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T hem ass shift induced by one-loop quantum

uctuations on selffdualANO vortices is com puted

using heat kemel/generalized zeta function regularization m ethods. T he quantum m asses of super—

In posed m ultiwvortices w ith vorticity lower than
with a quantum ofm agnetic

PACS numbers: 03.70+k,11.15K c,11.15Ex

INTRODUCTION

In thispaperwe present som e new resultson the quan—
tization of the self dual m ultivortex solutions of the
Abelian H ggsm odel. W e also take the opportunity to of-
fer a detailed description of the concepts and techniques
that allowed us to com pute the one-loop quantum cor—
rection to them ass of selfdualA brikosov-N ielsen-O lesen
vortices w ith one quantum ofm agnetic ux in theRapid
C om m unication ﬁ]. The AHM provides a theoretical
ground in several elds of physics: it provides shape to
Interesting truncations of the electrow eak or grand uni-

ed theories, it also provides the basis for the various
phenom enologicalm odels for coam ic strings, or it can be
used asa G nzburg-L.andau theory for superconductivity.

Interest in this research, developed in the supersym —
m etric fram ew ork in ﬂ],ﬂ],was rekindled two years ago.
N on-vanishing quantum correctionsto them assofN = 2
supersym m etric vortices w ere recently reported In papers
ﬂ Jand E ], seealso E ]. In the second paper, it was found
that the central charge of the N = 2 SUSY algebra re-
celves a non-vanishing one-loop correction that is exactly
equal to the one-loop m ass shift; thus, one could tak In
term s of one-loop BPS saturation. This result tsin a
pattem st conpctured in E]and then proved in EJ for
supersym m etric kinks. A nother work by the authors of
the Stony B rook/V iena group, [d]unveils a sim ilar kind
of behavior of supersym m etric BPS m onopolesin N = 2
SUSY Yang-M ills theory. In this reference, however, it
is pointed out that (2+ 1)-din ensional SUSY vortices do
not behave exactly in the sam e way as their (1+ 1)-and
(3+ 1)-din ensional cousins. O ne-loop corrections in the
vortex case are In no way related to an anom aly in the
conform alcentral charge, contrarily to the quantum cor-
rections for SUSY kinks and m onopoles.

W e shall focus, how ever, on the purely bosonic A belian
Higgs model and rely on the heat kemel/generalized
zeta function regularization m ethod that we developed
in reference E}. Our approach pro ts from the high-
tem perature expansion of the heat function, which is
com patible w ith D irichlet boundary conditions in purely

ux is also discussed.

ve are given. The case of two separate vortices

bosonic theories. In contrast, the application of a sin -
ilar regularization m ethod to the supersymm etric kink
requires SU SY —friendly boundary conditions, see 1. In
ﬂ] the kink quantum correction in the * model is es-
tin ated by this m ethod and com pared with the correct
answ er obtained from the D ashen-H asslacherN eveu for—
mula, ml In order to check the reliability of our ap-
proach. T he relative error found is approxin ately 0.07% .
In m]and E]we also calculated the quantum m ass cor—
rections for kinks arising in tw o-com ponent scalar m od—
els, where second-order sm all uctuations are ruled by
m atrix di erential operators. T herefore, we were led to
generalize the zeta function m ethod to the m atrix case,
because the DHN approach, based on a direct com pu-
tation of the spectral density, is not e cient for ma—
trix di erential Schrodinger operators. This step has
proved to be crucial, opening the possibility of apply—
ing ourm ethod to two-din ensional topologicaldefects in
the A belian H iggsm odel.

In order to accomplish this task we shall en—
counterm ore di culties than for one-din ensionalm ulti-
com ponent kinks. A s noticed by Vassilevich, the lack
of analytical expressions for vortex solutions forces us to
perform a num ericalanalysisalready at the classical level
to solve the eld equations. A Iso, the high—tem perature
expansion of the heat trace becom es m ore involved due
to the Jimp from one to two sgpatial dim ensions; the
recurrence relations hold between partial +ather than
ordinary—-derivatives of the high-T expansion coe cients.
W e stress that the evaluation of the Seeley coe cients is
a very laborious task: uctuations of the vector, H iggs
and G oldstone elds are govemed by one 4  4-m atrix
di erential operator, whereas uctuations of the ghosts
are determ ined by one scalar di erential operator acting
on L?R?). There is, however, one point where the sit-
uation is m ore favorable as com pared to the kink case:
the generalized zeta function regularization m ethod pro-
vides usdirectly w ith a nite quantity, w ithout the need
of in nite renom alizations. T his fact is peculiar to even
spatialdin ensions and is probably related to the lack of
anom alies when ferm ions are added. A s for kinks, we
shall obtain a sin ple form ula for the one-loop quantum
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m ass correction depending on the Seeley coe cients and
the num ber of zero m odes.

O ne ram arkable aspect of our results is that the cor-
rection found by this m ethod in the bosonic system is
essentially tw ice the correction arising in the supersym -
metric case in [£]and [3]. This seem s to be in agreem ent
w ith the relationship between the supersymm etric and
non-supersym m etric one-loop corrections to the m asses
of the sineG ordon and  * kinks, see [14]and [19].

T he organization of the paper is as follow s: In Section
X2 W e revise the perturbative sector of the A belian H iggs
m odelin the Feynm an—"t H ooft renomm alizable gauge and
set the one-loop m ass renomm alization conventions. Sec—
tion x.3 isdevoted to studying ANO vortex solutionsand
their uctuations in a partially analytical, partially nu—
m ericalm anner. T he high—tem perature expansion of the
pertinent heat traces is developed in Section x4 . Sec-
tion x.5 explainshow quantum oscillations of vortices are
accounted for In the fram ew ork of generalized zeta fiilnc—
tion regularization. In Section x.6 the one-loop vortex
m ass shift form ula is applied to cylindrically symm etric
selfdual vortices. W e also brie y discuss how the shift
depends on the distance betw een centers of a tw o-vortex
solution. Finally,we o era Summ ary and O utlook.

THE PLANAR ABELIAN HIGGS M ODEL

The m odel

The AHM descrbes them inim al coupling between an
U (1)gauge ed and a scalar eld in a phase where the
gauge sym m etry is spontaneously broken. D e ning non—
din ensional space—tin e variables, x ! eivx ,and elds,

' ' v. =v(1+13%),A ! vA , from the vacuum
expectation value of the H iggs eld v and the U (1)-gauge
coupling constant e, the action for the Abelian H iggs

m odel in (2+ 1)-din ensions reads:

w ith

U(; )= —( 1y

2
8
2 = — Is the only chssically relevant param eter and
m easures the ratio between the square of the m asses of
the Higgs,M ? = v, and vector particks, m ? = &v?;

is the Higgs eld selfcoupling. W e choose a system
of units where ¢ = 1, but ~ has din ensions of length

mass. Also, we de ne the metric tensor as: g =
diag(l; 1; 1); ; = 0;1;2.

Feynm an rules in the R -gauge

The choice of V = 1 as the ground state causes spon-—
taneous sym m etry breaking of the A belian gauge nvari-
ance. In the Feynm an—"t H ooft renom alizable gauge,

R@A ;G)= @A G 7
the particle spectrum involvesa vectorparticle A ,H iggs
and G oldstone scalar particles = 1+ H + iG,and a

com plex ghost . The Feynm an rules are read from the
action, see R eference 16 1:

z
v 3 1
S = —  d’x -A [g (@@ + 1R
e 2
+ l@G@G 1G2+1@H@H 2H2
2 2 2 2
2
+ @ e ?H<H2+G2)
+ A (@RHG QGH)+H @ A )
2
1
g(H2+G2)2+E(G2+H2)AA

T here are four propagators, plis ve third-orderand ve
fourth-order vertices shown in the next two Tables:

TABLE I:Propagators

Particle Field P ropagator D iagram
i~
H i H k
Jggs (X ) V(k2 2 + ill ) L mm— ]
i~
G odstone G (x) T e k.
V(k2 1+ l") . o
G host = b
o )
v(k? 1+ 1i") e - -
Vector Boson A (x) e ;

O ne-loop renorm alization

De ning

&’k i
2 P k2 &+ i

and bearing in m ind that I( ?)= I(1)+ nite part, the
one-loop divergences in the planar Abelian H iggs m odel
can be organized as follow s:



TABLE II: Third-and fourth-order vertices

Vertex W eight Vertex W eight
v v
32— 312 —
~e ~e
v
-~ i 2 —_ O 31 2 —
~e ~e
v
2i—g i
e ~e
o~ N Y% v
o i— 2i—g
- ~e ~e
N v € Y
e (k q )~_e . ZlN—eg

H iggs tadpole
‘Q R *% _
= 2i( 2+ 1)I(1)+ nite part
H iggs propagator

QO+ (O + 53 =

= 2i( %+ 1)I(1)+ nitepart

G odstone propagator

O + o+ gﬁ v {} L=

= 2i( 2+ 1)I(1)+ nite part

V ector boson propagator

= 2iI(1)+ nitepart

T here are no m ore one-loop divergent graphs. T herefore,
In a m inin al subtraction schem e, we add the diagram s
shown in the next Table to cancel the divergences in the
one-loop graphs.

TABLE III: O ne-loop counter-tem s

D iagram W eight
) A— 2i( 2+ 1)I(1)
— 207+ 1)IA)
rrrrrrrrrrrrr S 200 2 4+ 1)I(1)
AVAVAN \VAVAV: 2iT(1)

This is tantam ount to considering that the counter-
term s

~( 2+ 1)

1) 5 1 1
> (1) 7% (1)

L(S::t: =
LE,. = SIARA A )

enter into the Lagrangian.

All the nite parts are proportional to I( 2) I(1)
and they vanish in the critical point between T ype I and
Type II superconductivity, ? = 1, to be considered in
the sequel. N ote that them assofthe elem entary particles
for this critical value of  is taken as subtraction point
50 that the counter+tem s exactly cancel the divergence
due to the H iggs tadpole. T herefore, our renorm alization
criterion is equivalent to the renomm alization condition
stipulated i 4]and @iwhen 2= 1.

ANO SELFDUAL VORTICES

A brikosov-N ielsen-O lesen vortices are topological de—
fects satisfying the tin e-independent eld equations:

QF-=J ; 1D D = €u ; (3)
il i5 3j ’ 2 il i Q ’
where J = Ei( D 5 (D5 ) ) isthe electric current.

T hey are static and localized solutions for which the en-

E = d2x[}F--F--+E(D- )Di + —( 171 (4)
4 i+ 13 1 1

2 8

is nite. Thus,ANO vortices comely w ith the boundary
conditions on S% ,le.when r= xf+ xg tendsto 1 :

ie, 3 =e€",127%,andAsj: = 1 @ 3 .



F irst-order equations

For the value of the coupling constant 2 =
energy functional can be arranged as follow s
Z
d?x 1

E = N P Dy f+ Fiz 3¢ l)]2+§j3j

1, the

whereg= d°xF;, = 2 1is the non-din ensional quan—
tized m agnetic ux. Solutions satisfying the rstorder
di erential equations

D D, =0 ; Fi2 é( 1)=20
or, equivalently,
(@ 1+A; 2) (@ 2 Az 1)=0 (6)
(@ 1+ Az 2)+ (@ 2 A; 1)=0 (7)
F1o %( i+ 2 =0 (8)

also solve the second-order equations {3) and are called
ANO selfdualvortices if they also satisfy the boundary
conditions {#). In what ©llows, we shall focus on sohi—
tionsw ith positive 1: ie., we shall choose the upper signs
in the rstorder equations.

Selfdualvortices w ith cylindrical sym m etry

I = arctani—f is the polar angle, the ansatz

1(x1;%2) = f(r)cosl ; 2(x1;%x2) = f£(r)shl
(r) (r)
Ap(x1ix%2)= I sin i A1 (X1;x2)= l——cos
r r

plugged into the rst-order equations @,[,H) leads to:

1d 1 £ . of 1
rdr 21

Figure 1. Plots of the el pro les

Regular solutions of {@) with the boundary conditions
J.jmi f(r)= 1, lllni (r) = 1, zeroes of the H iggs and
vector eldsattheorigin,f(0)= 0, (0)= 0,and integer
m agnetic ux,

x2dx;
r2

x1dxz] 5 1.
- 4

r=1 r=1

exist and can be found by a m ixture of analytical and
num ericalm ethods.

Follow iIng the procedure developed in E], we obtain
num erical solutions for the vortex equations {@). Indeed,
this approach gives the vortex solution in three di er-
ent ranges of the radial coordinate. For an all values of
r, a power series is tested in the rstorder di erential
equations [@), leading to a recurrence relation between
the coe cients. R eference [E] also describes the asym p—
totic behavior of the solutions. T hus, a num erical schem e
can be In plam ented by setting a boundary condition in
a non-singular point of (@), which is cbtained from the
pow er series for sm allvalues ofr. T hisnum ericalm ethod
provides us w ith the behavior of the vortex solutions for
Interm ediatedistances by m eans ofan interpolating poly—
nom ialwhich passes through the num ericaldata.

The results are shown in gure 1, where the eld pro-

les (r) and f(r), themagnetic ed B (r) = Z—lrfi—r and
the energy density
2

2+ =@

> (£)*£% (r)

are plotted w ith respect to r for selfdual ANO vortices
with 1= 1,1= 2,1= 3,and 1= 4. A threedin ensional
view of the energy density in the plane is also shown in
qure 2 forl= 1,1= 2,1= 3,and 1= 4 selfdual

vortices. Note that the 1= 1 vortex shows a di erent
pattem as com pared with ux tubes of several quanta:
only in the st case is the energy density m axinum at
the origin (the center).

o
ol

(r) (a) and f(r) (b), the m agnetic el B (r) (c), and the energy density "(r) for vortices

with 1= 1 (solid line), 1= 2 (broken line), 1= 3 (broken-doted line) and 1= 4 (doted line).

4 ¢

< <

Figure 2. 3D graphics of the energy density for 1= 1, 1= 2, 1= 3 and 1= 4 selfdual symm etric ANO vortices.



T wo-vortex solutions w ith distinct centers

To tackle the task of buiding 1 = 2 ANO selfdual
solutions form ed by two 1= 1 vortices w ith centers sepa—
rated by a distance d, we follow the work m]by Jacobs

and R ebbi. A variationalm ethod is in plem ented in two
stages:

In the st stage, trial functions depending only on a
single variational param eter w are considered:

2 2.
d=2
iz ) = @z LEYG a2 G azgr 0 HE_TETe gy (10)
x°]
Az )= | (g d=29+ ———— D(g+d=29 + (1 )2 @) (%9 (11)
’ z  d=2 z + d=2 z
[
Here subsection—- respectively w ith vorticity 1= 1 and 1= 2.
‘ . ‘ Evoking {I0) and {l) we expect that ! = 0 for the case
z= X1+ 1xp ; A (zjz )= A (zjz 1A, (z;2 ) id= 0and ! = 1 orthecased >> 1.Plgging {{d) and
() into the energy functional, we obtain a expression
and E (! ),which is set to bem inin ized as a filnction of ! .
s
22 (@=2p
B z 2 (d=2) In the second stage the trial finctions are re ned by

is essentially a phase chosen in such a way that them ag—
netic ux isequalto 4 . f®, O £©@ and @ stand
for the functions £ and  associated w ith selfdual solu-
tionsw ith cylindrical sym m etry -obtained in the previous

(zjz ) =

A(z;z ) =

adding a deform ation such that two requirem ents are ful-

lled: 1) the scalar eld vanishes at the two centers. 2)
the gauge-invariant quantities associated w ith the solu-
tion are sym m etric w ith respect to there ectionz ! z .
T he Invariant ansatz reads:

Figure 3. 3D graphics of the energy density for 1= 2 self-dual separate vortices with centers atdismncesd= 1,d= 2,d= 3.

T hese expressions involve @ = 3W

param eters fij, aj;, ajj . Finding the m ininum of the
energy flunctional as a function of these @ variables —a
task forM athem atica—a good approxin ation to the 1= 2
selfdual solution w ith a distance d between the two 1=

variational

1 vortex centers is obtained. For our purposes setting
N = 1 such that @ = 9 will su ce. The energy density
for tw o-vortex solutions found by thism ethod if@ = 9 is
depicted ford= 1,d= 2 and d = 3 In the above gure.



Sm all uctuations

W e generically denote the vortex solution eldsas

= = ,+1i, ; A) =V k=12

A ssam bling the small uctuations around the solution

(%)= (x)+ ' (%) ; Ay ()= Vi (x)+ ax (%)

®EIT O
()
iy
)
N

1 2

2 1

The st component of D gives the deform ation of the
vortex equation {#), whereas the third and furth com —
ponents are due to the regpective deform ation of the co-

@+ Vy @ Vs
@1 + V2

inafurcomn (x),L? —-integrable second-order uctu-
ations around a given vortex solution are still solutions
of the rstorder equations w ith the sam e m agnetic ux
if they belong to the kemel of the D irac1ke operator,
D (x)= 0,119]

on the uctuations.

variant holom orphy equations (@) and {#). The second
com ponent sets the background gauge
The operator H* = DYD and its parmerH = DDY
Bak;"; )= @ax (12 2"1) read:
0 1
4 +jj2 0 2r1 2 2ri1 1
H+ _ E 0 4 +j j2 2r , 2 2r o 1 8
¢ o, 22 2 4 +335F+ v 1) 2V @ A
2ri1 1 2r 5 1 2V @ 4 +2(33 f+ 2vve 1)
0 1
4 +5 7 0 0 0
u - % 0 4 +5 7 0 0 s
0 0 442G F+ 1)+ Vi 2V, Gy A
0 0 2V @y 4 +3(3 F+ 1+ Ve

One can check that H* arises in the snall deform a—
tion of the second-order equations @) in the background

gauge for = 1,thusruling the second-order uctuations
around the vortex solutions. In fact, for 1= 0 one nds
thatH* = H = H,,where
0 1
4 +1 0 0 0
B
4 1
H 0= % + 0 0 §
4 +1 0
0 4 +1

is the second-order uctuation operator around the vac-
uum in the Feynm an—'t H ooft renom alizable gauge: the
background gauge in the vacuum sector. Note that the

uctuations in this gauge correspond to a m assive vector
particle plus scalar H iggs and G odstone elds. Ttwillbe
usefiil iIn the sequel to w rite the second-order uctuation

operators around 1 1 vortices in the form :

H =Ho+Q, x)@& +V (x) ;

4 functionalm atrices.

whereQ, (x)and V (x) are 4



HIGH-TEM PERATURE EXPANSION OF HEAT
TRACES

Index theorem : m oduli space of selfdual vortices

One easily checks that din kerDY = 0 because the
spectrum of H  is de nite positive. Thus, the din en—
sion of them oduli space of selfdualvortex solutionsw ith
m agnetic charge 1 is the index of D :

indD = din kerD  din kerDY

W e ollow W einberg E], using the background instead
of the Coulom b gauge, to brie y determ ine indD . The
spectra of the operators H* and H only di er in the
num ber of eigen—-flinctions belonging to their kemels. For
topologicalvortices, w e do not expect pathologies due to
asymm etries between the spectral densities of H* and
H , and thus ndD = Tre E° Tre ® For a
case In which these asymm etries are in portant, see the
treatm ent of C hem-Sim onsH iggs topological and non-
topological vortices given in E,Iz__‘ll].

Theheattraceofa N N m atrix di erential operator

H=Ho+ Q%) + V (x)

—like the H operators-isde ned as
Z
Tre % = tr d2xKH (2;2; )
R2
whereKy (x;v; )istheN N matrix kemelofthe heat

equation and tr is the usual m atrix trace. T herefore,
Ky (22;v¥; ) solves the heat equation

@£I+ H Ky (®;y; )=0 (12)

w ith initial condition

Ky (x;9;0)0=1 Y= y) : (13)

Because

e x vj
Ku, (®;v; ):—4 I e+

is the heat kemel for the K lein-G ordon operator H ¢, it

is convenient to w rite the heat kemel for H in the fomm :

Ky (2;5; )= Cu (®;y; Ku, ®iy; ) (14)

with Cy (x%;%;0)= 1 E}. Substituting {Id) into {IA) we
nd that Cy (x;y; ) solves the transfer equations:

Xk Yk 1
— I+ ——— (I — 4 T+
a (@ 2Qk)

o

+Qx@ +V Cy (x;5; )=0 : (15)

T he high-tem perature expansion

®
Ce (jy; )=

n=20

n

Cn (%;y;H )
trades the PDE ({I3) by the recurrence relations

1
MI+ Xk ye)(@I EQk)bn(x;y;H):
=[4T Qx@ VI 1@;y;H) (16)

am ong the localcoe cientswith n 1, with the initial
condition ¢ (%2;%;H ) = I. Taking into account that

® x4 2
&°x [Gy bha (x;x;H ) ©

n=0a=1

®

.b‘(p »b‘(D

"o (H) i 17

n=0
w here we have de ned the Seeley coe cients as

7
d”x [cn ha (x5%5H ) ;

a=1

and that the rstlocalcoe cient can be easily com puted

c@x;H)= V(%) i

by applying these form ulasto theH operatorsweobtain
in the = 0 -n nite tem perature- lin it :
o HT)

indD = gl ) =

1
4 Z
l Qv, @v,

@X1 @X2

= d*x x)= 2%
ie., the din ension of the selfdual vortex m oduli space
is 21. Physically, this m eans that there are solutions, if

= 1, for any location of the lwortex centers in the
plne ]; all static con gurations of self-dual I+vortices
can thus be interpreted as states of neutral equilibrium .

Seeley coe cients

C om putation of the coe cients of the asym ptotic ex—
pansion is a di cult task; to start with, the order two
localcoe cient reads:

1 1
5 4V (x)+ —Qx®=)Qk &)V (x)

CxH )= %

1 1 1,
g@ka(X)V (=) + ng(x)@kV (=) + EV (%)

C om plexity increases strongly for high-order localcoe —
cients .

The recurrence relation {[A) allows us to express
G, (%;¥;H) and its derivatives In temm s of all the



o (%;¥;H ) with k n and their derivatives. O ne passes
from this Inform ation to the values of the Seeley coef-
cients ¢y (H ) In two steps. First, one must reach the
subtle y ! x lmit. In this analytical m anoeuvre the
partialderivatives of ¢, (%¢;y;H ) aty = %

play a prom inent role. N ote also that:

(O;O)Cab(

)

[cn hp(x;x;H ) =

. AR (;v;H ) . .
CrizlcaPix) = 1m Cnllab 2,y, In they ! x lim it the recurrence relation {I8) becom es :
ylox @x,'@x,
(k + _ o+ 1)( 1;2)C§1+01(x)= ( 1+2;2)C§b<x)+ ( 1;2*2)csb(x)
1 2 t, d t, d
XX 2 el (1 r+l; 2 t)~db e o3 (1 ri2 t+1l)~db
¢ e Gt e o)
d=1r=0t=0 T X1E%2 x1EX2
1
lX\] X X 2 1 @r+tQad )
*3 - e e 0s)
d=1r=0 t=0 r texilxg
1
1}{‘] X 1x: 1 @rt+tgad ]
L1 , thr (1 otz 1ongdd ()
d=1 r=0 t=0 r £ Ex0x;
2 1 d
Hoxex @V G, e
. e G )

d=1r=0t=0 r x1E%
The initial condition cy(x%;%;H) = I means that all in in the background gauge:
the ¢/ )Cgb(x) vanish except <0;0)cga (%) =1 fora = 7
1;2; ;N . Starting from these conditions one com — E + — d’z [@;a; Vot o' T

putes all the ¢ 7 'C 3P (x) local coe cients by using ([H).
For instance, in order to obtain “?'CgP(x) orH* we
need ¢/ )Cgb(x) for ; = 0;1;2 asdata,which In tum
can be calculated from ¢ )Cjb(x) for ; = 0;1;2;3;4,
and so forth. Evaliation of °?)C &P (x) requires know -
edge of 4032 local coe cients !!l. In general, the rule

is: know ledge of °)C32P(x) am ounts to know ledge of
%(n+ )(n+ 2)4n+ 3) ¢/ )C}fb(x) Jocalcoe cientsw ith

k  n.The second, step ismuch sim pler: sin ple num eri-
cal integration of 4: 1 00 ¢ a2 (%) over the plane.

QUANTUM OSCILLATIONS OF SELFDUAL
VORTICES

Standard lore in the sem i<lassicalquantization of soli-
tons tells us that the one-loop m ass shift com es from the
C asin ir energy plus the contrbution of the m ass renor-
m alization countertem s: M v M+ MK

C asim ir energy and vortex m ass renorm alization
counter-term s

By expanding the static energy {@) oftheAHM around
selfdualvortex solutions one obtains, up to second-order

2

1
' 31j/2+5 Fx THT +0(%)

A Iso, the ghosts -arising when the quantization proce-
dure is perform ed in the background gauge- contribute
negatively to the energy:

, Z

h v
EG ost _

2

d’x 4 +5 % +
T hus, the vortex C asin irenergy isthe sum oftheCasim ir
energies of the bosonic a;;a,;’1;’ 2 uctuations around
the vortex m nus the Casin ir energy of the ferm ionic

uctuation ;the ordinary non-m atrix—Schrodinger op—
erator ruling the ghost uctuation around the vortex is:

4 +5 7

", isa pure gauge oscillation but its contribution is killed
by the negative ghost contribution. The sam e applies
for the vacuum Casin ir energy: the G oldstone boson
Casin ir energy is canceled by the ghost C asin ir energy,
the trace of the square root of H § 4 +1. In sum ,
the vortex Casin ir energy m easured w ith respect to the
vacuum Casin ir energy is given by the form al form ula:
h

STr H'

HE =

» i

1
2

-

C
\4

M STr(H,)
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1 1 1
STr H* 7 = Tr H' ? TrH® ?

S
o=

STr(Hy)? = TrHy) Tr H

T he starm eans that the 21 zero eigenvalues of H * must
be subtracted because zero m odes only enter at tw o-loop
order.

In them inin alsubtraction renom alization schem e, -
nite renom alizations are ad justed In such a way that the
critical point 2 = 1 is reached at rst-order in the loop
expansion. T herefore, {{l) and @) tellus that the contri-
bution of the m ass renom alization counter-tem s to the
vortex m ass is:

Mg o= M et M L= ~mI0) (V)
2 . 1
(V)= a*1a 39 SViVil

and the divergent integralI (1) can be w ritten in the form
Z

T 1 d?r 1
= = S g——————
2 @27 g g+

after applying the residue theorem to integration in the
com plex kg-plane.

Zeta function regularization of C asim ir energies and
self-energy graphs

W e regularize both In nite quantities M 5 and M 5
by m eansofgeneralized zeta functions. From the spectral
resolution of a Fredholn operator H

Hna= nn ’

s
n

which is a m erom orphic fiinction of the com plex variable
s E}, ]. W e can then hope that, despite their contin-
uous spectra, our operators t in this schem e, and w rite:

. 2 s
M ¢ (s) = - 5 fle () ue (Dt
]
+  ms () m,(s)
M\I}(S)_ mL2 HO(S)< Vi)
w here
m?L? (s 1)
H, (S)= —_—

4 (s)

and is a param eter of inverse length din ensions. Note
that

and

1
I1l)= 1Im ——
W= In oo e,

(s)
on a syuare of area L2.

Together with the high-tem perature expansion, the
M ellin transform of the heat trace

1 21
4 (s) = © S lTre *H
0
show s that
1 % g ' s+n 2 1
u (s)= d c(H)e + By (s)
(s) 0 (s)

is the sum ofm erom orphic and entire {By (s){ functions
of s. Neglecting the entire parts and keeping a nite
num ber of term s, N ¢, in the asym ptotic serdes for y (s),
we nd the follow ing approxin ations for the generalized
zeta functions concerning the di erential operators H *

and H® relevant to our problem :

Xo

+ 1;1
b ) a1 qEr) v L
n=1 4 (S)

, X ¢ [s+n 1;1]

ge (8)  me(s) G (H i
o 4 (s)

Ry

s+n 1;11= ,d 5" e is the ncomplte

gamm a fiinction, with a very well known m erom orphic
structure.
R egarding onedim ensional kinks, see E], E], E],
the contributions of g (H* ) and g (H® ) to - (s) and
ne (s) are respectively canceled by g, (s) and B G (s);
ie., renom alization of zero point vacuum energies takes
care of the oy (H* ) and ¢y (H ¢ ) contributions to the vor—
tex Casin ir energy. Note, however, that, in contrast to
the (1+ 1)-din ensional case, the value s = % for which
we shall obtain the Casin ir energy is not a pole. To
com pute the vortex C asin ir energy one can rst take the
s= % Iim it and then subtract the vacuum Casin ir en—
ergy regularized by this procedure; a nite answer for
the kink Casin ir energy is only reached if one rst sub—
tracts the vacuum C asin ir energy of the one-din ensional
system .

O ne-loop m ass shift form ula

Writhgasc, = co HY) <, HC®) the di erence be-
tween the Seeley coe cientsof H * and H® for vorticity
1, we check that the contrlbution of the rst coe cient
to the Casin ir energy

e -2, il
2 m? 4 (s)



is niteatthes'! % Iim it
(1)c ~m [ 1=2;1]
M 1=2)" — iV _
v ( ) 4 ( ’ k) (1:2)

and exactly cancels the contrdbution of the m ass renor-
m alization counterterm s {also nite for s= % {:

R , "o . s 1;1]

M y (s) 2 (%) S
R (1-p) + . [ 1=2;1]
M g (1=2) 1 (%) 1)

O ur choice of a m iInim al subtraction schem e not only ar-
ranges nite renom alizations In such a way that self-
duality holds for = 1 at the one-loop order, but also

ts in with the criterion that the m ass renomm alization
counter-term s m ust kill the contribution to the Casim ir
energy of the st Seeley coe clents for the heat trace
expansions of the operatorsH * ,H® ,H(,HS . Thesame
cancellation happens for kinks only if the m ode num ber
cuto regularization procedure, see Ia], EJ and E], is
applied.

Subtracting the contribution of the 21 zero m odes,

Z 1
~m . 21 s 1
My = — Imn d +
2 st T s) o
#
+>@° s+n 1;1]
T4 (9
n=2

we nally obtain the follow ing formula for the vortex
m ass shift:

n #
1 X0 3 21
My= — —P= G I =11+ = (19)
2 8 2
n=2
ONE-LOOP M ASS SHIFTS
Localcoe cients for cylindrically sym m etric vortices

W e shall apply these form ulae to cylindrically sym —
m etric vortices. T he heat kemel local coe cients, how —

trley JxxH )

2
51 £2(r)] Ff 2 (r)

tricy JxxH T ) = 37t + 41 f () + 8(TP P

10

ever, depend on successive derivatives of the solution.
T his dependence can increase the error in the estin ation
of these Iocal coe cients because we handle an interpo-

lating polynom ialas the num erically generated solution,
and the successive derivations w ith regpect to r of such
a polynom ial introduces inaccuracies. Indeed this oper—
ation is plugged into the algorithm that generates the
localcoe cients In order to speed up this process. It is

thus of crucial in portance to use the rstorderdi eren—
tialequations {@) in order to elin inate the derivatives of
the solution and w rite the localcoe cients as expressions

depending only on the elds.W e nd:

@ 1 r . .
— = [cos cosl (1 (r))+ sin sinl ]
@Xl r

1f
€. _ @) [sih cosl (1 (r)) cos sl ]
@x, r
€. _ E@ [cos sinl (1  (r)) sin cosl ]
@Xl r

1f
€ = =) [sh sihl (1 (r)) + cos cosl ]
@x, r
& = sin cos @) (©) }(fZ(r) 1)
@xq r
o, _ ©, 1 @
o, lcos?2 = + ZSJD (£ (@) 1)
Q! = lcos2 () }cosz (@) 1)
@xq r?
&v, = sin cos 2 ) (r)+ E(f2(r) 1)
@x, r 2

for selffdual ANO vortices w ith generic (positive) vortic—
iy 1.

T he recurrence form ula now gives the localcoe cients
of the asym ptotic expansion in tem s of £ (r) and (r),
eg.,

8r*)E? () + 27 £ (v)

12rt
8Ir? (r)[ 1+ (1+ 13DE2(r)1+ 812 2(r)( 2 3r+ 9r’f?(r))
1
trics Jx;xH T ) = T30 41 ®(r) 4Pr? ()4 + ( 132+ 167DE% (r)]+ 41 f(@)(20+ 9r® + 32r°f%(r)) 21’ (r)[ 4(16+ 9ri)+
r
+(64+ 961 4721 + 3441 + 8812 + 2431?)f2 (r)+ ( 52+ 109Lrfd(r)]+ 1 Z(r)[ 256 144r? 117 +

+2r? (88
321r* + 817 (20 + 39r? )f% (r)+ r’( 16

5481+ 51612 + 183r2)£2(r)+ 99ri £t (r)]+ r’[r?( 16+ 151r?)+ ( 3202 + 1601* + 32r% + 4812
481+ 447 + 199r? )£’ (r)

29r £6 ()]



W e have explicitly given only the st three local co-
e cients of the heat kemel expansion for H ¥ because
the com plexity of the expressions increases w ith n enor—
m ously. A dditionally,

aExHG )= 1 £2(r)

;G = = @r + 50 8F (r)+ 4F Z(r)E%(x)+
I

3’ 2r%fi(r)

ca(xx;HG ) = 10r? [ 322 + 161* + 8% + 23r*+

60r?
+ 161 (1+ r?) 81( 121 + 8T + r? + 411+ r?)) (r)+
+162(1 61+ 61 + r?) Z()+ 321 21 )+

281+ 161 + 172 + 167 %(r)
81+ 41) (r) ¥ () 4r'fb(r)

+161 (@) E? (x)

+

are the st three Iocal coe cients for the heat kemel
expansion for the ghost operator H © .

P lugging these expressions Into the partially analytical
partially num erical solution for £ (r) and (r), it is possi-
ble to com pute the localcoe cients and integrate them
num erically over the whole plane.

M ass shift for vorticities 1= 1, 1= 2, 1= 3, 1= 4

F inally, the one-loop quantum correction of the vortex
solution w ith vorticity 1is given by formula {I3)
" #
~am 1 X 3 21
G I > i1+ =

n=2

U sing the M athem atica environm ent In a m odest PC we
have obtained the coe cients shown in Tables IV and V,

TABLE IV :Seeley Coe cients for 1= 1;2.

1=1 1= 2
nfc@EY) «@BH®) |aEH") @)
213036316 260773 |61.06679 6.81760
311294926 031851 (2561572 1.34209
4|1 422814 0.022887 | 821053 0.20481
5| 1.05116 0.011928 | 2.02107 0.023714
6| 0.20094 0.00008803| 0.40233 0.002212

W e ram ark that om ula {Id) depends on the num ber
N chosen to cut the asym ptotic heat kemel expansions.
W e have no m eans of determ Ining the optmmum value
for Ny, but in practice we can only cope with a anall
N value; a big Ny would require the com putation of

11

TABLE V :Seeclkey Coe cients for 1= 3;4.

1= 3 1= 4
naE') wE)| a@B') @)
219020440 11.51035|118.67540 16.46895
3136.68235 260898 | 46.01141 4.00762
4111.69979 046721 | 1464761 0.77193
5| 2.86756 0.067279 | 358906 0.11747
610.566227 0.0079269| 0.667202 0.01620

an enom ous num ber of local coe cients. N evertheless,
the choice Ny = 6 is acceptable. The behavior of the
asym ptotic serdes in {{d) is given in Table V I:

TABLE V I: Convergence of the asym ptotic serdes in units of
~m .

No| My (Ng) My (No) My (Ng) My (No)
1=1 1= 2 1=3 1= 4
2| -1.02951 2.03787 3.01187 3.97025
3| -1.08323 2.14111 3.15680 4.14891
4| -1.09270 2.15913 3.18208 4.18014
5| -.09427 2.16212 3.18628 4.18534
6 | -1.09449 216257 3.18690 4.18606

T he convergence up to the sixth order in the asym p-
totic expansion is very good. In the case of ( )‘2l kinks
we found agreem ent betw een the result obtained by this
m ethod and the exact result up to the fourth decim al

gure, see |9], by choosing Ny = 10.

T here are reasons to expect this behavior on general
analyticalgrounds. Truncation of the asym ptotic expan—
sion of the heat function at orderN ( produces an error of
order “°,which in tum leads to an error proportional

to [Np %;l}’ Noli,ﬁJrNo large, in the com putation
2

of the g+ ( %) zeta function, see [24] Section 1.10. In
fact, the rate of convergence is In proved in our problem
by the the an allness of the ¢, coe cients, see Tables IV
and V , for largen. T his sm allness is due to the fact that,
when n increases, higher and higher powers of partial
derivatives of the eld pro les of increasing order enter
in the com putation of ¢, . T he vortex solutions, how ever,
are as regular and sm ooth as allowed by the topology.
T herefore, the adm itted error by cutting the m ass shift
formula at Ny = 6 is especially an all for low vorticities.
In TableV ITwe give the one-loop quantum corrections
for the vortex solutions up to 1= 4, whereas we plt the
correction in the gure as a function of the m agnetic
ux. T he broken line (linear function) represents the hy—
potheticalsituation in which each m agnetic ux quantum
would contribute w ith the sam e correction. Hence, this
isaln ost —w ithin the errorm argin-the situation thatwe




TABLE V II:O neLoop Q uantum M ass C orrection to the vor-
tex with vorticity 1= 1;2;3;4.

1l My=m AM Ut 3 3 T

1| 1.09449 N

2| 26257 B L

3| 318690 B .

4| -418606 - e
have found.

T hese results, however, do not allow us to answer the
question of w hether or not the classical degeneracy w ith
respect to the vortex centers observed at the classical
levelalso hodsatone-loop order. The gurein TableV IT
seam s to suggest that the m ass shift of 1 well separated
vortices is equal-m odulo errors-to 1tin es them ass shift
of a single vortex, but we do not know in what direction
the errors run.

M ass shift for solutions w ith tw o separate vortices

Wenow o er two Tables, VIII and IX , where Secly
coe cients and the quantum corrections are given for
tw o-vortex solutionsw ith interm ediate separationsd = 1,
d= 2,and d = 3 between superin posed vortices, ! = 0
in {{A)-{l), and well separated vortices, ! = 1 in {Id)-
{I1). The coe cients of the asym ptotic expansion are
com puted only up to third order because much m ore
com putation tine is required. A lso, we stress that in
this situation, w ith no cylindrical sym m etry, we expect
not so good results because there are twom ore In portant
sources of errors: rst, the variational solutionsw ith two
separate vortices are far less exact than the solution w ith
1= 2 and cylindrical symm etry. Second, even though
another num ericalm ethod would be used in the search
of vortex solution we would run in di culties; there is
no way to avoid the use of partial derivatives in the cal-
culation of the coe cients because the vortex equations
alone are not enough.

TABLE V III: Seeley Coe cients ford= 1;2;3.
d=1 d= 2 d= 3
cH ) aE )NaE®B ) aEB ) ) aEB )a@E®)
61.0518 6.81277|58.3359 6.46609|57.3420 6.03872
256137 1.33822|24.5050 1.23466|24.1187 1.02031

o]

w N
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TABLE IX : Convergence of the asym ptotic series.

No| My Ng)==m My (Ng)=>m My (No)=~m
d=1 d= 2 d= 3
—2.03770 -1.99798 -1.98848
—2.14095 —2.09695 —2.08672

SUMMARY AND OUTLOOK

T he one-loop m ass shifts of superin posed vorticesw ith
low m agnetic uxes are:

MEL = m — 109427~ + o(~?)

e
ME2 = 2m — 108106~ + o(~?)
e
— v
ME? = 3m — 1:06230~ + o(~?)
e
— v
ME? = 4m — 1:04651~ + o(~?):
e

M uch less precise results are also provided for two-
vortices w ith separate centers. This is to be com pared
w ith the supersym m etric result:

, v 2
M ;= Jn — 0:5000~ + o(~") ;

e
see 4] and [H]. W e notice that the one-loop correction
due to bosonic uctuations of selfdual vortices is al-
m ost tw ice the correction arising In the supersymm et-
ric systam com Ing only from m ass renom alization coun-—
terterm s when proper SU SY preserving boundary condi-
tions are in posed. T he sam e proportion holds between
one-loop corrections to sineG ordon and * kink m asses
in the non-supersym m etric and supersym m etric fram e-
works, see [14]and [15].

Tt seam s plausible that a sin ilar m ethod can success—
fllly be applied to com pute the one-loop m ass shift for
selfdual Chem-Sin ons#H iggs vortices, see RUH21]. A
Ham ittonian form alisn in the topological sectors of the

rst-order CSH Lagrangian system should be rst de-
veloped. M ore am bitious, generalized zeta fuinctions of
12 12 matrix PDE operators In three variables are
essential in com puting the one-loop m ass shift to BPS
m onopoles. T hus, our procedure opens a door to calcu-
late quantum corrections to BPS m onopole m asses in a
N = 0 bosonic setting to be contrasted w ith the N = 2
and N = 4 supersym m etric results of [d]and [24].
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