Step21b2@, Qualitative, qlim, qlot);
lbst 1 0;

for (find ?ob = subclassof Parameters@;
ListLength(all superclassof ?ob) > 1;)

do (if not (ListLength(FindListElmt(all Step_l_lb_LSelectionItems,
?ob.name)) > 0;)

(Step_l_lb_LUserData..other +== ?ob.name;)
else (;))

Step_l_lb_l.UserData..other = SortList(all Step_l_lb_l.UserData..other, Alphabetize);

function lbslo (?lb, ?type, ?format, ?vp)

bound inputs;
/* Sets the lists displaying the implemented variables

and parameters (quantitative and qualitative). */

?list ='0;
for find ?obje.winname == ?;
do {for find ?obje.?slo..?type == ?format;

do {?list = AppendLists(?list, '(?obje.?slo..?vp));))
?list = SortList(?list, Alphabetize);

select (

case: (or {?lb == Step21b1@;
?lb == Step21b2@ ; }

{for ?i from 0 to ListLength(?list)-1;
do { ?lb.SelectionItems 	 ListNth(?list, ListLength(?list)-1-?i);11

otherwise: {if ?format == Quantitative;
(?lb.UserData..qtim = ?list;)

else {?lb.UserData..q1im = ?list;)))

/**/

function s21b12var (?Ibbv, ?for, ?facim, ?facot)

bound inputs;
/* Sets the lists displaying the remaining variables (quantitative and qualitative). */

?list ='();
for {find ?ob = subclassof Parameters@;

ListLength(all superclassof ?ob) > 1;

C-42

?ob.format == ?for;}
do {if not (ListLength(FindListElmt(all ?Ibbv.SelectionItems,

?ob.name)) > 0;}
{?lbbv.UserData +.= ?ob.name;}
else {;}

if not {ListLength(FindListElmt(nviplb.UserData..?facim,
?ob.name)) > 0;}

{ ?list = AppendLists(?list, s(?ob.name));}
else {; } }

?Ibbv.UserData = SortList(all ?Ibbv.UserData, Alphabetize);;
nviplb.UserData..?facot = ?list;

}

function lbstl 0
{

bound inputs;
/*Sets the lists displaying the implemented and the remaining

basic parameters (quantitative and qualitative). */

?list = '0;
Step_l_lb_l.Selectionitems = Null;
for {find ?ob.Parameter =?;

or { ObjectModule(?ob) = correlation @;
ObjectModule(?ob) == correction @; } }

do {?list = AppendLists(?list, s(?ob.Parameter));}
?I = SortList(?list, Alphabetize);
for ?i from 0 to ListLength(?I)-1;
do (Step_l_lb_l.SelectionItems +== ListNth(?1, ListLength(?1)-1-?i);}

}
/**/

method Step_l_lb_l.React! (?new_value, ?old_value)
{

bound inputs;
/* The method attached to the list box of the "Step 1" dialog box. */

select{

case: (IsString(?new_value);
find1 ?ob.name == ?new_value;
?ob.format ==-- Quantitative;}

{msgtd.Values = AppendStrings(?ob.name,
"\nFormat: ", ConvertToString(?ob.format),
"AnUnits: ", ?ob.format..units,
"AnNumber of decimal points: ",
ConvertToString(?ob.format..num_of dec),".");

msgcr.ButtonLabels = "Cancel";
msgcr.ButtonLabels +== "OK";
Msgwin.PutOnScreenAndWait!0;}

case: {IsString(?new_value);
find! ?ob.name == ?new_value;
?ob.format == Qualitative;)

{msgtd.Values = AppendStrings(?ob.name,
"\nFormat: ", ConvertToString(?ob.format));

msgcr.ButtonLabels = "Cancel";
msgcr.ButtonLabels +== "OK";
Msgwin.PutOnScreenAndWait!();} }

}

C-43

/**/

method Step lrb 1.React! (?moused_item, ?old_item)
{

bound inputs;
/* The method attached to the radio buttons of the "Stepl" dialog box. */

select {

case: ?moused_item = "Show implemented";
lbst 1 0;

case: ?moused_item == "Show other";
(Step_l_lb_l.SelectionItems = Null;
?I = Step_l_lb_l.UserData..other;
for ?i from 0 to ListLength(?1)-1;
do (Step_l_lb_l.SelectionItems +== ListNth(?1, ListLength(?1)-1-?i);}}}

}

method Steplcr.React! (?button)

{
bound inputs;

/* The method attached to the command row of the "Step!" dialog box. */

select {
case: ?button == "OK";

step! OK("OK");

case: ?button == "Help";
{SteplHelp 0;
helptd.Values = Step 1 cr.UserData;
help.PutOnScreen!O;}

otherwise: {Stepl.TakeOffScreen!0;
mmen.PutOnScreen!();}

help.TalceOffScreen!0;}

}

function steplOK (?button)
{

bound inputs;
/* This function peforms the actions associated with the "OK"

button of the command row of the "Step!" dialog box. */

if Step_l_rb_l.Values = "New Correlation";
{?module = correlation @;}
else {?module = correction@;}

if {IsString(Step_l_lb_l.Values);
. find! ?par.name == Step_l_lb_l.Values;}

{if ?par.format == Quantitative;

{?dec = ?parfonnat_num_of dec;
?units = ?par.format..units;
Step2lb 1 .Selection1tems -== ?par.name;

if ListFirst(Step2Ibl.UserData) == ?par.name;
{ Step21b1 .UserData = ListRest(Step21b1.UserData);}
else { Step2Ibl.UserData = DeleteListElmt(?par.name, Step21b1.UserData);)

C-44

if ListFirst(nviplb.UserData..qtim) == ?par.name;
{ nviplb.UserData..qtim = ListRest(nviplb.UserData..qtim);}
else {nviplb.UserData..qtim = DeleteListElmt(?par.name,

nviplb.UserData..qtim);}

if ListFirst(nviplb.UserData..qtot) == ?par.name;
{nviplb.UserData..qtot = ListRest(nviplb.UserData..qtot);}
else {nviplb.UserData..qtot = DeleteListElmt(?par.name,

nviplb.UserData..qtot);}}

else { ?dec = no;
Step21b2.Selectionitems -== ?par.name;

if ListFirst(Step21b2.UserData) == ?par.name;
{Step21b2.UserData = ListRest(Step21b2.UserData);}
else { Step21b2.UserData = DeleteListElmt(?par.name,

Step21b2.UserData);}

if ListFirst(nviplb.UserData..q1im) == ?par.narne;
{nviplb.UserData..q1im = ListRest(nviplb.UserData..q1im);}
else {nviplb.UserData..q1im = DeleteListElmt(?par.name,

nviplb.UserData..q1ium);}

if ListFirst(nviplb.UserData..qlot) == ?par.name;
{nviplb.UserData..qlot = ListRest(nviplb.UserData..qlot);}
else {nviplb.UserData..qlot = DeleteListElmt(?par.name,

nviplb.UserData..qlot);} } }

else {msgtd.Values = "Please, select a Basic Parameter.";
Msgwin.PutOnScreenAndWaid();
fail;}

MakeClass(correl_temp, ?module, Correlations @, '0);
MalceMultiValueSlot(correl_temp, ConvertToSymbol(?par));
correl_temp.Parameter = Step_ l_lb_l .Values;
correl_temp.Parameter..format = ?par.format;
correl_temp.Parameter..parameter. 	 = ConvertToSymbol(?par);

if {?dec != no;)
{correl_temp.Parameter..num_of dec = ?dec;
coffel_temp.Parameter..units = ?units; }

else {; }

Step! .TalceOffS creen !0;
help.TalceOffScreen !0;
Step2aueb.DefaultValues = Null;
Step2aueb.Values = Null;
Step2.UserData..control = Step! @;
Step2.PutOnScreen!0;

)

method Steplpb1.React! (?button)
{

bound inputs;
1* The method attached to the "Quantitative" and

"Qualitative " push buttons of the "Step 1" dialog box. */

C-45

pbal(?button);
select (

case: ?button == "Quantitative ";
{nip.Title = "New Quantitative Parameter Definition";
nip.PutOnScreenAndWait!();}

case: ?button == "Qualitative ";
{vip.Title = "New Qualitative Parameter Definition";
vip.PutOnScreenAndWait!();} }

}
/**/

function pbal (?button)
{

bound inputs;
/* Sets the dialog boxes for specifying a quantitative or

qualitative new parameter (basic parameter of the correlation). */

n1b2ma();
select {

case: ?button == "Quantitative ";
{nip.Contents +== newparlbl@;
nip.Contents +== nipom@;
newparlbl.DialogBox = nip@;
nipom.DialogBox = nip@;
newparlbl.PositionY = 210;
nipom.PositionY = 160;
nipeb 1 .DefaultValues = Null;
nipeb2.DefaultValues = Null;
nipeb3.DefaultValues = Null;)

case: ?button == "Qualitative ";
(vip.Contents +== newparlbl@;
newparlb 1 .DialogBox = vip@;
newparlbl.PositionY = 110;
v ipeb 1 .DefaultValues = Null;
vipeb2.DefaultValues = Null;))

}
1**1

function n1b2ma 0
{

bound inputs;
/* Sets the lists with the parameter categories. *1

newparlbl.SelectionItems = Null;
for find ?x = direct subclassof Parameters@;
do (newparlbl.SelectionItems +== ?x.name;)

}
/*****•***/

function ipcheck (?lbl, ?eb2, ?ebl, ?ob)

{
bound inputs;
/* Performs checks in the user supplied data for the creation of a new basic parameter. */

select (

case: not {IsString(?1b1);}

C-46

{msgtd.Values = "A category for the new parameter\nshould be specified.";
Msgwin.PutOnScreenAndWait!();
?ob.UserData = 1;)

case:?eb2 == ";
(msgtd.Values = "A shorthand description for the new parameter\nshould be specified.";
Msgwin.PutOnScreenAndWaid();
?ob.UserData = 1;)

case:?ebl ==
{msgtd.Values = "The full name of the new pararneter\nshould be specified.";
Msgwin.PutOnScreenAndWait!();
?ob.UserData = 1;}

otherwise: ?ob.UserData = 0;)

function SteplHelp()

bound inputs;
/* The help text for the "Step!" dialog box. */

Step lcr.UserData = AppendStrings(

"This dialog box is the first step in the procedure of defining a\n",
"new correlation, or correctionAn\n",
"In the case of a new correlation, select New Correlation (default value),\n",
"otherwise click on New CorrectionAn\n",
"The next step is to define the basic parameter of the correlationAn%
"correction. This can be done by selecting one of the parameters\n",
"displayed in the list box. If a parameter is selected an Information\n",
"window, containing information about the selected parameter, will\n",
"appear on screenAn\n",
"Initialy the list box contains all the parameters that have been used\n",
"as basic parameters in implemented correlations and correctionsAn",
"In order to view all the other parameters, click on Show other and\n",
"select the desired parameter from the list box. If the desired parameter\n",
"is not contained in the list box, then click on Quantitative, to define a\n",
"new parameter of quantitative format, or on qualitative to define a\n",
"new parameter of qualitative format.");

UPSTEP2.ptk

/* This file contains the functions and methods relevant to the second stage of implementing
correlations. */

#include <prk/math.pth>
#include <prk/lib.pth>
/**/

method Step21b1.React! (?new_value, ?old_value)

bound inputs;
/* The method attached to the quantitative basic variables display dialog box. *1

nbv.UserData = Null;

C-47

setdef10;
if IsString(?new_value);
{findl ?sl.name == ?new_value;
nbv.UserData = ?s1;
nbv.UserData..name = ?new_value;
nbv.UserData..units = ?sl.format..units;
nbvtd.Values = AppendStrings(?new_value, "\n\nUnits:

?sl.format..units);
if {?s11 = ConvertToSymbol(?s1);

find! ?ob.?s11..variable == ?new_value;}
{nbveb3.DefaultValues = ?ob.?s11..min_value;
nbveb4.DefaultValues = ?ob.?s11..max_value;}

else {nbveb3.DefaultValues = Null;
nbveb4.DefaultValues = Null;)

nbv.PutOnScreenAndWait!();}
else { ; }

}

method rblbl.React! (?moused_item, ?old_item)
{

bound inputs;
/* The method attached to the "implemented", "other"

push buttons for quantitative basic variables. */

select {

case: {?moused_item == "implemented";
?old_item == "other";)

lbudo(Step2lb 1);

case: {?moused_item == "other";
?old_item == "implemented";)

Ibudo(Step2lb 0;1

}
/**/

method pb1b1.React! (?value)

{
/* The method attached to the "Create a new Quantitative" basic variable push button. */

nbv.UserData = Null;
setdef10;
pbal("Quantitative ");
nip.Title = "New Quantitative Basic Variable Definition";
nip.PutOnScreenAndWait!0;

}
/**/

function setdefl 0

{
bound inputs;
/* Sets the dialog box for specifying a new basic quantitative variable. */

nbv.Contents -== newparlb1@;
nbv.Contents -== nipom@;
nbvcr.ButtonL,abels -== "Remove Variable";

}
(**/

method Step21b2.React! (?new_value, ?old_value)
{

C-48

bound inputs;
1* The method attached to the qualitative basic variables display dialog box. *1

vbv.UserData = Null;
setdef();
if IsString(?new_value);
(findl ?sl.name == ?new_value;
vbv.UserData = ?s1;
vbv.UserData..name = ?new_value;
vbvtd.Values = ?new_value;
if {?s11 = ConvertToSymbol(?s1);

findl ?ob.?s11..variable == ?new_value; }
{for ?i from 0 to ListLength(?ob.?s11..per_val)-1;
do {vbvlb.SelectionItems +== ListNth(?ob.?s11..per_val,

ListLength(?ob.?s11..per_val)-1-?i);}
for (?pv = find ?sl.format..per_val;

?pv != ?ob.?s11..per_val; I
do { vbvlb.UserData +== ?pv;}

vbvlb.UserData = all vbvlb.UserData;
vbvlb.UserData = AppendLists(vbvlb.UserData,

s(?ob.?s11..per_val));

if ListLength(vbvlb.UserData) > 1;
{vbvpb.ButtonLabel = "Show alternative set";}
else{;} }

else (?y = findl ?sl.format..per_val;
for ?i from 0 to ListLength(?y)-1;
do fvbvlb.SelectionItems +== ListNth(?y, ListLength(?y)-1-?i);)
for { ?pv = find ?sl.format..per_val;

?pv != ?y;}
do {vbvlb.UserData +== ?pv;}
vbvlb.UserData = all vbvlb.UserData;
vbvlb.UserData = AppendLists(vbvlb.UserData, '(?y));
if ListLength(vbvlb.UserData) > 1;
{vbvpb.ButtonLabel = "Show alternative set";}
else{;}}

vbv.PutOnScreenAndWait!();}
else {;}

1

method rblb2.React! (?moused_item, ?old_item)
{

bound inputs;
/* The method attached to the "implemented", "other"

push buttons for qualitative basic variables. *1

select (

case: (?moused_item .--- "implemented";
?old_item == "other";)

Ibudo(Step21b2);

case: { ?moused_item == "other";
?old_item == "implemented";)

lbudo(Step21b2);}

I
1*** * ****** * *** * ***** * ** * ********************** **** *** * ********************/

method pb1b2.React! (?value)

C-49

{
bound inputs;
/* The method attached to the "Create a new Qualitative" basic variable push button. */

vbv.UserData = Null;
setdef0;
pbal("Qualitative ");
vip.Title = "New Qualitative Basic Variable Definition";
vip.PutOnScreenAndWait!();

}

function setdef 0
{

/* Sets the dialog box for specifying a new basic qualitative variable. */

vbvlb.UserData = Null;
vbvlb.SelectionItems = Null;
vbvpb.ButtonLabel = Null;
vbveb3.DefaultValues = Null;
vbv.Contents -== newparlbl @;
vbvcr.ButtonLabels -== "Remove Variable";

1

function lbudo (?1b)

{
bound inputs;
/* Performs list settings for the "implemented", "other"

push buttons for qualitative basic variables. */

?list = all ?lb.SelectionItems;
?lb.SelectionItems = Null;
?I = SortList(?lb.UserData, Alphabetize);
for ?i from 0 to ListLength(?I)-1;
do {?lb.SelectionItems +== ListNth(?1, ListLength(?1)-1-?i);}
?lb.UserData = ?list;

}

method Step2pb1.React! (?button)

{
/* The method attached to the push button for creating intermediate variables. */

niv.PutOnScreenAndWait1 0;
}

1***1

method Step2pb2.React! (?button)

{
bound inputs;
/* The method attached to the push buttons for specifying intermediate parameters. */

nviplb.SelectionItems = Null;
select {

case: ?button == "Quantitative";
{nvip.Title = "Quantitative Intermediate Parameter Definition";
for ?x inlist nviplb.UserData..qtim;
do {nviplb.SelectionItems +== ?x;}
nvippb.Title = "New Quantitative Intermediate Parameter:";)

C-50

case: ?button == "Qualitative";
(nvip.Title = "Qualitative Intermediate Parameter Definition";
for ?x inlist nviplb.UserData..q1im;
do (nviplb.SelectionItems +== ?x;
nvippb.Title = "New Qualitative Intermediate Parameter:";))

nvip.PutOnScreenAndWait!0;

method Step2cr.React! (?button)

bound inputs;
/* The method attached to the command row of the "Step2" dialog box. */

select (

case: ?button == "OK";
(if findl correl_temp.?sl..BV_description == ?;
{;}
else {msgtd.Values = "Please select or define at least one\nBasic Variable (Quantitative or

Qualitative).";
Msgwin.PutOnScreenAndWait!();
fail;)

if StringLength(Step2aueb.Values) > 0;

(;)
else (Insgtd.Values = "Please specify the correlation/correction's reference.";

Msgwin.PutOnScreenAndWait!();
fail;)

?numlist = ' 0;
for (find ?ob.Parameter..parameter. 	 == correl_temp.Parameter..parameter;

IsSymbol(?ob.winname);
?ob != correl_temp@;)

do { ?num = ConvertToNumber(Substring(ConvertToString(?ob.winname),

StringLength(ConvertToString(?ob.Parameter..parameter))));
collect ?num into ?numlist;)

if ListLength(?numlist) > 0;
{SortList(?numlist, "<");

correl_temp.winname
ConvertToSymbol(AppendStrings(ConvertToString(correl_temp.Parameter..parameter),

ConvertToString(ListFirst(?numlist)+1)));}
else

	

	 {correl_temp.winname
ConvertToSymbol(AppendStrings(ConvertToString(correl_temp.Parameter..parameter),

ConvertToString(1)));
?numlist = '(0);}

?name = ConvertToString(correl_temp.winname);
for find coffel_temp.?nbv..BV_description == Quantitative;
do (correl_temp.?nbv..ebname = ConvertToSymbol(AppendStrings(?name,

ConvertToString(?nbv)));}
for find correl_temp.?vbv..BV_description == Qualitative;
do {correl_temp.?vbv..lbname = ConvertToSymbol(AppendStrings(?name,

ConvertToString(?vbv)));}
for find correl_temp.?niv_IV_description 	 Quantitative;
do {correl_temp.?niv..tdname = ConvertToSymbol(AppendStrings(?name,

ConvertToString(?niv)));}
for find correl_temp.?nip..IP_description == Quantitative;

C-51

do { correl_temp.?nip..tdmax = ConvertToSymbol(AppendStrings(?name,
ConvertToString(?nip), "max"));

correl_temp.?nip..tdmin = ConvertToSymbol(AppendStrings(?name,
ConvertToString(?nip), "minim"));

correl_temp.?nip..tdmam = ConvertToSymbol(AppendStrings(?name,
ConvertToString(?nip), "main"));

correl_temp.?nip-tdav = ConvertToSymbol(AppendStrings(?name,
ConvertToString(?nip), "av"));

correl_temp.?nip..tdname = ConvertToSymbol(AppendStrings(?name,
ConvertToString(?nip), "nam"));}

for find correl_temp.?vip..IP_description == Qualitative;
do (correl_temp.?vip..tdname = ConvertToSymbol(AppendStrings(?narne,

ConvertToString(?vip), "nam"));}
if correl_temp.Parameter..format == Quantitative;
{correl_temp.Parameter..tdmax = ConvertToSymbol(AppendStrings(?name, "max"));
correl_temp.Parameter..tdmin = ConvertToSymbol(AppendStrings(?name, "minim"));
correl_temp.Parameter..tdmam = ConvertToSymbol(AppendStrings(?narne, "main"));
correl_temp.Parameter..tdav = ConvertToSymbol(AppendStrings(?name, "av"));}

else { ; }
correl_temp.Parameter..tdname = ConvertToSymbol(AppendStrings(?name, "nam"));
correl_temp.Parameter..cr = ConvertToSymbol(AppendStrings(?name, "Cr"));
correl_temp.Comments..tdname = ConvertToSyrnbol(AppendStrings("com", ?name, "td"));
?obname = correl_temp.winname;
correl_temp.wintitle = AppendStrings(ConvertToString(correl_temp.Parameter_parameter),

II . f(");

correl_temp.Parameters_needed = AppendStrings(ConvertToString(
correl_temp.Parameter..parameter), " from ");

for find correl_temp.?bv..BV_description == ?;
do {?obname = AppendStrings(?obname, "_", ConvertToString(?bv));

correl_temp.wintitle = AppendStrings(correl_temp.wintitle, ConvertToString(?bv), ", ");
if StringLength(correl_temp.Parameters_needed) > 40;
(correl_temp.Parameters_needed = AppendStrings(correl_temp.Parameters_needed,

ConvertToString(?bv), ", ");}
else {correl_temp.Parameters_needed = AppendStrings(coffel_temp.Parameters_needed,

correl_temp.?bv..variable, ", ");} }
correl_temp.Parameters_needed = AppendStrings(coffel_temp.Parameters_needed,

Step2aueb.Values);
correl_temp.wintitle = AppendStrings(Substring(correl_temp.wintitle, 0,

StringLength(correl_temp.wintitle)-2), "), ", Step2aueb.Values);
correl_temp.wintitle..author = Step2aueb.Values;
correl_temp.Parameters_needed = AppendStrings(correl_temp.Parameters_needed, " (",

ConvertToString(ListFirst(?numlis0+1), ").");
?obname = ConvertToSymbol(?obname);
RenameObject(correl_temp, ?obname);

Step2.TakeOffScreen!();
for ?z inlist s (appliOcr@, reliacr@,step3cr@);
do {?z.UserData = ?obname@;}
parpb("Reset ", appliOlbl@, Ground@);
p arpb(" Reset ", appli 1 lb 1 @, Parameters @);
corrpre.UserData = Null;
calestwin(?obname@);

}

case: ?button == "Preview";
{corrpre.TakeOffScreen!();
corrpre.UserData = correl_temp@;
corrpre.Contents = precr@;

C-52

corrpre.Contents +== ppre@;
ppre.SelectionItems = correl_temp.Parameter;
for 7x mast s (nbvpre@, vbvpre@, nivpre@, nippre@, vipPre@);
do (?x.SelectionItems = Null;

?x.MaxNum0fLines = 1;)
for find correl_temp.?nbv..BV_description == Quantitative;
do {nbvpre.SelectionItems +== correl_temp.?nbv..variable;

nbvpre.MaxNum0fLines = nbvpre.MaxNum0fLines + 1;}
for find correl_temp.?vbv..BV_description == Qualitative;
do (vbvpre.SelectionItems +== correl_temp.?vbv..variable;

vbvpre.MaxNum0fLines = vbvpre.MaxNum0fLines + 1;}
for find correl_temp.?niv..IV_description = Quantitative;
do (nivpre.SelectionItems +== correl_temp.?niv..variable;

nivpre.MaxNum0fLines = nivpre.MaxNum0fLines + 1;}
for find correl_temp.?nip..IP_description = Quantitative;
do Inippre.SelectionItems +== correl_temp.?nip..parameter;

nippre.MaxNum0fLines = nippre.MaxNum0fLines + 1;}
for find correl_temp.?vip..IP_description == Qualitative;
do { vippre.SelectionItems +== correl_temp.?vip..parameter;

vippre.MaxNum0fLines = vippre.MaxNum0fLines + 1;}
for (?x inlist '(nbvpre@, vbvpre@, nivpre@, nippre@, vippre@);

?x.MaxNum0fLines > 1;)
do {corrpre.Contents +== ?x;}
if nbvpre.MaxNum0fLines = 1;
{vbvpre.PositionY = nbvpre.PositionY;}
else (vbvpre.PositionY = nbvpre.PositionY + (nbvpre.MaxNum0fLines-1)*20 + 30;)

if vbvpre.MaxNum0fLines == 1;
{if nbvpre.MaxNum0fLines = 1;
{nivpre.PositionY = nbvpre.PositionY;}
else (nivpre.PositionY = nbvpre.PositionY + (nbvpre.MaxNuna0fLines-1)*20 + 30;))

else Inivpre.PositionY = vbvpre.PositionY + (vbvpre.MaxNum0fLines-1)*20 + 30;}
if nivpre.MaxNum0fLines == 1;
{if vbvpre.MaxNum0fLines = 1;
{nippre.PositionY = vbvpre.PositionY;}
else {nippre.PositionY = vbvpre.PositionY + (vbvpre.MaxNum0fLines-1)*20 + 30;} }

else (nippre.PositionY = nivpre.PositionY + (nivpre.MaxNum0fLines-1)*20 + 30;}
if nippre.MaxNum0fLines = 1;
{if nivpre.MaxNum0fLines = 1;
{vippre.PositionY = nivpre.PositionY;}
else (vippre.PositionY = nivpre.PositionY + (nivpre.MaxNum0fLines-1)*20 + 30;} }

else {vippre.PositionY = nippre.PositionY + (nippre.MaxNwn0fLines-1)*20 + 30;)
for {?x inlist all corrpre.Contents;

?x != precr@;
?x != ppre@;}

do { ?x.MaxNum0fLines = ?x.MaxNum0fLines - 1;}
corrpre.PutOnScreenAndWait!0;1

case: ?button == "Cancel";
{if IsFacet (Step2@, UserData, name);
(RenameObject(correl_temp, Step2.UserData..name);
DeleteFacet(Step2@, UserData, name);)

else {DeleteObject(coffel_temp);}
Step2.TalceOffScreenK);
?ob = Step2.UserData..control;
?ob.PutOnScreen!();}

}
}

C-53

/**/

method ppre.React! (?new_value, ?old_value)

{
/* The method attached to "parameter preview" list box. */

lbfuc(?new_value);
}
1**1

method nbvpre.React! (?new_value, ?old_value)
{

bound inputs;

/* The method attached to "quantitative variables preview" list box. */

find! corrpre.UserData.?sl..variable == ?new_value;
nbv.UserData = ?s1;
nbv.UserData..name = ?new_value;
nbv.UserData..units = corrpre.UserData.?sl..units;
nbvtd.Values = AppendStrings(?new_value, "M\nUnits: ",

corrpre.UserData.?sl..units);
nbveb3.DefaultValues = corrpre.UserData.?sl..min_value;
nbveb4.DefaultValues = corrpre.UserData.?sl..max_value;
nbvcr.ButtonLabels +. "Remove Variable";
nbv.PutOnScreenAndWait!();

}
/**/

method vbvpre.React! (?new_value, ?old_value)
{

bound inputs;
/* The method attached to "qualitative variables preview" list box. */

find! corrpre,UserData.?sl..variable == ?new_value;
vbv.UserData = ?s1;
vbv.UserData..name = ?new_value;
vbvtd.Values = ?new_value;
vbvlb.SelectionItems = Null;
for ?i from 0 to ListLength(corrpre.UserData.?sl..per_val)-1;
do {vbvlb.SelectionItems +== ListNth(corrpre.UserData.?sl..per_val,

ListLength(corrpre.UserData.?sl..per_val)-1-?i);}
vbvcr.ButtonLabels +.--= "Remove Variable";
vbv.PutOnScreenAndWait!();

1

method nivpre.React! (?new_value, ?old_value)

{
bound inputs;
/* The method attached to "intermediate variables preview" list box. */

find! corrpre.UserData.?sl..variable == ?new_value;
nbv.UserData = ?s1;
nbv.UserData..name = ?new_value;
nbv.UserData..units = corrpre.UserData.?sl..units;
nbvtd.Values = AppendStrings(?new_value, "\tiMUnits: ",

corrpre.UserData.?sl..units);
nbveb3.DefaultValues = corrpre.UserData.?sl..min_value;
nbveb4.DefaultValues = corrpre.UserData.?sl..max_value;
nbvcr.ButtonLabels +. "Remove Variable";

C-54

nbv.PutOnScreenAndWait!();
}

method nippre.React! (?new_value, ?old_value)
{

bound inputs;
/* The method attached to "quantitative interemediate parameters preview" list box. */

ipdel(?new_value, ?old_value);

}
/**/

method vippre.React! (?new_value, ?old_value)
1

bound inputs;
/* The method attached to "qualitative interemediate parameters preview" list box. */

ipdel(?new_value, ?old_value);

1

function ipdel (?new_value, ?old_value)

{
bound inputs;
/* The function for removing variables and parameters. */

find! corrpre.UserData.?sl..parameter == ?new_value;
Msgwin.UserData = ?s1;
msgcr.ButtonLabels +== "Remove Parameter";
select{

case: { IsString(?new_value);
find! ?ob.name =. ?new_value;
?ob.format == Quantitative;}

{msgtd.Values = AppendStrings(?ob.name,
"\nFormat: ", ConvertToString(?ob.format),
"AnUnits: ", ?ob.format..units,
"AnNumber of decimal points: ",
ConvertToString(?ob.format..num_of dec),".");

Msgwin.PutOnScreenAndWait!();}
case: {IsString(?new_value);

findl ?ob.name == ?new_value;
?ob.format == Qualitative; }

{msgtd.Values = AppendStrings(?ob.name,
"\nFonnat: ", ConvertToString(?ob.format));

Msgwin.PutOnScreenAndWait!0; } }

}

method warncr.React! (?button)

{
bound inputs;
/* The method attached to the command row of the "warning" dialog box. */

select {

case: {?button == "Continue";
IsList(warncr.UserData);}

{?ob = ListFirst(warncr.UserData);
if ListNth(warncr.UserData, 1) == 1;

{ datacheck2 (?ob); }
else {calculatefi?ob, 'Parameter);))

C-55

case: { ?button == "Delete";
IsSymbol(warncr.UserData);
?sl = warncr.UserData;
corrpre.UserData.?sl..BY_description == Quantitative;)

sIdel(?sl, Step21b1@, nbv@, nbvpre@);

case: { ?button == "Delete";
IsSymbol(warncr.UserData);
?sl = warncr.UserData;
corrpre.UserData.?sl..BV_description .= Qualitative;}

sldel(?sl, Step21b2@, vbv@, vbvpre@);

case: { ?button == "Delete";
IsSymbol(warncr.UserData);
?sl = warncr.UserData;
corrpre.UserData.?sl..IV_description	 Quantitative;}

{DeleteSlot(corrpre.UserData, ?s1);
nbv.TakeOffScreen!O;
if ListLength(all nivpre.SelectionItems) > 1;
{nivpre.SelectionItems -== nbv.UserData..name;
else {nivpre.Selection1tems = Null;)}

case: { ?button == "Delete";
IsSymbol(warncr.UserData);
?sl = warncr.UserData;
corrpre.UserData.?sLIP_description	 Quantitative;}

sIdelp(?sl, nippre@);}

case: { ?button == "Delete";
IsSymbol(warncr.UserData);
?sl = warncr.UserData;
corrpre.UserData.?sLIP_description == Qualitative;}

sIdelp(?sl, vippre@);)

Warning win.TakeOffScreen!O;
warncr.ButtonLabels -== "Delete";
warncr.ButtonLabels +== "Continue";
warncr.UserData = Null;

function sldel (?sl, ?lb, ?win, ?lb 1)

bound inputs;
/* The function that deletes the slot representing the selected for removal variable. */

?name = corrpre.UserData.?sl..variable;
find :lob. name == ?name;
restor(?sl, ?name, ?ob, ?lb);
DeleteSlot(corrpre.UserData, ?s1);
?win.TakeOffScreen!O;
if ListLength(all ?lb1.SelectionItems) > 1;
{ ?lb 1.SelectionItems -== ?win.UserData..name;}
else { ?lb 1 .SelectionItems = Null;)

function sldelp (7s1, ?lb)

C-56

{
bound inputs;
/* The function that deletes the slot representing the selected for removal parameter. */

?name = corrpre.UserData.?sl..parameter;
?si = corrpre.UserData.?sl..parameter;
find ?ob.name == ?name;
DeleteSlot(corrpre.UserData, ?s1);
if ?ob.format == Quantitative;
{ ?lb 1 = Step2lb 1 @ ; }
else { ?lbl = Step21b2@;}
restor(?sl, ?name, ?ob, ?lb 1);
if ListLength(all ?lb.SelectionItems) > 1;
{?lb.SelectionItems -== ?si; }
else {?lb.SelectionItems = Null;}

}

function restor (?sl, ?name, ?ob, ?lb)

{
bound inputs;
/* This function restores the names of the removed variables/parameters

to the appropriate lists, so that they can be reselected. */

if { ?x = find subclassof Coffelations@;
IsSlot(?x, ?sl, 'SV);}

{if find! ?lb.SelectionItems == "other";
{ ?lb.SelectionItems +== ?name;}
else { ?lb.UserData = AppendLists(?lb.UserData, '(?name)); } 1

else {if find! ?lb.SelectionItems == "other";
{ ?lb.UserData = AppendLists(?lb.UserData, '(?name)); }

else {?lb.SelectionItems +== ?name; } }

if { ?x = find subclassof Correlations@;
IsSlot(?x, ?sl, 'MV);
IsFacet(?x, ?sl, IP_description);}

{ if ?ob.format == Quantitative;
(nviplb.UserData..qtim = AppendLists('(?name),

nviplb.UserData..qtim);}
else {nviplb.UserData..q1im = AppendListsC(?name),

nviplb.UserData..q1im);} }
else {if ?ob.format == Quantitative;

{nviplb.UserData..qtot = AppendLists('(?name),
nviplb.UserData..qtot);}

else {nviplb.UserData..qlot = AppendListsC(?name),
nviplb.UserData..qlot);))

}
/***/

C-57

UPSTEP25.ptk

/* This file contains the functions and methods relevant to the implementation of variables and
parameters for correlations. */

#include <prk/math.pth>
#include <prk/lib.pth>
/***/

method nbvcr.React! (?button)
{

bound inputs;
/* The method attached to the command row of the

"New Quantitative Basic Variable" dialog box. */

select {

case: {?button == "OK";
nbv.UserData != 3;}

{if {IsNumber(nbveb3.Values);
IsNumber(nbveb4.Values);
nbveb3.Values >= nbveb4.Values;)

{msgtd.Values = "The specified min value is >= to the max value!";
Msgwin.PutOnScreenAndWait!0;
fail;}

else {nvc(nbv.UserData, nbv.UserData..name, nbv.UserData..units, BV_description,
nbveb3@, nbveb4@, nbv@, im);

if {IsFacet(correl_temp@, nbv.UserData,BV_description);
IsFacet(correl_temp@, nbv.UserData,IV_description);}
{DeleteFacet(correl_temp@, nbv.UserData,BV_description); }
else {;} } }

case: ?button == "Remove Variable";
{warncr.UserData = nbv.UserData;

warntd.Values = AppendStrings("Do you really want to remove the variable,\n",
nbv.UserData..name);

warncr.ButtonLabels -== "Continue";
warncr.ButtonLabels +== "Delete";
Warningwin.PutOnScreenAndWait!0;}

otherwise: nbv.TakeOffScreen!O;}
}
/***/

function nvc (?sl, ?name, ?units, ?des, ?eb3, ?eb4,?ob, ?imne)

{
bound inputs;
/* Creates a new quantitative basic or intermediate variable. */

?sl = ConvertToSymbol(?s1);
if find correl_temp@.?sl..variable == ?;

{;}
else {MakeSlot(correl_temp@, ?s1);}

correl_temp @ .?sl.. ?des = Quantitative;
if ?imne == im;
{correl_temp@.?sl..variable = ?name;}
else {if ?des .= IV_description;

C-58

{ correl_temp @ .?sl..variable = ?name;}
else f correl_temp@.?sl..variable = AppendStrings(?name, ", ",

ConvertToString(?s1));} }

correl_temp@.?sl..units = ?units;
if find correl_temp@.?sl..variable == ?;
{;}
else (MakeFacet(correl_temp@, ?sl, rnax_value);

MalceFacet(correl_temp@, ?sl, min_value);
MakeFacet(correl_temp@, ?sl, ebname); }

if IsNumber(?eb3.Values);
{ correl_temp @ .?sl..min_value = ?eb3.Values; }
else { ?eb3.Values = Null;}
if IsNumber(?eb4.Values);
{correl_temp@.?sl..max_value = ?eb4.Values;}
else {?eb4.Values = Null; }

if {?ob == nbv@;
ListLength(FindListElmt(all Step2Ib1.SelectionItems,

correl_temp@.?sl..variable)) > 0;)
{Step21b1.SelectionItems -== correl_ temp @ .?sl.. variable;
if ListFirst(nviplb.UserData..qtim) == correl_temp@.?sl..variable;
{nviplb.UserData..qtim = ListRest(nviplb.UserData..qtim);}
else {nviplb.UserData..qtim = DeleteListElmt(correLtemp@.?sl..variable,

nviplb.UserData..qtim);}

if ListFirs Knv ipl b. UserData.. qtot) == correl_temp@ .?sl.. variable ;
{ n vipl b. UserData.. qtot = Lis tRest(n viplb.UserData..q tot);)
else {nviplb.UserData..qtot = DeleteListEhnt(correl_temp@.?sl..variable,

nviplb.UserData..qtot);} 1
else{;)

nbv.TalceOffScreen K);
nip.TalceOffScreen!();

}
/***/

method nivcr.React! (?button)
{

bound inputs;
1* The method attached to the command row of the "New Intermediate Variable" dialog box. *1

select {

case: ?button = "OK";
(if {IsNumber(niveb3.Values);

IsNumber(niveb4.Values);
niveb3.Values >= niveb4.Values; 1

{msgtd.Values = "The specified min value is >= to the max value!";
Msgwin.PutOnScreenAndWaid();
fail;)

else { ?list = '0;
for find ?correl_temp.?slo..IV_description == Quantitative;
do { ?slot = ConvertToString(?slo);

7x = ConvertToNumber(Substring(?slot, StringLength(?slot) -1));
collect ?x into ?list;}

if ListLength(?list) > 0;

C-59

{SortList(?list, "<");
?sl = ConvertToSymbol(AppendStrings("IV_", ListFirst(?list)));}

else {?s1 = IV_1;}

nvc(?sl, niveb2@.Values, niveb5@.Values,IV_description,
niveb3@, niveb4@, niv@, ne);

nivestcr.UserData = ?s1;
callnivest(ConvertToSymbol(?s1));
niv.TakeOffScreen!();} }

otherwise: niv.TalceOffScreen!0;}
}

method vbvpb2.React! (?value)

{
bound inputs;
/* Deletes the selected permissible value. */

vbvlb.SelectionItems -== vbvlb.Values;

}
1**1

method vbveb3.React! (?new_value)

{
bound inputs;
/* Adds a new permissible value. */

vbvlb.SelectionItems +== ?new_value;
vbveb3.Values = vbveb3.DefaultValues;

}
/**/

method vbvpb.React! (?value)
{

bound inputs;
/* Displays alternative sets of permissible values. */

vbvlb.SelectionItems = Null;
?1 = ListLength(ListFirst(vbvlb.UserData));
for ?i from 0 to ?1-1;
do {vbvlb.SelectionItems +== ListNth(ListFirst(vbvlb.UserData), ?1-?i-1);}
vbvlb.UserData = ListRest(vbvlb.UserData);
vbvlb.UserData = AppendLists(vbvlb.UserData, '(all vbvlb.SelectionItems));

}
/**/

method vbvcr.React! (?button)

{
bound inputs;
/* The method attached to the command row of the

"New Qualitative Basic Variable" dialog box. */

select {

case: {Mutton == "OK";
vbv.UserData != 4;}

{if ListLength(all vbvlb.SelectionItems) > 0;
{vbvc();}

else {msgtd.Values = "The permissible values list box\nshould contain at least one value.";
Msgwin.PutOnScreenAndWaid();} }

C-60

case: ?button == "Remove Variable";
{warner.UserData = vbv.UserData;

warntd.Values = AppendStrings("Do you really want to remove the variable,\n",
vbv.UserData..name);

warncr.ButtonLabels -== "Continue";
warncr.ButtonLabels +== "Delete";
Warningwin.PutOnScreenAndWait!();}

case: {?button == "OK";
vbv.UserData == 4;}

(ipcheck(newparlbl.Values, vbveb2.Values, vbvebl.Values, vbv@);
if vbv.UserData == I;
{fail;}
else {vbv.UserData = 4;}
slcheck(vbveb2@, "variable");
if vbveb2.UserData == error;
{fail;}
else {;}
if find! vbvlb.SelectionItems == ?;
{ vbvmak(?ob);
callapwin(?ob@);}

else (msgtd.Values = "The permissible values list box\nshould contain at least one value.";
Msgwin.PutOnScreenAndWait!();} }

otherwise: vbv.TakeOffScreen!O;)

}
1***1

function vbvc 0
{

bound inputs;
/* Creates a new qualitative basic variable. */

?sl = ConvertToSymbol(vbv.UserData);
if find correl_temp@.?sl..variable == ?;
{;}
else {MakeSlot(correl_temp@, ?s1);}

correl_temp@.?sl..BV_description = Qualitative;
correl_temp@.?sl..variable = vbv.UserData..name;
if find correl_temp@.?sl..variable == ?;

{ ;}
else (MalceMultiValueFacet(correl_temp@, ?sl, per val);

MalceFacet(correl_temp@, ?sl, lbname);}

correl_temp@.?sl..per_val = SortList(all vbvlb.SelectionItems, Alphabetize);
if ListLength(FindListElmt(all Step21b2.SelectionItems,

correl_temp@.?sl..variable)) > 0;
(Step21b2.SelectionItems -== coffel_temp@.?sl..variable;
if ListFirst(nviplb.UserData..q1im) == correl_temp@.?sl..variable;
{nviplb.UserData..q1im = ListRest(nviplb.UserData..q1ina);}
else {nviplb.UserData..q1im = DeleteListElmt(correl_temp@.?sl..variable,

nviplb.UserData..q1im);}

if ListFirst(nviplb.UserData..qlot) == correl_temp@.?sl..variable;
{nviplb.UserData..qlot = ListRest(nviplb.UserData..qlot);}
else {nviplb.UserData..qlot = DeleteListElmt(correl_temp@.?sl..variable,

nviplb.UserData..qlot);}}
else{;}

C-61

vbv.TakeOffScreen!();
vip.TalceOffScreen!();

}

function slcheck(?eb2, ?var)
{

bound inputs;
/"Checks the user supplied data for the implementation of a qualitative parameter. */

?npar = ConvertToSymbol(makesymbol(?eb2.Values));
Update_info.Parameter = FindObject(?npar);
if Update_info.Parameter != Null;
{msgtd.Values = AppendStrings("The shorthand description of the new ", ?var,

" \nis already used from another parameterAn",
"Please use an alternative expression");

Msgwin.PutOnScreenAndWait!();
?eb2.UserData = error;)

else {?eb2.UserData = Null; }
}
1***1

method niper.React! (?button)
{

bound inputs;
/*The method attached to the command row of the

"New Quantitative Intermediate Parameter" dialog box. */

?npar = ConvertToSymbol(malcesymbol(nipeb2.Values));
select {

case: ?button . "OK";
{ ipcheck(newparlbl.Values, nipeb2.Values, nipebl.Values, niper@);
if niper.UserData == 1;
(fail;)
else { ; }
slcheck(nipeb2@, "parameter");
if nipeb2.UserData == error;
(fail;)
else {nipfun();

select {

case: nip.Title == "New Quantitative Parameter Definition";
{if Step_l_rb_l .Values == "New Correlation";
{?module = correlation @;)
else {?module = correction @; }
MakeClass(correl_ternp, ?module, '(Correlations @), '0);
MaIceMultiValueSlot(correl_temp@, ?npar);
correl_temp@.Parameter..format = Quantitative;
correl_temp@.Parameter..parameter = ?npar;
correl_temp@.Parameter..units = nipeb3.Values;
correl_temp@.Parameter..num_of dec = nipom.Values;
correl_temp@.Parameter = ?npar.name;
nip.TakeOffScreen!();
Stepl.TakeOffScreen!();
Step2aueb.DefaultValues = Null;
Step2aueb.Values = Null;
Step2.PutOnScreen!(); }

C-62

case: nip.Title == "New Quantitative Parameter";
{ appli4eb 1 .DefaultValues = Null;
appli4eb2.DefaultValues = Null;
appli4td.Values = nipeb3.Values;
appli4.PutOnScreenAndWait!0;}

case: nip.Title =--- "New Quantitative Intermediate Parameter Definition";
{MakeMultiValueSlot(correl_temp@, ?npar);
correl_temp@.?npar..IP_description = Quantitative;
correl_temp@.?npar..parameter = ?npar.name;
correl_temp@.?npar..units = nipeb3.Values;
correl_temp@.?npar..num_of dec = nipom.Values;
nvip.TalceOffScreen!0;}

case: nip.Title == "New Quantitative Basic Variable Definition";
(nbv.UserData = ?npar@;
nbv.UserData..name = ?npar@.name;
nbv.UserData..units = ?npar.format..units;
setdef10;
nbveb3.DefaultValues = Null;
nbveb4.DefaultValues = Null;
nbvtd.Values = AppendStrings(?npar@.name, "\n\nUnits: ",

?npar.format..units);
nbv.PutOnScreenAndWait!();

fail;}}}}}

nip.TakeOffScreen!0;
}
/***/

function nipfun 0
{

bound inputs;
/* Creates the slot used for the representation of a

new quantitative intermediate parameter. */

find! ?ob.name == newparlbl.Values;
7npar = ConvertToSymbol(malcesymbol(nipeb2.Values));
MakeClass(?npar, GPar@, s (?ob), '0);
?npar.name = AppendStrings(nipebl.Values, ", ", nipeb2.Values);
?npar.format = Quantitative;
?npar.format_units = nipeb3.Values;
?npar.format..num_of_dec = nipom.Values;

}
/***/

method viper.React! (?button)

{
bound inputs;
/*The method attached to the command row of the

"New Qualitative Intermediate Parameter" dialog box. */

?npar = ConvertToSymbol(makesymbol(vipeb2.Values));
select (

case: ?button == "OK";
(ipcheck(newparlb1.Values, vipeb2.Values, vipebl.Values, viper@);
if viper.UserData == 1;
{ fail;)

C-63

else {;}
slcheck(vipeb2@, "parameter");
if vipeb2.UserData == error;
{fail;}
else {select {

case: vip.Title == "New Qualitative Parameter Definition";
{vipfun();
if Step_l_rb_l.Values == "New Correlation";
{?module = correlation @;)

else {?module = correction@;}
MalceClass(coffel_temp, ?module, '(Correlations @), '0);
MaIceMultiValueSlot(coffel_temp@, ?npar);
correl_temp@.Parameter..fonnat = Qualitative;
correl_temp@.Parameter..parameter = ?npar;
correl_temp@.Parameter = ?npar.name;
vip.TakeOffScreen!O;
Stepl.TalceOffScreen!0;
Step2aueb.DefaultValues = Null;
Step2aueb.Values = Null;
Step2.PutOnScreen!0;}

case: vip.Title == "New Qualitative Parameter";
{vipfun();
appli3lb.SelectionItems = Null;
appli3eb.Values = Null;
appli3.PutOnScreenAndWait!();}

case: vip.Title == "New Qualitative Intermediate Parameter Definition";
{vipfun();
MalceMultiValueSlot(correl_temp@, ?npar);
correl_temp@.?npar..IP_description = Qualitative;
correl_temp@.?npar..parameter = ?npar.name;
nvip.TakeOffScreen!();}

case: vip.Title == "New Qualitative Basic Variable Definition";
{vipfun();
vbv.UserData = ?npar@;
vbv.UserData..name = ?npar@.name;
setdef();
vbvtd.Values = ?npar@.name;
vbv.PutOnScreen!();} } I }

case: {?button == "OK";
vip.Title == "Qualitative Basic Variable Definition";)

{ipcheck("miscellaneous", vipeb2.Values, vipebl.Values, viper@);
if viper.UserData == 1;
{fail;}

.	 else {;)
find ?ob.name == nbvpre.Values;
RenameSlot(correl_temp@, ConvertToSymbol(?ob), ?npar);
correl_temp@.?npar_parameter = ?npar.name;
vbv.UserData = ?npar@;
vbv.UserData..name = ?npar@.naine;
setdef();
vbvtd.Values = ?npar@.naine;
vbv.PutOnScreenAndWaid();
fail;}

C-64

case: {?button == "OK";
vip.Title == "Qualitative Intermediate Parameter Definition";)

(ipcheck("miscellaneous", vipeb2.Values, vipebl.Values, viper@);
if viper.UserData == 1;
(fail;)
else {;}
find ?ob.name == nippre.Values;
RenameSlot(correl_temp@, ConvertToSymbol(?ob), ?npar);
correl_temp@.?npar..parameter = ?npar.name;
nvip.TakeOffScreen!O;))

vip.TakeOffScreen!0;

function vipfun 0

bound inputs;
/* Creates the slot used for the representation of a

new qualitative intermediate parameter. */

find! ?ob.name == newparlbl.Values;
?npar = ConvertToSymbol(makesymbol(vipeb2Nalues));
MalceClass(?npar, GPar@, '(?oh), '0);
?npar.name = AppendStrings(vipebl.Values, ", ", vipeb2.Values);
?npar.format = Qualitative;
MakeMultiValueFacet(?npar@, format, per_val);

/***/

method nviplb.React! (?new_value, ?old_value)

bound inputs;
/* The method attached to the list box displaying intermediate parameters. */

lbfuc(?new_value);

/***/

method nviprb.React! (?moused_item, ?old_item)

bound inputs;
/* The method attached to the —Show implemented", "Show other"

push buttons in the intermediate parameters dialog box. */

select (

case: {?moused_item =-- - "Show implemented";
nvip.Title == "Quantitative Intermediate Parameter Definition";}

(nviplb.SelectionItems = Null;
?I = SortList(nviplb.UserData..qtim, Alphabetize);
for ?i from 0 to ListLength(?1)-1;
do (nviplb.SelectionItems 	 ListNth(?1, ListLength(?1)-1-?0;} }

case: {?moused_item == "Show other";
nvip.Title == "Quantitative Intermediate Parameter Definition";}

{nviplb.SelectionItems = Null;
71 = SortList(nviplb.UserData..qtot, Alphabetize);
for ?i from 0 to ListLength(?1)-1;
do (nviplb.SelectionItems	 ListNth(?1, ListLength(?1)-1-70;}

C-65

case: {?moused_item == — Show implemented";
nvip.Title == "Qualitative Intermediate Parameter Definition";}

{nviplb.SelectionItems = Null;
?1= SortList(nviplb.UserData..q1im, Alphabetize);
for ?i from 0 to ListLength(?1)-1;
do {nviplb.SelectionItems +.==. ListNth(?1, ListLength(?1)-1-?0;} }

case: {?moused_item == "Show other";
nvip.Title == "Qualitative Intermediate Parameter Definition';)

{nviplb.SelectionItems = Null;
?I = SortList(nviplb.UserData..qlot, Alphabetize);
for ?i from 0 to ListLength(?1)-1;
do {nviplb.SelectionItems -1.== ListNth(?1, ListLength(?1)-1-?i);}} }

}

method nvippb.React! (?button)

{
bound inputs;
/* The method attached to the push buttons for

defining new intermediate parameters. */

pbal(?button);
select {

case: nvip.Title == "Quantitative Intermediate Parameter Definition";
{newparlb1.PositionY = 210;
nip.Title = "New Quantitative Intermediate Parameter Definition";
nip.PutOnScreenAndWait!0;}

case: nvip.Title == "Qualitative Intermediate Parameter Definition";
{newparlbl.PositionY = 110;
vip.Title = "New Qualitative Intermediate Parameter Definition";
vip.PutOnScreenAndWait!();} }

}

method nviper.React! (?button)

{
bound inputs;
/* The method attached to the command row of

the intermediate parameters dialog box. */

select {

case: ?button == "OK";
{if IsString(nviplb.Values);
{varcre();}
else {msgtd.Values = "Please select an intermediate parameter.";

Msgwin.PutOnScreenAndWait!();} }

case: ?button == "Cancel";
nvip.TakeOffScreen!(); I

}

function varcre 0

{
bound inputs;

C-66

/* Creates the slot used for the representation of an intermediate parameter. */

findl ?npar.name == nviplb.Values;
if nvip.Title == "Quantitative Intermediate Parameter Definition";
{MakeMultiValueSlot(correl_temp, ?npar);
correl_temp.?npar..IP_description = Quantitative;
correl_temp.?npar..parameter. 	 = ?npar.name;
correl_temp.?npar..units = ?npar.format..units;
correLtemp.?npar..num_of dec =?npar.format..num_of dec;
S tep2lb 1 .SelectionItems -== ?npar.name;
if ListFirst(S tep2lb 1.UserData) == ?npar.name;
{Step2Ibl.UserData = ListRest(Step21b1.UserData);}
else {Step21b1.UserData = DeleteListElmt(?npar.name, Step2Ib1.UserData);}
if ListFirst(nviplb.UserData..qtim) == ?npar.name;
{nviplb.UserData..qtim = ListRest(nviplb.UserData..qtim);}
else {nviplb.UserData..qtim = DeleteListElmt(?npar.name, nviplb.UserData..qtim);}
if ListFirst(nviplb.UserData..qtot) == ?npar.name;
{nviplb.UserData..qtot = ListRest(nviplb.UserData..qtot);}
else { nviplb.UserData..qtot = DeleteListElmt(?npar.name, nviplb.UserData..qtot);} }
else { MakeMultiValueSlot(con-el_temp, ?npar);

correl_temp.?npar..IP_description = Qualitative;
correl_temp.?npar..parameter = ?npar.name;
Step21b2.SelectionItems -== ?npar.name;
if ListFirst(Step21b2.UserData) == ?npar.name;
{Step21b2.UserData = ListRest(Step21b2.UserData);}
else {Step21b2.UserData = DeleteListElmt(?npar.name, Step21b2.UserData);}
if ListFirst(nviplb.UserData..qhm) == ?npar.name;
nviplb.UserData..q1im = ListRest(nviplb.UserData..q1im);}

else {nviplb.UserData..q1im = DeleteListElmt(?npar.name, nviplb.UserData..q1im);}
if ListFirst(nviplb.UserData..qlot) == ?npar.name;
Inviplb.UserData..qlot = ListRest(nviplb.UserData..qlot);}
else {nviplb.UserData..qlot = DeleteListElmt(?npar.name, nviplb.UserData..qlot);} }

nvip.TakeOffScreen!0;

/**I

ESTP.ptk

/* This file contains the functions and methods for implementing estimation procedures for
intermediate variables and correlations. */

#include <prk/lib.pth>
#include <prk/math.pth>
/**/

method funcpb1.React! (?button)

bound inputs;
/* The method attached to the first row of the push buttons in the "View Functions" dialog box. */

if or {?button ==
?button ==
?button ==
?button ==
?button ==
?button ==
?button == "1";

C-67

?button == "Pow(?x, ?y";
?button == "Exp(?x)";
?button == "Log(?x)";
?button ==. "Log10(?x)";}

{funcpb2.Values = Null;)

}

method funcpb2.React! (?button)

{
bound inputs;

/* The method attached to the second row of the push
buttons in the "View Functions" dialog box. */

if or {?button == "sin(?x;
?button == "cos(?x)";
?button == "tan(?xr ;
?button == "Asin(?x)";
?button == "Acos(?x)";
?button == "Atan(?x)";}

{ funcpb 1.Values = Null;)
}
/**/

method funccr.React! (?button)
{

bound inputs;
/*The method attached to the command row of the "View Functions" dialog box. */

if IsString(funcpb1.Values);
{ ?val = funcpb 1.Values; }
else {?val = funcpb2.Values;}
select {

case: {?button == "Export";
or (IsString(funcpb1.Values);

IsString(funcpb2.Values);} }
{if funccr.UserData == nivest@;

{nivesteb.Values = AppendStrings(nivesteb.Values, ?val);}
else {estwineb.Values = AppendStrings(estwineb.Values, ?val);})

case: ?button == "Cancel";
func.TakeOffScreen!();)

}
1**1

function calestwin (?ob)

{
bound inputs;
/* This function puts on screen the "Estwin" dialog box. */

estwinlbl.SelectionItems = ?ob.Parameter;
estwinlb2.SelectionItems = Null;
estwinlb2.UserData = Null;
for find ?ob.?slo..IP_description == Qualitative;
do {estwinlbl.SelectionItems +== ?ob.?slo_parameter;}
for find ?ob.?slo..IP_description == Quantitative;
do {estwinlbl.SelectionItems +:-_-= ?ob.?slo..parameter;}
for find ?ob.?slo..IV_description == Quantitative;
do {estwinlbl.SelectionItems +== ?ob.?slo..variable;}
for find ?ob.?slo..BV_description == Qualitative;

C-68

do {estwinlbl.SelectionItems +== ?ob.?slo..variable;}
for find 7ob.?slo..BV_description == Quantitative;
do {estwinlbl.SelectionItems +== ?ob.?slo..variable;}
estwin.UserData = ?ob;
?list ='0;

if fIsFacet(?ob, Parameter, estp);
findl ?ob.Parameter..estp == ?;}

{?string =
for ?x inlist all ?ob.Pararneter..estp;
do {?string = AppendStrings(?string, ?x);}
if Substring(?string, 0, 1) ==
{ ?string = Substring(?st.ring, 1);)
else (;)

if Substring(?string, StringLength(?string)- 1) ==
{;}
else {?string = AppendStrings(?string, "\n");}

duo(?string);
?list = estwinlb2.UserData;
estwinlb2.UserData = Null;
for ?i from 0 to ListLength(?list)-1;
do { estwinlb2.SelectionItems +== ListNth(?list, ListLength(?list)-?i-1);}

if find estwinlb2.SelectionItems == ?;
{estwinlb2.UserData = all estwinlb2.SelectionItems;}
else{;}

estwin.PutOnScreenAndWait!();

function duo(?string)

bound inputs;
/* This function sorts the lines of code in the estimation procedure. */

?list = '();
while StringLength(?string) > 0;
do { ?list = AppendLists(?list, '(Substring(?string, 0,

FindSubstring(?string, "\n"))));
?string = Substring(?string, FindSubstring(?string, "\n")+1);}

for ?x inlist ?list;
do (PrintLine(?x);}
estwinlb2.UserData = ?list;

/**/

method estwinlbl.React! (?new_value, ?old_value)

bound inputs;
/* This method is attached to the variables and parameters

display list box of the "Estwin" dialog box. */

?ob = estwin.UserData;
if (IsString(?new_value);

or {find ?ob.?sl..variable == ?new_value;
find ?ob.?sl..parameter == ?new_value;
find ?ob.?s1 == ?new_value;} }

C-69

{select {

case: (IsFacet(?ob,?sl, BV_description);
?ob.?sl..BV_description == Qualitative;}

(msgtd.Values = AppendStrings(?ob.?sl..variable, " with values: \n	 ");
for ?x must ?ob.?sl..per_val;
do {msgtd.Values = AppendStrings(msgtd.Values, "r", ?x,"\"", ", ");}
msgtd.Values = Substring(msgtd.Values, 0, StringLength(msgtd.Values)-2);
?str = AppendStrings("?", ConvertToString(?s1));
Msgwin.PutOnScreen!();}

case:?s1 != Parameter;
?str = AppendStrings("?", ConvertToString(?s1));

otherwise: ?str = AppendStrings("?", ConvertToString(?ob.Parameter..paratneter));}
estwineb.Values = AppendStrings(estwineb.Values, ?str);
estwinlb 1 .Values = Null;)

1

method estwineb.React! (?new_value)

{
bound inputs;
/* This method is attached to the entry box of the "Estwin" dialog box. */

if find! estwinlb2.UserData == ?;
{;}
else (estwinlb2.UserData = '0;}
?11 = ListFirst(all estwinlb2.UserData);
?12 = ListFirst(ListRest(all estwinlb2.UserData));
if { ?new_value !=
{estwinlb2.UserData = AppendLists(?11, s (?new_value), ?12);}
else {estwinlb2.UserData = AppendLists(?11, ?12);}
estwinlb2.SelectionItems = Null;
for ?i from 0 to ListLength(estwinlb2.UserData) - 1;
do (estwinlb2.SelectionItems +== ListNth(estwinlb2.UserData,

ListLength(estwinlb2.UserData)-1-fl);}
estwineb.Values = Null;

}
/***/

method estwinlb2.React! (?new_value, ?old_value)

{
bound inputs;
/* This method is attached to the code display list box of the "Estwin" dialog box. */

if ListLength(all estwinlb2.UserData) == 1;
{if {IsString(?new_value);

estwineb.Values ==
(estwinlb2.SelectionItems = Null;
?12= FindListElmt(estwinlb2.UserData, ?new_value);
if ListFirst(?12) == ListFirst(estwinlb2.UserData);
(estwinlb2.UserData = '();}
else {for ?x inlist estwinlb2.UserData;

do {if ListLength(FindListElmt(?12, ?new_value)) > 0;
{if ListLength(estwinlb2.UserData) > 1;

(DeleteListElmt(?new_value, estwinlb2.UserData);}
else (estwinlb2.UserData = '0;))
else{;}))

C-70

?II = estwinlb2.UserData;
estwineb.Values = ListFirst(?12);
?12 = ListRest(?12);
estwinlb2.UserData = ?12;
estwinlb2.UserData +== ?II;
?I = AppendLists(?11, ?12);
for ?i from 0 to ListLength(?1) - 1;
do (estwinlb2.SelectionItems +== ListNth(?1, ListLength(?1)-1-?i);11)

}
/***/

method estwincr.React! (?button)

{
bound inputs;
/* The function attached to the command row of the "Estwin" dialog box. */

?ob = estwin.UserData;
select (

case: ?button == "Update";
{?string =
?para = ?ob.Parameter;
if {IsFacet(?ob, Parameter, estp);}

{;}
else{MakeMultiValueFacet(?ob, Parameter, estp); }
for ?x inlist all estwinlb2.SelectionItems;
do {?string = AppendStrings(?string, ?x, "\n");}
?str = ?string;
if StringLength(?string) > 200;
{?ob.Parameter..estp = Substring(?string, 0, 200);
?string = Substring(?string, 200);
?1= ConvertToFloat(StringLength(?string))/200;
?i = 0;
while ?i<?1;
do {?ob.Parameter..estp += Substring(?string, 0, 200);

?string = Substring(?string, 200);
?i = ?i+1;}

?list = all ?ob.Parameter..estp;
?ob.Parameter..estp = Null;
for ?z inlist ?list;
do { ?ob.Parameter..estp +=. ?z;)1
else {?ob.Parameter..estp = ?string;}
?numl = ListLength(ModuleInstances(AR_correlation));
createst(?ob, Parameter, ?str);
?ob.Parameter = ?para;
?num2 = ListLength(ModuleInstances(AR_correlation));
if or { Num2 -2 >= ?numl;

?num2 -1 >= ?numl;
?num2 == ?num1;}

(msgtd.Values = "Installation of formula was successfull.";
Msgwin.PutOnScreenAndWaid();
estwin.TakeOffScreen!0;
func.TakeOffScreen!0;
appliO.PutOnScreen!0;}
else {msgtd.Values = "Installation of the formula was not\nsuccessfull. Please reconsider

the formula.";
Msgwin.PutOnScreenAndWait!();}}

case: ?button == "Cancel";
(RenameObject(ConvertToSymbol(?ob), coffel_temp);

C-71

for 7z must s (appliOcr@, reliacr@,step3cr@);
do {?z.UserData = Null;}
estwin.TalceOffScreen!();
S tep2.Pu tOn Screen !(); }

case: ?button == "View Functions";
{funccr.UserData = estwin@;
func.PutOnScreen!();}

case: ?button == "Help";
{;} 1

1
/***/

function createst(?self, ?sl, ?str)
{

bound inputs;
/* This function creates the slot formula for the representation of the estimation procedure. */

?string =

for find ?self.?sl..BV_description == Qualitative;
do {?string = AppendStrings(?string, "7", ConvertToString(?s1), " = ?self.",

ConvertToString(?s 1), ";\n"); }

if (findl ?self.?s2..BV_description == Quantitative;)
{?string = AppendStrings(?string, "for ?i from 0 to ListLength(?self.",

ConvertToString(?s2), ") - 1;\ndo {");
for find ?self.?s3..BV_description == Quantitative;
do {?s3 = ConvertToString(?s3);

?string = AppendStrings(?string, "?", ?s3, "= ListNth(?self.", ?s3,
", ListLength(?self.",?s3, ")-1 -?i);\n");} }

else {findl ?self.?s4..IV_description =--- Quantitative;
?string = AppendStrings(?string, "?list = '();Mfor ?i from 0 to ListLength(?self.",

ConvertToString(?s4), ") - 1;\ndo (");}

for find ?self.?s5..IV_description = Quantitative;
do {?s5 = ConvertToString(?s5);

?string = AppendStrings(?string, "7", ?s5, "= ListNth(?self.", ?s5,
", ListLength(?self.",?s5, ")-1 -?i);\n");}

?string = AppendStrings(?string, ?str);
if find ?self.?s6..IP_desuiption == Quantitative;
{for find ?self.?s7..IP_description = Quantitative;
do {?string = AppendStrings(?string, "?self.", ConvertToString(?s7),

"+== format(?",ConvertToString(?s7),
", ?self.", ConvertToString(?s7),
"..num_of_dec);M");} }

else (;)

if find ?self.7s8..IP_description .--- Qualitative;
{for find ?self.?s9..IP_description == Qualitative;
do {?string = AppendStrings(?string, "?self.", ConvertToString(?s9),

"+== ConvertToString(?",ConvertToString(?s9),
");\n");})

else (;)

?par = ConvertToString(?self.Paraineter..parameter);
?string = AppendStrings(?string, "\n?self.", ?par, " +== format(?", ?par,

C-72

?self.Parameter..num_of dec);}",
"\n?value = ?self.?slot;");

PrintLine(?string);

C:{ PrkARMakeForinula(? self, 'Parameter, ?string);)
disablef();

function disablef 0

bound inputs;
C:{PrkSendMsg(AR_correlation_FormulaClass@, 'Disable!);}

/***/

function calculatef (?self, ?s1)

bound inputs;
C:{PrkARCalculateFormula(?self, ?sl, FALSE); }

function deletef (?self)

bound inputs;
C:{PrkARDeleteFormula(?self, 'Parameter);)

function cleanupf 0

bound inputs;
C:(PrkARCleanupFormulas();)

function callnivest (?s1)

bound inputs;
/*This function puts on screen the dialog box for implementing

estimation procedures for intermediate variables ("IPEP"). */

nivestlb 1 .S electionItems = Null;
nivest1b3.SelectionItems = Null;
nivest1b3.UserData = Null;

for find correl_temp@.?slo..BV_description == Quantitative;
do { n ives tlb 1 . SelectionItem s +== correl_temp @ .?slo.. variable ; 1
nivest1b2.SelectionItems = correl_temp@.?sl..variable;

if (IsFacet(correl_temp@, ?sl, estp);
IsString(correl_temp@.?sl..es t p) ;

?string = correl_temp@.?sl..estp;
if Substring(?string, 0, 1) ==
{?string = Substring(?string, 1);)
else (;}

for ?i from 0 to StringLength(?string)-I;
do (if Substring(?string, ?i, ?i+1)

{nivest1b3.SelectionItems +== Substring(?string, 0, ?i);}
else(;))

nivest.PutOnScreenAndWait!();

C-73

}
/***/

method nivestlbl.React! (?new_value, ?old_value)
{

bound inputs;
/* This method is attached to the variables display list box of the "IPEP" dialog box. */

if {IsString(?new_value);
find correl_temp@.?sl..variable == ?new_value;}

{ ?str = AppendStrings("?", ConvertToString(?s1));
nivesteb.Values = AppendStrings(nivesteb.Values, ?str);}

}

method nivest1b2.React! (?new_value, ?old_value)

{
bound inputs;

/* This method is attached to the intermediate variable display list box of the "IPEP" dialog box.

if {IsString(?new_value);
find correl_temp@.?sl..variable == ?new_value;}

{ ?str = AppendStrings("?", ConvertToString(?s1));
nivesteb.Values = AppendStrings(nivesteb.Values, ?str);}

}

method nivesteb.React! (?new_value)

{
bound inputs;
/*This method is attached to the entry box of the "IPEP" dialog box. */

if find{ nivest1b3.UserData == ?;

{;}
else {nivestlb3.UserData = -();}
?Il = ListFirst(all nivest1b3.UserData);
?12 = ListFirst(ListRest(all nivest1b3.UserData));
if {?new_value != "";}
{nivest1b3.UserData = AppendLists(?11, '(?new_value), ?12);}
else {nivest1b3.UserData = AppendLists(?11, ?12);}
nivest1b3.SelectionItems = Null;
for ?i from 0 to ListLength(nivest1b3.UserData) - 1;
do {nivest1b3.SelectionItems +.= ListNth(nivest1b3.UserData,

ListLength(nivest1b3.UserData)-1-?i);}
nivesteb.Values = Null;

}
1***1

method nivest1b3.React! (?new_value, ?old_value)
{

bound inputs;
/*This method is attached to the code display list box of the "IPEP" dialog box. */

if UsString(?new_value);
nivesteb.Values ==

{nivest1b3.SelectionItems = Null;
?12 = FindListElmt(nivest1b3.UserData, ?new_value);
if ListFirst(?12) == ListFirst(nivest1b3.UserData);
{nivest1b3.UserData = '0;}
else {for ?x inlist nivest1b3.UserData;

do {if ListLength(FindListElmt(?12, ?new_value)) > 0;
{if ListLength(nivest1b3.UserData) > 1;

C-74

{DeleteListElmt(?new_value, nivest1b3.UserData);}
else { nivest1b3.UserData = O;} }
else(;)}}

?II = nivest1b3.UserData;
nivesteb.Values = ListFirst(?12);
712 = ListRest(712);
nivest1b3.UserData = 712;
nivest1b3.UserData +== 711;
71 = AppendLists(?11, ?12);
for ?i from 0 to ListLength(?1) - 1;
do (nivest1b3.SelectionItems +== ListNth(?1, ListLength(?1)-1-?i);} }

}
/***/

method nivestcr.React! (?button)

{
bound inputs;
/* The function attached to the command row of the "IPEP" dialog box. */

?sl = nivestcr.UserData;
select (

case: ?button == "Update";
(?string = ";
for ?x must all nivest1b3.SelectionItems;
do {?string = AppendStrings(?string, "M", ?x);}
correl_temp@.?sl..estp = ?string;
createfor(correl_temp@, ?sl, ?string);
if IsFacet(correl_temp@, ?sl, WhenChangedFacet);
{msgtd.Values = "Installation of formula was successfull.";
nivest.TakeOffScreen!0;
niv.TalceOffScreen !0;
Msgwin.PutOnScreenAndWait!();}
else { msgtd.Values = "Installation of the formula was notMsuccessfull. Please reconsider

the formula.";
Msgwin.PutOnScreenAndWait!0;} }

case: ?button == "Cancel";
(DeleteSlot(correl_temp@, ConvertToSymbol(niveb2.Values));
nivest.TakeOffScreen!();
niv.TalceOffScreen!0;}

case: ?button == "View Functions";
{funccr.UserData = nivest@;
func.PutOnScreen!0;}

case: ?button == "Help";
{;} }

}

function createfor (?self, ?sl, ?str)

{
bound inputs;
/* This function creates the slot formula for the representation of the IP estimation procedure. */

?list = '0;
findl ?self.?s11..BV_description == Quantitative;
?string = AppendStringse?list --= -();Mfor ?i from 0 to ListLength(?self.",

C-75

ConvertToString(?s11), ") - 1;\ndo f");
for find ?self.?s..BV_description == Quantitative;
do (collect ConvertToString(?s) into ?list;}
PrintLine(?list);
for ?y must ?list;
do { ?string = AppendStrings(?string, "?", ?y, "= ListNth(?self.", ?y,

", ListLength(?self.",?y, ")-1 -?i);\n");}
?string = AppendStrings(?string, ?str, "\n?list = AppendListsC(?",

ConvertToString(?s1), "), ?list);} \n?self.",
ConvertToString(?s1), " = ?lisOn?value = ?self.?slot;");

PrintLine(?string);
C:{PrkARMalceFormula(?self, 'Parameters_needed, ?string);}
disablef();

}

/**** * **** ** ** * *** * *********** ** ******** * *** ** ******** * ** ** **** * ****/

UPSTEP3.ptk

/* This file contains the functions and methods relevant to the implernention of applicability for
correlations. */

#include <prk/math.pth>
#include <prk/lib.pth>
/***/

method appliOlb 1 .React! (?new_value, ?old_value)

{
bound inputs;
/* The method attached to the ground types display list box in the "appli0" dialog box. */

?lpar = all appliOlbl.SelectionItems;
select (

case: { IsString(?old_value);
not {IsString(?new_value);}
?x1 = find direct subclassof ConvertToSymbol(?old_value);
or (ObjectModule(?xl) =-- ground_rep@;

ObjectModule(?x 1) == expand @ ; } }
{ appliOlbl.SelectionItems = Null;
for {find ?x == direct subclassof ConvertToSymbol(?old_value);

or {ObjectModule(?x) == ground_rep@;
ObjectModule(?x) == expand@;})

do appliOlbl.SelectionItems +== ConvertToString(?x);
?lpar = DeleteListElmt(?old_value, ?lpar);
?lpar = AppendLists(?Ipar, s(?old_value));
appliOlbl.UserData = AppendLists(appliOlbl.UserData, '(?lpar));1)

}
/***/

method appliOpb1.React! (?button)

{
bound inputs;
/* The method attached to the "Select", "Back", "Forward"

and "Reset" push buttons in the "appli0" dialog box. */

if (?button == "Select";

C-76

IsString(appliOlbl.Values);}
{appli2rb.Title = appliOlbl.Values;
appli2.PutOnScreenAndWait!(); }

else {parpb(?button, appliOlbl @, Ground @);}

method appliOpb2.React! (?button)

bound inputs;
/* The method attached to the "Define new ground type"

push buttons in the "appli0" dialog box. */

if ?button == "Define new ground type";
{if IsString(appliOlbl.Values);
{ngt1b.SelectionItems = appliOlbl.Values;}

else {ngt1b.SelectionItems = Null;}
ngt.PutOnScreen !O;

/***/

method appliOcr.React! (?button)

bound inputs;
/*The method attached to the command row of the "appli0" dialog box. */

select {

case: ?button	 "OK";
{if or {ListLength(all appliOcr.UserData.High_Applicability) >0;

ListLength(all appliOcr.UserData.Medium_Applicability) >0;
ListLength(all appliOcr.UserData.Low_Applicability) >0;1

{appli2cr.UserData = Off;
appli2.TakeOffScreen!0;
relialb.DefaultValues = appliOcr.UserData.Reliability;
reliaebl.DefaultValues = appliOcr.UserData.Reliability..r2;
reliaeb2.DefaultValues = appliOcr.UserData.Reliability..sd;
reliaeb3.DefaultValues = app/i0cr.UserData.Reliabdity..n;
appliO.TakeOffScreenl();
relia.PutOnScreen!();}
else {msgtd.Values = "Applicability should be defined, at least\nin terms of ground

type(s)";
Msgwin.PutOnScreenAndWait!();} }

case: ?button == "Cancel";
{appliO.TakeOffScreen!();
appli2.TakeOffScreen!0;
calestwin(appliOcr.UserData);}

case: ?button == "Preview";
{aprecr.UserData = ' 0;

?oh = appliOcr.UserData;
for ?sl inlist s (High_Applicability, Medium_Applicability, Low_Applicability);
do {for ?x inlist all ?ob.?s1;

do {aprecr.UserData = AppendLists(aprecr.UserData, '(?x));)}
aprecr.'"React!"("Show next");
apre.PutOnScreenAndWait!0;}

case: ?button == "Help";

{;}}

C-77

1***/

method appli2cr.React! (?button)

bound inputs;
/* The method attached to the command row of the "appli2" dialog box. */

select {

case: ?button == "Update";
{for {?x inlist SlotFacets(applilcr@, UserData);

?x != NoBPFacetNames;}
do {DeleteFacet(applilcr@, UserData, ?x);}
if appli2rb.Values == NO;
{appli5.PutOnScreenAndWait!();}
else {appli4ebl.DefaultValues = Null;

appli4eb2.DefaultValues = Null;
parpb ("Reset ", applillb 1 @, Parameters @);
applil.PutOnScreenAndWait!();) }

case: ?button == "Cancel";
appli2.TakeOffScreen!();}

1**1

method applillbI.React! (?new_value, ?old_value)

bound inputs;
/* The method attached to the parameters display list box of the "app/i1" dialog box. */

parlb(?new_value, ?old_value, applillbl @);

1***1

method appli1pb1.React! (?button)

bound inputs;
/* The method attached to the "Select", "Back", "Forward"

and "Reset" push buttons in the "applil" dialog box. */

select {

case: { ?button == "Select";
IsString(applillbl.Values);
findl ?ob.name == applillbl.Values;
ListLength(all superclassof ?ob) > I;)

{if ?ob.format == Qualitative;
{appli3cr.UserData = new;
appli3.UserData = 2;
applipb2f1(?ob);
appli3.PutOnScreenAndWait!();}

else fappli4cr.UserData = new;
appli4.Title = AppendStrings(appli 1 lb 1.Values, "restrictions");
appli4td.Values = ?ob.fonnat..units;
appli4.PutOnScreenAndWait!();})

case: { ?button =-- "Select";
IsS tring (appli 1lb 1 .Values);
find! ?ob. name == appli 1 lb 1 .Valu es;
ListLength(all superclassof ?ob) == 1;1

C-78

Imsgtd.Values = "Only parameters, not parameters categories\ncan be selected";
Msgwin.PutOnScreenAndWait!();}

otherwise: parpb(?button, applillb1@, Parameters@);}
}
/***/

method applilpb2.React! (?button)

{
bound inputs;
/* The method attached to the "Define new parameter"

push buttons in the "applil" dialog box. */

select {

case: ?button == "New quantitative parameter";
(applillbl.Values = Null;
appli4cr.UserData = new;
pbal("Quantitative ");
nip.Title = "New Quantitative Parameter";
nip.PutOnScreenAndWaid();}

case: ?button == "New qualitative parameter";
{ appli3cr.UserData = new;
appli3.UserData = 4;
pbal("Qualitative ");
vip.Title = "New Qualitative Parameter";
vip.PutOnScreenAndWaitl();}}

}
/***/

method appli lcr.React! (?button)

{
bound inputs;
/*The method attached to the command row of the "applil" dialog box. */

select {

case: ?button . "OK";
appli5.PutOnScreenAndWait!();

case: ?button == "Cancel";
applil.TalceOffScreen!();

case: ?button == "Preview";
{;}

case: ?button == "Help";
{;} }

}

function callapwin (?ob)
{

bound inputs;
/* Sets the "appli3" dialog box on screen. */

appli3lb.SelectionItems = Null;
appli3.UserData = 1;
appli3.Title = AppendStrings(ConvertToString(?ob), "restrictions");
for ?x inlist all vbvlb.SelectionItems;
do { appli3lb.SelectionItems +== ?x;}
appli3.Contents -== appli3pb@;
appli3.Contents -== appli3eb@;

C-79

appli3.PutOnScreenAndWait!0;

)

method appli3pb.React! (?button)

{
bound inputs;
/* The method attached to the "Delete", "Show alternative"

push buttons of the "appl3" dialog box. */

select {

case: ?button == 'Delete;
{if (ListLength(all appli3lb.Values) < 2;

IsString(appli3lb.Values); }
{ appli3lbSelectionItems -== appli3lb.Values;} }

case: ?button == "Show alternative";
{appli3lb.SelectionItems = Null;
?I = ListLength(ListFirst(appli3lb.UserData));
for ?i from 0 to ?1-1;
do {appli3lb.SelectionItems +== ListNth(ListFirst(appli3lb.UserData),

?1-?i-1);}
appli3lb.UserData = ListRest(appli3lb.UserData);
appli3lb.UserData = AppendLists(appli31b.UserData,

'(all appli3lb.SelectionItems));} }

)

method appli3eb.React! (?new_value)

{
bound inputs;
/* Adds a new pemissible value in the list. */

appli3lb.SelectionItems +== ?new_value;
appli3eb.Values = appli3eb.DefaultValues;

)
/***/

method appli3cr.React! (?button)

{
bound inputs;
/* The method attached to the command row of the "appli3" dialog box. */

select {

case: {?button == "OK";
appli3.UserData == 2;
appli3cr.UserData =--- new;}

{if ListLength(all appli3lb.Values) > 0;
{find ?ob.name == applillbl.Values;
if ListLength(all ?oblormat..per_val) < 1;
{?oblormat..per_val = SortList(all appli3lb.Selectionitems,

Alphabetize);}
else {?oblormat..per_val +== SortList(all appli3lb.SelectionItems,

Alphabetize);}
find 1 ?ob.name == appli llb 1 .Values;
?fac = ConvertToSymbol(?ob);
applilcr.UserData..?fac = all appli3lb.Values;}

else {msgtd.Values = "At least one value of the parameter\nshould be selected";
Msgwin.PutOnScreenAndWaid();

C-80

fail; })

case: {?button == "OK";
appli3.UserData == 4;
appli3cr.UserData == new;)

{if ListLength(all appli3lb.Values) > 0;
{ findl ?ob.name == AppendStrings(vipebl.Values, ", ", vipeb2.Values);
if ListLength(all ?ob.format..per_val) < 1;
Pob.format..per_val = SortList(all appli3lb.SelectionItems,

Alphabetize);)
else (?ob.format..per_val +== SortList(all appli3lb.SelectionItems,

Alphabetize);)
?fac = ConvertToSymbol(?ob);
applilcr.UserData..?fac = all appli3lb.Values;
vip.TakeOffScreen!O;}

else {msgtd.Values = "At least one value of the parameter\nshould be selected";
Msgwin.PutOnScreenAndWait!();
fail;))

case: ?button == "Cancel";
vip.TakeOffScreen!();

otherwise: {?fac = ConvertToSymbol(aprelb.Values);
?ob = ConvertToSymbol(apretd.Values);
?sl = aprelb.UserData..s1;
?list = SortList(all appli3lb.Values, Alphabetize);
if ustungth(71ist) > 0;

{;}
else {msgtd.Values = "At least one value of the parameter\nshould be selected";

Msgwin.PutOnScreenAndWait!0;
fail;)

if AppendListsC(?ob@), ?list) == aprelb.UserData;
{;}
else {if ListLength(all ?fac@format..per_val) < 1;

(?fac@.format..per_val = SortList(all appli3lb.SelectionItems,
Alphabetize);)

else {?fac@.format..per_val +== SortList(all appli3lb.SelectionItems,
Alphabetize);)

appliOcr.UserData.?sl..?fac +.= AppendListsC(?ob@), ?list);
appliOcr.UserData.?sl..?fac -=. aprelb.UserData;}}}

appli3lb.DefaultValues = Null;
appli3.TakeOffScreen!();

1
/***/

function applipb2f1(?ob)

(
bound inputs;
/*s M)lces the settings for the "appli3" dialog box. */

appli3lb.UserData = Null;
appli3lb.SelectionItems = Null;
appli3pb.ButtonLabels = —Delete";
appli3.UserData = 2;
appli3.Title = AppendStrings(applillbl.Values, "restrictions");
appli3.Contents +== appli3pb@;
appli3.Contents +== appli3eb@;
if 7y = findl ?ob.format...per_val;

{for ?i from 0 to ListLength(?y)-1;
do {appli3lb.SelectionItems +== ListNth(?y, ListLength(?y)-1-?i);}
applipb2f2(?ob, ?y);}

else {; }

}

function applipb2f2(?ob, ?y)
{

bound inputs;
/* Makes additional settings for the "appli3" dialog box. */

for {?pv = find ?ob.format..per_val;
?pv != ?y;}

do {appli3lb.UserData +== ?pv; }
appli3lb.UserData = all appli3lb.UserData;
appli3lb.UserData = AppendLists(appli3lb.UserData, '(?y));
if ListLength(appli3lb.UserData) > 1;
{ appli3pb.ButtonLabels +== '"Show alternative";}
else {;}

}

method appli4cr.React! (?button)

{
bound inputs;
/* The method attached to the command row of the "appli4" dialog box. */

?list = '0;
if not (IsNumber(appli4ebl.Values);}
(appli4ebl.Values = Null;)
else{;}

if not {IsNumber(appli4eb2.Values); }
(appli4eb2.Values = Null;)
else{ ;}

select {

case: {?button == "OK";
not {IsNumber(appli4ebl.Values);)
not {IsNumber(appli4eb2.Values);} }

{msgtd.Values = "At least one of the mm, max values\nshould be specified!";
Msgwin.PutOnScreenAndWait!();
fail;)

case: {?button == "OK";
IsNumber(appli4eb1.Values);
IsNumber(appli4eb2.Values);}

{if appli4ebl.Values >. appli4eb2.Values;
{msgtd.Values = "The specified mm value is greater than\nor equal to the max value!";
Msgwin.PutOnScreenAndWaid();
fail;)

else{?list = '(appli4ebl.Values, appli4eb2.Values);} }

case: {?button == "OK";
IsNumber(appli4eb1.Values);
not {IsNumber(appli4eb2.Values);} }

{?list = s (appli4ebl.Values, u);}

case: {IsNumber(appli4eb2.Values);
not {IsNumber(appli4ebl.Values);} }

{ ?list = '(u, appli4eb2.Values);}

case: ?button == "Cancel";
{appli4.TakeOffScreen!();
fail; } }

if appli4cr.UserData == new;
{or {findl ?ob.name == applillbl.Values;

findl ?ob.name == AppendStrings(nipebl.Values, ", ", nipeb2.Values);}
?fac = ConvertToSymbol(?ob);
appli 1 cr.UserData..?fac = ?list;)

else {?fac = ConvertToSymbol(aprelb.Values);
?ob = ConvertToSymbol(apretd.Values);
?sl = aprelb.UserData..s1;
if AppendListsC(?ob@), ?list) == aprelb.UserData;

{; }
else {appliOcr.UserData.?sl..?fac +== AppendLists('(?ob@), ?list);

appliOcr.UserData.?sl..?fac -== aprelb.UserData;} 1

nip.TakeOffScreen!O;
appli4.TalceOffScreen!0;

}

method appli5cr.React! (?button)
{

bound inputs;
1* The method attached to the command row of the "appli5" dialog box. */

select {

case: ?button == "Update";
{select {
case: appli5lb.Values == high;

?sl = High_Applicability;
case: appli5lb.Values == medium;

?sl = Medium_Applicability;
case: appli5lb.Values == low;

?s1 = Low_Applicability;
otherwise: {?s1 = unsigned;

fail; } }
?ob = ConvertToSymbol(appli2rb.Title);
?list = s(?ob@);
for {?x inlist SlotFacets(applilcr, UserData);

?x != NoBPFacetNames;}
do { ?list = AppendLists(?list, '(?x));

if IsFacet(appliOcr.UserData, ?sl, ?x);
{appliOcr.UserData.?sl..?x +== AppendLists('(?ob@), applilcr.UserData..?x);}
else {MakeMultiValueFacet(appliOcr.UserDat a, ?sl, ?x);

appliOcr.UserData.?sl..?x = AppendLists('(?ob@), applilcr.UserData..?x); } 1
appliOcr.UserData.?s1 +== ?list;
appli5.TakeOffScreen!O;
applil.TakeOffScreen!0;
appli2.TalceOffScreen!0;}

case: ?button == "Cancel";
appli5.TakeOffScreen!0;}

C-83

}
/***/

function applipre(?ob)
{

bound inputs;
/* the applicability preview function. */

?string = ";
for ?sl inlist ' (High_Applicability, Medium_Applicability, Low_ApplicabilitY);
do {select {

case: {?s1 == High_Applicability;
ListLength(all ?ob.?s1) > 0;)

?string = AppendStrings(?string, "\nHigh Applicability:\n");
case: {?s1 == Medium_Applicability;

ListLength(all ?ob.?s1) > 0;1
?string = AppendStrings(?string, " \nMedium Applicability:\n");

case: {?s1 == Low_Applicability;
ListLength(all ?ob.?s1) > 0;)

?string = AppendStrings(?string, "\nLow Applicability: \n");}
for ?x inlist all ?ob.?s1;
do { ?soil = ListFirst(?x);

?string = AppendStrings(?string, "ln	 ", ConvertToString(?soil));
if ListLength(ListRest(?x)) < 1;

{;}
else {?string = AppendStrings(?string, "with:");

for ?y inlist ListRest(?x);
do { ?list = '();

for ?z inlist all ?ob.?sl..?y;
do {if ListFirst(?z) == ?soil;

{ ?list = ListRest(?z);}
else{;))
if ?y.fonnat == Quantitative;
{?min = ListFirst(?list);
?max = ListFirst(ListRest(?list));
select {

case: {IsNumber(?min);
IsNumber(?max);}

{?string = AppendStrings(?string, "\n
ConvertToString(?y), " between ",
ConvertToString(?min), " and ",
ConvertToString(?max), " n,

?y.format..units);}
case: (IsNumber(?min);

not {IsNumber(?max);} }
{ ?string = AppendStrings(?string, "\n

ConvertToString(?y), "greater than ",
ConvertToString(?min), ?y.format..units);}

case: {not {IsNumber(?min);}
IsNumber(?max);)

n
{?string = AppendStrings(?string, "VI	 ,

ConvertToString(?y), "lower than ",
ConvertToString(?max), ?y.format..units);} }I

else {?str =
for ?w inlist ?list;
do {?str = AppendStrings(?str, ConvertToString(?w), " or ");)
?str = Substring(?str, 0, StringLength(?str)-3);
?string = AppendStrings(?string, "\n 	 ", ConvertToString(?y),

": ", ?str);} } }

C-84

?string = AppendStrings(?strin g, "\n");}
?string = AppendStrings(?string, U\);}

?string = Substring(?string, 1);
?string = Substring(?string, 0, StringLength(?string)-3);
msgtd.Values = ?string;

I

method aprelb.React! (?new_value, ?old_value)
f

bound inputs;
1* The method attached to the parameter display list

box of the "Applicability preview" dialog box. *1

if IsSymbol(?new_value);
(?ob = ConvertToSymbol(apretd.Values)@;
select (

case: apretd2.Values == high;
?s1= High_Applicability;

case: apretd2.Values == medium;
?sl = Medium_Applicability;

otherwise: ?sl = Low_Applicability;)

?obje = appliOcr.UserData;
?list = '0;
for ?x inlist all ?obje.?sl..?new_value;
do {if ListFirst(?x) == ?ob;

{?list = ListRest(?x);}
else{;))

aprelb.UserData..s1 = ?s1;
aprelb.UserData = AppendListsC(?ob), ?list);
if ?new_valueformat == Quantitative;
{appli4.Title = AppendStrings(aprelb.Values, "restrictions");
appli4ebl.DefaultValues = ListFirst(?list);
appli4eb2.DefaultValues = ListFirst(ListRest(?list));
appli4td.Values = ?new_valueformat..units;
appli4cr.UserData = up;
appli4.PutOnScreenAndWait!();)

else {appli3cr.UserData = up;
appli3lb.UserData = Null;
appli3lb.SelectionItems = Null;
appli3pb.ButtonLabels = —Delete";
appli3.UserData = 2;
appli3.Title = AppendStrings(ConvertToString(aprelb.Values),

" restrictions");
appli3.Contents +== appli3pb@;
appli3.Contents +== appli3eb@;
MakeMultiValueSlot(?new_value@, "123456");
for ?x inlist all ?new_value@format..per val;
do {?new_value@.'"123456" =

for ?y inlist ?x;
do { ?new_value @.' "123456" +== ?y;)
for ?z inlist ?list;
do {?new_value@.'"123456" +== ?z;)
if ListLength(all ?new_value@.'"123456")=...- ListLength(?x)+1;
{?new_value@."123456"..suc = ?x;)

C-85

else{;}}
for ?t from 0 to ListLength(?new_value@."123456"..suc) - 1;

do	 lappli3lb.SelectionItems	 +==	 ListNth(?new_value@."123456"..suc,
ListLength(?new_value@ ."123456"..suc)-1-?0; }

DeleteSlot(?new_value@, "123456");
for ?tr inlist ?list;
do lappli3lb.DefaultValues +== ?tr;}
applipb2f2(?new_value@, all appli3lb.SelectionItems);
appli3.PutOnScreenAndWait!();)

/***/

method aprecr.React! (?button)

bound inputs;
/* The method attached to the command row of the "Applicability preview" dialog box. */

select {

case: ?button == "Update";

{;}

case: {?button == "Show next";
ListLength(aprecr.UserData) < 1;)

{aprelb.SelectionItems = Null;
apretd.Values = Null;
apretd2.Values = Null;}

case: {?button == "Show next";
ListLength(aprecr.UserData) == 1;)

{apreshn(); }

case: (?button == "Show next";
Lis tLeng th (aprecr.UserData) >I;

{apreshn();
aprecr.UserData = AppendLists(ListRest(aprecr.UserData),

'(ListFirst(aprecr.UserData)));

case: ?button == "Remove";
{if apretd.Values != Null;

{msgtd.Values = "Are you sure you want to remove the displayed ground type\nwith its
assosiated parameter restrictions from the\ndefinition of applicability?";

msgcr.ButtonLabels +== "Remove";
Msgwin.PutOnScreenAndWait!(); }
else {fail;))

case: ?button == "Dismiss";
apre.TakeOffScreen!O;

case: ?button == "Help";
{;}}

/***/

function apreshn 0

bound inputs;
/* Displays the next applicability set. */

aprelb.SelectionItems = Null;

C-86

?x = ListFirst(aprecr.UserData);
apretd.Values = ConvertToString(ListFirst(?x));
for ?y from 1 to ListLength(?x);
do aprelb.SelectionItems +== ListNth(?x, ?y);

select {

case: find! appliOcr.UserData.High_Applicability == ?x;
apretd2.Values = high;

case: find! appliOcr.UserData.Medium_Applicability == ?x;
apretd2.Values = medium;

otherwise: apretd2.Values = low;)
}

UPSTEP4.ptk

/* This file contains the functions and methods relevant to the implemention of reliability and
comments for correlations. */

#include <prk/math.pth>
#include <prk/lib.pth>
/***/

method reliacr.React! (?button)

{
bound inputs;
/* The method attached to the command row of the "Reliability" dialog box. */

select {

case: {?button == "OK";
IsString(relialb.Values);}

{appliOcr.UserData.Reliability = relialb.Values;
if {IsNumber(reliaebl.Values);

reliaebl.Values >= 0;
reliaebl.Values <= 100;)

{ appliOcr.UserData.Reliability.s2 = reliaeb1.Values;)
else {if reliaebI.Values == PrkEmptyString;

{ ;}
else {msgtd.Values = "The coefficient of fit should be between 0 and 100.";

Msgwin.PutOnScreenAndWaid();
fail; } }

if (IsNumber(reliaeb2.Values);
reliaeb2.Values >= 0;)

{appliOcr.UserData.Reliability..sd = reliaeb2.Values;)
else {if reliaeb2.Values == PricEmptyString;

{ ;}
else {msgtd.Values = "Standard deviation should be a positive number.";

Msgwin.PutOnScreenAndWait!();
fail;))

if {IsFixnum(reliaeb3.Values);
reliaeb3.Values >= 0;)

{appliOcr.UserData.Reliability..n = reliaeb3.Values;}
else {if reliaeb3.Values == PrkEmptyString;

{;}

C-87

else {msgtd.Values = "The number of points should be a positive integer.";
Msgwin.PutOnScreenAndWait!();
fail;))

defcom(step3cr.UserData, Comments);
relia.TalceOffScreen!();
Step3.PutOnScreen!O;)
case: {?button == "OK";

relialb.Values == Null;)
{msgtd.Values = "Please select avalue for the reliability score";
Msgwin.PutOnScreenAndWaid();
fail;)

case: ?button == "Cancel";
{ relia.TalceOffScreen!();
appliO.PutOnScreen!();})

}

function defcom (?ob, ?s1)

{
bound inputs;
/* Displays the comments of an existing correlation. */

if find! ?ob.?s1 == ?;
{?string =
for ?x inlist all ?ob.?s1;
do {?string = AppendStrings(?string, ?x);)
if Substring(?string, 0, 1) == "\n";
{?string = Substring(?string, 1);)

else{;}

for ?i from 0 to StringLength(?string)-1;
do {select {

case: Substring(?string, ?i, ?i+2) == "An";
?string = AppendStrings(Substring(?string, 0, ?i),

Substring(?string, ?i+2));

case: Substring(?string, ?i, ?i+1) ==
?string = AppendStrings(Substring(?string, 0, ?i),

Substring(?string, ?i+1));) }

step3eb.Values = Null;
step3eb.DefaultValues = ?string;
PrintLine(step3eb.Values);
step3eb.React!(?string);)

else {step3eb.Values = Null;
step3eb.DefaultValues = Null;
step3td.Values = Null;)

}
/***/

method step3cr.React! (?button)
{

/* The method attached to the command row of the "Comments" dialog box. */

select {

case: ?button .--- "OK";
{?string = step3td.Values;

C-88

if IsString(?string);
{if StringLength(?string) > 200;
{step3cr.UserData.Comments = Substring(?string, 0, 200);
?string = Substring(?string, 200);
?1= ConvertToFloat(StringLength(?string))/200;
?i = 0;
while ?i<?I;
do {step3cr.UserData.Comments +== Substring(?string, 0, 200);

?string = Substring(?string, 200);
?i = ?i+1;}

?list = all step3cr.UserData.Conunents;
step3cr.UserData.Comments = Null;
for ?z inlist ?list;
do {step3cr.UserData.Comments +== ?z;}1
else { step3cr.UserData.Comments = ?string; } }

else {;}
step3cr.UserData = Null;
appliOcr.UserData = Null;
relia.UserData = Null;
if IsFacet(Step2@, UserData, name);
{DeleteFacet(Step2@, UserData, name);)
else { ; }
SaveApp(correlation@);
estwin.UserData = Null;
Step3.TalceOffScreen!0;
mmem.PutOnScreen!0;)

case: ?button == "Cancel";
relia.PutOnScreen!0;}

Step3.TakeOffScreen!();

}
/***/

function makesymbol (?string)

(
bound inputs;
/* This function is used for replacing strings containing space characters

to symbols, by substituting them with underscores (_). */

if IsString(?string);
{?1= StringLength(?string);
for ?i from Ito ?1-1;
do (if Substring(?string, ?i, ?i+1) ==" ";

(select {

case: ?i == 0;
psi =";
?s2 =
?s3 = Substring(?string, ?i+1);}

case: ?i+I == ?1;
{ ?sl = Substring(?string, 0, ?i);
?s2 =
?s3 =

otherwise: {?s1 = Substring(?string, 0, ?i);
?s2 =
?s3 = Substring(?string, ?i+1);}

C-89

}
?string = AppendStrings(?sl, ?s2, ?s3);}

else { ?string = ?string;} } }
else (Print("Argument is not a STR1NG\n");}
return(?string);

}
/***/

method step3eb.React! (?new_value)
{

bound inputs;
/* The method attached to the entry box of the "Comments" dialog box. */

string_man(?new_value, step3td, Values, 50);

}
/***/

function string_man(?string, ?obje, ?sl, ?num)

{
bound inputs;
/* This function arranges long strings to lines containing

approximately a specified number of characters. */

?al = 0;
step3eb.UserData = Null;
?str =
?i = 0;
?1 = ConvertToFloat(StringLength(?string))/?num;

while ?i<?1;
do {step3td.UserData = Null;

select {

case: StringLength(?string) >= ?num+4;
{for ?il from ?num-4 to ?num+3;
do {if Substring(?string, ?i1-1, ?il) ==" ";

{ step3td.UserData +== ?i 1; }
else {;} }

if find step3td.UserData == ?;
{select {

case: find step3td.UserData == Nunn;
?al = ?num;

case: find step3td.UserData == ?num-1;
?al = ?num-1;

case: find step3td.UserData == ?num+1;
?al = ?num+ 1;

case: find step3td.UserData == 7num-2;
?al = ?num-2;

case: find step3td.UserData == ?nunr+2;
?al = ?num+2;

case: find step3td.UserData == 7num-3;
?al = ?num-3;

case: find step3td.UserData == ?num+3;
?al = ?num+3;

otherwise: ?al = ?num-4;}

?sub = Substring(?string, 0, ?a1-1);
?string = Substring(?string, ?al);
step3eb.UserData +== ?sub; }

C-90

C-91

else {?sub = Substring(?string, 0,?num);
?string = Substring(?string, ?num);
step3eb.UserData +== AppendStrings(?sub, " 2);} }

otherwise: {step3eb.UserData +== ?string;}
}
?i = ?i+1;}

?str_list = all step3eb.UserData;
for ?y from 0 to ListLength(?str_list)-1;
do {?ys = ListNth(?str_list, ListLength(?str_list)-1-?y);

?str = AppendStrings(?str, ?ys, "\n");}

?obje.?s1 = Substring(?str, 0, StringLength(?str)-1);

}
/** ***********************/

