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K inks in a non-linear m assive sigm a m odel
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W e describe the kink solitary waves of a m assive non-lnear sigm a m odel w ith an s? sphere as
the target m anifold. O ur solutions form a m oduli space of non-relativistic solitary waves in the long
wavelength lin it of ferrom agnetic linear spin chains.

PACS numbers: 11.10. Lm ,11.27.+d

I. THE MASSIVE NON-LINEAR S*SIGM A
M ODEL

In this letter we shall concentrate on the 1D non-
linear S2—sjgm amodel: (a) The spacetin e is the (1+ 1)-
din ensional R'# M inkow skispace. x ; = 0;1 (x°
t;x!  x) denotes a point .n R'"!. W e choose the m et—
ric in the form g = diag(l; 1) and the d’A lem bertian
@@—; @@% . (b) The target (intemal) space
is the S%-sphere. This is in contrast with the original
G ellM ann/Levy m odel w here the target space is §° E|].
Three scalar eds = ( s),a= 1;2;3,de neamap

reads: 2 =

:R Y1 82 if they are constrained to the surface in
R3:
fx )+ S(x )+ 3(x )=R? (1)
T he action
7 ( . )
1 X e.e
S= ddx = °_— s 2)

29 ex ex
a=1

seem s to be sinple but together with the constraint
(1) governs the com plicated non-linear dynam ics of two
G odstone bosons w ith coupling constant Ri . In one spa-
tialdin ension, how ever, G oldstone particles do not exist
2]. The nfrared asym ptotics of the [@)-) system in—
duces a potential energy density that we choose as:

2 2

VIii2)= 5 Ix)+ — S(x) (3)
givingmasses and to them assless excitations.

W ith no loss of generality, we assum e that: 2 2>

0, and we de ne the non-din ensional param eter: 2 =
2

—,0< 2 1, m easuring the ratio between particle
masses. W e also rescale the space-tin e coordinates to

address non-dim ensional variables: x ! % . Solving
the constraint the action reads
7 (
s = I awx e e T3
2 o @x @x ' ’
P P )
210 ) o e ) "
+
713

D espite the potential energy density being quadratic,
there are tw o hom ogeneousm inin a of the action (vacua):

the North and South Pols: # = (0;0;R); * =
(0;0; R).Thus, the discrete sym m etry of the action (4)

Zo, Z, Zjgenerated by ! ara= 1;2;3 is spon—
taneously broken to Z, Z, (generated by ! ,
= 1;2). If the two masses were equal, this unbro-

ken symm etry would becom e the SO (2) rotation group
around the N orth-South Pole axis.

II. TOPOLOGICAL KINKS

U sing spherical coordinates, 1 = Rcos’ sih , ; =
Rsin’sin , 3= Rcos ,inthecharts fAgofSs? the
energy of static con gurations: (4x) = (x) 2 [0; ),
"Gx)="x)2[0;2 ),E = dxE( (x);’ (x)),and the
potential energy density read:

2 (R2 a da * )
E= dx — — +sn® — + V()
2 dx dx
R2
V( (x);7 (%)= 75112 )P+ 1 ?)oos 7 (x))

(5)
The con guration sgpace of the system C =
M apsR ;S?)=E < +1 is form ed by Hur disconnected
sectors according to the tendency of every nite energy
con guration towards either the North or South Pole at
the extrem es of the spatiallinex = 1 .
Solutions for which the tem poraldependence is of the
form

X vt X vt
Gx)= P ;' tx)=' P—=
1 v 1 v

for some velocity v, are solitary or traveling waves.
Lorentz Invariance provides all the solitary waves from
the static solutions of the eld egquations
2 . ’ 2
d sn2 d

in 2
- 2 o+ et (6)

dx? 2 dx 2
da ., a 1%,
— sih® — = sin® sin2’ (7)
dx dx 2

On the orbits "« , (x) = 5 (halfm eridians) the sys-

tem (@)-{1) becom es the ODE of the pendulum and the
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separatrix tra gctories betw een bounded and unbounded
m otion;

d2 2
S 4 _—sn2 =0)
dx? 2

are the solitary waves or kinks (at their center of m ass)
of niteenergy: Ex, = 2R? , interpolating between the
North A and South A Poles. T hus, these kinks belong to
a di erent sector in con guration space than the vacua,
an evident fact in C artesian coordinates; see F igures 12

fd3:

(x xo0)

k., (X)= 2arctane

%g)]

Figure 1: a) K; and K2 ( 2 = %)kjnkorbjts. b) K1 (blue)
and K » (red) kink energy densities

Figure 2: a) K1 kinks. b) Perspective from one com ponent of
the boundary of the target sphere  the spatial line in nite
cylinder: S R. Themerdian 'x, = sr'x, = 7 38
plotted as orthogonal to the spatial line.
Thehalfmerdians 'k, (x)= 0Oor’'x, (x)= arealso
good trialorbits in the sense that they provide new kinks
of nite energy Ex, = 2R?
d? 1,
— + —sin2 = 0)
dx? 2
via nite action solutions of another pendulum equation.
T hese solitary waves live In the sam e sector of the con—
guration space as the previous ones and look sin ilar in
C artesian coordinates; see F igures 1-3:

x, (x)= 2arctane = xo0)

1
)= ——j0;

K2(
cosh(x  Xgp)

tanh(x xg)
Atthe = 1Ilmit,allthehalfmerdians ¥ x)= ' 2
[0;2 ) aregood trialorbits and there is a oneparam etric
fam ily of solitary waves: x, (x)= 2arctane * *o),

%, cos’ sin ’

x) = ; ;7 tanh(x  xq)
cosh(x xg) cosh(x Xp)

degenerated in energy: Ex, = 2R?,87 .

Figure 3: a) K ; kinks. b) Perspective from one com ponent of
the boundary of the in nite cylinder: S? R. Themerdian
, is plotted aligned w ith the spatial line.

"k, =0,"x, =

III. THE NON-LINEAR M ASSIVE SIGM A
MODEL IN ELLIPTIC COORDINATES ON THE
SPHERE

W e could now try to search form ore kinks even in the
case ? < 1 ofdistinctm assesby using R aaram an’s trial
orbitm ethod E],butjnstead we shallpro tfrom the fact
that the ODE systam (@)-{1) is integrable using elliptic
coordinates in the S% sphere. In S? we x the two points:
Fq (g7 ) E2 (£;0), ¢ 2 [0;3). The distance
between them is:d= 2f = 2R ¢ < R,seeFigured.

F1 A F2

Figure 4: Foci and antipodal foci of the elliptic system of
coordinates on the sphere.

G iven a point 2 S?, let us consider the distances r; 2
0; RlJandr 2 [0; R]from toF; andF,. Theelliptic
coordinates of are half the sum and half the di erence
ofr; and ry: (u= =252 ,v= Z:%2), The formule

R R
1(Gix)= —susv; (x)= —cucv

cf
r
(£5%) _—_— su? sv?  cu? cv?
3 (GX) =
’ s cf
allow one to pass from elliptic to C artesian coordinates.
Here,a sin pli ed notation is used: su = sjn%,cu:
cog L) , SV = sin vite) ,sf= sin ¢,etc. Thedi erential

R R
arcdength in S? in this system of coordinates is

1 su? s 1 su sV
as

I s g1
2 su? sf2 2 sz sv2
Choosing the fociin such a way that cff= 2 , the energy
density of our system in elliptic coordinates reads:

2 2
2
dsg. =

#
E] ] 1 w?® s du 2+ su? sv?  dv z
vl = — == =
’ 2 su? s dx s wv?  dx
fu)+ gv)
Eara ©



fux)=E s’ s£),gwx)= L svi(sf  sv).
The m echanical analogy dem ands that we think of
E as the Lagrangin, x as the tine, U u(x);v(x)] =
V [u(x);v(x)] as the m echanical potential energy, and
the target m anidd S? as the con guration space. The
structure of E[u;v] is such that we are dealing with a
Type I Liouville m odel B] on the sphere, ie., a dynam i~
calsystem which is H am itton-Jacobi separable in elliptic
coordinates. The kink orbits ( nite action tra fctories)
and the kink pro les (\tin e" schedules of these tra jecto—
ries) are given In the Ham ilton-Jacobi fram ew ork E]—@]

via the quadratures: (p, = = ,p, = &)

57 (py ) du 57 (py ) dv 2
F=—————==R"
2(su?  sF)Ff () 2(sF  sv2)g(v)
Z
57 (py ) su”du 53 (py) sv2 dv
er =X+ 1
2(su?  sf)f (u) 2(sf sv?)g(v)

IV. NON-TOPOLOGICAL KINKS

In this way we nd a fam ily of non—topological kink
(NTK ) orbits by integrating the rst quadrature (they
start and end either at the North or the South Pole,
they live in the vacua sectors of the con guration space)

param etrized by the integration constant C = & BEE

2 1 35gpu2
u f u+ £ 2¢f
_ 5 tan Zr- BN 4 ; jtan - 7
©- jtan 25 > ="
2R v f v+ £ c
tan - tan —

The kink pro les of these non-topological solitary waves
given by the integration of the second quadrature

tan & f tap ot f S9Pu
2(x+ 1)cf _ 2R 2R

e Esjen

v f v+ £
tan - tan —

depend on one integration constant, 1, which sets the
center of each kink, see Figures 5 and 6.
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Figure 5: a) A K ,(j2J< 1 )NTK kink. b) Perpendicular
cross section of the eld variation.

T he H am ilton-Jacobim ethod also provides the energy
of the NTK . The Ham ilton characteristic function (the

3 $9PvK 1 and K , are singular kinks that arise at the , !

Figure 6: a) SeveralNTK kink orbits. b) NTK energy densi-

ties for three di erent valuesof ,:1) 2 = 3, highest peak
on the left (blue) 2) , = 0, symm etrical peaks (green) 3)
2 = 10 highest peak on the right (red).

solution of the H am ilton-Jacobi stationary equation) for
zero m echanical energy is:

u v
F)+ Gw)= ( 1)¥™R COSE+ ( 1)¥P"R COSE

From this function we com pute the energy of the NTK
kinks:

Ex (,)= 2R $5(0) G(E)J+ 2R F(E) F( £)J

A 1llthe NTK kinkshave the sam e energy and satisfy the
kink m ass sum rule:

2
Ex(, )= 2R“(1+ )= Ex, + Ex,

13
Iim it of the NTK kink m oduli space. Their orbits lie
on the boundary of the elljptic rectangle and the v = 0
axis, see Figure 7. The K 1 kink orbit is the straight line
Vg, (x)= 0. TheK ; kink orbit, however, is a three-step
trapctory: theu= f,u= f,and v= f edgesof
the rectangle.

Observe that all the NTK orbits starting from the
North Pole A (South Pole A ) meet at one of the an-
tipodalfociF,-F, (fociF,-F,),which are thus conjigate
points to the Poles. A ccording to the M orse index theo-—
ram , these kinks are unstable, see a], @]. The K , orbits
also cross the fociand only the kinks of type K ; are sta-
bl.
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Figure 7: Singular (red and green) and generic (blue) kink
orbits in the elliptic rectangle.



V. SOLITARY SPIN WAVES

The W essZum ino action
Z
SW 7 = R2

X3
dtdx

a=1

¢ a
Aa[ (t/X”E“:IX)

produces the Eulerl.agrange equation:

3 3 3
ea, X A, A, G, XX @ »
achc[ 1

ec b=1 a b ec =1 c=1 et

W e choose the non-nullcom ponents of the \vector poten—
tial" In the North and South hem ispheres of the target
space in the form (ushg" = " ,",=1):

X2 (tix)
A [ (Gx)]= " ;=152
2R ( 3(ix) R)

=1

A \m agnetic m onopole eld" arises in the target space:
B.l (x)] = % The combined Eulerlagrange
equations for Sy; 7 + S are:

11X % @y \4
= "ape < (GiX)——= (Lix)+ 2 4 (Gx)+ — (Gx)= 0
R @t a
b=1c=1
9)
At the long wavelength lin it ! << Ri, system (9) be-
com es the Landau-L ifhsitz equations for ferrom agnetism
with a dispersion relation: !? (k)= R?(&k*+ 1)(k? + 2).
The connection between the sem i<lassical (high-spin)
lin it of the Heisenberg m odel w ith the quantum non-
Iinear sigm a m odel is well established @1. Thus, our
kinks, which are also static nite energy solutions of (d),
are solitary spin waves in the low -energy regin e of quan—
tum ferrom agnets, although the symm etry is contracted

from Lorentzian to G alilean.

VI. CONCLUSIONS

In this letter w e have reached the follow ing conclusions
about the kink m anifold of the 1D m assive non-linear S%—
siom a m odel:

1. If the m asses of the pseudo-G oldstone particles are
equal, there exist a S*—am iy ( xed the kink center
ofm ass) of topological kinks degenerated in energy
living on all the halfm erdians of the S?-sphere.
W hen them assesdi er, only two pairs of topologi-
calkinks survive, each pair of kinks having distinct
energy.

2.Even if the m asses of the pseudo-G oldstone par—
ticles are di erent, we have shown that there ex—
ist a oneparam etric fam ily (for xed CM ) of non—
topological kinks degenerated in energy by using
elliptic coordnates on the S%-sphere.

3. It is also shown that there is a curious kink m ass
sum rule between the non-topologicaland topolog—
icalkinks and that only one of the topologicalkink
pairs is form ed by stable kinks.

4. Finally, we have noticed by adding a W essZum ino—
type term to the action that our kinks are solitary
Soin waves In the long wavelength lim it of ferro-
m agnetic m aterials.
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