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This work deals with the construction of networks of topological defects in m odels described
by a single com plex scalar eld. W e take advantage of the deform ation procedure recently used
to describe kinklike defects in order to build networks of topological defects, which appear from
com plex eld m odels with potentials that engender a nite num ber of isolated m inin a, both in the
case where the m inin a present discrete sym m etry, and in the non symm etric case. W e show that
the presence of sym m etry guide us to the construction of reqular netw orks, while the non sym m etric
case gives rise to irregular networks which spread throughout the com plex eld space. W e also
discuss bifiircation, a phenom enon that appear in the non sym m etric case, but is washed out by the
deform ation procedure used in the present work.

PACS numbers: 11.10Lm ,11.274+d

I. INTRODUCTION

D efect structures have appeared in high energy physics aln ost fty years ago, w ith som e of the pioneer results
collected in Refs. El,lﬂ ,E ,B}. A long the years, the sub fct has grown in in portance, accom panied w ith an increasing
num ber of Investigations on kinks in one spatial dim ension, vortices in two dim ensions and m onopoles in three
din ensions, am ong other topological defects { see, eg. E] for an extensive discussion of som e of the m ost In portant
results In the area.

T he classical solutions which represent the defect structures can be of topological or non topological nature, and
here we will deal w ith perhaps the sin plest topological structures, which appear in m odels of scalar elds. To be
speci ¢, we w ill consider m odels of the W essZum ino type, described by a single com plex scalar eld in the presence
of discrete symm etry and in the m ore general case which engenders no speci ¢ symm etry. Som e of the m odels
have been studied before in @,B] { see also E] for related issues { with particular attention to the presence and
stability of kinklike defects and juinctions, and in @], where the kink orbits are written in tem s of real algebraic
curves and the equations ofm otion are shown to be fiilly expressed in term s of st order di erential equations of the
Bogom ol'nyiPrasad-Somm er eld (BPS) type B ]

T he kinklke structures have been used in m any di erent contexts, in (1;1) and in higher space-tin e dim ensions,
in particular in the form of junctions and netw orks of defects a,,,]. In (3;1) din ensions they are usually
nam ed dom ain walls, which can nd applications in severaldistinct scenarios, in particular as seeds for the form ation
of structures in the early Universe. In this context, although the standard scenario seem s to show that the presence
ofdom ain walls has little to contrbute to the coan ic evolution, it has been suggested that dom ain wallsm ay perhaps
be usad as a source for the dark energy necessary to feed the current cosn ic acceleration ].

Another line of research has recently appeared In gravity in higher din ensions @,E], w ith the hope to solve
the hierarchy and other problem s In high energy physics. In (4;1) din ensions, the branew orld m odel w ith warped
geom etry Involring a single extra din ension of in nite extent suggested in ] has strongly iIn pacted the sub fct. In
this branew orld scenario, the inclusion of scalar eldsm ay contribute to sn oothen the brane ], to give rise to a
diversity of situations of current interest, as one can see, for instance, in the recent investigations E ].

T he present study is a continuation ofa form er work @ ]. Herewe w ill focusm ainly on the deform ation procedure
Introduced in ], and extended to other scenarios in , ]. Those Investigations have led usto nd a peculiar and
very interesting feature of the deform ation procedure there in plem ented. T he issue is that it is som etin es possible to
deform a given m odel described by a potential containing som e m inin a, to get to another m odel, w ith the potential
giving rise to a di erent set of m inin a, which m ay increase periodically. T his feature strongly suggests the possibility
of using the deform ation procedure to buid lattices ofm inin a in the two-dim ensional eld space.

A n Interesting property of the deform ation procedure is that it also constructs the kinklike solution of the deform ed
m odel in tem s of the kink solution of the originalm odel. T hus, in the lattice of m InIm a we can then nest a netw ork
of defects very naturally, that is, as intemal feature of the deform ation itself. This is the dea underlying this
paper, In which we apply the deform ation procedure to investigate the generation of netw orks of kinklike defects for
the deform ed m odels, which are expanded networks. A lthough it is possible to start with the m ore general case,
considering m odels w ith an arbitrary set of m inin a, we shall rstly dealw ith the case involving N m iInima in a Zy
symm etric arrangem ent. W e shallconsider the symm etricN = 2,N = 3and N = 4 casesexplicitly, and laterwe relax
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the constraint to dealw ith three and fourm Inim a in the non sym m etric case. Them ain reason for this isthatwewant
to keep the m otivation set forward in our form er work ], w here we have investigated the construction of reqular
netw orks. M oreover, as a pedagogical concem we believe that this route m akes the problem easier to understand.

T he dea of constructing netw orks of defects is not new , but the novelty here relies on the use of the deform ation
procedure as a sin ple and naturalway to generate networks. The m echanisn is powerful and suggestive, and fully
m otivates the present work. To m ake it short, direct, we have decided to consider m odels of the W essZum ino type,
driven by a single com plex scalar eld. These m odels are popular, of great in portance and easy to m anipulate, and
so they very m uch help us to highlight the dea to be explored below .

W e start the investigation in Section [, where we introduce the sym m etric m odels and perform the deform ation
procedure on general grounds. In Section we Mistrate the procedure w ith som e applications, considering two
In portant cases, which engender three and four m Inim a, form ing an equilateral triangle and a square, respectively.
There we show how the deform ed m odels tile the plane replicating the sets of m lnina in the entire eld plane.
W e then consider other possbilities in Section [IV], and there we deal w ith m ore generalm odels which three and
four m nin a, engendering no symm etry anym ore. W e use the deform ation procedure to get to m any distinct and
interesting pattems. The m ore generalcase allow s or a new phenom enon, bifiircation, and so in Section [V] we deal
w ith bifircation, which concems the possibility of the systam to allow for two or m ore distinct connections betw een
two given m inin a. This is related to the m arginal stability curve, and has to do w ith the energy balance involring
distinct orbits in eld space, as already investigated in ﬂ ]. W e end the paper in Section [V 1, w here we introduce som e
comm ents and conclusions.

II. DEFORMATION OF W ESSZUM INO M ODELS

In this Section we start w ith a brief sum m ary of the bosonic sector of the standard W essZum ino m odel engendering
the Dy symmetry. W e then propose a sin ple but very interesting way to deform the m odel, to generate an In nite
fam ily of new W essZum no lke m odels w ith their defect solutions.

A . The generalcase

Let (x;8)= 1(x;8)+ 1 2(x;t) bea complex scalar eld, written in temm s of the two real partners 1 (x;t) and
2 (x;t) In (1;1) spacetin e din ensions. T he dynam ics of the bosonic sector of W ess7Zum ino m odels is govemed by
the Lagrange density

1
L=>@ @~ V() (1
2
w here the bar stands for com plex conjigation. W e refer to these system sasW essZum no,or Landau-G inzburg,m odels

if the potential energy density is determm ined from an holom orphic superpotentialW ( ) such that the potential energy
density of the scalar eld theory reads

V()= =w % )w o) 2)

T he Interest of these m odels lies In the fact that all of them adm it a supersym m etric version with N = 2 extended
supersym m etry. Tt is also In portant to stress that there is a U (1) am biguity In the election of the superpotential:

W ()=-e W ),whereei 2 U (1), produces the sam e dynam ics.
W e shall rstly consider polynom ials ofdegree N + 1 In  with real coe clents as superpotentials, in this case
W ()= W () is the sam e function of the conjugate com plex eld. The vacua m anifold, the set of zeros of V ( ;7 ),

is given by the critical points of the superpotential, the N roots of the polynom ialw °( )
Pey=vP; ww=0; J=1;2; N

The BPS static kinks satisfy the system of rstorder ordinary di erential equations




Equation (@) (right) m eans that d(W W )= 0 such that
ImW ( (x))= constant (6)

for the eld orbits. T hese orbits are kink orbits if they connect two vacua

W o5 (v®)= W ;) v9) = constant (7)
This criterion sets 3 by requiring that W v*') W @3 e * “”) be real, or
" *®) () #
. Im w ) w @) - -
&3 = arctan mod ; Gk = k3 y (8)

Re W (v®) w (v3))

Integration of (3) (left) gives

1 d d- 5
X Xo= 7 ﬁ+ — 9)
Interpretation of the m eaning of this integral is reached from the dentity between di erential oneform s
Z
WO()d +WO()d =25 % )fdx ) dm +W )=2%°%)fdx ) Rew = 3 )Fdx=s (10)

The kink pro les are then obtained by nverting these relations between the real part of the superpotential and the
\length" s on the kink orbits @) { see, eg. Ref. [d].
T he energy of the static con gurations can be written a la Bogom ol'nyiin the form

z 5 z

1 d —— 1 _
E=— dx—wo()+5 dw + W ) (11)

which show s that the solutions of the rst-order equations (@) for the kink phases *3) {g) have energies given by

M (kj)= ReW «y)®@*) R o)) = w ™)) w @)

B. Symm etric W essZum ino m odels

T he choice of the holom orphic superpotential in the form

W) et —— Y oy (12)
’ N+1 '
leads to the potential energy density
— 1 N —N
V()= > 1 x;0 1 (x;t) (13)
T hedynam ics is invariant w ith respect to thedihedralgroup Dy = Z, Zy ,the symm etry group ofa regular polygon
of N sj(zjes. In our case, the Z, sub-group is generated by the transform ation ! 7 and the elements of Zy are:
1ot D ey = 1;2; ;N . Because the vacuum m anifold is the set of the N th roots of the unity

(k)(x;t)= vk = exp(2 ik 1) ); k= 1;2;:::5N (14)

the Dy symm etry is spontaneously broken to the com plex conjigation 7, sub-group at every vacuum state.
The BPS static kinks satisfy the system of rst-order ordinary di erential equations

d Pl Y &) < e Y ) (15)
— =€ X —=e X
dx "odx
T hese equations can also be written as
ig i a .
dx = - = ; et @ Yya & a Mya=o (16)



T hus, the real algebraic curves which solve {Id) (right)

N +1(X)
i
Im e (x) ﬁ = constant (17)

are the orbits of the solutions. K ink orbits pass through two m inin a of the potential, so we have

X . (W 1 N )
Im e v = sh(—(k 1) ) = constant (18)
N +1 N + 1) N
and
, &3 = aresin cos —(k+ 3 2) ; k> j
Tm W (kj)(v(k))= Tm W (kj)(v(j)) , ) i N ( 'j ) j. <19)
= arcsin cos (k+ J 2) ; k<]
where k)= (34
Integration of (I8) (left) gives
lZ d d
X Xg= — - — + - (20)
2 et (1 (x)) e* (1 N (x))

T his Integralcan be w ritten in term s of the localparam eter% = el N (%)) : in order to In plicitly obtain the
kink pro les

Ree't @l Yx) = et 1 YY) dxg=s 1)

T he kink energies are

2N
sh —k J) (22)

M (ki) =
(j)N+l N

In @ ]it was shown that this superpotential in the N = 2 supersym m etric Landau-G inzburg action is an integrable
deform ation of the N = 2 supersymm etricm Ininal Ay series of conform alm odels. Tt was also suggested In @J the
connection w ith the solitons of the a ne Toda A y eld theories { see Ref. @J for details { which can be directly
envisaged in the above expression (22).

C. The deform ation procedure

W e now tum attention to the deform ation procedure, which w illallow us to obtain new W essZum ino like m odels.
A ccording to Refs. E,@},wewﬂlexpress the deform ed system In term sofa new complex eld (x;t)= 1 (x;L)+
i 2 (x;t); related to the originalone by m eans of the (a priori) holom orphic function £ ( ) such that

=f£()=5H(17 2)+ (17 2) (23)

T his function has to obey
— = = — (24)

The rstorder equations becom e

d CWOUE()) d LW EC)
4 gty 4 a8 EC)

dx £O( ) @)

that we choose to understand as determ Ining the absolute energy m inin a associated to the \deform ed" Lagrange
density

l .



T he dynam ics governed by L and Lp aredi erent,butwecande neV( ; )and W ( )by
V(£( );f 1w %E W O(f 1
V(- YECREO) T AW D Ly o 5o o)
¥ )3 2 f£9)  £0) 2

— = W), —=eltw?) (28)

The BPS kink solitions for this system are obtained from the solutions of {I9) by sin ply taking the inverse of the
deform ation function: ¥ (x) = £ '( ¥ (x)). Thus, we can m ake the ®llow ing relation between the deform ed and
originalequations: if ¥ (x) is a kinklike solution of the originalm odel, we have that

W (% (x))= constant; ReW ( © (x))=s (29)
and so weget that ¥ (x)= £ ?( ¥ (x)) iskinklke solution of the deform ed m odel, cbeying
W (f *( % (x))= constant; ReW (£ *( ¥ (x))) = (30)

where isde ned by
= w0 f () Fax (31)

A Itematively, one could understand (29) as the rst-order equations of the originalm odelw ritten in the form

1, — -
L= Ef( (e @ VA(ECHEC)) (32)

T his interpretation m eans that the original system in the new variables appears as a nonlinear sigm a m odel w ith
target space a non-com pact R iem annian m anifold w ith m etric

G (;)=0=G——(; )i G—(;)=£0)E%)=G6-(;) (33)

T he m erit of our approach is that we infer the kink solutions of one com plicated but interesting eld theoretical
m odel from the wellknown kinks of the associated sin ple system . T he other point of view , in which one deform s the
m etric rather than the potential energy density, is som etim es also interesting. D espite dealing w ith the sam e m odel,
the use of appropriate coordinates In eld space may lead to separation of variables In the rstorder equations,
som etin es reducing its integration to quadratures; see eg., @ 1.

Inspired by form er investigations on the deform ation procedure, we select the deform ation function as being equal
to the new superpotential, that is, we choose £( ) = W ( ). This choice constrains the function £ ( ) to obey the
equation

e e —
900 )= 2V (E( JE( ) (34)

A function f satisfying this condition assures the relation (27) to be fiul lled and presents the advantage of providing
a potential for the new m odelwhich iswellde ned ( nite) at the criticalpoints of £ ( ); ie. the zerosof £%( ). Asa
bonus, the procedure leads to a very sin ple expression for the deform ed superpotential.

III. DEFORMATION OF SYMM ETRIC W ESSZ2UM INO M ODELS

To clarify the general considerations, let usnow illustrate the above results w ith explicit exam ples. W e w illconsider
thecasesN = 2,N = 3,and N = 4:ThecaseN = 2 is sin pler, and it is very sin ilar to the deform ation used in the
rst work in ]to get to the sihe-G ordonm odel. ThecasesN = 3 andN = 4 areharder. T he deform ation procedure
leads to the form ation of junctions ofkink orbits from the originalW essZum ino kinks. Since the originalnon deform ed
m odels engender sets ofm inin a w hich depict equilateral triangles and squares, respectively, the deform ation w ill then
naturally tile the plane, w ith netw orks of defect orbits w hich we nam e expanded kink netw orks.

W ewillsolve (34) for the W essZum ino m odelw ith solutionsof £ ¥ = ( 1N (1 £ ( ));and rN = 3;4 these
solutions are m erom orphic functions. T he issue here is that the deform ation function £ ( ) fails to be holom orphic in
a discrete (in nite) set of points, ,and this induces the potential energy density to acquire a countably In nite set of
poles (them etric in the target space in the second approach above acquires a countably in nite set of zeros). A nalogous
physical system s are described by the elliptic C alogero-M oserm odels (the elliptic tops in the second fram ew ork ); see
eg. Ref. ]. T he loss of holom orphicity can be avoided by restricting the new el to take values away from the set

, the lattice of polesof £ ( ). W e shall then take C= as the - eld space.



A. ThecaseN = 2

In thiscase,wede nethe eld asa function ofthenew eld intheform = f£( ).W ith this,wecanusef( )
to rew rite
1 5 _ 1 2 —
W = - 7 V(;)==-( 1 2 35
() 3 ( ) 2( )( ) (35)
as
1_; 1 2
W (£)=£() gf () V()= E(l 90 )@ £2( ) (36)

T he deform ation function £ ( ) is the new superpotential f we in pose

q
£90)E9( ) = T £2( N@ £2( ) (37)
T he particular choice £( )= sin( ) com plies w ith [37) and leads to the deform ed system de ned by
W ()=cos( ); V(; )= cos( )cos( ) (38)

which is the com plex sine-G ordon m odel. Here the rst-order equations are

. d .
o e' cos( (x)); = ¢ *ocos( (%)) (39)
The solutions for = 0; aregiven by
¥ (x)= gdx)+ 2n = arcsin(tanh(x))+ 2n (40)

where gd stands for the G udem annian fiinction @}, and n is an integer. Here the kinks are analytic solutions and
the superpotential is holom orphic.

B. ThecaseN = 3

In theN = 3 case,we have

and putting = f£( ), we rewrite this form ula in the form

4 1 3 3
W E)=£() —-£°(); V(f)zz(l £20 0@ £2()) (42)
A s stated in (34)), the deform ation fiinction m ust then satisfy
q —_—
£90)E% )= @ £3( Na £3( ) (43)

W e choose in particular the holom orphic solution of {43) which satis es the separated equations

Recall that the W elerstrass P function { see ]{ isde ned as the solution of the ODE

P%z))" = 4P°(z) @P(z) gs (46)



The W elerstrass P (z;9;, ;93 ) elliptic finction and its derivative that solve the di erential equation above are doubly
periodic finctions de ned as the serdes
1 X 1 1

sz 47
v ' (z 2m!y 2nl!y)  (2m!y+ 2n!y)? (47a)

P%%) = — 2 (47b)

withm ;n 2 2 and m? + n? 6 0: T herefore, the deform ation fiinction is, up to a factor, the W elerstrass P fiinction
with Invariants g, = 0 and g3 = 1, and we denote it by Py1(z). This function is m erom orphic, with an in nite
num ber of poles congruent to the frreducible pole of order two In the fundam ental period parallelogram (FPP).Thus,
we suppose that the - eld takes values away from the set of points 3 in order to m ake the new superpotential
holom orphic in the N = 3 case.

A Dbrief rem inder of the essential properties of Py and P 81 is the follow ing:

1. Pp1 (4 g ) is a singlevalied doubly periodic function with prim itive periods: 2!; and 2!5. De ning !, =
45 3(1=3)=4 , the prin itive halfperiods are

p_! p_!
3 1 3

;o la= 1, Z4i— 48
’ 3 22]-2 ()

Thesepem'oo}sdetemjnetheFPP.Notethatony two of the half periods are irreduchble: ', = 1+ !5,
2.Pp1(4 3 )hasonly onepoleofordertwo at = 0 In the FPP.
3. ThevaliesofPg; (4 3 ) at the halfperiods are

p—- p—-
Poy(4 S1,)=4 5; Po(d 51,)= 4 5 E+i—3 : P4 Tli)= 4 3 1 i—3 (49)
01 1 i 01 2 5 5 i 01 3 5 >
4. T he zeros of the derivative P, (4 ® ) in the FPP are at the halfperiods of Py,
L 0 1
ly)=Pp(4 313)=0 (50)

Figure 1: (Color online) The symm etric case N = 3. 3D graphics of the potentialV ( ; ) (left panel),and of V( ; )neara
point in the lattice 3 (right panel). N ote that in the right panel the zeros are now m axim a.

W ith these Ingredients we w rite the deform ed potential

which isdepicted In Fig. 1.



T he new potential is doubly periodic w ith an structure inherited from the \halfperiods" of P . T he set of zeros of
the potential in the FPP (see Fig. 2) has three elam ents

|
P P 3,1
1 3 1 3 1 (3)
W=y =1, = = ; @=u3=1, Z+i= ; P=1,=94523 52
1 2 5 > 3 2 3 > 2 2 (52)
The set of all the zeros of V form a lattice (see Fig. 3) which tile the entire con guration plane
o p§ 1 -
@ m) >, m+n+ —+ i(m n E) (53a)
(2) ! + n+ 1+ pg' + ! 53b
m ) 'oom n > i(m n E) ( )
e P,
momy = ‘2z mAn+ 1+ 3im n) (53c)
T he values of the superpotential at them Inin a are
1 j 2 TR 3 T
W Em)m))=el i W Em);n))=lel( 6)’ W Em)m)) lel(+6) (54)
w:
0?2 2(‘“2

w1

Figure 2: (Color online) The symm etric case N = 3:Zeros (red) of V and points (yellow ) of the set 3, and kink orbits (blue)
connecting the zeros of the potential (right panel).

In sum , the potential obtained from the deform ation procedure has the sam e zeros in the FPP as the original
m odel. Besides, one pole arises at the origin due to the m erom orphic structure of P 81 ;e Fig. 2 and 3. However,
this structure is In nitely repeated in thelglgbnn ed m odel, according to the two periods ! ; and !5 determ Ining the
modularparameter = !3=!7 = 1=2+ 1 3=2 oftheR iam ann Surﬁcepo_fgenus 1 associated w ith this P W elerstrass
function. A s an aside, we note that them odular param etere = 1=2+ 1 3=2 gives the sam e R iem ann surface because
e= (@ + b= + d)where

Qo
Qo
o -
=

is an elem ent of the m odular group SL (2;7Z ).

Contrarily to the deform ation function chosen in the case N = 2, for N = 3 the W elerstrass P function is not an
entire function, that is, it is not holom orphic n the whole complex planeC. = ,,=2m!1+ 2n!, m;n2 Z) is
the lattice of points of P and P ° which are accordingly m erom orphic fiilnctions. T hus, we suppose that the new el
take values In the gpace C= 3 to avoi the loss of holom orphicity. This point of view is very close to consider the
genus 1 Riem ann surface C=  ofmodulus = !3=!, m hus the origin (the FPP w ith the edges denti ed paiw ise
m nus the origin) as the - eld space. K esping, however, the in nite copies of this space contained in C= 3 gives a
richer kink structure.



B .l. N etwork of P%kink orbits

W e shallcom pare the P kink orbitsw ith the orbits of the originalN = 3 polynom ialW essZum inom odel. If ¥ (x)
isaN = 3 solution of () and {Z0) then X (x)= 45P,,'(4 7 ¥ (x)) solves

K (x)) = constant; Ree + 4%P01(4 3 K (x)) = (55)

Wl

el 47D,y (4

w here

Figure 3: (Color online) The symm etric case N = 3:Lattice of zeros (red) ofV ( ; ) and points (yellow ) of the set 3, and the
network of kink orbits (blue) in the lattice of m inim a (right panel).

B ecause of the relations

: 3

W (k) W 3y = [
( ) ( ) 2 2

the sam e values of as in the non deform ed case,

= arctan 23 23 (58)
oS5 (k1) oS5 (7 1)
give the deform ed kink orbits.
T here are three types, which we show below .
Type (13), non deform ed
Thecondition In W ( @)= ImwWw ( ) issatis ed only or ©Y) = =6 (or antikinks) and *3) = 7 =6 (or

kinks). W hat is called kink and what is antikink is a m atter of convention. O ur convention is that kink/antikink
orbits run clock/anticlockw ise in the (W ;W ) plane. T he orbits obey

P- P— P- jop
33 . 373 . 3 0. 33 a. 33
— R&W_(") — ; ImW_(" )= - wih ReW _( )= —; ReaW _( )=  —

8 8 E 8 E 8 E 8

and

b b P b
33 L 33 C3 o 33 G 33
— ReW: (V) —; MmW: ()= - wih ReW 2 ( )= ——; ReaW 1 ( )= ——

8 6 8 6 8 6 8 6 8

Type (13), deform ed
A s m entioned above, the condition In W ( fi)m) = W ( E;)On‘))) is agaln satis ed only or ') = =6 and
13) = 7 =6. T he orbits obey

b b b P

3 K 3 R\ _ ith 3) 3 (1) 3
o Rew (7)) o ! W _ ()= 5 w ReWZ((mm))— o ! Rewz((mo;no))_T
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and

o)

I
|or
o)

(1)

1
; W o (¥)= = with ReW 2 ( ) )
3 2 3 (

K _
Rew%( ) )= 7T<(m;n)

m %n0) 2

; Rew

o]
w
=N

T he nearest neighbor type (1) and type (3) m InIn a are connected by the orbit follow ing the sequence

(1) s (3) s (1) 3 (3) 3 1)

(m m) (m m) (m+1m) (m+1m) (m+2m)

See Fig. 3.
T he other two cases (23) and (12) follow sin ilarly. H ere we just add that for the case (23), (m ;n) and (m %n0% are
restricted to link nearest neighbor type (3) and type (2) m inin a along the orbit. T he sequence is

(2) s (3) s (2) 3 (3) 3 (2)

(m m) (m m) (m m+ 1) (m n+1) (m mn+2)
A Iso, for the case (12) we have that (m ;n) and (m O;no) m ust be chosen according to the follow ing sequence

1) 3 (2) s (1) 3 (2) s (1)

(m ;n) (m n+1) (m+1mn+1) (m+1m;n+2) (m +2;n+2)

in order to connect nearest neighborm inin a of type (1) and (2).

W e end the case N = 3 collecting the correspondjngpe_nergjes. W e have that the defect energies for the original
non deform ed W essZum ino m odel are given by M = 3 3=4, for kinks and antikinks for all the three s%chrs, w ith
(kj) = (12);(23);and (13). For the deform ed m odel, the energies of the P defects are given by M =  3; for the
sam e cases.

C. ThecaseN =4

In theN = 4 casewedealwith

Thus, putting = £( ),we have

£20E% )= @ £ £40) (61)

0P =1 £0); £ P=1 £() (62)

The solution of {62), henceforth a solution of (&1l), is the elliptic sine of param eter k? = 1, the G auss’s sinus
Jem niscaticus

W ()=£f()==s(; 1) (63)

A s the derivative of the Jacobielliptic sine is snu’= cnudnu, the dentities
a?(; 1)=1 s®(; 1); dn’(; 1)= 1+ =?( ; 1) (64)
show the solution of (£1l) very directly.
T he deform ed potential reads
g9
1 ; —, , ,
VOi)=5 @ =t 1 @ )= S0 Digne; DS (65)

which isdepicted in Fig. 4. The superpotentialisgiven by W ( )= e * sn( ; 1)
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Figure 4: (Color online) The symm etric case N = 4:3D graphics of the potentialV ( ; ) (leftpanel) and of V ( ; ) near four
points of the set s (right panel). N ote that in the right panel the zeros are now m axin a.

The new potential is doubly periodic w ith its structure inherited from the \quarterperiods" K ( 1)= !;=4 and
K (2) = !,=4 of the twelve Jacobi elliptic functions; see Fig. 5. Here K ( 1) 1:31103 is the com plete elliptic
integral of the st type, a quarter of the length of the lem niscate curve in el space: ( 2+ 2)2 = 2 2:
K (2) 131103 11:31103 is the com plem entary com plete elliptic integralof K ( 1).

The set of zeros of the potential in the FPP are ) = 1,=4; @) = i1,=4; G = 1,=4; @ = {i1,=4;whereas

the set ofall the zeros of V form a quadrangular lattice in the whole con guration space. T hey are given by, explicitly

|
trln)m _ Tl (2(2m + n)+ 1+ i2n) ; E?m): ?l 2(2m + n)+ i@n+ 1)) (66a)
© L oom T L i2n 1 66b
(mm),?(( +n) + 12n) ; (m;n)*z((m+n)+l(n ) (66b)
because
(k) (x)
an( oy 1) odn( i 1) 0; k=1;2;3;4 (67)
T hus,
wo(Mh=et;w (M=t ;W (= et ;W (Y= d* (68)
sihcesn[ K ( 1); 1]= landen[ iK ( 1); 1]= i.
Them odular param eter of the associated genus 1 Riam ann surfaceis = K R2EK [ 1]= 1+ i. IdenticalR iem ann

surface is associated to the lem niscatic case, g2 = 1,93 = 0, of the W elerstrass P function. Like in the form er case,
how ever, the Jacobi elliptic sine is not an entire function, and so we restrict thenew eld to live in C= 4, (where 4
is the set of poles of £ ( ) In this case) in order to m ake the superpotential holom orphic.

C .l. N etwork of snkink orbits

W e shallcom pare the sn-kink orbitsw ith the orbits of the originalN = 4 polynom ialW essZum inom odel. If ¥ (x)
isa solution of 29) then * (x)= sn '( ¥ (x); 1) solves

(x); 1)= constant; Ree + an (

w here
(x); 11 dn[® (x); 1] dx (70)
The sam e values of as in the non deform ed case give the kink orbits

W ( (k)) W ( (]))= = W ( (k)) W ( (])) _ g gtz &k 1) gz3 D (71)



12

selects
sihz(k 1) sz (3

cosz (k1) cosE(j

(x3) ; mod (72)

= arctan

as the angles for both the original and deform ed kink orbits.
T here are four types, which we show below .

Type (12)/(34), non deform ed

T thiscasewehaveInW ( V)=TwWw ( ®)and mW ( )=TmW ( @ yonky for = 3 =4 (kinks)or = 7 =
(antikinks). T he kink orbits obey

b p_
1)y — 2 2, (2)y_ 2 2
ZpE ZpE 2p§ ReW3T( )7 T, ReV\]3T( )7 T
= Reaw: (%) Z—=; mw: (%)= = wih or
5 ¢ 5 ¢ 5 3 3 4 F3
ReW s ( Pl)y= 225 Raw: (W)= 22
4 4
w hereas for the antikinks
b jop
I)yy_ 2 2. @)y_ 2.2
- ReamL (%) Z—; mw. (%)= ="— wih or
5 ¢ 5 ¢ 5 (3) F3 (4) F3
ReW 2 ( )= == ; ReW 2 ( )= ==
4 4
Type (12)/(34), deform ed
H (1) _ (2) (3) _ (4) _ _ .
erewehave InW ( @ ;n))— ImW ( (momo))and ImW ( @ ;n))— ImW ( (mo;no))onyﬁ)r = 3 =4 (kinks) or
= 7 =4 (antkinks). T he kink/antikink orbits cbey
b p_
1) _ 7 . (2) _ 2
— ReW: (%) —; mwa:2 (%)= — wih or
2 ' 2 ' 2 @ _ T3 @ _ P3
Rew 3T( (mO;nO))_ > 7 Rew 3T< (m;n))_ -
and
P p_
(1) _ 7. (2) _ 2
pz pz pz Rew 7T( (mm))— > 7 ReW 7T( (mo;no))— >
— RawW i (%) —/; mw: (%)= —= wih or
2 7 2 1 2 3) _ Pz @ . _F3
Rew%((mo;no))* > 7 ReW7T((m;n))77

where m ;n) and (m %n®) are restricted to link nearest neighbor type (1) with type (2) and type (3) with type (4)
m inin a along the orbit. T he sequences are

(1) (2) (1) (2)
(m ;n)$ (m ;n)$ (m 1;n+1)$ (m l;n+1)$ m 2mn+2)

and

(3) (4) (3)

(4)
(m 1;n+1)$ (m l;n+1)$ (m 2mn+2)

(m m)

$

SeeFig.6.
T he other three cases, (13), (14)=(23), and (24) follow sin ilarly. Here we just add that in the case (13) we have

that (m ;n) and (m %n®) are restricted to link nearest neighbor type (1) and type (3) m inin a along the orbit, and so
they m ust be chosen according to the follow iIng sequence
(3) (1) (3) (1) (3)
(m,’ﬂ)s (m;n)s (m+:L;n)$ (m+l;n)$ (m +2;mn)
In the case (14)/(23) we have that (m ;n) and m %n°) are restricted to link nearest neighbor type (1) and type (2)
m Inin a respectively w ith type (4) and type (3) m Inin a along the orbit. T herefore, the sequences are

(1) (4) (1) s (4) s (1)
(m m) (m m) (m m+1) (m m+1) (m m+ 2)
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Figure 5: (Color online) The symm etric case N = 4: Zeros (red) ofV and points (yellow ) of the set 4, and the two (blue and
black) possible orbits connecting the zeros of the potential.
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Figure 6: (Color online) The symm etric case N = 4: Lattice of zeros (red) of V ( ;_) and points (yellow ) of the set 4, and the

networks of kink orbits (blue and black) in the lattice (right panel).

and

(2)
(m m)

(3) 2) 3 68)
$ $ $ $

(m m) (m m+ 1) (m m+ 1) (m m+ 2)

In the case (24) we have that (m ;n) and (m °;n°) are restricted to link nearest neighbor type (2) and type (4) m inin a
along the orbit. T hus, they m ust be chosen according to the follow Ing sequence

(4) (2) (4) (2)
)$ )$

(m mn (m mn (m 2;n+1)$ (m 2m+1)

W e end theN = 4 case collecting the energies of the defect structures. For the non deform ed kinks we get

P j
8 4 2 4 2
M (13)=M (24)= E; M (12)=M (34)= T; M (14)=M (23)= T (73)
w hereas the energies of the deform ed sn-kinks read
p— p-
M (13)=M (24)=2; M (12)=M ((34)= 2; M (14)=M (23)= 2 (74)

withM (kj)=M (jk)andM (kj)=M (k).

Iv. DEFORMATION OF ABRAHAM -TOW NSEND M ODELS

Letusnow m ove on to the case w here the originalm odel engenders no speci ¢ symm etry. T his study is inspired on
Ref. ﬂ ], In which A braham and Tow nsend consider som e interesting situations, guided by m ore general superpotentials,
which develop no speci ¢ symm etry. Sin ilar potentials were also considered in @], but there the investigation was
m ainly on the symm etric case. In ﬂ ], how ever, the focuswas on the non sym m etric case, as a basic m odel underlying
the study of Intersecting extended ob fcts In supersym m etric eld theordes { see also ], which deals w ith the forces
betw een soliton states in the sam e m odel.
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T he absence of sym m etry m akes the investigation harder to follow , but it is still of current interest since it leads to
m ore general possibilities, bringing som e new e ects into the gam e and allow .Ing for the presence of irreqular netw ork
of defects. W e follow as In the form er section, and below we consider m odels which develop three and fourm inin a
w ith no gpeci ¢ sym m etry anym ore, using €3 and €, as the set of polesof £ ( ) as before, but now In the asym m etric
cases,with N = 3 and N = 4, regpectively.

A . Irregular network of P kink orbits

Let us start w ith the sin plest case, in which one considers a class ofm odels that engenders threem nina. Herewe
dealw ith the superpotential

1, 1 5 1,
W — — — + — 75

() > 3 1 (75)
where = 1+ i, isa com plex coupling constantwhich param etrizes the fam ily ofm odels. In this case, the potential
is given by

1. 2

vir=-3 o 33 o (76)
T his choice leads to the follow ing set of m inin a: two realm Inima which are xed tobeatv; = 1and v, = 1;and
acomplexmininum atvs = ,which may move in the com plex plane for di erent choices of the com plex param eter

: This is the m ost general case w ith three arbitrary m inina in the com plex plane, since one can always choose
the straight line pining two vacua as the abscissa axis, crossing the perpendicular ordinate axis through the m ddle
point between the vacua, setting the distance between them to be 2 by an scale transform ation. T he values that the

superpotentialW ( )= e LW ) takes now at the vacua are
1 2 1 )
W 1)= R i W =— 26 ‘et 77
(1) 2 3 ¢ i () " ( Je (77)
From these expressionswe obtain
WL W (1= et WOl W ()=—( 3 1e? (78)
== e  ; = — e
3 12
T herefore, the angles of the kink orbits are (mod )
Im Im 3 +1 Tm + 3 1
%) _ protan .09 - e 20 )+ 19) .09~ aperan B0 ) 1Y)
Re Re(( 3+ 13) Re(( + 3)( 13)
and now the kink energies are given by
4 _ M (23)= & + 37+ 2 124+ 2y 177
M (12)= —(2+ 2)72; (23) 112 (( ; )2 2)(( :; )2 22)3 . (79)
3 M @l)=5 (1 3+ HUI+1)y+ 3)
[ _
with M (kj)= M (jk). Note that the threemassesM (12)= M (13)= M (23)= (4=3) 3 for = f3,ava]ueof

the param eter for which the vacua lie at the vertices of an equilateral triangle, leading us back to the sym m etric case
which engenders the Z 5 symm etxy.

W e now go to the deform ation procedure, changing ! f( );with £( )= W ( ):In the present case, we get that
£ ( ) should obey

£90E% )= 2V (E( BE( ) (80)
and this now gives, in the specially sin ple case which we have already considered in the form er section,
£90 ¥ = £ £+ £ (81)
T his is again the W elerstrass equation,and fwede nez = 4 5 andf=4 + =3we nd

Yz =47 g o (82)
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whereg, = 45 (1+ 2=3)and gz = (2 =3)(1 2=9). The solution for £ ( ) is then given by

1

1
£()=3 +4P@ T jm()ig( ) (83)

T he halfperiods !; and !5 of the W elerstrass P function are obtained from the invariantsg, and gz by m eans of the
equation

X X

g, = 60 St gs= 140 Lo (84)

(m mn) (m m)

where ,, = 2m!3+ 2n!;withm;n 2 Z. W e also have =g§ 27g§=4(2 1)? and e, = 4%(1-% =3);
e = 4% 1 =3);and g = 452 =3 are respectively the discrin nant and roots of the cubic equation which appears
from the right hand side of (87).

It is interesting to note that them odular parameter ( )= L( )=!1( ) ofthe genus 1 R iem ann surface associated

to this P function depends on . Thus, variations of correspond to m otions In the R am ann surface m oduli space.
T he deform ed m odel is govemed by the potential

1

V()= SPou 5 e Nig( )3 (85)

It has zeros In the FPP atPO(!l) = PO(!3) = PO(!l + !3) = 0. Thus, the vacua of the deform ed m odel are the
constant eld con gurations

(2)

1 1
m )~ (m;n):43<!1+!3+ mn)i (m;n):43(!3+ mn) (86)
T he values of the superpotential
1 i
w ()= §+ 45P (4 5 ;90 )ig( ) e (87)
at these vacua are
W (Y )= 4 27Pg (1) et = —+27g et = et
(m m) 9293 1 3 1
W (P )= —+2%P (1) el = —+2%e el =gt
(m mn) 9293 2 3 7)
3 2 i 2 : :
W Em)m))= 37 25Pg,q, (13) e & = 3t 25e3 et = et
T herefore the angles of the deform ed kink orbits are (mod )
B2 = 0; 13 — arctan _m (23) — arctan _m (89)
’ Re( + 1) ' Re( 1)
and the kink m asses becom e
1 1
M (12)=2; M (13)= (:+ 1%+ 5% ; M (23)= (1 1)+ 35°? (90)
Note that for = _':Lpg the three masses are equal, M (12) = M (13) = M (23) = 2, corresponding to a regular
triangular Jattice of m inin a. T he sequences of m inin a connected by the kink orbits in these fam ilies are
(2) (1) (2) (1)
(m m) $ (m m) S (m 1m+1) S (m 1mn+1)
3) 1) 3) 1)
(m jn) (m n 1) 9 (m n 1) 9 (m n  2)
(3) 2) (3) 2)
(m m) (m m) $ (m +1mn) S (m+1mn)

In Fig. 7 and 8 we plot the potential, m inin a and netw ork of kink orbits, respectively, for the speci ¢ value of the
com plex parameter = 1+ i. Com parison of these gures with qgures 2 and 3 show s to what extent the com plex
param eter induces rregularity when it di ers from i 3.
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Figure 7: (Color online) The case of three asymm etricm Inim a. 3D plot of the deform ed potential V( ; )for = 1+ inear
a point of the set 3.

b °
°
hd °
°
\‘\ °
, °
w +.LL) w

Figure 8: (Color online) T he case of three asymm etric m inin a. P lots of the zeros (red) of the potential and points (yellow ) of
the set 3, and the networks of kink orbits (blue) connecting the zeros for = 1+ i (right panel).

B . Irregular network of snkink orbits
W e consider now the superpotential
W ()= +—=( + —(+ )+ = (92)

where and aretwo com plex coupling param eters which controlthe m odel. W ith this polynom ialof fth-order W
we get the potential

1
veio=si+ F10 f30 350 3 (93)
displaying the ourm inimawv;, = 1;vw = ;v = l;and vy = .W enotice thattwo ofthem inina areagain xed at
the values 1, but this does not restrict generality of the procedure for the sam e reasons as before.
Again,we choose the deform ation £( )= W ( ) determ ned from the specially sin ple case
fCP=E+ DE DE NE ) (94)
IS
This equation can be written as the elliptic sine equation y° = (1 y?)1 k?y?) if we Pllow the usual
procedure ], in which we write the product (£? 1)(E )(£ ) as the product of the two factors
A, (f Y+ A (f  ,)? and B, (f Y+ B (f ;) ;where
! 1 p
1 1+ 1 1 2 2% ¢ 1+ ™ Ha 2
A =—- 1 g ; B =—- 1 -—p ; =
2 _a Ha 2 2 251 a2 +
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W e then m ake the hom ographic substitution p= (£ )=(£ + ) to obtain
d IS
d—y= T yH@ K2) ) y( )= s &) (96)
p— p— )
wherey = A=A p, = ( +) A.B ,and k“=A B,.=A.,B .Therefore,we nally nd that
P A =A ( k%)
— sl s
Q)= —p—n—— - (97)
1 A =A, sn( ;k?)

is the new superpotential from which we can construct the potential of the m odi ed m odel in the form

| S —
. A B ;k2)ydn( k2
( ) cn ( )dn ( ) 98)

1
s 4
2 ( A =A, s k%) 1)

T he above Investigation is very general, and the presence of the two com plex param eters and m ake the illistra-
tions aw kw ard . For this reason, we shall restrict ourselves to the sin pler casewhere = and only a single com plex
param eter is free. T hus,

1 .
W)=t Sas ) e V=33 30 (99)
are respectively the superpotential and potential of the originalm odel. The four m inina of V are at the points

vi= wvz3= 1,v,= vg= in the -com plex plane.
From the values of the superpotential at them inin a

Wwo( 1) 2(2 1) . Wwo( ) 23<1 2) . (100)
= = e = = —)e
3 5 3 5
we obtain
W 1) W (1) 4(2 1>l Wwo(1) w () 2 1 o1 et (101a)
= — — e ; = — e a
3 5 3 5
Wo() W () 43(1 2)1 Wo(1) W o( ) 2 2l 2(+1) et (101b)
= - — e H = = e
3 5 3 5
T he angles of the kink orbits are (mod )
m(l 5° 2 1 5°7? 1
13 = arctan ( ) ; 12) = 3% = ayetan ( ) (102a)
Re(l 5 2) e( ? 1 5 2¢ 1)
24) —  arctan (" 5) ; @3 ) = arctan (P+1 57+ 1) (102b)
Re( 3( 72 5)) e(2+1 52( + 1))
T he corresponding energies are given by
4 5 2 s s
M (13) = 531=5 j; M (12)=M (34)= 531=5+ (1) =57 (103a)
4- 2 3. 2 2 5 .
M (24) = 53( =5 1)74; M (23)=M (41)= 531:5 ( +1)%2+ °=5j (103b)

Pr_
plusM (kj)= M (jk). Notethat or = i;M (13)=M (24)=£,M (12)=M (34)=M (23)=M (14)= £ 2and we
recover the case of a regular square.

W e now deform them odel, choosing £( )= W ( ). Asbefore, we consider the specially sin ple case, which gives
P =@+ £)a )+ £)C £)=7 @1+ HEC P+ £( ) (104)
W e com pare this w ith the elliptic Jacobi sine equation to nd £( ) = sn( ;?) as the solution of equation (I04).

T hus, the deform ed superpotential and potential are given by

) 1
W ()= sn( ;%et; V(; >=5j3‘pn( ;) ffnC ;T (105)
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T he zeros of the potential form the lattice of vacua at the constant values of the eld

&N 1 2) 1

m ) Z(!l‘l’ '2)+ mn s mm) Z!1+ mn (106a)
3) 1 (4) 1

mm = 701 mni Gy = gt ma (106b)

w here the periodicity is determm ined by the quarter periods of the Jacobielliptic sine
=n! E [ 1 = 2y, 1, = 41 2
mn—n.1+2m.2, '9=4K (“); !',=4iK (1 ) (107)

From the values of the superpotential at them inin a

(3)

_ i _ _ i
W (m m))_ € = W (m;n))’ W (m m))_ e’ = W (m,n)) (108)
we derive
(3) (1) i (4) (2) i
W) W ) = 28 5 W () W (P =2 et (109a)
(2) (1) _ i _ (3) (4)
W o) W) = @ e =W (o) WO o) (109b)
(3) ) i (4) 1)
W mmy) WCgone) = L+ et =W () W (50) (109¢)
T he orbit angles and the energies of the deform ed kinks are given by
Im (1 )
@ = 0; M @3)=2; "= PY-oamtan ———— ;M (12)=M (34)= 4 ]
Re(l )
(24) dm Sl (23) (14) Im(1+ ) )
= arctan — ; M (24)= 27 7; = = arcctan ——— ; M (41)=M (23)= 1+ 3
Re Re(l+ )
with ®3 = %4 andM (kj)= M (jk):The vacua connected by the kink orbits are organized according to the
follow iIng sequences
(1) (3) (1) 3)
(m n) 4 (m ;n) ’ (m+2mn+1) ’ (m+2mn+1)
(2) (4) (2) (4)
(m n) ! (m mn) (m mn+1) ’ (m mn+1)
(1) (2) (1) (2)
(m ;n) ’ (m ;n) ’ m+1mn) ’ (m+1mn)
(3) (4) (3) (4)
(m ;n) ’ (mmn) 7 (m+1;n) ’ (m+1;n)
(1) (4) (1) (4)
(m n) 4 (m ;n) 4 m+1mn+1) ’ (m+1mn+1)
(2) (3) (2) (3)
(m ;n) ’ (m ;n) Y m+1m+1) ’ (m+1mn+1)

To illustrate the investigations, In Fig. 9 and 10 we plot the potential, m inim a, points In the set €, and orbits of
the kinklke con gurations.

V. BIFURCATION

A llthem odelswhich we have been studying so far present an Interesting feature, which we now explore. It concems
the fact that they have three or fourm ininm a. T hus, ff we choose two m inin a arbitrarily, itm ay be possible that they
are connected w ith two or m ore distinct orbits. W hen this happens to be the case, we say that the system develops
a bifurcation, since one can go from a given vacua to another one, follow Ing two or m ore distinct kink orbits. This
possbility is directly related to the balance of kink energies providing an upper bound for the fusion of two of the
kinks In a single kink of a third type. Such a process is energetically possble { and the outgoing kink stable { if,
given eg. threem Inin a k;j;1, the energy of the (kj) kink is lower than the sum of the other two kink m asses

M (kj)<M &k)+ M (13) (112)
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Figure 9: (Color online) The case of our asymm etric m inin a. 3D plot of the deform ed potential V ( ; ) near four points of
theset 4 for = 1+ 1.
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Figure 10: (Color online) T he case of four asymm etric m inin a. P lots of the zeros (red) of the potential and points (yellow ) of
the set 4, and networks of kink orbits (blue) connecting the zeros for = 1+ i (right panel).

A 1lthe kink m assesdepend on theN 2 com plex param eters, indicating the arbitrary positionsof N 2 vacua, since
the other two m Inin a are xed at the 1 points In the -com plex plane. A bifurcation occurs when the inequality
becom es equality, since we can go from k to j follow ing the direct k ! j path, or then visiting 1 through the path
k! 1! Jwith the sam e energetic cost. In the case N = 3 it is shown in ﬂ},jn the search for Intersecting dom ain
walls, that this possibility indeed happens { see also Ref. @]. In the generic case N ; there is a sub-m anifold of real
din ension 2N 5 of the param eter space characterized by the equation M (kj)= M (k1) + M (1j). W e shall refer to
this sub-m anifold as the m arginal stability variety because som e irreducible com ponent of it is a boundary between
two regions of the (N 2)-dim ensional com plex param eter space; one region where M (kj) < M (k1) + M (1j) (the
(kj) kink is stable and cannotdecay to (k1) and (1j) kinks), and the other region whereM (kj)> M (k1)+ M (1j) (the
(kj) kink is unstable decaying to the (k1)—(1j) kink com bination). In fact, things are slightly m ore com plicated and
a bifurcation occurs at the m arginal stability variety, with the kink orbit going to In nity beyond this point, with
M (kj) becom ing divergent, breaking the direct connectivity between the vacua k and j:

Since the energy in the topological sector is controlled by W ; we inm ediately see that bifurcation appears if and
only ifat least threem Inim a getsaligned in W space, thatis,i W (k) W (§)j= W (k) W D+ W (L) W (j)fwith
W (1) In between W (k) and W (J). This is the general condition for bifurcation, and below we use it to investigate the
m odels Introduced In the form er section.

A . The case of threem inim a

Here we consider the case of three m nim a, w ith the m odel being describbed by the com plex parameter : W e
notice that bifurcation cannot appear in m odels which engender the Z 3 symm etry, sihce the symm etry In plies that
M (12)= M (23)= M (31),henceforth M (12)< M (23)+ M (31),etc. In the A braham -Townsend m odel, the m arginal
stability curve is characterized by the alignm ent of the threem nina in the (W ;W ) plane, ie., it is the curve i this
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plne forwhich 2 ( )= @3 ()= @3 ymod ,or,
I (( 3)( j) I I (( +3)( 1))
- = (113)
Re(( 3+ 13) Re Re(( + 3)( 13)
T hese dentities hold if
( Y3+ (P4 P+ 6))=0 (114)

which is the algebraic equation that characterizes the m arginal stability curve. W e note that the curve has two
Irreducible com ponents.
O ne com ponent is the realaxis n the -plane: , = 0:For realvalues of the param eter it happens that all the three
m Inin a are aligned In the real axis of the com plex —plane, and the system cannot develop bifurcation. In the two
very specialcaseswith 1 = 1;we have only two m inin a, and so only one kink orbit rem ains in the system . For
1 < 1;there exist only two kink orbits, which we label (31) and 12, because the vacuum v; sits on the realaxis In
between v3 and v,. For 1< 1 < 1;there exist the two kink orbits (13) and (32),and for ; > 1;there exist the two
kink orbits (12) and (23) for sin ilar reasons.
T hings are m ore interesting for the other algebraically irreducible com ponent. T he quartic curve
g —— g
3 62 62+222+437 S=(%2+3 Z4+2 % 3243)(3+3 % 2

s

32+43)=0 (115)

which allow for each one of the three possibilities, M (12) = M (23)+ M (31),orM (23)= M (31)+ M (12), or yet
M 31)=M (12)+ M (23),depending on the speci ¢ value of the com plex param eter , is the true boundary betw een
regions in the plane where there exist three or two kinks and the phenom enon of bifurcation takes place. T his case
is fully studied in ﬂ}, and below in Fig. 11 we plot the curves of m arginal stability in the com plex plane.
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Figure 11: (Color online) T he curves of m arginal stability in the case of threem InIn a. The set of (red) points illustrates the
positions of the m inin a and the kink orbits for distinct values of the param eter in the related regions.

T he condition for alignm ent in the deform ed m odel .n the W plane )= (13 = (23) 49

Im Im
0= = (116)
Re( + 1) Re( 1)

T here is only one com ponent, , = 0; but we have already seen that in this case there is no bifurcation anym ore.
In fact on the real axis the kink masses areM (12) = 2, M (13) = j1 + 1j,and M (13) = J: 15, such that:
M (13)=M (12)+ M (23)if 1> 1,M (12)=M (13)+ M (23)if 1< ;1< l,andM (23)= M (12)+ M (13) if

1 < 1.If , & 0 themass of one of the deform ed kinks is always lighter than the sum of the m asses of the other two
kinks because of the triangle inequality, the sum of the lengths of two sides of a triangle is greater than the length
of the third side. T hus, we notice that the deform ation procedure wash out the m arginal stability curve, leaving no
room for bifircation in the deform ed m odels which we are dealing with In this work. In Fig. 12 we illustrate the
N = 3 casew ith severaldistinct possibilities for the com plex param eter
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Figure 12: (Color online) T he bifurcation curves and som e related illustrations w ith (green) points in the rst coum n repre-
senting distinct values of the com plex param eter In the case of threem Inin a. T he broken (red) lines in the second colum n
indicate how the orbit goes to in nity, leading to divergent contributions which should be discarded.

B. The case of fourm inim a

Let us now consider the case of four m Inim a, w ith the m odel being driven by the two com plex param eters and

. The general case is very com plicate, so we m ove to the sin pler case in which weuse = ; leading to a single
com plex param eter

The condition for alignm ent of allthe m lnina in the W plhnenow is "2 = @3 = @) - @CH.pnod  (note
that because the vacua In the pairs (v1;v3) = (1; 1)and (va;vg)= ( ; ) are alwaysaligned In the W plane, there

cannot be alignm ents of three non vanishing vacua). T he dentities between kink angles hold if

mil 5%+ G5 )] m[?*5 )] Mm@l 5°] m@l 5% 3G ?)] a17)
Rell 52+ 3(5 2)] Re[3(5 2)] Rell 52] Rell 52 35 2)]
which is satis ed if
( y5(2+ %) Y 44 5(%4 24 ) 26 =0 (118)

O ne irreducible com ponent is again the abscissa axis , = 0:The system does not support bifurcation since all the
m inina are now In the real axis of the com plex -plane. There are three specialvaluies: ;1 = 1land 1 = 0; for
1 = 1;there exist only two m Inin a and one kink orbit (12) and for ; = 0 there exist threem Inm a, w ith the two
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distinct kink orbits (12) and (23):0 ther possble values are: for 1 < 1;there exist fourm inin a, but only the three
kink orbits (21), (13),and (34);for 1< 1 < 0;there exist fourm Inim a, but only the three kink orbits (12), (24),
and (41);for 0 < 1 < 1;there exist fourm Inim a, but only the three kink orbits (14), (42),and (23);or 1 > 1;there
exist fourm Inim a, but only the three kink orbits (41), (13), and (32).

T he other algebraically irreducible com ponent is given by

152 52 307 265 40%22+15°% 585+ 25¢

N o

+525=0 (119)

In Fig. 13 we plot the m arginal stability curves which follow from the above expression, and we illustrate how the
m Inin a behave In the com plex plne. Thetwom inina 1 and any other pair of asym m etrically positioned m Inm a
on the curves Introduces two distinct kink orbit possibilities, and so it illustrates the bifurcation phenom enon once

again.
Lok 1 ]
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Figure 13: (Color online) T he curves of m arginal stability in the case of ourm nim a, for = . The set of (red) points

illustrates the positions of them inin a and the kink orbits for distinct values of the param eter in the related regions.

It is Interesting to notice that the condition for alignm ent in the deform ed m odel in the W plane, leadsto , = 0
again. But we have already seen that In this case there is no bifurcation anym ore. T hus, once again we notice that
the deform ation procedure wash out the m arginal stability curve, leaving no room for bifurcation also in this case. In
Fig. 14 we illustrate the case N = 4 w ith severaldistinct possibilities, driven by the com plex param eter

VI. FINALCOMMENTS

In thiswork wehave rstly dealtw ith the standard W essZum nom odeldriven by a com plex scalar eld engendering
discrete Zy symmetry. Themodel is de ned In tem s of a superpotential, a holom orphic function of the com plex
eld which contains N m inin a, the vacua m anifold which represents a set of points w ith the very sam e Zy symm etry
of the m odel. Them inin a determ ine several topological sectors, which can be represented by algebraic curves and
soled by rstorderdi erential equations of the BP S type, as shown In Ref. [@].

The main dea of this work concems the deform ation procedure developed in ,], which was used to deform
the m odel in a way such that the set of N m inin a could be replicated in the entire con guration space, the plane
described by the com plex eld. In this way, the algebraic orbits in eld (target) space of the original W essZum ino
m odel are also replicated In the entire plane, naturally leading to a netw ork of defects, a spread netw ork of kinklike
orbitsin eld space. A swe have seen, the dea was In plem ented very e ciently, and we have illustrated the procedure
w ith three interesting cases, involving the Z,, 725 and Z, symm etries, w ith the sets of m inIn a form ing an equilateral
triangle and a square in the last two cases, respectively.

W e have then investigated the m ore generalcase, w ith m odels engendering N non symm etricm inima,with N = 3
and N = 4. ThecaseN = 3 isdriven by a sihgle com plex param eter ; and we have illustrated the results with two
distinct values of ; show ing how itm odi es the regular structure that we have obtained In the symm etric case. The
case N = 4 ism ore com plicated, since it is controlled by two com plex param eters, and . W e have then m ade an
interesting sin pli cation, reducing the m odel to a single com plex param eter, with = . In this case, we have also
lustrated the results w ith two distinct values of the param eter, to show how it changes the reqular structure of the
symm etric case. In the non symm etric case, we have also exam ined bifurcation and the m arginal stability curve for
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Figure 14: (Color online) T he bifurcation curves and som e related illustrations w ith (green) points in the rst coum n repre-
senting distinct values of the com plex param eter in the case of fourm inim a.

both n = 3;and n = 4;in the last case after introducing the sin pli cation which leads to m odels described by a single
com plex param eter. In both cases, the com plex param eter gives rise to a diversity of very nice possibilities, but the
deform ation washes out bifircation from the deform ed m odels.

T he present investigation poses several issues, one of them conceming theN = 5and N = 6 cases, which follow s
the naturalcourse of thiswork . In the asym m etric case of fourm inin a, we could also consider other relationsbetw een
the two param eters  and . A nother issue concems the tiling of the plane w ith reqular polygons, w hich is constrained
to appear with regular hexagons, squares and equilateral triangles, in this order of decreasing e clency. It would
be interesting to search for possible connection am ong these regular tilings, the respective basic polygons, and the
deform ation procedure. It is also interesting to consider the issue studied in Ref. @}, in which one deals w ith the
problem ofm arginalstability in term s of forces betw een soliton states in the case ofthreem Inm a. A naturalextension
to the case of ourm inin a seem s desirable, and could also nclude investigations on how the forces between solitons
would behave under the deform ation procedure used in the present work.

A nother route of Interest is related to a topological change In the eld plane itself: f we let the elds to live n a
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genus 0 or genus 1 R iam ann surface, that is, if we consider the target space to be the tw o-sphere S? or the two-torus
T? = 8 s';instead of theplaneR? ;we could be able to tile the surface S? or T? w ith other pattems, nesting distinct
netw orks of defects. T his last casem ay possibly lead us to an issue of current interest: the con ict between geom etry
and topology, related to the geom etric features of the tiling w ith regular polygons and the topological properties of
the con guration space itself. It seem s plausble that the m odular param eter of the target space T? is forced to be
our = !5=!; and the sphere S? is restricted to a 2: embedding of this T2(! ) in CP . T hese and other issues are
now under consideration, and we hope to report on them in the near future.
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