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C onstructing netw orks of defects w ith scalar elds
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W e propose a new way to build networks of defects. T he idea takes advantage of the deform ation
procedure recently em ployed to describe defect structures, which we use to construct networks,
spread from sm all rudin entary netw orks that appear in sin ple m odels of scalar elds.

PACS numbers: 11.10Lm ,11.274+d,9880Cqg

N etw orks are of great Interest In physics In general. In
high energy physics, netw orks appear in diverse contexts,
usually in scenarios which require the presence of topo-
logical defects, as jinctions of dom ain walls Eh, coam ic
strings al, and brane tiling E]. T he presence and evo-
ution of dom ain walls and dom ain wall netw orks have
been investigated in several ways in @,E,@J, and the
dynam ical evolution of dom ain wall networks in an ex-—
panding universe has been recently studied in com puter
sin ulation In R ef. a].

In the present Letter we focus attention on kink net-
works, that is, we dealw ith m odels described by scalar

elds, which develop spontaneous sym m etry breaking of
discrete sym m etry E|,|a]. W e then take advantage of the
deform ation procedure introduced in E ], and extended to
other scenarios in @ ], to deform a given m odel, described
by a potential containing a rudim entary set of m Inim a,
to get to another m odel, w ith the potential giving rise
to a di erent set of m iInm a, which m ay replicate period-
ically. As a bonus, the deform ation procedure also gives
the defect structures of the deform ed m odel in term s of
the defect solutions of the originalm odel. Thus, In the
lattice of m InIm a of the deform ed m odel we can nest a
netw ork of defects in a very naturalway.

This is the m ain idea underlying this paper, in which
we use the deform ation m ethod to investigate two in —
portant possibilities, one described by a single real scalar

eld, giving rise to linear networks, and the other by
a com plex scalar eld, giving rise to planar networks.
W e focusm ainly on the generation of kink-like netw orks
described by the deform ed m odels, which are generated
from sinple m odels, which engender rudin entary net-
works.

T he dea of constructing netw orks of defects isnotnew ,
but the novelty here relies on the use of the deform ation
procedure as a sin ple and naturalway to generate net-
works. The m echanian is powerful and suggestive, and
fully m otivates the present work. To m ake the reasoning
m athem atically consistent we consider a m odeldescribed
by the Lagrange density w ith a single realscalar eld
in the form
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The potentialV ( ) = (1=2)W ®( ) is given in tem s of
the superpotential W = W ( ); with the prine stand-

ing for the derivative w ith respect to the argum ent, eg.
WO )= di=d : In this case, the equation of mo-
tion for static eld = (x) can be reduced to the
rstorder di erential equation d =dx = W % ). For
W o= 3=3) we get the * model, which has the
sestofminima £ 1;1lg. In this case, the defect structure
represents kink (tanh(x)) or antikink ( tanh(x)), with
energy m inin ized to the value E = 4=3:For sin plicity,
we are working w ith dim ensionless elds, space-tin e co-
ordinates, m ass and coupling constants, w ith m ass and
coupling constants set to unit. In the one din ensional
eld space, the orbit is a straight line segm ent which
connects the two m inin a. Since the kink or antikink
spans the orbit in the positive or negative sense, they
m ay orient the orbit, leading to orientable netw orks.
W enow use an extension of the deform ation procedure
considered in the rst work in @]. T he deform ed m odel
is described by

Ly = @ @ Iy 2)
P2 2

w ith the deform ed potentialU ( ) given in tem s of the
new superpotentialW ( )= W (£( ))=f%( ):Heref( )is
the deform ation function,and we considerf ( )= sin( );
with nverse £, *( ) = ( 1PArcsin( )+ n ;withn =
0; 1; 2;::This gives another m odel, the sine-G ordon
modelwith W % ) = cos( ): The set of m Inin a is now
given by £(2n 1) =2;(2n + 1) =2g. It form s a lattice
in the entire eld space, and n = 0 dentd es the cen—
tral sector with minina £ =2; =2g,n = 1 the sector
f =2;3 =2g;and n= 1thesectorf 3 =2; =2g,etc.
T he orbit of the originalm odel is now m apped into dis-
tinct orbits of the new m odel, giving rise to a speci ¢
netw ork , which appears as a spreading of the original set
of two points into the entire eld space, the real Ine in
the present case. This is illustrated In Fig. 1.

T he above study allow s the construction of a reqular
lattice, n which pairs of adjacent m inin a are equally
spaced and connected by kinks and antikinks w ith the
very sam e pro le and the same energy Ep = 2:W e can
change regularity of the lattice changing the deform ation
function. W e take for instance £, ( ) = cos( ?);with a
real and positive, a = 1 leading us to a m odel sin ilar to
the form erm odel. Tt introduces the potential

1

— 2(1 a) 22, a
V()fg sin”( %) (3)
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In thiscase, the setofm inin a isgivenby , = (n
n = 0;1;2;:::;and the distance betw een consecutive m in—
Ina in the lattice increases for a < 1 and decreases for
a > 1l;aswe get away from the centralm ininum at
the origin. T his case gives another tiling, for which the
distance between m inin a and the corresponding defect
energy vary in a nice way, controlled by the param etera:
T he energy fora = 2=3 in the sector labeled by n is now
ESZE = (9=4)(2n + 1) ;which increases lnearly with n:
See [10] for further details.
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Figure 1: Plot of them inin a of the originaland deform ed po-
tentials, show Ing how the deform ation function pro fcts topo—
logical sectors in the two m odels.

Let us now move to the plane, considering another
m odel, described by a single complex eld, (x;t) =

1 (x;0)+ 1 2 (x;t);written in term s of the two real elds

1(x;t) and  ,(x;t): The speci c model which we con-—
sider is descrlbed by the Lagrange density

L=le e~ wemoy (4)
) 2
w here the bar stands for com plex conjugation. W e spec—
ify them odelchoosingW ( ) astheholom orphic function
1
W _ N+1 5
() N 11 (5)

This is the W essZum ino m odel. It was Investigated be-
fore in [11,012,13]. The case with N = 3 is interesting
and illustrative: the vacua m anifold has the three points

x = exp(2 ik 1)=3);with k = 1;2;3; which depict
an equilateral triangle In the eld plane. And the static
solutions satisfy the rst-orderordinary di erentialequa-
tion

together with the accom panying com plex conjigate,
where et 2 st is a phase. We can write W ( ) =
e W ()togetdw W ) = 0:This inplies that
the kink orbits arise when the in agiary part of the su-
perpotential is constant

m e * (x) 4 (x)=4 = const (7)
A's the kink orbits connect m inina of the potential,
this constant m ust also be equal to the value of In W
at those m Inima, which are the roots of unity. This
means that sin(2(k 1) =3 ) = constant: O £ course,
this constant value should be the sam e at the two dif-
ferent m inin a connected by the orbit. Then we have
ImW «5 ( (k)): Im W «y ( (j));and SO

(ki) _

arcsin (cos( (k+ 3j 2)=3)); k>3 (8)

Note that )= &3I4+ i< k.

W e can also use the rst-order equations to obtain

ds

dx

where s stands for the \length" on the kink orbits (4) {

see R ef. E]. The kink pro les are then obtained by in-

verting these relations betw een the realpart of the super-

potential and s: T he energy of the static con gurations
BBE = (3=2)Bn(k J) =3)3:

W e now tum attention to the deform ation procedure.

W e follow the second work In E}. It is Interesting to

express the deform ed system in term s of another com plex

- W xnf= a k) ©9)

ed, x;t)= 1(x;t)+ 1 .(x;t);related to the original
one by m eans of a holom orphic function £ = £( ) such
that
=f()=15H(1; 2)+ if2( 1; 2) (10a)
@ef @ef @f @f
en, e &L Ch (10b)
@ 1 @ 2 @ 2 @ 1
T he deform ed Lagrange density has the form
1 - VA(EC )E(0))
2 £00 )0 )

The deform ed model Ly can be de ned by the new su—
perpotential

In this case, the \deform ed" rst-order equations are

. i 0

i o - © w () (13)
T he defect solutions for this system are obtained from

the solutions of (@) by sim ply taking the inverse of the
deform ation function: ¥ (x) = £ *( ¥ (x)). Thus, we
can establish the follow ing relation betw een the deform ed
and origihalequations: if ¥ (x) isa kink-like solution of
the originalm odel, we have that

K

mW (* (x))= const; ReW ( ¥ (x))= s (14)

and then * (x)= £ '( ¥ (x)) iskink-lke solution ofthe
deform ed m odel, obeying

W (£ *( ¥ (x)))=const; ReW (£ (¥ (x))=
(15)
where isde ned by
Z

= #wPfN(Fx) fax (16)

A Ythough the m ethod is general, we now specify the

deform ed m odel choosing £( )= W ( ):This constrains
the function £ ( ) to obey the equation
q
£O0)E0( )= 2V (E( )E( ) (17)



A function £ satisfying this condition providesa potential
U ( ; ) for the new modelwhich iswellde ned ( nite)
at the critical points of £ ( ); eg. the zerosof £%( ). As
a bonus, the procedure leads to a very sin ple expression
for the deform ed superpotential. W e change for £( )

in the generalexpression () to get the potential

1
v=3a a9 () (18)
As stated in {I7), we can then choose
£20)= 1M a () (19)

T he solution of this equation solves the generalproblen .
W e illustrate the generalresultswith N = 3:Herewe
have

£%()y=£() 1 (20)

The solution is the equianham onic case of the W eier—
strass P flinction

(21)

The W ejerstrass P function is de ned as the solution of
the ODE

®P%z))? = 4P°(z) QP (z) g3 (22)

T he elliptic function which solves the di erential equa-
tion above is doubly periodic function de ned as the se-
ries

1 X 1 1

22+mTl (z A@m;n))? Am;n)?

(23)

where Am;n) = 2m!1 + 2n'!3; with m;n 2 72 and
m?+ n? 6 0:Therefore, the deform ation finction is, up
to a factor, the W elerstrass P function w ith invariants
g, = 0and g3 = 1, and we denote it by Pg1(z). This
flunction ism erom orphic,w ith an in nite num ber ofpoles
congruent to the Irreducible pole of order two in the fun-
dam ental period parallelogram (FPP).

HerewegetW ( )=e * 43Py (4 * );and so the
deform ed potential can be w ritten as
— 1 0 1 -0 1
U ):EP01(4 * )Po1 (4 5 ) (24)

T he potential spans the plane replicating the triangular
structure as shown in Fig. 2, and in Fig. 3.

Thenew potential isdoubly periodicw ith an structure
inherited from the \halfperiods" of P . T he set of zeros
of the potemjalf'p the FPP has three elam entsp(l) =

b= 1,(1=2 i 3=2), @ = 15=1,(1=2+ i 3=2),
and @ = 1, =45 3(1=3)=4 . The set of all the zeros
of U form a lattice which tile the entire eld plane,aswe
show In Fig. 3.

T he potential obtained from the deform ation proce-
dure has the sam e num ber of zeros in the FPP as the

Figure 2: The case N = 3; showing the potential U ( ; )
(upper panel) and its m echanical analogue U ( ; ) near a
pole (lower panel). N ote that in the lower panel the zeros are
now maxi a.

originalm odelin thewhole eld space. Besides, one pole
of sixth order arises at the origin due to the m erom or-
phic structure of P{; (4 5 );see Fig. 3. However, this
structure is In nitely repeated in the deform ed m odel,
according to the two periods !; and !3 detgym ining
the m odular parameter = !3=!1 = 1=2+ i 3=2 of
the R dam ann surface of genus 1 associated w ith this P -
W elerstrass fiinction.

W e now com pare the P kink orbits w ith the orbits of
the originalm odel. If * (x) is a solution of (@) and (9)
then ¥ (x)= 4P, (4 7 ¥ (x)) solves

4% Po1(4 3

et 3K(x)):const
Ree ! 45Py (4 * X (x)) = (25)
w here
Z 2
= PHU T Fx) ox (26)

Since the deform ation function isa conform altransfor-
m ation, angles are preserved, and the sam e values of
as In the non deform ed case give the kink orbits. T here
are three types, and here we just inform that the nearest
neighbor type (12), (23) and (31) m inin a are connected
by orbits which follow speci ¢ sequences { see Ref. @].
W e notice that the kink orbits go around, circum vent—
ing the singularities which stand at the center of circles
depicted by the orbits them selves. Like in the case of a
single real scalar eld, we can also break the lattice reg—
ularity in this case { see @] for further details on this
issue.

W e further illustrate the problem with N = 4:Herewe
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Figure 3: Thecase N = 3;showing them inina ( ) and poles
(o) of the potential (upper panel, lkeft) and the kink orbits
in the FPP (upper panel, right). The lower panel show s the
lattice of m inin a and poles of the deform ed potentialand the
accom panying network of kink orbits.

haveW ( )= 5=5:T hus, the potential is
_ 1 4 —4
V()= 5(1 )(1 ) (27)

Wewrite = f£( )to show that the specialdeform ation
flunction m ust satisfy
g
£ )=  a

£1eNa £10) (28)

A s before, we choose the holom orphic solution of

f90)=1 £'() (29)
T he solution is the elliptic sine of param eter k% = 1,
the G auss’s sinus kmniscaticus £( ) = sn( ; 1): The
new superpotential isW ( ) = e * sn( ; 1) and the
deform ed potential then reads
_ 1 . _
Ui )=t DF $in(; 17 (30)

The new potential is doubly periodic w ith an structure
nherited from the \quarterperiods" K ( 1)= !;=4 and
K (2) = !,=4 of the twelve Jacobi elliptic functions.
Here K ( 1) 1:31103 is the com plete elliptic inte—
gral of the rst type, a quarter of the length of the
lem niscate curve in el space: ( ¢+ 3)2 = 2 2:
K (2) 1:31103 i1:31103 is the com plem entary com —
plete elliptic integralofK ( 1).

The set of zeros of the potential In the FPP are

W= 1=4; @ = i11=4; D= 1=4; D= i1=4;
w hereas the set of all the zeros 0of U form a quadrangu-—
lar Jattice In the whole con guration space. This is de-
picted in Fig. 4 and will be fully considered in R ef. @].

D i erently from the form er case, however, here the or-
bitsm ay connect them inin a in two distinct ways: one,
w ith curved lines, In the sequence (1;2), (2;3), (3;4),and
(4;1), and the other w ith straight line segm ents, in the
sequence (1;3) and (2;4) { see @]ﬁ)r further details on

this issue.
A

: .

Figure 4: Thecase N = 4;showing the sestofm inina ( ) and
poles (o) of the deform ed potential and the accom panying
network of kink orbits.

XXX

In summ ary, In this work we have used the procedure
developed In @ ,@ ]to deform a given m odelin a way such
that its set of m nin a could be replicated in the entire

eld space. The dea was developed in the real line, for
the case of a real eld, and in the plane, for the case of
a complex eld. Since the set ofm Inin a are connected
by algebraic orbits describing defect structures in  eld
space, we have also been able to replicate the algebraic
orbits in the entire eld gpace of the deform ed m odel,
naturally building netw orks of defects, which are spread
from rudin entary networks into the entire eld space.

A naturalextension of thiswork concems the construc-
tion of irregular lattices and netw orks in the plane, in the
case ofa complex eld,which we will study In our next
work, now under preparation ]. A nother extension
concems the use of three real elds, to investigate if it is
possible to tile the gpace n a way sin ilar to the case of
planar netw orks here considered .

W e recall that a kink-like defect in general splits the
space into tw o distinct regions, so we could also think as
n E| ], using tw o spatialdim ensions, to see how the kinks
orbits that we have just obtained could tile the plne
w ith regular and/or irregular polygons, w ith triple junc-
tions for N = 3, and w ith quartic junctions for N = 4.
A nother interesting issue could address the sam e prob—
lem , but now embedding the scalar elds in a curved
space-tin e, follow ing the lines of Ref. Q]. This would
lead us to another route, In which we could try to under—
stand how the netw orks here introduced would change In
a curved background. W e can also think ofm aking the
space-tin e dynam ically curved, to see how the dom ain
wall networks could follow the evolution investigated in
ﬂ]. These and other related issues are presently under
consideration, and we hope to report on the them in the
near future.
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