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A bstract
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polynom ial selfinteractions.
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1 Introduction

BPS states arising both In extended supersymm etric gauge theordes []]and string/M theory [3]
play a crucialrdle in the understanding of the dualities between thedi erent regin es of the system .
In this fram ework, dom ain walls appear as extended states in N = 1 SUSY gliodynam ics and
the W essZum ino m odel [J]. This circum stance prom pted the question of w hether or not these
topological defects saturate the quantum Bogom olny bound. A retum to the study of quantum

corrections to the m asses of (1+ 1)-din ensional solitons has thus been unavoidable. T hese subtle
m atters were rst addressed in the classical papers of D ashen, Hasshcher and Neveu, H], and
Faddesv and K orepin, E], for the purely bosonic [ ]3 and sine6 ordon theories, and then in
R eference [§] for the super-sym m etric extension of these theories. A nalysis of the ultraviolet cut—
o0 regularization procedure In the presence of a background is the m ain concem in the papers of
R eference []]: the authors carefully distinguish between using a cut-o either in the energy or in the
num ber of m odes. T he second m ethod leads to the sam e result as in the com putation perform ed
by DHN for bosonic uctuations. Another point of view is taken n R eference [f]], where SUSY

boundary conditions related m ore to infrared behaviour, are carefillly chosen. O n this basis, and
by using higherderivative ultraviolet reqularization (SUSY preserving), the authors dem onstrated
an anom aly In the central charge that com pensates for the extra (quantum ) contribbution to the
classicalm ass.

In this paper we shall con ne ourselves to purely bosonic theories and leave the treatm ent of
ferm jonic uctuations for fiiture research . W e address the quantization of non-linear waves relying
on the generalized zeta function regularization m ethod to control the in nite quantities arising
In the quantum theory. T his procedure has been used previously in com puting C asin ir energies
and the quantum corrections to kink m asses, see [L1]]. W e shall develop this topic, however, in a
com pletely general way, also o ering a com parison w ith other approaches. A s well as obtaining
exact results, we also shall explain how asym ptotic m ethods lead to a very good approxin ation
of the right answer. W e believe that the novel application of the asym ptotic m ethod should be
very usefill In the cubic sinh-G ordon m odel as well as in m ulticom ponent scalar eld theory,
w here the traditional approach is Im ited by the Jack of detailed know ledge of the spectrum of the
second-order uctuation operator (see [13], [[4] for extensive work on m ulticom ponent kinks and
their stability) .

T he organization of the paper is as follow s: In Section x2 the general sem i<lassical picture
of quantum solitons, the zeta function regularization procedure, the zero-point energy and m ass
renom alization prescriptions, and the asym ptotic m ethod are described. In Section x.3, we apply
the m ethod to the \loop" kinks of the sheG ordon , ( )‘21, and cubic sinh-G ordon m odels. In
the rst two paradigm atic cases, it is possible to obtain an exact result, which allow s com parison
w ith other m ethods. A pproxin ate com putations by m eans of the asym ptotic expansion of the
heat function are also o ered to test the goodness of our procedure against the well known exact
answers. Section x4 is devoted to the analysis of the \link" kink arising in the ( )g m odel.
Finally, Section x.5 o ers an outlook on further applications of our approach.



2 Sem iclassical picture of quantum soliton states

W e shall consider (1+ 1)-din ensional scalar eld theories whose classical dynam ics is governed by
the action 7
1@ @

2
St1= &y Soogr UO)
W e choose them etric tensor n T?(R'%?) asg = diag (1; 1) and the Einsteln convention will be
used throughout the paper. W e shall not use a natural unit systam because we wish to keep
track of ~ In our formm ulas; nevertheless, we choose the speaed of Iight to be c= 1. Elam entary
din ensionalanalysistellsusthat [~]=M L,U( )]=M L land [ ]= M ZL7 are the din ensions
of the In portant quantities.
T he classical con guration space C is form ed by the static con gurations (y), for which the
energy functional 7
1d d

E()= dy Ed_yd_erU()

is nite: C=f (y)=E( )< +1 g. In the Schrodinger picture, quantum evolution is ruled by
the functional di erential Schrodinger equation :

@
j~— ;tl=H R
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T he quantum Ham iltonian operator
/ 2
H= d ————— + E
A% 2 W) ©) [ ()]

acts on wave functionals [ (y);t]thatbelong to L 2(C).

W ew ish to com pute them atrix elem ent of the evolution operator in the \ eld" representation
Z

6 Ty YuT = Dy e ™ 9y = DI (yile® ~SI ] 1)

for the choice
Dyio= k) ;5 TwiT)= k)
where « (y) is a kink static solution of the classical eld equations. W e are, however, only
Interested In the loop (~) expansion of G up to the st quantum correction. A lso perform ing a
analytic continuation to \Euclidean" tine,t= 1 ,T = 1 , this is achieved by the steepest-
descent m ethod applied to the Feynm an integralin ():
E[ ] B i
Ge (x(¥); x(y); )= exp ———— Det > N PK  (1+ o(~))

where K is the di erential operator



and P is the pro fctor over the strictly positive part of the spectrum ofK . N ote that, on them ath—
em atical side, the stespestdescent m ethod provides a wellde ned approxin ation to the Feynm an
Integral if the spectrum of the quadratic form K is positive de nite and, on the physical side,
the zero eigenvalue that appears in Spec(K ) contributes to the next order in the loop expansion:
it is due to neutral equilibbriim on the orbit of the kink solution under the action of the spatial
translation group. M oreover, In order to avoid the problam s that arise iIn connection w ith the
existence of a continuous spectrum ofK , we place the system in a intervalof nite but very large
lngth L, ie. x 2 [ ;2 ], and, eventually -after assum ing periodic boundary conditions on the
an all uctuations all throughout the paper-we shall et L go to in nity.
>From the spectral resolution of K ,

K oly)= !0 ay) ; 122 Spec(K ) = Spec(PK )+ £0g;

we w rite the fiinctional determ inant in the form

A 11 the determ nants in the in nite product correspond to harm onic oscillators of frequency i! ,
and thus, w ith an appropriate nomm alization, we obtain for large

“El«] ~n 2 'n (I+0(~))

Ge (x(¥); x(¥); )= e

n

where the eigenvalue in the kemel of K has been excluded.
Thserting elgen-energy wave functionals

H ;[«WI="y 5[ x ¥)]
we have an altemative expression forGg for ! 1 :
Ge (k@) x )i )= olx@] olxWle -
and, therefore, we obtain <
"M=Elglt =  la+ of?)
2!2>O
2 1 PK 2
Jolk WP =Dett —— +0o(7);

as the kink ground state energy and wave functional up to one-loop order.
W e de ne the generalized zeta function

X 1
— S _
pk (8)= Tr(PK) ~ = (12)
1250 n
associated to the di erential operator PK . Then,
WK _ - 1 2\ _ - 1 2
O—E[K]"‘ET]-’(PKV"‘O(N)—E[K]"‘E PK(E)"‘O(N) (2)



jo[K(Y)]]2= ~expf px (0)gexp -
4 ds

show how to read the energy and wave fiinctionalof the quantum kink ground state in tem s ofthe
generalized zeta function of the profction of the second variation operatorK in the sem i<lassical

(0) (3)

2.1 The generalized zeta function regularization m ethod : zero-point
energy and m ass renorm alizations

T he eigen-functions of K form a basis for the quantum uctuations around the kink background.
T herefore, the sum of the associated zeropoint energies encoded In  pxk ( %) n formula @) is
In nite and we need to use som e regularization procedure. W e shallregularize px ( % ) by de ning
the analogous quantity pk (S) at som e point In the s com plex plane where pk (s) doesnot have a
polk. px (s) isam erom orphic function of s, such that its residues and poles can be derived from

heat kemelm ethods, see ]. IfK g (y;z; ) is the kemel of the heat equation associated with K,

@
@—+K Kg(viz; )=0 ; Kx(yiz;0)= (v 2) 4)
the M ellin transform ation tells us that,
Z
1 1
pk ()= d ° hpg ()
(s) o
where, Z
hpx [ 1= Tre FE — Tre X 1= 1+ dyvKxk (viv: )

is the heat function hpx [ ], if K is positive sem de nite and din Ker(K ) = 1. Thus, the \regu—
larized" kink energy is In the sam iclassical Iim it:

" E=ELclt 5 ek (s)+ o) (5)
where isa unit of length ! dim ension, introduced to m ake the tem s in (H) hom ogeneous from
a dim ensional point of view . The in niteness of the bare quantum energy is seen here in the pole
that the zeta function develops fors= 2.

To renom alize "y we must: A . Subtract the regularized vacuum quantum energy. B.Add
counter-term s that will m odify the bare m asses of the filndam ental quanta, also regularized by
m eans of the generalized zeta function. C . Take the appropriate Iim its.

A .Thequantum uctuations around the vacuum are govemed by the Schrodinger operator:

. a?  du
= _t —
dy* d *
where  isa constantm nimum of U [ ]. T he kemel of the heat equation
@
@—+V Kyv(yiz; )= 0 ; Ky(viz;0)= (y 2)



provides the heat function hy ( ),
hy( )=Tre "= dyKy(y;y; ):

W e exclude the constant m ode and, through the M ellin transform ation, we obtain

Z 1
1
v (s)= — d °1!'Tre
(s) o

V.

T he reqularized kink energy m easured w ith respect to the reqularized vacuum energy is thus:

" (s) E[x]+ 1™ (s)+ o(~?)

= Elxlt 5 “ M lex(s)  vi®)M o)

B.Ifwe now go to the physical lin it "™ = Iin , 1 "8 (s), we still obtain an In nite result.
The reason for this is that the physical param eters of the theory have not been renom alized.
Tt is well known that in (1+ 1)-din ensional scalar eld theory nom al ordering takes care of all
the in nities in the systam : the only ultraviolet divergences that occur in perturbation theory
com e from graphs that contain a closed loop consisting of a single intemal line, [[§]. From W ick’s
theorem , adapted to contractionsoftwo elds at the sam e point In spacetin e, we see that nom al
ordering adds the m ass renom alization counter+tem ,

to the Ham iltonian up to one-loop order. To reqularize

Z
S S

4 TRy U9 )

we rst place the system i a 1D box of length L so that m? = = (%),jftheconstantejgen—

IV
function of V isnot included In . Then, we again use the zeta function regularization m ethod
and de ne: m?(s)= <-5Y (s+ 1).Notethat m?= lin, . m?(s).The criterion behind

L (s)
this regularization prescription is the vanishing tadpole condjtjon,zwhjch is shown In Appendix B

of R eference [13] to be equivalent to the heat kemel subtraction schem e.
T he one-loop correction to the kink energy due to H ( m?(s)) is thus

2™ (s) = hygdH (m*(s)jxi hyiH (m®(s))jvi= "
= Tm — 25+1M22dyv(8+ 1) dZ_U dZ_U =
Lt 1 2L (s) L d ? d 2
N 1 2y K v
= m oo 25“% vis+ 1) dyvi(y) (6)

2

because the expectation values of nom al ordered operators in coherent states are the correspond-
Ing cnum bervalied functions.



C . The renom alized kink energy is thus

"o Elxl+ Mg tolf)=Elx]+ I 1™ (s)+ 2" (s) + o) (7)

w hereas the renom alized wave functional reads
Z

dx (k)

(1)
4

1
D ets . Det 72

} dPK(O) d_v
4 ds ds

= ~expf (px(0) v (0))gexp (0)

2.2 A sym ptotic approxim ation to sem iclassical kink m asses

Tn order to use the asym ptotic expansion of the generalized zeta function of the K operator to
com pute the sam iclassical expansion of the corresponding quantum kink m ass, it is convenient

to use non-dim ensional variables. W e de ne non-din ensional space-tin e coordinates x = m gy
and ed amplitides (x )= ¢y (v ),wherem 4 and ¢y are constants w ith din ensions fn 4= L !
and [y]= M 2L > to bedeterm ined in each speci cmodel. Alo, wewrite U ( )= m—5 ().
T he action and the energy can now be w ritten in term s of their non-dim ensjonalcoﬁjnterparts:
1 ? le e |
2
S[] = gdZdX Sex ex U() =gds[]
Bl - 2 oax oSS sy - Zep
o 2dx dx o5

T he in portant point is that the H essians at the vacuum and kink con gurations now read

2 2
vV = 2 d 2 _ 2 . _ 2 d 2 _ 2
=my &‘FV —de H K—md @‘FV V(X) —de

1 1
vis)= —5 v(s) i k()= —% x(s):
md md

T he asym ptotic expansion is super uous if Tre F% and ;i (s) are susceptible of an exact

com putation. TfV (x) is a potential well of the Posch-Teller type, see [[]], one can com pletely
solve the spectral problem forK and there is no need for any approxin ation to x (s). In general
the spectrum of K is not known in full detail, specially in system s w ith m ulti-com ponent kinks,
and we can only determ ine .y (s) by m eans of an asym ptotic expansion. N evertheless, we shall
also com pute the asym ptotic expansion of .y (s) In the cases where the exact answer isknown in
order to estim ate the error accepted in this approach.

In the omulas @), @), @) and (]) we replace V, K and v* by V, K and v* and write the
kemel of the heat equation for K in the fomm :

Ky (;x% )= Ky x;x% A x% );



A (x;x% ) is thus the solution of the PDE

0 2
@£+X x& € V(x) A;x% )=0 (8)

w ith \initial" condition: A (x;x%;0) = 1.

p For < 1,we solve (§) by m eans ofan asym ptotic (high-tem perature) expansion: A (x;x%; )=
i: 0 an (X ;xY) ™. Note that there are no halfinteger powers of in this expansion because our
choice of boundary conditions w ith no boundary e ects.

Tn this regin e the heat function is given by:

Z mgL e V2 }{1 Z mgL o V2 }é‘
Tre © = dxKy (xjx; )= p4: dx ay (xx) n— p4: a, ®) "
mg mg
2 n=0 2 n=0

Ttisnotdi cultto nd thecoe cientsa , (x;x) by an iterative procedure starting from ag (x ;x0) =
1. Thisprocedure isexplained in the A ppendix, which also includes the explicit expression of som e
of the lower-order coe cients.

T he use of the power expansion of hpx [ ]= Tre F¥ in the ormula for the quantum kink
m ass is quite involved:

1. First, we write the generalized zeta function of V in the fom :

Z
1 mdL ! s 3 w2
v(s)= —p— d ze + By (s)
(s)” 4 0
w ith
mal s 2;v7] maL s £;v7]
By(s)=# iov(s)= p=—= + By (s)

4_ v2s 1 [S]

and [s;vZland [s % ;v? 1being respectively the upper and lower incom plete gamm a functions,

See ]. Tt follow s that  (s) is a m erom orphic function of s w ith poles at the polesof [s % v,

which occurwhen s % is a negative integer or zero. By, (s), however, is a entire function of s.
2. Second, from the asym ptotic expansion of hy [ Jwe estin ate the generalized zeta fiinction

of PK :

" #
A X 4
1 s 1 1 S+ n 2 V2
pk (S8) = ﬁ d + = an K) d ze + 1, (s) + Bpg (s)
0 n<nop 0
1 1 X N A vl .
n<np
w here iy
1 X [s+n 2;v7]
b, x (8)= 19? an (K 2 D)
n np
is holom orphic forRes >  ng+ £, whereas
1 21
Bpg (8)= —— d Tre F% st
() 2



is a entire function of s. The valuesof swhere s+ n % is a negative Integer or zero are the poles

of px (s) because thepolesof [s+ n % ;v2 ] e at these points in the s—com plex plane.

R enomm alization of the zero-point energy requires the subtraction of | (s) from x (s). We
nd, " #

1 l+1}91aﬁn(K) [+ n
(S) s LJ4_ V2(s+r1

n=1

and the error in this approxin ation w ith respect to the exact result to "™ is:

N =
-
—
e

emm:ﬂzd[ #=h,x ( 2)+ Bpx ( 2) Byl

N ote that the subtraction of y (s) exactly cancels the contribution of a5 (K ) and hence, the diver-

gence arising at s = %,n = 0. The quadratic ultraviolet divergences appear in this schem e as
related to thepole of  (s)ats= %,n= 0.

3. Third, ;"™ now reads

K ~ g ~o z2® a; ) [S+%;v2]
1 = o, m P=— 25t 1
( 3) 2 § mg 4 (s) Vv
g ® e ®) b 1]
== 1 on 2 .
2 ., 4 35 v

T he logarithm ic ultraviolet divergences, hidden at st sight in the DHN approach, arise here in
connection with the pole of oy (s) y(s)ats= Z,n= 1.

T he surplus in energy due to the m ass renom alization counterterm is,

2s+ 1
~a; (K s+ 1
e lim ~alk) lim — s+ 1) s+ 1)+ o(~* )
] 2L st 1 mg (s)
2s+ 1 1
~m [s+ 5iv°]
= —p—ial(K) Tim — 272,"' O('”Z )
2 4 st 1 omg vt (s)

and the deviation from the exact result is

= Im —a; K )By (2):
SR L!1 4Lal( B (z)
T herefore,
nw #
. , ~ g I h 17
"W=E[x]+ Mx+o(")=E[ ] 5]_9:1+Zp: an(K)T‘Ir
n=2
2s+ 1 1 1 2

~M g . [s+ 5:v°] [s+ 5V ] 5
+ —Pp—a; (K ) Ilm — + o(~7):

2 4 a )s! 1 omg vt (s) vt (s) =

N ote that the contributions proportionalto a; (K ) of thepolsats= < in "™ (s)and ,"™ (s)
cancel.



W e are left w ith the very com pact form ula:

1
2 o= =

M kx=~mg[ o0+ Dy, I}Qlan(K) n 1;\]2] 9)

8 VZn 2
n=2
In sum , there are only two contribbutions to sam iclassical kink m asses obtained by m eans of the
asym ptotic method: 1) ~my4 o is due to the subtraction of the transhtionalm ode; 2) ~m 4D ,,
com es from the partial sum of the asym ptotic series up to theny 1 order. W e stress that the
m erit of the asym ptotic m ethod lies In the fact that there isno need to solve the spectral problam
ofK : all the Inform ation is encoded in the potentialV (x).

3 Loop kinks

T he existence of kinks is quaranteed if them inina of U ( ) are a discrete set which is the union
of orbits of the discrete symm etry group of the system . W e shall use the term \loop" kinks to
refer to those classical solutions that interpolate between vacua belonging to the sam e orbit of the
symm etry group; otherw ise, the solitary waves w ill be referred to as \1ink" kinks, see Q1. In this
Section we shalldiscuss three kinks of the \loop" type.

3.1 The quantum sine-G ordon soliton

We st treg_c the sineG ordon m odel by considering the potential energy density: U[ (y )] =

ﬁ(l cos— ). T he din ensions of the parametersmpimd are regpectively: m ]= L L and

[ =M 'L °.Therefre,we choosemy=m and ¢ = —and nd:U[ (x;8)]= (1 ocos ).
The \Intermal" symm etry group of the system is the in nite dhhedralgroup D, = Z, Z
generated by Intemalre ections, ! ,and 2 transhtions, ! + 2 .Thevacuum classical
con gurations vy (x;t) = 2 n form the orbit M = DZ—12 and there is gpontaneous symm etry
breakdown of the Intemal translational symm etry through the choice of vacuum . The m oduli

N

space of vacua, however, M = DM—l , is a single point and all the equivalents kinks of the m odel,

x 4m o 2 nm
x (x;8)= darctane®+ 2 n ; k(Yivo)= #Pp—arxtane ¥+ p— ;

are Joop kinks. Tt is easy to check thatE [ x J= & and E [ 4 ]= O.
T he second order variation operator around the kink solutions is

d? d?
K= —+m?1 2seh’my) ; K= —+1 2sh’x:
dy? dx?

Note thatK = m ’K ;henceforth, px (S)= — px (s). Sinilim odo, in the vacuum sector we have:

10



3.1.1 Exact com putation of the m ass and the wave functional

G eneralized zeta function ofV :

T he spectrum of V acting on fliinctions belonging to L2 (R ) is SpecV = k*+ 1,with k 2 R a
real num ber. T here is a halfoound state fi2_( (x) = constant that we shall not consider because
it is paired with the other halfloound state in Spec(K ). The spectral density on the interval

I= [ %>=;%=]with periodic boundary conditions is y (k) = £=. The heat function is,
Z
vy ML %+ 1) mL
Tre = — dke = p——=e
2, 4

and the generalized zeta fuinction reads:

Z
mL ! s 3 mL (s %)
V(S):—p: d ze = PP=":
(s) 4 o 4 (s)

Therefore,  (s) (hence vy (s)) isam erom orphic function of sw ith poksats= 2, %, 2, 2,

T he generalized zeta function of the Hessian at the vacuum is, however, also hfrared-divergent:
it is linearly divergent when L ! 1 even atpointss 2 C where v (s) is regular.
G eneralized zeta function ofK :
In this case SpecK = f0g [ fk?+ 1g,k 2 R and the spectraldensity on I is

) mL 1
= -|- RS
K 2 2

d (k)
dk

w ith phase shifts
1
(k)= 2arctan£

because K is the Schrodinger operator that govems the scattering through the st of the \trans-
parent" Posch-Teller potentials, [L]]. T hus,

Z 1
K 1+ M0 e wen, 1 g d K
2 2 T

Tre
mL
= 1+ p4:e Erﬁ

w here Erfcp_ is the com plam entary error function, ]. Note that K has a zero m ode, the
eigen—function being the translationalm ode ddj: — sech? x, which m ust be subtracted because it
arises In connection with the breaking of the translhtional symmetry, x ! x + a, by the kink
solution and does not contrilbute to the kink m ass up to this order in the loop expansion. T here
isalso a halfbound state, fy2_ o (x) = tanhx, that exactly cancels the contrdbution of the constant

halfbound state in SpecdV . T herefore, we obtain

| S
Tre ¥ =Tre ¥ 1=Tre V Ert

and 7
1 ’ P — s 1 1 (S+ %)
pr (8)= y(8) —— d Erfc = () p=——2:

(S) 0 s (S)



px (8) (hence px (s)) isalso am erom orphic function of s that sharesallthe poleswith  (s),but
the residues are di erent except at s = % ;@ pole where the resdues of 4 (s) and y (s) coincide.
T he Infrared divergence, however, is dentical in the kink background and the vacuum .
W ecan now com pute the lim it of the reqularized quantities that enter in the one-loop correction
form ula to the kink m ass:

#
& - :Iln 2 s ( ( ) ( )) ~m :Iln on (n)
= — — S S = — — _—
1 2 5y mz o EEEL =N e e
~m . 1 2 1
= —lim = 2bg— L)Y+ (=)+ oM (10)
2 "o " 2
and
2~ 2stl (s+ 1) ~m 25t1 (s+ 1)
S = — Ilm — — y(s+ 1)+ o(~? )= p— Ilim — — 2
Ls i m (s) st 1 om (s)
oy Y 1 21 Q) ( )+ oM + o)
= — — - = — — — + - )+ ") o+ ~
"o m ( %J’_ ") 2 "0 " g o %
where (z)= @) is the digam m a function.

(z)
T he in portant point to notice is that the renom alization of the zero-point energy perform ed

by the subtraction of v ( % ) still leaves a divergence com ing from the s = % poles because the

residues are di erent. The correction due to the m ass renom alization countertermm also has a

pol. The sum of the contributions of the two poles leaves a nite ram ainder and we end w ith the
nite answer:

~m 8m ~m
e s — ;) WM =E[x] —+o0(® )= — —+o0(?

): (11)
T he one-doop quantum correction to the m ass of the sineG ordon soliton obtained by m eans of
the generalized zeta function procedure exactly agrees w ith the accepted result, see ], [{], and,
henceforth, w ith the outcom e of the m ode num ber reqularization m ethod, ﬂ].

T he square of the m odulus of the ground state wave functional up to one-loop order is given
by @). fw = i—% and C = ﬁ,obvjousy, w (8)=C?% _x(8) (y (0)= .« (0)) and we have

du - c% L, (s)gC + C2LEE (5): Thus,

dex _ dy 1 (5% 3) 1y, 1
ds  ds s (s) (s+3) s (s)
dy ml (s 2 .
v _ — 1 12
as 194— ) (s 3) (s) (12)
and
d d
v(0)=0 ; px(O0)= 1 ; d—;(m: mL dPSK<O)— mL+ (1) )
T herefore,
r
) 5 C 1 , 5 1
Jol kX)) = - P ZmL ; J ol vx))J = exp ZmL



R enom alizing the wave functional w ith respect to the vacuum we obtain

r

J ol x )5 _
X j2

J ool v X))

c
2

3.1.2 The asym ptotic expansion and quantum corrections

In the sineG ordon m odel the exact formulas for Tre  F¥ and .y (s) are readily derived because
the spectrum of the Schrodinger operator K is com pletely known. O n the other hand, the series
expansion of the com plem entary error fuinction tells us that
" #
- m L 1% on n g

Tre = p=—+ Pp—= e 1
4 = 1 3 5 @ 2n 1)

n=1
and the a, (K ) coe cients can be com puted from this exact expression:

Xl 2n+l
Tre = p— a, K) " 1 ; agE®)=mL ; a,K)=

i, en L’

NI

O ne can check by direct calculation that indeed,

Z nr
2
a, K)= dxa, (x;x) ; n= 0;1;2;3;:::

2

and the a, (K ) are the Integrals of the functions de ned in A ppendix forV (x) = 2sech? x.
In any casewe see from the form ula ({) that the com parison w ith the exact result is satisfactory :

ng 1
M ¢ = 0:282095~m a, ®)dy~m versus M x = 0:318309~m :
n=2
The partial sum s
%! % o 1;1]
D ng — an K )dn = dn K )87
n=2 n=2

can be estin ated w ith the help of the follow ing Table,

n a, K) ng 1 D,

2 266667 2 -0.0670702
3 1.06667 3 -0.0782849
4 0.30476 4 -0.0802324
5 0.06772 5 -0.0805373
6| 0.012324 6 -0.0805803
7|1 0.0018944 7 -0.0805857
8 | 0.00025258 8 -0.0805863
9 | 0.00002972 9 -0.0805863
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For instance, choosing np = 10 we nd thatD ;0 = 0080586 and the correction obtained by
m eans of the asym ptotic expansion is:

8m * 5
E[«]+ Mg = —  0362681~m + o(~? )

In fact
A _
~m 1 1 . ~m ] ~m ! 1Erfcp e
—EBPK( E) Bv( 5)]"‘ lim —BV(E)Z = d A 3 + P= = 0:044373~m
2 L!1 L 2 1 2 2

is aIn ost the total error: 0:044372~m . T he di erence is:

~

m 1 10 6, .
Zl@ibio,x( 5) m :

Note in the Tablk that a, (K ) rapidly decreases w ith increasing n.

3.2 The quantum ( %), kink

W e now consider the other prototype of solitary waves In relativistic (1+ 1)-din ensional el

, 2

theory: the kink of the ( *), m odel. T he potential energy density is: U [ (y )]= 7 2 mZ
o
W e choose, however, m 4 = 15“—5 but keep ¢4 = - and nd: U[ (x;t)]= % (2 1)2.

The Intemal sym m etry group is now the Z, group generated by the ! re ections and
the orbit of vacuum classical con gurations vy (x;£) = 12 M gives rise to a m oduli space of
vacuaM = ;4—2 which is a single point. T he kink solitary waves are thus loop kinks and read

m my
k (X;8) = tanhx ; k (Vivo)= P= tamhi@—5 :

Thekink and vacuum solutionshave classicalenergiesofE [ ¢ ]= %é‘% and E [ v ]= 0 respectively.
T he H essian operators for the vacuum and kink solitions are

d? m 2 d? m 2
vV = — 4+ 2m’="— — 44 =_—V
dy? 2 dx? 2
d? 5 3m ? m ? d? 6 m ?
K = —+2m? ———=— —+4 — = —K
dy? coshp%’ 2 dx? cosh”x 2

and the corresponding generalized zeta functions satisfy

14



3.2.1 Exact com putation of the sem i<lassicalm ass and wave functional

G eneralized zeta function ofV = f—; + 4.
Actingon theL?(R) C Hibert space we have that SpecV = fk?+ 4g,k 2 R ,but the spectral
density on the interval I = [ gisL—E ;giaL—E ] of elgen-flinctions w ith periodic boundary conditions is
v k)= 5@%— . From these data, the heat and generalized zeta functions are easily com puted:

Zl
m L mL
Tre V= = dke (k2+4): P—=c 4
2 2 1 8
Zl 1
mL 1 s 3 4 m L 1 (S E)
V(S): P d ze = = 1 (14)
8 (s) o 8 4° (s)

andwe nd that  (s)hasthe sam epolesand infrared behaviour in the ( *), and the sine-6 ordon
m odels.

G eneralized zeta function ofk = C?—zz + 4 6.
b4 cosh” x

K is the Schrodinger operator for the second transparent Posch-Teller potential, [I7]. Thus,
SpecK = fOg [ £3g[ fk?+ 4g,k 2 R, and the spectraldensity on I is

_mL 1d k)
22 2 &

where the phase shiftsare (k)= 2arctans®;, if PBC are considered. Thus,we nd
Z 1 Z 1
Tre °% = e + p—m_L dke ®*9 4 2 dk—d (k)e 0+ 4)
8 1 2 1 dk
mL 4 3 p— o —
= -p8:e + e (1 Erfc ) Exfc2

TheM ellin transform inm ediately provides the generalized zeta function:

s+ 3) 2 . s o, 11
px (8)= y(8)+ P= s) 3S+%2F1[§7S+§;§7 3] s (15)

where ,F; [a;b;c;d ] is the G auss hypergeom etric function, @].
T he pow er expansion of ,Fq,

Filbis+ 1;2; 1] () X (1) A+ d) s+ 1+ 1)
281l 210 317 T 1 -
(3) s+ 3) _, 31! 1+ 2)
tells us that, besides the poles of  (s), px (s) has pols at s = %Jr 1; %Jr 1; §+ 1

12 7% [ £0g; ie.,as in the G soliton case, y (s) and ;i (s) share the sam e poles except s = %
but the residues in the ( %), model are increasingly di erent w ith larger and larger values of
Resi.

15



Applying these results to the kink m ass form ula, we obtain

~ 22 8
"= lin - — [ox (S) (s)]
1 2 PK \%
s! %2 " #
~m :Iln 2 2 " (n) - [1 n.3 1] 1
= —P= — S5 i55 =
2 2 "0 2 ( %_I_ ") 3 2 12, ,2, 3 ( %+ ")4 §+"
~m 3 i 3 0l .n.3. 1
= psdm 5 Shom 2t g oFiGi0in; 51t o)
K Tm g 1im 2_2 o [s+ 1] (s+ 1)= p—3~m Tim 2_2 ' 4 ")
2 L1 L g : 2 5] v 2_"v 0 2 ( é_i_ "
) 3m 1 27 1 | 5
+ o~ )= St h— 4+ 1) ( =)+ o) + o~ )
2 2 "o m 2

where ,F is the derivative of the G auss hypergeom etric function w ith respect to the second
argum ent. Therefore, "™ + "™ = F- iism—z ,and we obtain:
4m? 1 3 )

nkK _

the sam e answer as o ered by the m odenum ber reqularization m ethod [ﬂ].
To com pute the nom of the ground state wave functionals we closely follow the procedure
applied in sub-Section x3.1. to the siheG ordon soliton. In the ( *), model,we nd that

d px dy 1 (s+3)
— + p= 4° Z+ Ind+ (s s+ =
i = P ( . (s) (s+ 3) |
i
2s3 ° T,F Bis+ 2;2; flbg3 (st L)+ ()4 253 ° LEE s+ 13 1)
and .
dy mL 1 (s 3) 1
— = p— s = ] 4
dS J:"8 45% (S) ( 2) () bg
from these expressions and formulas (I4) and ([3) one checks that
d p_ d ok p_
v(0)=0; px(0)= 1;—(0)= Z2m L ; 0)= 2m L+ log48:
ds ds
W e obtain
'(())21Cé e oy )7 L
x))f == — ex — x))T = ex —
Jotx N =7 P p Pz i Jolv))] P P
T he quotient of the probability densities is
So(x&xNf 1 ¢ ¢
o
Jolv)Ny 2 3
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3.2.2 The asym ptotic expansion and quantum corrections

nthe ( *),modeldlq (x)= 4andV (x)= $25, (x) <25, (x)= 6sech’x are the potentials
of the Schodinger operators that respectively correspond to the H essians at the vacuum and the
kink con gurations. T he asym ptotic expansion of the heat finction

es X 4Bk et X 1
Tre "% = 1+ p— dxa, (x;x) "= 1+ p= a,K) " 2
4 mL 4
n=0 272 n=0

can be either obtained as a series expansion of the exact result

n #
ex_ q, ML 1 X r@ely
= .p— .p_ - 2
fre " 8 T E= 2n 1)! ©

n=1

or from the coe cients de ned in the Appendix for V (x) = 6 sech? x

7 L
*3 mL 2t 22 )

a,K)= dxa, (x;x) ; aK)=P= ; a®)= :
meL 2 (2n 1)U

2 2

To com pare w ith the exact result, we apply the form ula given In the A ppendix and observe
that

4 m?3 ® !
nkK . 2
R = 519_— 0:199471~m a, K )d,~m + o(~“ )
2 n=2
is far from the exact result
m 3

nK

4
=35 047HLm o(~* )

before adding the contrbution of the tetm s between n = 2 and n = ny 1 In the asym ptotic
expansion to the contribution com Ing from the subtraction of the translationalm ode. T he partial
sum s

7 ® n 1;4]
Dno = an K )d, = anK)—p———
n=2 n=2 8 2 & !

can be estim ated up to ng = 11 w ith the help of the ollow Ing Table

n an®K) | np 1 Dn,

2 | 24.0000 2 -0.165717
3 | 35.2000 3 -0221946
4 | 393143 4 0248281
5 | 34.7429 5 -0.261260
6 | 252306 6 0267436
7 | 155208 7 0270186
8 | 827702 8 0271317
9 | 3.89498 9 0271748
10 | 1.63998 10 -0.271900
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Choosing np = 11lwe nd thatD ; = 0271900~m and the correction obtained by adding
Dq1~m is:
M g = 0:471371~m + o(~* )

In good agreem ent w ith the exact result above. In fact

~m 1 1 3~m 1

TEBPK(ZE) By ( 3)]+ p—ELBVS) )
~m ! e’ e Erf Erfc2  3e?

= p— d — + - + -~ + = 0:00032792~m
2 2 1 2 2 2 2 2 2

is aIm ost the total error: 0:0002580~m . T he deviation is

~m 1 4
P—=Dbox ( =) 10 "~m :
4 2 2
W ith respect to the sine-G ordon m odel there are two di erences: a) in the ( %), model the

error com m itted by using asym ptotic m ethods is an aller, of the order of 10 “~m ,a 0.07 percent,
as com pared with 10 ?~m ,a 6.00 percent, in the sG case; b) the rejction of the contridbutions of
the ng > 11 temm s and the non-exact com putation of the m ass counterterm contridbution has a
cost of approxin ately 10 ‘~m in the ( %), modelversus 10 °~m in the 5 systan . Both facts
have to do w ith the larger value of the am aller eigenvalue of the vacuum Hessian in the ( %),
m odel w ith respect to the G system , 4 versus 1.

3.3 The cubic sinh-G ordon kink

W e shallnow study a system of the sam e type where the potential energy density is: U [ (y )]=
S 2

sjnth— 1 . Non-dim ensional quantities are de ned through the choicem gy = m and

o

G = —— i the Eulerlagrange equation is

m*

4

2 (gx)= %sjnh(Z ) (sinh? 1) (17)

and the justi cation for the choice of nam e is clear. W e nd this m odel interesting because it
reduces to the ( *), system ifj (t;x)j< 1 and is the Liouville m odel, [[3), w ith opposite sign of
the coupling constant, in the (t;x)= 1 ranges. In fact, the potential energy density U ( ) =
%(sjnh2 1), see Figure 1(a), presents two m inim a at the classical values: =  arcsinhl.
T he two vacuum points are denti ed by the ! Intemal sym m etry transform ation and the
sam i<lassical vacuum m odulispace isa point. For this reason, U (x) hasbeen applied to the study
of the quantum theory of diatom ic m olecules: the solutions of the associated tim e-independent
Schrodinger equation are a good approxin ation to the eigen-states of a quantum particle that
m oves under the In uence of two centers of force. W edealwith the = land M = 3 menber of
the Razavy fam ily of quasiexactly-solvable Schrodinger operators, ], although we are looking
at it from a eld-theoretical perspective.

T he solutions of the rstorder equations
tanh (x + b)

1
— = p—(shh’ 1) ; x(x)= arctanh — ; (18)
dx 2 2
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Figure 1: G raphic representation of (a) the potential energy density (b) the kink and (c) the H essian
potential well

e Figure 1(b) forb= 0, are the kink solitary waves of the system . T he H essian operators at the
vacuum and kink solutions are respectively:

d? d?

V= —+4dm?=m? — +4 =m?v

dy? dx?
d 5 l6m ? 14m ? , 16 14
—+2m “+ 5 o =M =t 2 2 2
dy? (1+ sech®y)? 1+ sech’y dx? (1+ s=ch®x)? 1+ sech”x
Them ass of the fundam entalm esons is thus 2m . K is an Schrodinger operator:

K = )= m %K

d? 2 sech?x (9 + sach’x)
K= —+4 V(x) ; V(x)= 5
dx? (1+ sech®x)?

w here the potentialwell plotted in F igure 1(c), albeit analytically very di erent from the sG and
( %), kink potentialwells, exhibits a sin ilar shape.

W e shallnot attam pt to solve the spectral problem of K . The only thing that we need to know

n order to apply the asym ptotic m ethod is that the lowest eigen—state is the unigue zero m ode:

P
dx 2 2

o (x)

dx (3+ cosh 2x)
T herefore, the energy of the sam iclassical kink state is approxin ately (see formula ({))
|

w 0 1 3 Zarsihl  ~ L gy Lid] 19
R arcsin m Ep:+n2an( )W (19)
Tn the Tablke below wew rite the Secky s coe cientsand the partialsum sD ,, = n ) an K )5
up tong = 11:
n a,®) | ng 1 D p,
2 | 291604 2 020135
3 | 39.8523 3 -0 26501
4 | 421618 4 -0.293253
5 | 36.0361 5 -0306715
6 | 25.7003 6 -0.313005
7 | 156633 7 -0315779
8 | 83143 8 -0.316917
9 | 39033 9 -0.317349
10 | 16590 10 | -0.317502

[
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obtaining the approxin ate answer:
M= ~m[ g+ Di1]= 0282095~m  0317502~m = 0:599597~m

W e cannot estim ate the error but we assum e that this result is as good as the answer obtained
rthe ( %), kink because the continuous spectrum of K also starts at 4.

4  Link kinks: the ( °), m odel

Finally, we consider the ®llow ing potential energy density: U[ (v )= — 2 2 o2  The

4m 2
p_
choice ofm 4 = #= and ¢ = — leads to the non-din ensionalpotential: U [ (x;t)]= 5 *( ? 1)°.

T he m oduli space of vacua M = 24—2 ,made out of two 7, orbits, contains two points:

vo&it)=0 ;v x9= 1:
Q uantization around the v, (x;t) vacuum preserves the ! sym m etry, which is spontaneously
broken at the degenerate vacua vy (x;t). The kink solitary waves of the system
1P 0 n C m
k (x7t) = 19—5 1 tanh(x+Db) ; «x(¥y)= 19? 1 tamhat_%—E (y+ B)

Interpolate between  (x;t) and vy, (x;t), or viceversa, which are vacua belonging to distinct
Z , orbits: these solutions are thus link kinks.

T hekink and vacuum solutionshave classical energiesofE [ ¢ ]= %15% andE[ vy, 1= E[ v ]=
0 respectively. T he H essian operators for the vacuum and kink solutions are

d m? m? d? m ?
V = _t — = — — <+ 1 = —V
° dy2 2 2 dx? °
d2 mZ d2 mZ
V = —+omi=-— @ — 44 =-—V
dy? 2 dx? 2
% d?>  5m? Bmzta Loy 15m 2
a4 4 T Boom’El
m 2 @ 5 3 15 m 2
= — — + — —tanhx S = —K
2 ax? 2 2 4ocosh®x 2

The problam of the sam iclassical quantization of these and other link kinks have been ad-
dressed som ew hat unsuccessfully in ]due to the analytical com plexity of the eigen-fiinctions of
K aswellas the conceptualdi culty ofdealing with a Q FT on the real line w here the asym ptotic
states far on the left and far on the right correspond to m esons w ith di erent m asses. T his issue
has been analyzed in depth in 23]: the m ain suggestion is that the nom aleorder prescription
should be perform ed w ith an arbitrary m ass to be xed in order to avoid the am biguity induced
by the step function background. W e now apply the asym ptotic expansion of the heat fiinction
m ethod in this com plex circum stance to nd a very natural way of choosing the m ass renomm al-
ization param eter. M oreover, we in prove the approxin ation obtained in the com putation of the
quantum kink m ass by going farther than rstorder in the asym ptotic expansion.
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Figure 2: G raphical representation of (a) the potential energy density (b) the kink and (c) the H essian
potential well

Besides the bound state,

1

£5(x) = e
2c0sh"x  2(1 tanhx)

the ! 2 = 0 translationalm ode, the spectrum of K inclides transm issionless scattering states for
1 !? 4,and states with both non null transam ission and re ection coe cients if ! 2 4. In
the lJanguage of Q F'T , the topological sectors based on link kinks are peculiar in the sense that
the N farticle asym ptotic states arem esons that have di erent massesatx = 1 . Ifthemeson
energy is less than 2m ?, the bosons are re ected when com ing from the left/right towards the
kink. M ore energetic m esons can either be re ected by or pass through the kink. If the m esons
are tranam itted there isa conversion from kinetic to \inertial" energy, or viceversa, in such a way
that the poles of the propagators far to the left or far to the right of the kink can only occur at
= %—; and p? = 2m 2.

T his is the reason why the subtraction from the Casim ir energy of « ,% pk ( % ), of either the
Casin irenergy ofthe v, ,% v ( % ),orthe v ,% v ( %),vacua ishopeless, even afteradding the
m ass renom alization countertem to the Lagrangian. T herefore, we cannot use the generalized
zeta functions vy, (s) and v (s) to renom alize the zero point energy in the kink sector. Instead,
we w illgauge the kink C asin ir energy against the C asim ir energies of a fam ily of background eld
con gurations that satisfy:

1
55(x) 42x)= 51 tanh x); (20)
where 2 R™ . The rational behind this choice isthatthe ! 1 Iim it is the background used
by Lohe, ]: 5, (X)= (x). The problem w ith Lohe’s choice is that the discontinuity at the

origin poses m any problam s for the algorithm of the asym ptotic expansion because a nightm are
of delta functions and their derivatives appears at x = 0 at orders higher than the rst. Thus,we
need som e regularization, which is achieved by replacing the sign function by tanh in the form ula
) above. In F igures 3(a) and 3(b) the H essian potentialwells for thebackgrounds 5, and g
are com pared.
For any nonzero nite , p (x) Interpolates am oothly between % and 1 when x varies
from 1 tol . The jymp from 1 to O occurring atx = 0 In 5, (x) becomes a jump from
é to 0, which therefore takes place at x = 1 !, followed by the am ooth j%terpo]at]’on to 1

2+ L2

. If = 0 the background con guration is also pathological: 5, (x) = 5 2 ,;8x, except at
x= 1 ,where thereare jmpsto 0 and 1.

1
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Figure 3: G mphic representation of the potential well produced by (a) the g, kackground (b) the g,
kackground as functions of x

T he Schrodinger operators

d? 5 3
B = —+ — —tanh x
dx? 2 2
R d2+5 30 x) 5 d2+5
= R — — X ; — - —
' dx? 2 2 °Toax? 2
govem the an all uctuations around the background 5 . Thus,
2 s+%
~m
()= —= Im. —  [px(s) s ()]

2 s % mg

istheCasim ir kink energy renomm alized w ith respect to the 5 background. From the asym ptotic
expansion of both x (s) and  (s) we obtain:

~m 2 2 o® ) [s+3;2] Rigx ) 2" m 1;2]
"K( )_ 2d - n ]Iﬂl . lp_ 272 + —pr - - 2
( 3) s & Smg 4 (s) - 4 5 ( 3)
wherec, K )= a,K) a,(B ). Thedeviation from the exact result is:

error; =

N =

1
Zpthqo;}(( %) hqo;B( %)""BPK( %) BB( )
Tn order to im plem ent the m ass renom alization prescription, we assum e that virtualm gons
running on the loop of the tadpole graph have a m ass of 1% halfof the tineand amassof 2m
the other half-tin e on average. I he nom alorder is thus prescribed for anniilation and creation

operatorsofmesonswith M = 75m m ass; this am ounts to considering
1
2 1
m- = ZmdL By (E)

as the in nite quantity associated w ith the single divergent graph of the system . Zeta function
regularization plus the asym ptotic expansion tell us that the Induced counterterm adds

2"K() = K}H(mZ)jK B:H(mz)jB
1
~m 22 %2 [s+1;2]
- p2C (K ) In - P2
2 4 s! % 5md (S)



to the one-loop correction to the link kink m ass, w hereas the error is

~

— : 1
error, = L]!Jml Ecl(K Bg, (5)
The sum of the contributions com ing from thes ! = polsof 1" ( )and ," ( )vanishes:
L1
mao® ). 27 TE s+ 221 s+ 3i2] ).
(s) (s)

2 4 s! % 5m

P -
T he choice of M = 75m asam ass renom alization param eter leads to exactly the sam e result that
we encountered in the m ore conventional system s w ith loop kinks and we end w ith the answer:

M K :"’m[ O+ Dno( )]
where ¢ = Eplz——and
% % 2
Do, ()= G K )d, = K ) G —895—
n=2 n=2

T he coe cientsand thepartialsum sup ton o= 11 for = 1 are shown in the follow ing Table

n | c®i) |ng 1| Dp,(1)

2 93750 2 0.0968454
3 109375 3 0.0617547
4 | 102567 4 0.0786049
5 7.89397 5 0.0703349
6 | 512392 6 0.0741904
7 2.86874 7 0.0725233
8 | -1.40987 8 0.0731872
9 061636 9 00729439
10 | 024186 10 0.0730259

We nd:
M g,=m[ g+ Dq1(1)]= 0:199471~m + 0:0730259~m = 0:126445~m

as the approxin ation to the kink Casin ir energy m easured w ith respect to the Casin ir energy of the
B, (x) background eld con guration.

The choice of = 1 isoptimum in the sense that for sm aller values of a tendency of the quantum
correction towards 1 isobserved whereas for greater than 1 the tendency istoward +1 . In Figure
4, = 1 is denti ed as the In exion point of a fam ily that interpolates between two background
con gurations w ith bad features: too abrupt if = 1 and too amnooth if = 0.

W e end this Section by com paring our renom alization criterion w ith the prescription used in @].
Lohe and O B rien choose a m ass renom alization param eterM ° i such a way that them ass counter—term
exactly cancels the di erence in vacuum C asin ir energies between di erent points in the vacuum m oduli
space. o b i
P= y,(3) v ( 3+ &L n® =0 (21)
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Figure 4: Quantum correction to the kink m ass as a function of in the (0:4;2:0) interval

T he contribution of the tadpole graph m ust be considered form esonsw ith a suitablem ass to satisfy ):

1 2
@ _ 1 . _ d @
m = 'pm V(E) H V = <z + M

andwe ndM ®=233,M =M O%,averyc]oseva]uetol\/l AttheL ! 1 Imit

2;33
BO(%) V(%):%bgzﬁo

Ifwe had used M Y as the m ass renom alization param eter, the result would di er by

~m ¢ (K1) 233
0 KlM = p— - ]; Jog
4 24 ) 250

which isa very sm all quantity indeed.

5 Outlook

T he natural continuation of this work, and the m ain m otivation to develop the asym ptotic m ethod,
is the com putation of quantum kink m asses in theories w ith N -com ponent scalar elds. N evertheless,
explorations In the supersym m etric world along these lines are also interesting.

A Ilthem odels that we have describbed adm it a supersym m etric extension because the potential energy
density always can bewritten asU ( ) = 1dW dW_ 1 non-din ensional variables the superpotentialW ( )

2d da -
for each m odel is: s
W = 4cos— ;W = —
() 5 i () ( 3 )
W () 41(1'h2 3) W () 2(21)
= —= (—sSIn — ; = —(— H
P24 2 ’ 2 2
T he supersym m etric extension includes also a M aprana spinor eld:
(x )= 1) ; = ; = 1;2:
2(x )
Choosing theM ajrana representation %= 2; '=11; °= 3oftheClodalgebraf ; g= 2g
and de ning theM aprana adpint = ¢ 0, the action of the supersym m etric m odel is:
Z 2
s= 1 4’ e e +i @ M IV
2c§1 d d d 2
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TheN = 1 supersymm etry transform ation is generated on the space of classical con gurations by the
Ham iltonian spinor fiinction 7

T he com ponents of the M a prana spinorial charge Q close the supersym m etry algebra
fQ ;0 g=2( % p 2%tT: (22)

T heir (anti)%ojsson bracket is given in (@) In term s of them om entum P and the topological central
charge T = § dW j.

The chiral profctions Q = %Q and = provide a very special combination of the
supersym m etric charges:

Z
d dw
Q+ + Q = dx ( + )& ( + + )d—
Q++Q iszero fortheclssicalcon gurations that satisfy i—x = ddl and = 0 which are thusclassical

BPS states. O ne inm ediately notices that our kinks are such BP S states and besides the sm all bosonic

uctuations one m ust take Into account the an all ferm ionic uctuations around the kink for com puting
the quantum correction to the kink m ass in the extended system . T he ferm ionic uctuations around the
kink con guration lead to other solutions of the eld equations if the D irac equation

i@ + (k) r =0

issatis ed. W em ultiply this equation for the ad pint of the D irac operator

d’w , d’w
dZ(K) i @ +

1@ (k) ¢ (x0)=0

and, due to the tin e-independence of the kink background, look for solutions of the form : ¢ (x;t) =
fr (x;!)e” t. This is tantam ount to solving the spectral problem

& d%w d*w . dW d’w 5
P ro-cting onto the eigen-spinors of 1 !,
£ (1) = 1+ il sl )= L fr (1) fp (x51)
AR eI foo(x;0)+ £ (x;!)
we end w ith the spectral problenm :
d? dw d?w dw &*w Dy kD ety 126D 0
St gz (g ) g ) & G = KET0GH) = 15 (ki)

for the sam e Schrodinger operator as that goveming the bosonic uctuations.

T herefore, generalized zeta function m ethods can also be used in supersym m etricm odels for com put-
ng the quantum corrections to the m ass of BP S kinks. G reat care however, is needed in choosing the
boundary conditions on the ferm jonic uctuations w ithout spoiling supersym m etry. W e look forward to
extend this research in this direction.
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A ppendix

In this Appendix we describe the iterative procedure that gives the coe cients a , (x;x) used in the
text. For altermative descriptions, see ], ]. For an interesting Interpretation of these coe cients as
invariants of the K ortew eg-de Vries equation, see [@].
Starting from formula () in the text, we w rite the recurrence relation
Gany 1 (%;y) @%an (x;y)

n+ Dans1 (y)+ 8 y)————— V X)anX;y)= ————: (23)
@x @x

In order to take the lim ity ! x properly, we introduce the notation
@*a, (x;
®A (x)= Im M
ylx  @xK

and, after di erentiating (@) k tines,we nd

k .
1 X k @V (x -
“anx)= PaL 1)+ £V«

n+ k , J @x7J
j=0

An 1(x)

from this equation and (k)Z-\O(x) = Iim X% = ko, all the (k)An(x) can be generated recursively.
Retuming to (@), we nally obtain a wellde ned recurrence relation
h i
1 o
an+1(X;x)= —— A (x)+ V (Xx)ap (Xix)
n+ 1
suitable for our purposes.
W e give the explicit expressions of the st eight a, (x;x) coe cients. T he abbreviated notation is
n

k k
u = SF(x),up = S (x)
a1 (x;x) = up
1, 1
ar(x;x) = Euo + guz
o) 1, 1 1, 1
az(x;x) = -—up+ —usug+ —uj;+ —u
3 6 0 6207 1271 g0 !
) 1, 1, 1, 1 1, 1 1
as(x;x) = —up+ —=upuj+ ——ujup+ —Uglg + —Uu5+ —Uujuz+ ——u
4 24 07 127207 0T Gt o2 30 13T gg0 °
) 1 . 1 5 1 ,, 1 , 1, 1 1 11,
ag (X ;X = —Upy + —UoUup + —U7Up + —UgUpy + —U5Up + —U7Ul’3Upg + —UgUp + —Uus7u
> 120 07 36 207 g 1707 qp0 tT0 T g 20T 3 tTI0 T gap R0 T 350172
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. 28 o 19 L1 !
—1u —UuoUu —Uuju —u
50403 " 252072 T gt T 151508
1 6 1 4 1 2.3 1 3 1 2..2 2 11 2 1
dg (X ,X = —Up + —UoUpn + —UT7Un + —UsUs + —U5Un + —U7UR’Us + —U7U»Up + —UjUsU
6 (x7%) 720 0" 144 20T gp71T0T 360 4707 g 20T oo tT3T0 T 3 1m2T0 o+ 070
oL, 1 L 6L 5. 43 LB o5 oo 19
—u] + ———ugu u Ujlus + ——UgU3 + ———Uujus + ——Uguyu
288 17 15120 ° %7 15120 2 2520 ' 277 5040 2 1008 1% 2s5p0 027
L B o 19 Lo, 1 L .1
u usu —Uupu —Uuru —1Uuqu u
30240 % 15120 ° 0 1680 °° 15120 2 ° 3780 ' 332640 °
1 7 1 5 24 1 23 3 11 2 2 2
a7 (X ;X = —Uupy + —Uusu —Uu u —Uusu —Ujulxu —U;uUr»u —UjuUsu
7 %) 504070 " 70 2M0 T pggtito T Sapteto T Tggtitsto ooy titiato T g g usto
oL 61 5 . 43 5, L1 LI
—Uu u —Uusu —Uujur2uUsxu — U ,Ugu —Upou —Uuxu
288 (1N T T515p12H0 T g tiHaUsH0 T aag MIHato T Sae g M0t T Thag0 13t
. Lo 2, 1 5, 83 o, 1o 31 2, 1 L L
——UoUygu —UgUu —Uu,u —Uu-u —Uu>ou —Ujus3u uu
5020 2140 T BogoUeHo T Topgp Y2 T 25 MM T To0g0 23 T 2gp e T 140 0™
L 5 2o 23 2, 1 , Lo R BT
—Uu-su —Upu —Uujuru —Upusu u u,u
2016 2 %7 30240 04T 420 2707 15120 00707 665280 0 2016 L °
L1 , 6l L1 19 Ll oo 1T
—Upuou —Ugsu —1u —Uu3u —Uupu —Uuou
15120 0U2HE T 330000 MUE T 370 O YT T T66320 Y T 30220 101 T 332640 21
1 1
+ — B —
66528 1% " ‘geagean "
) 1o, 1 oo 1 P EVIPOIN 1 L1
ag (X ,X = u —Uu-,u —Ujus3u —Uu u — U ,usu —Ujus3ugu —Uu2UsUu
8 40320 70 T ggp 2o T ppUrtstio T ghptito T oopUiusto F Dgatitisiatio ¥ op itz tsto
.3 2L , Ll 1 L 28 5, 19 ,
Uzuzup + ———=U5Uglg + ———uju ————UujpUp + ————Uujuy + ———Ususu
10080 21310 T 5o H2Hat0 T o g MINe N0 T eragea0 M 12M0 T Goago 40 T 30240 200
11 2, 1 2 11 > @B - 3 1 5 1 52
+ — U2 UgUu —1Uu1u7uy + —Uu7u —UgUp + UgUun + —Upu
30240 "2H6H0 T gg M0 T D pgtitato T gaapaietio T Soggtato T g Yot
Ll e AT 83 20, 6L o 1261 , 43 ,
—Uupu —Uuqu —Upu-u —Uu u upujuou
4320 0% 7 g6a0 1" T 10080 0M1M2 T 302400"2 T Tg1a400 2 T Soag ovtHRY3
.22 L 23 5, 659 5, 5 2, 19 s L5271
—Uui1u,u —Uupu —Uu,u —Uupu-u —UuUpuru —U,usu
37800 20 30240 ° ' 302400 ' 2 2016 ° 1 %7 15120 4% 151200 1 ¢
. 7939, 6353 2, 1 s L1 s 13 . 3067
—Uxu —U»sUu —Upuqu —Uu-u —Uu>Us3u —UuU1ugu
9979200 > %" 9979200 ° 4 1680 ° ' ° ' 30240 1 ° 12320 ° ° ° 4989300 L *°°
. 7 o, 1 3001 o 13 6l
————UpU5 + ———=Uglp + —————=U5Upg + ———U1U3Up + ————UpUsU
665280 0 ° " 20160 ° ° " 9979200 2 ° " 29700 t - ° " 332640 0 *°°
3433, 109 19 1501 o,
+  —————Ug + ———UjUly + ———UpUsly; + ————UsUy + —————U7Ug
259459200 498960 166320 64864800 1995840
. 17 . 2003 L1 L5 R
————UpUoUg + ——————Ualg + ———UpUjlg + ————U3Ug + ————Uju
332640 ° 2% 129729600 10 66528 O 177 648648 ° ° 665280 ° *°
. 73 L1 . 1
—Uuou —Uuqu —Uu
25945920 ° *°" 1441440 ' M7 259459200
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