JNM P style Preprint Irreducible characters and C lebsch-G ordan series for the exceptional algebra E_6 : an approach through the quantum C alogero-Sutherland m odel J Fernandez-Nunez $^{\rm Y}$, W G arc a-Fuertes $^{\rm Y}$ and A M Perelom ov $^{\rm Z}$ Received Month *, 200*; Revised Month *, 200*; Accepted Month *, 200* #### A bstract We re-express the quantum Calogero-Sutherland model for the Lie algebra ${\rm E}_6$ and the particular value of the coupling constant =1 by using the fundamental irreducible characters of the algebra as dynamical variables. For that, we need to develop a systematic procedure to obtain all the Clebsch-Gordan series required to perform the change of variables. We describe how the resulting quantum Hamiltonian operator can be used to compute more characters and Clebsch-Gordan series for this exceptional algebra. To Francesco Calogero on ocassion of his seventieth birthday. ### 1 Introduction During the three last decades of the past century, a plethora of highly nontrivial mechanical integrable systems were discovered, see [1, 2] for comprehensive reviews. Among these, the Calogero-Sutherland models form a distinguished class. The rst analysis of a system of this kind was performed by Calogero [3] who studied, from the quantum standpoint, the dynamics on the in nite line of a set of particles interacting pairwise by rational plus quadratic potentials, and found that the problem was exactly solvable. Soon afterwards, Sutherland [4] arrived to similar results for the quantum problem on the circle, this time with trigonometric interaction, and Moser [5] showed that the classical version of both models enjoyed integrability in the Liouville sense. The identication of the general scope of these discoveries came with the work of Olshanetsky and Perelom ov [6]-[8], who realized that it was possible to associate models of this kind to all the root systems of the simple Lie algebras, and that all these models were integrable, both in the classical and in the quantum framework [9, 10]. Now adays, there is a widespread interest in this type of $^{^{}y}$ D epartam ento de F sica, U niversidad de O viedo, E-33007 O viedo, Spain E-m ail: nonius@ uniovi.es (JFN), w ifredo@ uniovi.es (W GF) ^z Departam ento de F sica Teorica, Universidad de Zaragoza, E-50009 Zaragoza, Spain E-mail: perelom o@ dftuz2.unizar.es integrable systems, and many mathematical and physical applications for them have been found, see for instance [11]. The study of the form and properties of the Schrodinger eigenfunctions for the quantum version of these models constitutes an interesting line of research. In fact, these eigenfunctions have very rich mathematical properties. In particular, for the case with trigonometric potential, if we tune the coupling constants to same especial values, the wave functions correspond to the characters of the simple Lie algebras, while if we select a dierent tuning, we can make them to coincide with zonal spherical functions. Thus, the Calogero-Sutherland theories provide us with a new tool for computing these quantities. In this spirit, we will describe in the present paper how to use the trigonometric Calogero-Sutherland model to obtain both particular characters and Clebsch-Gordan series for the exceptional Lie algebra E_6 . The main point of our approach is to express the Calogero-Sutherland Hamiltonian in a suitable set of independent variables, indeed the fundamental characters of E_6 . The use of such kind of variables has been quite useful to solve the Schrodinger equation for the models associated to some classical algebras, [10], [12]–18]. The organization of the paper is as follows. Section 2. is a rem inder of the properties of E_6 relevant for the contents of the paper. Section 3. describes the Calogero-Sutherland model associated to E_6 and explains how to perform the change of variables mentioned above. Section 4. gives a detailed account of the computation of the Clebsch-Gordan series of E_6 needed to pass to the new variables. In Section 5. we present the Hamiltonian in these variables and describe its use for computing new characters and to reduce tensor products of representations. Some conclusions are given in Section 6., and nally, the appendices show some explicit results for characters and Clebsch-Gordan series of E_6 . # 2 Sum mary of results on the Lie algebra E_6 In this Section, we review some standard facts about the root and weight systems of the Lie algebra E_6 , with the aim of xing the notation and help the reader to follow the rest of the paper. More extensive and sound treatments of these topics can be found in many excellent textbooks, see for instance [19], [20]. The com plex Lie algebra E_6 , the low est-dim ensional one in the E-fam ily of exceptional Lie algebras in the Cartan-Killing classication, has dimension 78 and rank 6, as the name suggests. From the geometrical point of view, it admits (with some subtleties, see [21]) an interpretation which extends the standard-one for the classical algebras: in the same way that these correspond to the isometries of projective spaces over the rst three normed division algebras | SO (n + 1) ' Isom (RPⁿ), SU (n + 1) ' Isom (CPⁿ), Sp(n + 1) ' Isom (HPⁿ)|, F₄, E₆, E₇ and E₈ are the Lie algebras of the projective planes over extensions of the octonions, giving rise to the so-called \m agic square": F₄ ' Isom (OP²), E₆ ' Isom [(CO)P²], E₇ ' Isom [(HO)P²], E₈ ' Isom [(OO)P²]. In Physics, the most remarkable role played by E₆ is in the heterotic ten-dimensional E₈ E₈ superstring theory when the extrasix dimensions are compactived to a manifold of SU (3) holonomy: in such a case, one of the E₈ breaks to an E₆ which gives the Grand Unication group of four-dimensional physics [22]. The Dynkin diagram of E₆, see Figure 1, encodes Figure 1. The Dynkin diagram for the Lie algebra E_6 . the euclidean relations among the simple roots, which are $$(_{i};_{i}) = 2;$$ $i = 1;2;3;4;5;6$ $(_{4};_{i}) = 1;$ $i = 2;3;5$ $(_{1};_{3}) = (_{5};_{6}) = 1;$ $(_{i};_{i}) = 0;$ in all other cases: Therefore, the Cartan matrix reads $$A = \begin{bmatrix} 0 & 2 & 0 & 1 & 0 & 0 & 0 & 1 \\ B & 0 & 2 & 0 & 1 & 0 & 0 & C \\ B & 1 & 0 & 2 & 1 & 0 & 0 & C \\ B & 0 & 1 & 1 & 2 & 1 & 0 & C \\ 0 & 0 & 0 & 0 & 1 & 2 & 1 & A \\ 0 & 0 & 0 & 0 & 1 & 2 & 1 & A \end{bmatrix}$$ It is convenient to use a realization of the sim ple roots in term s of the generating system $f"_1;"_2;"_3;"_4;"_5;"_6;"g$ of R^7 (endowed with the standard Euclidean metric) satisfying the conditions $"_1 + "_2 + "_3 + "_4 + "_5 + "_6 = 0$, $("_i;"_j) = \frac{1}{6} + _{ij}$, $(";") = \frac{1}{2}$ and $(";"_j) = 0$ [19]. With reference to this system, we have $$1 = 1 \cdot 1 \cdot 1 \cdot 2;$$ $2 = 1 \cdot 4 + 1 \cdot 5 + 1 \cdot 6 + 1 \cdot 1$ $3 = 1 \cdot 1 \cdot 2 \cdot 3;$ $4 = 1 \cdot 1 \cdot 3 \cdot 1 \cdot 4$ $5 = 1 \cdot 1 \cdot 4 \cdot 1 \cdot 5 \cdot 6 \cdot 1 \cdot 6 \cdot 1$ $6 = 1 \cdot 1 \cdot 5 \cdot 1 \cdot 6 \cdot 1 \cdot 6 \cdot 1$ The positive roots, which are given by all linear combinations of the form s $$"_{i}$$ $"_{j}$; $"_{i}$ + $"_{j}$ + $"_{k}$ + $"_{i}$; 2 "; if $j \in k$; (2.2) can be classi ed by heights as indicated in the Table 1. The fundam entalweights $_k$ follow from the equation $_i$ = $^4_{\ j=\ l}$ A $_{ji}$ $_j$. They are $$\begin{array}{rcl} 1 & = & \mathbf{1}_{1} + \mathbf{1}_{2} \\ 2 & = & 2\mathbf{1}_{3} \\ 3 & = & \mathbf{1}_{1} + \mathbf{1}_{2} + 2\mathbf{1}_{3} \\ 4 & = & \mathbf{1}_{1} + \mathbf{1}_{2} + \mathbf{1}_{3} + 3\mathbf{1}_{3} \\ 5 & = & \mathbf{1}_{1} + \mathbf{1}_{2} + \mathbf{1}_{3} + \mathbf{1}_{4} + 2\mathbf{1}_{5} \\ 6 & = & \mathbf{1}_{1} + \mathbf{1}_{2} + \mathbf{1}_{3} + \mathbf{1}_{4} + \mathbf{1}_{5} + \mathbf{1}_{3} \\ \end{array}$$ | H eight | Positive roots | |---------|--| | 1 | 1; 2; 3; 4; 5; 6 | | 2 | 1+ 3; 3+ 4; 4+ 5; 5+ 6; 2+ 4 | | 3 | 1+3+4;3+4+5;4+5+6;2+3+4; | | | 2 + 4 + 5 | | 4 | 1+3+4+5;3+4+5+6;1+2+3+4; | | | 2+ 3+ 4+ 5; 2+ 4+ 5+ 6 | | 5 | 1+3+4+5+6;1+2+3+4+5;2+3+24+5; | | | 2+3+4+5+6 | | 6 | 1+2+3+24+5; 1+2+3+4+5+6; | | | 2+ 3+24+ 5+ 6 | | 7 | 1 + 2 + 2 3 + 2 4 + 5; 2 + 3 + 2 4 + 2 5 + 6; | | | 1+ 2+ 3+ 2 4+ 5+ 6 | | 8 | 1 + 2 + 2 3 + 2 4 + 5 + 6; 1 + 2 + 3 + 2 4 + 2 5 + 6 | | 9 | 1 + 2 + 2 3 + 2 4 + 2 5 + 6 | | 10 | 1 + 2 + 2 3 + 3 4 + 2 5 + 6 | | 11 | 1 + 2 2 + 2 3 + 3 4 + 2 5 + 6 | Table 1. Heights of positive roots. The geometry of the weight system is sum marized by the relations $$(_{i};_{j}) = A_{ij}^{1};$$ w ith (A $_{ij}^{\ 1}$) the inverse C artan m atrix. The W eyl vector is $$= \frac{1}{2} X = X^{6}$$ $$= X^{7}$$ $$=$$ w ith R $^+$ the set of positive roots of the algebra. The W eyl form ula for dim ensions applied to the irreducible representation associated to the integral dom inant weight = m $_1$ $_1$ + m $_2$ $_2$ + m $_3$ $_3$ + m $_4$ $_4$ + m $_5$ $_5$ + m $_6$ $_6$ gives $$\dim R = \frac{Y}{2R^{+}} \frac{(; +)}{(;)} = \frac{P}{2^{5} \cdot 3^{5} \cdot 4^{5} \cdot 5^{6} \cdot 7^{5} \cdot 8^{5} \cdot 9 \cdot 10 \cdot 11}$$ where P is a product extended to the set of positive roots in which the root = $\sum_{i=1}^{P} c_i c_i$ contributes with a factor ht() + $\sum_{i=1}^{6} c_i m_i$, where ht() is the height of . In particular, for the fundam ental representations, one nds: $$\dim R_{1} = 27$$ $\dim R_{2} = 78$ $\dim R_{3} = 351$ $\dim R_{4} = 2925$ $\dim R_{5} = 351$ $\dim R_{6} = 27$: Note that, these dimensions reject the fact, coming from the Z_2 symmetry of the Dynkin diagram, that the representations R_1 and R_6 are complex conjugates, and the same is true for R_3 and R_5 , while R_2 (the adjoint representation) and R_4 are real. # 3 The Calogero-Sutherland model associated to the Lie algebra $\rm E_6$ The Ham iltonian operator for the trigonom etric Calogero-Sutherland model related to the root system of a simple Lie algebra has the generic form $$H = \frac{1}{2}(p;p) + X$$
(1) $\sin^2(q);$ where q and p are vectors with dimensions given by the rank r of the algebra, (;) is the usual euclidean inner product in R^r , and = if jj jj = jj jj. In particular, because E_6 is sim ply-laced, the C alogero-Sutherland m odel associated to E_6 depends only on one coupling constant. To write H in a more explicit way, it is convenient to use the orthonorm albasis fe_i ; $\dot{p} = 1$;:::;6g in R^6 . The expression of q and p in this basis is sim ply $q = \begin{bmatrix} 6 \\ i=1 \end{bmatrix} q_i e_i$, $p = \begin{bmatrix} 6 \\ i=1 \end{bmatrix} p_i e_i$, while the sim ple roots are given by: $$\begin{array}{rcl} 1 & = & e_1 & e_2 \\ 2 & = & \frac{1}{2} & 1 + \frac{p_{\overline{3}}!}{3} & X^3 & e_j + \frac{1}{2} & 1 + \frac{p_{\overline{3}}!}{3} & X^6 \\ k & = & e_{k 1} & e_{k}; & k = 3;4;5;6: \end{array}$$ The q coordinates are assumed to take values in the [0;] interval, and therefore the Ham iltonian can be interpreted as describing the dynamics of a system of six particles moving on the circle, but notice that there is not translational invariance. We recapitulate some important facts about this model which follow from the general structure of the quantum Calogero-Sutherland models related to Lie algebras [10]. The ground state energy and (non-norm alized) wave function are $$E_0() = 2(;)^2 = 156^2$$ $_0(q) = \sin(;q);$ while the excited states depend on the quantum numbers $m = (m_1; m_2; m_3; m_4; m_5; m_6)$, and satisfy $$H_{m} = E_{m}()_{m}$$ $E_{m}() = 2(+ ; +);$ (3.1) where is the highest weight of the irreducible representation of E $_6$ labelled by m , i. e. = $_{i=1}^{6}$ m $_i$ i. By substitution in (3.1) of $$_{m}(q) = _{0}(q)_{m}(q);$$ (3.2) we are led to the eigenvalue problem $$_{\rm m} = _{\rm m}^{\rm m} \left(\right) _{\rm m}$$ (3.3) w ith $$= \frac{1}{2} + X \cot(;q)(;r_q);$$ (3.4) and $$\mathbf{m}_{m}() = \mathbf{E}_{m}() \mathbf{E}_{0}() = 2(; +2)$$: (3.5) Taking into account that A $_{jk}^{1}$ = ($_{j}$; $_{k}$), it is possible to give a m ore explicit expression for " $_{m}$ (): "_m () = 2 $$A_{jk}^{1} m_{jmk} + 4$$ $A_{jk}^{1} m_{j}$: (3.6) The main problem is to solve (3.3). As it has been shown for other algebras [10]-[14], [18], the best way to do that is to use a set of independent variables which are invariant under the W eyl sym metry of the Ham iltonian, namely the characters of the six fundamental representations of the algebra E_6 . Unfortunately, the expression of these characters z_k in terms of the q-variables (which play the role of coordinates on the maximal torus of E_6) is complicated and makes the direct change of variables from q_i to z_k very cumbersome. We are forced to follow a much more convenient, indirect route, which has proven be useful for other root systems, [18]. First of all, we can infer from (3.4) the structure of when written in the z-variables: $$= \begin{array}{c} X^{6} \\ = a_{jk}(z) Q_{z_{j}} Q_{z_{k}} + b_{j}^{(0)}(z) + b_{j}^{(1)}(z) Q_{z_{j}} : \\ \downarrow j = 1 \end{array}$$ (3.7) Now, to obtain the full expressions for the coe cients appearing in (3.7), we rely on the very fact that makes the Calogero-Sutherland model useful for the purposes of the present paper: for = 1, the eigenfunction $^{(1)}_m$ is proportional to the character $_m$ of the irreducible representation of E $_6$ with maximal weight $^{(0)}_{i=1}$ m $_i$ i. This implies that we can compute the combination $b_j(z) = b_j^{(0)}(z) + b_j^{(1)}(z)$ by simply using that, from (3.7), $^{(1)}z_i = b_i(z)$, and thus $$^{(1)}z_j = b_j(z) = ^{"_m}(1)z_j$$ (3.8) for $(m_k) = (j_k)$. Suppose now that we know the expressions in the z-variables of all second-order characters, that is, the characters of the form $i_j = j_j$, and we know also the form of the C lebsch-G ordan series for the quadratic products of the fundamental characters, i.e. we know the multiplicities $n_{(m_i,j_i)}$ in for every pair i; j. Then, by applying the operator $^{(1)}$ to the two members of these products we can x the remaining coe cients a $_{jk}$ (z_i) through the equations $$a_{ij}(z) + a_{ji}(z) + b_{i}(z)z_{j} + b_{j}(z)z_{i} = X$$ $$c_{(m,ij)}"_{(m,ij)}(1) = c_{(m,ij)}$$ These characters and series are, therefore, all that we need to accomplish the task of xing the form of the Hamiltonian in the $\lim_{n \to \infty} \frac{1}{n} = 1$. Although there are some results already available in the literature [19,23], a number of the required Clebsch-Gordan series remain, to our knowledge, to be calculated. We have thus developed a systematic strategy, entirely based in a few elementary facts, to obtain them. We devote the next Section to give a description of this strategy. ## 4 Computation of the quadratic Clebsch-Gordan series To com pute a particular C lebsch-G ordan series R $_{i}$ R $_{j}$, we proceed through the following steps: - 1. We elaborate a list of all the irreducible representations which could possibly enter in the series. To this end, starting from the highest weight $_i+_j$, which is directly given by the characters we are multiplying z_i ; z_j , we subtract all the integral linear combinations of the simple roots such that the result is an integral dominant weight. To do that we have to express the simple roots in the basis of the fundamental weights, that is to say, the components of the k-th fundamental weight are the entries in the k-th arrow of the Cartan matrix. It turns out that for the series at stake, the list of the possible representations is never very long, the longest one being the corresponding to the case z_4^2 which has 24 terms. - 2. We identify some of the representations with nonzero multiplicity by the use of two techniques originally devised by Dynkin [24]: the so-called Dynkin theorem and Dynkin method of parts. We here explain them brie y, and refer the reader to the book by R.N.Cahn [25] for a more careful exposition with proofs and examples. Dynkin theorem deals with some series of elements of the root space called chains. A chain is an ordered collection f $_1$; $_2$;:::; $_n$ g such that each element $_k$ is an integer linear combination of the simple roots which is at right angles with all members of the chain other than $_k$ 1 and $_{k+1}$, but it is not orthogonal to any of these two elements. The theorem establishes that if $_1$ and $_2$ are integral dominant weights and f $_1$; $_{k_1}$; $_{k_p}$;:::; $_{k_n}$; $_2$ g is a chain in which all the $_{k_1}$ are simple roots, then $_1$ + $_2$ $_{i=1}^n$ $_{k_1}$ is the highest weight of an irreducible representation entering in the direct product of the representations with highest weights $_1$ and $_2$. In most cases, the information coming from Dynkin theorem refers only to the second highest weight representation in the product, but sometimes the theorem can be used to get some clues about the multiplicity of other representations beyond that. The m ethod of parts uses the reduction of E $_6$ to several subalgebras, nam ely those appearing when one of the extreme nodes of the diagram of E $_6$ is removed: A $_5$ for the node corresponding to $_2$ and two dierent D $_5$ for the nodes of $_1$ and $_6$. Each irreducible representation of E $_6$ contains as a subrepresentation the irreducible representation of these subalgebras which arise by removing the index associated to the node deleted: for example, the representation of E $_6$ with highest weight $_{i=1}^{6}$ m $_{i=1}$ m $_{i=1}$ contains the irreducible representation m $_1$ $_1$ + m $_3$ $_2$ + m $_4$ $_3$ + m $_5$ $_4$ + m $_6$ $_5$ of A $_5$, with $_j$ the fundamental weights of that algebra. A lso, the product of two irreducible representations of E $_6$ contains the product of the irreducible subrepresentations of A $_5$ or D $_5$ which make part of the representations being multiplied, and one can take advantage of the fact that the irreducible components of these products of subrepresentations are easily worked out through Young diagrams or by using results available in the literature, see for instance the Reference Chapter in [19]. Once these components are identified, they can be converted back into irreducible representations of E $_6$ by reinstating indices in the obvious way: $m_1 \, m_1 + m_3 \, m_2 + m_4 \, m_3 + m_5 \, m_4 + m_6 \, m_5$ of A $_5$ gives $m_1 \, m_1 \, m_2 \, m_3 \, m_4 \, m_5 \, m_4 \, m_5 \, m_4 \, m_5 \, m_4 \, m_5 \, m_5 \, m_4 \, m_5 m_5$ 3. We use the orthonormality of the system of irreducible characters, i.e. to x the multiplicity of som e irreducible components, tipically the associated to the fundamental weights. For instance, suppose we want to x the multiplicity n of the representation R in the product z_iz_j , which is given by n = hz_k jz_iz_ji . Imagine that we have worked out the series z_kz_i before of the series z_iz_j . Then, as hz_k $jz_iz_ji = hz_kz_i$ jz_ji and hz_kz_i jz_ji is nothing else that the multiplicity of R in z_kz_i , which we know, the problem is solved. Note then that to use orthogonality the order in which we obtain the series is important, and, of course, we should begin by the simplest ones. Note also that in these manipulation we use that, as pointed in Section z_i , z_i = and z_i = z_i - 4. Once the multiplicities of a number of the irreducible components entering in the product have been xed by means of the former techniques, we write a Diophantine equation by comparing the dimension of the product with the dimensions of the possible irreducible representations whose multiplicities are yet to be xed. In most cases, if we have been su ciently exhaustive in our previous analysis, this Diophantine equation will have only one solution, and then we are done. For a few series, however, we can have to deal with a Diophantine equation with several solutions and, in these cases, to choose the correct one among them, we have to go through one supplementary step. - 5. We take advantage of the
structure A_5 U(1) in E₆, which is apparent from the expression (2.1) of the roots of E₆ in the generating system $f''_i;''g:$ the roots $_1;_{3};_{4};_{5}$ and $_6$ are given by linear combinations of the $''_i$ which are suitable to identify those roots as corresponding to A_5 , while the root $_2$ incorporates the new generator '', which is orthogonal to the others and can be associated with a subalgebra U(1). If we now look to the weights of the fundamental representation of E₆, R₁, which are [19] $$"_{i}$$ $"_{i}$ $"_{j}$; (4.1) we extract the branching structure $$z_1 = {}^{\sim}_{1,0,0,0,0} t + {}^{\sim}_{0,0,0,1,0} + {}^{\sim}_{1,0,0,0,0} t^1;$$ (4.2) where t is the character of U (1) and $\sim_{m_1,m_2,m_3,m_4,m_5}$ are characters of A_5 . In the same way, given that the roots (2.2) of E_6 are the weights of the adjoint representation R_2 , we have $$z_2 = t^2 + \sim_{0,0,1,0,0} t + 1 + \sim_{1,0,0,0,1} + \sim_{0,0,1,0,0} t^1 + t^2 : \tag{4.3}$$ The branching expressions for the remaining fundamental representations follow by taking antisymmetric powers of R $_1$: R $_3$ = A \pm (R $_1$ R $_1$), R $_4$ = A \pm (R $_1$ R $_1$), and so on. The results are $$Z_{3} = {}^{2} {}^{2} {}_{0;1;0;0;0} t^{2} + {}^{2} {}_{1;0;0;1;0} + {}^{2} {}_{0;1;0;0;0} t^{2} + {}^{2} {}_{0;0;1;0;0} t^{2} + {}^{2} {}_{0;0;1;0;0} t^{2} + {}^{2} {}_{0;0;1;0;0} t^{3} + {}^{2} {}_{0;0;0;0;0} t^{4} t^$$ Thus, the quadratic products of characters of E $_6$ give som e linear combinations of powers of t, whose coe cients are sums of irreducible characters of A $_5$ which can be computed from the previous formulas through the usual Young diagram matic combinatorics. Also, the character of each irreducible component appearing in the product has the same structure, and it can be computed if the expression of the character in terms of the z's is known. In favourable circum stances, by comparing powers of t in both members of the Clebsch-Gordan series one can set some bounds on multiplicities entering in the Diophantine equation, and it can happen that this bound are enough to determ ine that only one of the solutions is acceptable. As we have seen, when we are computing a series, both in the use of orthogonality relations and in the explotation of the branching rules, we often rely on the form of other series that we should have computed before. Therefore, the order in which the series are obtained is very important. The ordering z_1^2 ; z_1z_2 ; z_1z_3 ; z_2^2 ; z_1z_4 ; z_3z_5 ; z_2z_3 ; z_2z_4 ; z_3^2 ; z_1z_5 ; z_3z_4 ; z_4^2 proves to be good enough for a fruitful use of the mentioned techniques z_1^2 Let us now show in a concrete case how all this works. Suppose we want to reduce the product $z_3 z_4$, which corresponds to a representation of dim ension 351 2925 = 1026675. ¹Note, however, that specially when we need to obtain the expression of one of the second-order characters, it can happen that we have to obtain some cubic series. We can do that with the procedure described, starting always by the character of lowest height among those that we need to calculate. We begin by writing a list with all possible dominant weights entering in the series, starting with $_3 + _4$ and going down in the ordering by height. These weights, along with the dimensions of the corresponding representations, are given in the Table 2. Now, one can | R epresentation | Dim ension | |--|------------| | R 3+ 4 | 386100 | | R _{1+ 2+ 5} | 314496 | | R ₁ + ₃ + ₆ | 112320 | | R _{2 5} | 34398 | | R ₂₂₊₆ | 46332 | | R 4+ 6 | 51975 | | R _{2 1+ 2} | 19305 | | R ₂ + ₃ | 17500 | | R ₁ +2 ₆ | 7722 | | R _{1+ 5} | 7371 | | R ₂ + ₆ | 1728 | | R _{2 1} | 351 | | R 3 | 351 | | R 6 | 27 | Table 2. Representations in R 3 R 4. see from the metric relations given in Section 2 that f $_3$; $_4$; $_4$ g is a chain, and given that $_3+_4$ $_3$ $_4=_1+_2+_5$, Dynkin theorem guarentees that R $_{1+_2+_5}$ appears in the series with non-zero multiplicity. Let us next turn to consider the reduction to the subalgebra A $_5$ by deleting the dot corresponding to the root $_2$ in the Dynkin diagram . This means that the product under consideration can be written $_0$; $_{1,0,0,0}$ $_0$; $_{0,1,0,0}$ and thus can be related to the product $_{0,1,0,0,0}$ $_{0,0,1,0,0}$ in A $_5$. Then, using Young diagram s we nd Finally, we have to re-introduce the index corresponding to $_2$, and looking at the table of dom inant weights, we see that the rst weight in the right-hand member corresponds to $_{0,0;1;1,0,0}$, while the second can be adjudicated to $_{1,0,0,0;1,0}$ or $_{1;1,0,0;1,0}$, and the third to $_{0,0,0,0,0;1}$ or $_{0,1,0,0,0;1}$. So, in this case, the reduction to A_5 gives quite ambiguous information. Then, we do the reduction to the subalgebra D_5 in two possible ways, rst by removing the dot corresponding to $_1$ and then doing the same with the node of $_6$, and in each case we perform an analysis along the same lines than for A_5 . This gives us very useful information: the representations: have all non-zero multiplicities. Now, the multiplicity of R $_{3+}$ $_4$ is one because it corresponds to the highest weight in the series. Furthermore, given that R $_{1+}$ $_{3+}$ $_6$ has non-zero multiplicity, and taking into account the balance of dimensions, we see that the multiplicity of R $_{1+}$ $_{2+}$ $_5$ is necessarily one. So far we have used the D ynkin theorem and the method of parts. Let us now try to exploit orthogonality to not out the multiplicity of R $_{2^+}$ $_3$ by computing h $_{2^+}$ $_3$ jz_3z_4i . Given that we have been following the order mentioned above, we can by now extract the expression of $_{0;1;1;0;0;0}$ from the series we had already computed, see (4.7) below, and we not $$0:1:1:0:0:0 = Z_2Z_3 \quad Z_1Z_5 \quad Z_1^2 + Z_3 + Z_6;$$ and thus h $$_{2+3}$$ $jz_3z_4i = hz_2z_3$ z_1z_5 $z_1^2 + z_3 + z_6$ $jz_3z_4i = hz_3z_5$ jz_2z_4i hz_5^2 jz_4z_6i hz_1z_5 $jz_4z_6i + hz_3z_5$ $jz_4i + hz_5z_6$ $jz_4i = 9$ 6 3 + 1 + 1 = 2: We have used that all quadratic products entering in the computation have been computed previously, and given that, all inner products follow from the orthonormality of the irreducible components appearing in each one of them. So, the multiplicity n_{2+3} of n_{2+3} is two, and as byproduct of this and of the list of weights obtained by applying the method of parts to n_{2+3} , we conclude that the multiplicity of n_{2+3+6} is n_{2+3+6} is n_{2+3+6} = 1, otherwise the dimensionality of the right-hand member of the series would exceed that of the left-hand member. Similar use of orthogonality considerations allow us to n_{2+3+6} = 2, n_{2+6} = 2, n_{2+6} = 1, n_{3+6} = 1 and n_{6} = 2. At this point, only we multiplicities remain to be calculated, and we can try to obtain them by solving a Diophantine equation. From the table of dimensions, we write $$34398 \, n_{2} \, _{5} + \, 46332 \, n_{2} \, _{2} + \, _{6} + \, 51975 \, n_{\, _{4} + \, _{6}} + \, 19305 \, n_{2} \, _{1} + \, _{2} + \, 7722 \, n_{\, _{1} + \, _{2}} \, = \, 159732$$: From the reduction to D $_5$, we know that n $_{4^+}$ $_6$ and n $_{1^+2}$ $_6$ are grater or equal to one, but the other multiplicities could be zero. The equation can be readily see to have three solutions $$n_{2 \ 5} = 1$$; $n_{2 \ 2^{+} \ 6} = 0$; $n_{4^{+} \ 6} = 1$; $n_{2 \ 1^{+} \ 2} = 1$; $n_{1^{+} 2 \ 6} = 7$; $n_{2 \ 5} = 1$; $n_{2 \ 2^{+} \ 6} = 0$; $n_{4^{+} \ 6} = 1$; $n_{2 \ 1^{+} \ 2} = 3$; $n_{1^{+} 2 \ 6} = 2$; $n_{2 \ 5} = 1$; $n_{2 \ 2^{+} \ 6} = 1$; $n_{4^{+} \ 6} = 1$; $n_{2 \ 1^{+} \ 2} = 1$; $n_{1^{+} 2 \ 6} = 1$: To x the correct one, we resort to the branching relations described above. By multiplying the expressions (4.4) and using the Littlewood-Richardson rule, we $x = x^2 + x^$ $$z_3 z_4 = X^5$$ $$k = 5$$ $$a_k t^k$$ w ith $$a_4 = 2 \sim_{2,0,0,0,0} +$$ other irreducible characters $a_3 = 6 \sim_{1,0,0,0,2} +$ other irreducible characters while $$a_{2;1;0;0;0;0} = \begin{pmatrix} X^4 \\ b_k t^k; \\ k = 4 \end{pmatrix} b_k t^k;$$ $a_{1;0;0;0;0;2} = \begin{pmatrix} X^3 \\ k = 3 \end{pmatrix} b_k t^k$ with $b_4 = \sim_{2,0,0,0,0}$ and $c_3 = \sim_{1,0,0,0,2}$. Therefore, the multiplicaties of R $_{1+2}$ $_6$ and R $_{2}$ $_{1+2}$ can respectively be non higher than 6 and 2. The only acceptable solution is then $$n_{2} = 1$$; $n_{2} = 1$; $n_{2} = 1$; $n_{4} = 1$; $n_{2} = 1$; $n_{1+2} = 1$ and the series is xed. Applying the method that we have just described, the nalresults we have found for the quadratic Clebsch-Gordan series (expressed here in terms of representations R), are ``` R_1 R_1 = R_{21} R_3 R_6; (4.5) R_{1} R_{2} = R_{1+2} R_{5} R_{1}; R_{1} R_{3} = R_{1+3} R_{4} R_{1+6} R_{2}; R_{1} R_{4} = R_{1+4} R_{2+5} R_{3+6} R_{1+2} R_{5}; R_{1} R_{5} = R_{1+5} R_{2+6} R_{3} R_{6} R_{1} R_{6} = R_{1+6} R_{2} R_{0}; R_{2} R_{2} = R_{22} R_{4} R_{1+6} R_{2} R_{0}; R_{2} R_{3} = R_{2+3} R_{1+5} R_{2+6} R_{2+1} R_{3} R_{6}; R_{2} \quad R_{4} = R_{2+4} \quad R_{3+5} \quad R_{1+2+6} \quad R_{5+6} \quad R_{1+3} \quad R_{22} \quad R_{4} R 1+ 6 R 2; R_{2} R_{5} = R_{2+5} R_{3+6} R_{1+2} R_{26} R_{5} R_{1}; R_{2} R_{6} = R_{2+6} R_{3} R_{6}; R_{3} R_{3} = R_{23} R_{1+4} R_{2+5} R_{2+6} R_{3+6} R_{3+6} 2R_{1+2} R_{26} R 5 R 1; R_{3} \quad R_{4} = R_{3+4} \quad R_{1+2+5} \quad R_{1+3+6} \quad R_{25} \quad R_{2+6} \quad R_{4+6} \quad R_{21+2} 2R_{2+3}R_{1+2} 2R_{1+5} 2R_{2+6} R_{21} R_{3} R_{0}; R_{3} R_{5} = R_{3+5} R_{1+2+6} R_{5+6} R_{1+3} R_{22} R_{4} 2R_{1+6} R , R o; R_{3} R_{6} = R_{3+6} R_{1+2} R_{5} R_{1}; 2R_{2+5+6} 2R_{1+2+3} R_{32} 2R_{2+4} R_{21+26} R_{3+26} R_{\ 2\ 1^{+}\ 5}\quad 3R_{\ 3^{+}\ 5}\quad 4R_{\ 1^{+}\ 2^{+}\ 6}\quad R_{\ 3\ 6}\quad R_{\ 3\ 1}\quad 2R_{\ 1^{+}\ 3}\quad 2R_{\ 5^{+}\ 6} 2R_{2} 2R_{4} 3R_{1+6} R_{2} R_{0}; R_{4} R_{5} = R_{4+5} R_{2+3+6} R_{1+5+6} R_{23} R_{1+22} R_{1+4} R_{2+26}
2R_{2+5}R_{2+6}2R_{3+6}2R_{1+2}R_{26}R_{5}R_{1}; R_{4} R_{6} = R_{4+6} R_{2+3} R_{1+5} R_{2+6} R_{3}; R_{5} R_{5} = R_{25} R_{4+6} R_{2+3} R_{1+26} R_{1+5} 2R_{2+6} R_{21} R 3 R 6; R_{5} R_{6} = R_{5+6} R_{4} R_{1+6} R_{2}; R_{6} R_{6} = R_{26} R_{5} R_{1}: ``` From these series, the second order characters are ``` (4.6) 1;0;0;0;0;0 = z_1; 0;1;0;0;0;0 = z_2; 0;0;1;0;0;0 = z_3; 0;0;0;1;0;0 = z_4; 0;0;0;0;1;0 = z_5; 0;0;0;0;0;1 = z_6; z_{i0,i0,i0,i0,i0} = z_1^2 z_3 z_6; z_1; z_0; z_0; z_0; z_1 = z_1 z_2 = z_1 = z_5; z_{1,0,1,0,0,0} = z_1 z_3 z_1 z_6 z_4 + 1; z_{1,0,0,1,0,0} = z_{1}z_{4} z_{2}z_{5} + z_{6}^{2} z_{5}; z_1;0;0;0;1;0 = z_1z_5 z_2z_6; z_1;0;0;0;0;1 = z_1z_6 z_2 1; = z_2^2 z_4 z_1 z_6; 0;0;0;0;0;0 z_{1}, z_{1}, z_{1}, z_{1}, z_{2}, z_{3} z_{1}, z_{5} z_{1}^{2} + z_{3} + z_{6}; 0;1;0;1;0;0 = z_2z_4 z_3z_5 + z_1z_6 z_2; z_{0;1;0;0;1;0} = z_2 z_5 z_3 z_6 z_6^2 + z_5 + z_1; z_{0;1;0;0;0;1} = z_{2}z_{6} z_{6} z_{3}; z_{0,0,2,0,0,0} = z_3^2 z_1 z_4 z_1^2 z_6 + z_3 z_6 + z_1 + z_5; z_{0,0,1,1,0,0} = z_3 z_4 \quad z_1 z_2 z_5 + z_1 z_6^2 + z_4 z_6 \quad z_6; z_{0,0;1,0;1,0} = z_3 z_5 \quad z_1 z_2 z_6 + z_1 z_6 + z_4 + z_2 \quad 1; 0;0;1;0;0;1 = z_3z_6 z_1z_2; z_{0,0,0,2,0,0} = z_4^2 + z_2 z_3 z_5 + z_1 z_6 z_4 + z_1^2 z_5 + z_3 z_6^2 + z_2 z_5 + z_1 z_6 + z_4 + 1; z_{0,0,0,1,1,0} = z_4 z_5 \quad z_2 z_3 z_6 + z_1^2 z_6 + z_1 z_4 \quad z_1; z_{0,0,0,1,0,1} = z_4 z_6 z_2 z_3 + z_1^2 z_3; z_{0,0,0,0,2,0} = z_5^2 z_4 z_6 z_1 z_6^2 + z_1 z_5 + z_3 + z_6; z_{0,0,0,0,1,1} = z_{5}z_{6} z_{1}z_{6} z_{4} + 1; z_{0,0,0,0,0,0,2} = z_{6}^{2} z_{5} z_{1}: ``` # 5 The Calogero-Sutherland Hamiltonian for = 1 and some applications A fter having computed the necessary series and characters, we can now follow the lines indicated towards the end of Section 3 to obtain the H am iltonian operator for = 1. The result for the coe cients in (3.7) is W ith the explicit expression at our disposal, we can now try to use the Schrodinger equation as an e cient m ean to compute particular characters of E $_6$. G iven that all these characters are polynomials in the z variables, the Schrodinger equation can be solved by applying a system atic procedure, which is suitable to be implemented in a computer program able to carry out symbolic calculations. We propose two alternative methods to nd the Schrodinger eigenfunctions: 1. G iven a weight n_1 $_1$ + n_2 $_2$ + n_3 $_3$ + n_4 $_4$ + n_5 $_5$ + n_6 $_6$, let us denote $z^n = z_1^{n_1} z_2^{n_2} z_3^{n_3} z_4^{n_4} z_5^{n_5} z_6^{n_6}$. The operator z^n acting on z^n gives $$z^{(1)}z^{n} = \sum_{2}^{X} k_{n} z^{n}$$ (5.1) where only includes integral linear combinations of the simple roots with non-negative coe cients and, of course, in the exponent of (5.1) we express in the basis of fundam ental weights. In particular, $k_{0,n} = \textbf{"}_n$ (1). The eigenfunctions m can be written as $$_{m} = {\begin{array}{*{20}{c}} X \\ & c z^{m} \\ \end{array}}; c_{0} = 1;$$ where again the in Q^+ (m) are integral linear combinations of the simple roots with non-negative coe cients such that they do not give rise to negative powers of the z's. By substituting in the Schrodinger equation we not the iterative formula $$C = \frac{1}{\text{"}_{m}(1) \text{"}_{m}(1)} X k_{m}(1) C :$$ To use this form ula in practice, one should take into account the heights of the $^{\circ}$ s involved, because each coe cient c can depend only on some of the c such that ht() < ht(). 2. The C lebsch-G ordan series for the product z_1^{m} $_1^1$ z_2^{m} $_2^2$ z_3^{m} $_3^3$ z_4^{m} $_4^4$ z_5^{m} $_5^5$ z_6^{m} $_6^6$ reads $$z_1^{m_1} z_2^{m_2} z_3^{m_3} z_4^{m_4} z_5^{m_5} z_6^{m_6} = {\color{red} {\scriptstyle m}} + {\color{red} {\scriptstyle K}} \\ {\color{red} {\scriptstyle 2R_m}} n {\color{red} {\scriptstyle m}} \end{array} ;$$ Here it is not discult, in each particular case, to elaborate a list with all the elements in R $_{\rm m}$ (i.e., the integral dominant weights appearing in the series). Furthermore, the operator $^{(1)}$ " $_{\rm n}$ (1) annihilates the character $_{\rm n}$. Having this into account, we can make use of the simple-looking formula $$_{m} = \begin{matrix} n & y & & & & \circ \\ & & & & & (1) & \mathbf{m}_{m} & & (1) & z^{m} \end{matrix}$$ to obtain the eigenfunctions. Through any of these methods, it is possible to compute the characters rather quickly. As an illustration, we over a list of the third order characters in the Appendix A. Once we have a method for the computation of the characters, we can extend it to produce an algorithm for calculating the Clebsch-Gordan series. Suppose that we want to obtain the series for $_{\rm m}$ $_{\rm n}$. W e list the possible dom inant weights entering in the series arranged by heights ``` _{m} _{n} = _{m+n} + n _{1} _{1} + n _{2} _{2} + ::: ``` Them ultiplicity n_1 is simply the dierence between the coecients of z^{-1} in m_n and in m_{n+1} . Then, n_2 is the dierence between the coecient of z^{-2} in m_n and the sum of the corresponding coecients in m_{n+1} and m_n , and so on. As an example, we present in Appendix B a list with all the cubic C lebsch-G ordan series. The approach we are describing is also useful to not the general structure of the series for product of som e speci c types. Let us consider, for instance, series of the type z_{1-n-1} with arbitrary n. If we express the weights of the representation R $_1$ (4.1) in the basis of fundam ental weights, we see that there are only three whose coe cients for $_1$, if 1, are all non-negative: $_1$; $_1$ + $_3$ and $_1$ + $_6$, hence, the form of the series should be $$z_{1 \quad n, 0, 0, 0, 0, 0} = \sum_{n+1, 0, 0, 0, 0, 0} + a_{n \quad 1, 0, 1, 0, 0, 0, 0} + b_{n \quad 1, 0, 0, 0, 0, 0, 1};$$ (5.2) where we have to x a and b. Now, by solving the Schrödinger equation by means of the rst of the two methods described above, one inds If we substitute in (5.2), we can solve for a and b, a = b = 1. We can now check that with these coe cients, the balance of dimensions in (5.2) is correct. We list below the series of the form z_1 n_k obtained through the same procedure. Note that the series z_6 n_k im mediately follow by duality. #### 6 Conclusions In this paper we have shown how the Calogero-Sutherland H am iltonian for the Lie algebra E_6 can be used to compute both Clebsch-G ordan series and characters of that algebra. The treatment we have presented can be applied to the cases of other simple algebras. It can be also extended to deal with the system of orthogonal polynomials based on E_6 for general values of the parameter . This way in which this should be done is the subject of a research now in progress and will be published elsewhere. ### A cknow ledgem ents This work has been partially supported by the spanish M inisterio de Educación y C iencia under grants BFM 2003-02532 (JFN) and BFM 2003-00936 / FISI (W GF and AMP). # Appendix A: A list of the characters of E₆ of third order. ``` 000300 = 1 + z_2 + z_1 z_2 z_3 + z_3^3 + 3z_4 + 2z_2 z_4 + z_1 z_2 z_3 z_4 + z_2 z_4^2 + z_4^3 + z_1^2 z_2^2 z_5 + 2 z_3 z_5 z_2^2 z_3 z_5 + z_1 z_3^2 z_5 2 z_3 z_4 z_5 2 z_2 z_3 z_4 z_5 + z_1 z_5^2 + z_1 z_2^2 z_5^2 + z_{3}^{2}z_{5}^{2} z_{1}z_{4}z_{5}^{2} + z_{5}^{3} + 3z_{1}z_{6} 2z_{1}z_{2}z_{6} + z_{1}z_{2}^{2}z_{6} z_{1}^{2}z_{2}z_{3}z_{6} + z_{3}^{2}z_{6} + z_{2}^{2}z_{3}^{2}z_{6} 6z_{1}z_{4}z_{6} + 2z_{1}z_{2}z_{4}z_{6} + z_{1}z_{2}^{2}z_{4}z_{6} + z_{3}^{2}z_{4}z_{6} + 3z_{1}z_{4}^{2}z_{6} + z_{2}z_{5}z_{6} + z_{2}z_{5}z_{6} z_1 z_2 z_3 z_5 z_6 z_2 z_4 z_5 z_6 z_1 z_5 z_6 + z_3 z_5 z_6 3z_1 z_6^2 + z_1^2 z_2 z_6^2 z_1 z_2^2 z_6^2 + z_{2}^{2}z_{3}z_{6}^{2} z_{1}z_{3}^{2}z_{6}^{2} + 3z_{1}^{2}z_{4}z_{6}^{2} z_{1}z_{2}z_{5}z_{6}^{2} + z_{1}^{3}z_{6}^{3} z_3z_5 + z_3z_4z_5 z_1z_2z_5^2 z_1z_6 + z_1z_2z_6 z_1z_2^2z_6 z_2z_3^2z_6 + z_1z_4z_6 z_5z_6 + \quad z_2 z_5 z_6 + z_2^2 z_5 z_6 + z_1 z_3 z_5 z_6 \quad z_1^2 z_6^2 + z_1^2 z_2 z_6^2 + z_3 z_6^2 \quad z_2 z_3 z_6^2 + z_6^3 \quad z_2 z_6^3 = z_1^2 + z_1^2 z_2 + 2 z_3 + z_1 z_3^2 + z_1^2 z_4 + z_1^2 z_2 z_4 + z_3 z_4^2 + z_1 z_2 z_5 + z_1 z_2^2 z_5 + 2z_1^2z_3z_5 2z_3^2z_5 z_2z_3^2z_5 z_1z_4z_5 z_1z_2z_4z_5 + z_2z_5^2 + z_2^2z_5^2 + z_1z_3z_5^2 z_{4}z_{5}^{2} + 2z_{6} + z_{1}^{3}z_{6} z_{2}z_{6} z_{1}^{3}z_{2}z_{6} + z_{2}^{2}z_{6} 2z_{1}z_{3}z_{6} + z_{1}z_{2}^{2}z_{3}z_{6} 4z_{4}z_{6} + z_{2}z_{4}z_{6} z_{2}^{2}z_{4}z_{6} + 2z_{4}^{2}z_{6} z_{1}^{2}z_{5}z_{6} 2z_{3}z_{5}z_{6} z_{2}z_{3}z_{5}z_{6} z_{1}z_{5}^{2}z_{6} 3z_{1}z_{6}^{2} + z_1 z_2 z_6^2 z_1 z_2^2 z_6^2 z_1^2 z_3 z_6^2 + z_3^2 z_6^2 + 3 z_1 z_4 z_6^2 + z_5 z_6^2 z_2 z_5 z_6^2 + z_1^2 z_6^3 + z_3 z_6^3 z_{002001} = z_1^3 z_2 2z_1z_3 z_1z_2z_3 + z_4 + z_2z_4 + z_1^2z_5 z_3z_5 + z_1z_2z_6 + z_3^2z_6 z_1 z_4 z_6 \quad z_1^2 z_6^2 + z_3 z_6^2 z_{002010} = z_{1}^{2}z_{2} + z_{1}^{2}z_{2}^{2} + z_{2}z_{3} + z_{2}^{2}z_{3} + z_{1}^{2}z_{4} + 2z_{3}z_{4} + z_{1}z_{5} + z_{1}^{2}z_{5} + z_{3}^{2}z_{5} z_1z_4z_5 + z_5^2 z_2^2z_6 z_1z_2z_3z_6 + 2z_4z_6 + z_2z_4z_6 + z_1z_2z_6^2 z_5z_6^2 = z_1 z_2 + z_1^2 z_3 \quad z_3^2 + z_1 z_4 \quad z_1 z_2 z_4 + z_3^2 z_4 \quad z_1 z_4^2 + z_1^3 z_5 + z_2^2 z_5 \quad z_1 z_3 z_5 + z_2z_3z_6 z_2^2z_3z_6 2z_1^2z_4z_6 + 3z_3z_4z_6 z_1z_5z_6 z_5^2z_6 z_6^2 z_1^3z_6^2 + z_2z_6^2 z_{2}^{2}z_{6}^{2} + 2z_{1}z_{3}z_{6}^{2} + z_{4}z_{6}^{2} + z_{1}z_{6}^{3} = z_1^3 z_2 + z_1 z_3 \quad 2z_1 z_2 z_3 + z_3^3 \quad z_4 + z_2 z_4 \quad 2z_1 z_3 z_4 + z_4^2 + z_1^2 z_2 z_5 + z_3 z_5 z_{2}z_{3}z_{5} z_{1}z_{2}z_{6} 2z_{1}^{2}z_{3}z_{6} + 2z_{3}^{2}z_{6} + z_{1}z_{4}z_{6} + z_{5}z_{6} z_{2}z_{5}z_{6} + z_{3}z_{6}^{2} = 1 + z_2 + z_1 z_3 \quad 2z_4 \quad 2z_2 z_4 \quad z_1 z_3 z_4 + z_4^2 + z_2 z_4^2 + 2z_1^2 z_2 z_5 \quad z_3 z_5 3z_2z_3z_5 z_2^2z_3z_5 z_3z_4z_5 + z_1z_2z_5^2 2z_1z_6 z_1^2z_3z_6 + z_2z_3^2z_6 + 2z_1z_4z_6 + \quad z_5 z_6 \quad z_4 z_5 z_6 + z_1^2 z_6^2 \quad z_1^2 z_2 z_6^2 + 2 z_2 z_3 z_6^2 \quad z_1 z_5 z_6^2 z_{11010} = z_{1}^{3} + z_{1}z_{3} + z_{1}z_{2}z_{3} + z_{1}z_{2}z_{5} + 2z_{3}z_{5} +
z_{2}z_{3}z_{5} + z_{1}z_{5}^{2} + z_{1}z_{6} + z_{1}z_{2}z_{6} z_1z_2^2z_6 z_3^2z_6 + z_1z_4z_6 + z_5z_6 + z_2z_5z_6 + 2z_1^2z_6^2 2z_3z_6^2 z_6^3 = z_1^2 z_2z_3 z_1^2z_4 + z_2z_3z_4 + z_1z_2z_5 z_1z_2^2z_5 z_3^2z_5 + z_2z_5^2 z_1^3z_6 + z_1z_3z_6 + z_1 z_2 z_3 z_6 + z_1^2 z_5 z_6 z_3 z_5 z_6 z_5 z_6^2 z_{12000}^2 = z_{1}^2 z_3 + z_{3}^2 + z_{2}z_{3}^2 + z_{1}z_{2}z_{4} + z_{2}z_{5} + z_{1}z_{3}z_{5} + z_{4}z_{5} + z_{3}z_{6} + z_{1}z_{5}z_{6} + z_{2}z_{6}^2 + z_3^2 z_6 2z₁z₄z₆ z₅z₆ z₁²z₆² + z₃z₆² z_{121000} = z_{1}^{2}z_{2} + z_{2}z_{3} + z_{2}^{2}z_{3} - z_{3}z_{4} + z_{1}z_{5} - z_{1}z_{2}z_{5} + z_{5}^{2} - z_{4}z_{6} z_{030000} = z_2^3 + z_1 z_3 + z_4 + z_3 z_5 + z_5 z_6 + z_5 z_6 + z_5 z_6 ``` ``` z_{100101} = z_1^3 z_1 z_3 z_1 z_2 z_3 + z_3 z_5 2 z_1 z_6 + z_1 z_2 z_6 + z_1 z_4 z_6 z_5 z_6 z_2 z_5 z_6 + z_6^3 z_5 z_6 z z_{100110} = z_{1}^{2}z_{2} + z_{2}z_{3} + z_{2}^{2}z_{3} + z_{1}^{2}z_{4} + z_{3}z_{4} + z_{1}z_{2}z_{5} + z_{1}z_{4}z_{5} + z_{5}^{2} + z_{2}z_{5}^{2} + z_{6} + z_1^3 z_6 z_1 z_3 z_6 z_1 z_2 z_3 z_6 z_4 z_6 + z_3 z_5 z_6 2 z_1 z_6^2 + z_1 z_2 z_6^2 + z_5 z_6^2 z_{100200} = z_1 z_2 + z_3^2 + z_1 z_4 + z_1 z_2 z_4 + z_1 z_4^2 + z_1^3 z_5 + z_2 z_5 + z_1 z_3 z_5 + z_1 z_2 z_3 z_5 z_{2}z_{4}z_{5} + z_{3}z_{5}^{2} z_{1}^{2}z_{2}z_{6} + z_{2}^{2}z_{3}z_{6} + z_{1}^{2}z_{4}z_{6} z_{3}z_{4}z_{6} z_{1}z_{5}z_{6} z_{101001} = z_1^2 z_1^2 z_2 z_3 + z_1 z_5 + z_2 z_6 + z_1 z_3 z_6 z_4 z_6 z_1 z_6^2 z_{101010} = z_1 + z_1 z_2^2 + z_2 z_5 + z_1 z_3 z_5 + z_4 z_5 + z_1^2 z_6 + z_1^2 z_2 z_6 + z_3 z_6 + z_2^2 z_6^2 z_{101100} = z_2 + z_1 z_3 + z_4 + z_2 z_4 + z_1 z_3 z_4 + z_1^2 z_5 + z_1 z_2^2 z_6 z_1 z_4 z_6 z_5 z_6 z_{102000} = z_1^2 + z_1^2 z_2 + z_2 z_3 + z_1 z_3^2 + z_1^2 z_4 + z_1 z_5 + z_1 z_5 + z_1 z_2 z_5 + z_1^3 z_6 + z_2 z_6 z_{110001} = z_{2}^{2} z_{1}z_{3} + z_{4} + z_{1}z_{2}z_{6} z_{5}z_{6} z_{110010} = z_2 z_3 \quad z_1 z_5 + z_1 z_2 z_5 \quad z_5^2 \quad z_6 + z_2 z_6 \quad z_2^2 z_6 \quad z_1 z_3 z_6 + z_4 z_6 + z_1 z_6^2 z_{110100} = z_1 z_1 z_2 z_1 z_4 + z_1 z_2 z_4 z_2 z_5 z_2^2 z_5 z_1 z_3 z_5 + z_2 z_3 z_6 + z_1 z_5 z_6 z_{6}^{2} + z_{2}z_{6}^{2} z_{111000} = z_1^3 + z_1z_3 + z_1z_2z_3 \quad z_4 \quad z_2z_4 \quad z_1^2z_5 + z_1z_6 + z_5z_6 z_{120000} = z_{1}z_{2} + z_{1}z_{2}^{2} z_{1}z_{4} z_{2}z_{5} z_{1}^{2}z_{6} + z_{3}z_{6} + z_{6}^{2} = z_1z_2 + z_5 + z_1^2z_6 z_3z_6 z_6^2 200001 z_{200010} = z_2^2 z_4 + z_1^2 z_5 z_3 z_5 z_1 z_2 z_6 = z_3 + z_1^2 z_4 \quad z_3 z_4 \quad z_1 z_2 z_5 + z_5^2 \quad z_2 z_6 + z_2^2 z_6 \quad 2z_4 z_6 z_{201000} = z_1 + z_1 z_2 + z_1^2 z_3 + z_3^2 + z_1 z_4 + z_2 z_5 + z_1^2 z_6 + z_3 z_6 z_{110000} = z_1^2 + z_1^2 z_2 z_2 z_3 z_1 z_5 + z_6 z_{300000}^3 = z_1^3 + z_2 \quad 2z_1z_3 + z_4 \quad z_1z_6 ``` # Appendix B: A list of cubic C lebsch-G ordan series for E6. ``` 119 \ _{111000} + \ 87 \ _{200010} + \ 106 \ _{010100} + \ 87 \ _{001002} + \ 128 \ _{001010} + \ 150 \ _{110001} 16_{000003} + 16_{300000} + 72_{101000} + 72_{000011} + 39_{020000} + 76_{000100} 50 ₁₀₀₀₀₁ + 21 ₀₁₀₀₀₀ + 2 ₀₀₀₀₀₀ 001110 + 110020 + 012001 + 003000 + 2 110101 + 3 101011 + 000030 Z_3 Z_4 Z_5 2_{020011} + 2_{121000} + 4_{000111} + 2_{210002} + 3_{020100} + 5_{011002} 4_{101100} + 3_{000200} + 5_{210010} + 5_{100012} + 3_{010003} + 12_{011010} 5_{201001} + 8_{002001} + 8_{100020} + 11_{120001} + 4_{030000} + 20_{100101} 8_{200002} + 19_{010011} + 3_{310000} + 19_{111000} + 16_{001002} + 4_{000003} 16 \quad _{200010} + \ 20 \quad _{010100} + \ 26 \quad _{001010} + \ 35 \quad _{110001} + \ 11 \quad _{020000} + \ 4 \quad _{300000} 20_{101000} + 20_{000011} + 23_{000100} + 18_{100001} + 9_{010000} + _{000000} z_3 z_4^2 001200 + 012010 + 003001 + 2 110110 + 2 101020 + 020020 3 \quad _{000120} \, + \, 2 \quad _{121001} \, + \, 3 \quad _{020101} \, + \, 4 \quad _{101101} \, + \, 3 \quad _{000201} \, + \, 4 \quad _{210011} 3_{201002} + 2_{30000} + 10_{011011} + 4_{112000} + 6_{210100} + 6_{100021} 4 \quad _{002002} + \ 6 \quad _{120002} + \ 7 \quad _{201010} + \ 3 \quad _{031000} + \ 12 \quad _{011100} + \ 12 \quad _{002010} 11 \quad _{100102} + \ 16 \quad _{120010} + \ 9 \quad _{010012} + \ 23 \quad _{100110} + \ 3 \quad _{200003} + \ 6 \quad _{310001} 7_{001003} + _{000004} + 36_{111001} + 16_{010020} + 8_{030001} + 16_{220000} 35 \quad _{010101} \, + \, \, 24 \quad _{200011} \, + \, \, 40 \quad _{001011} \, + \, \, 38 \quad _{110002} \, + \, \, 28 \quad _{021000} \, + \, \, 4 \quad _{301000} 14_{102000} + 28_{200100} + 39_{001100} + 13_{300001} + 66_{110010} + 19_{000012} 58_{101001} + 34_{210000} + 33_{020001} + 22_{000020} + 58_{000101} + 51_{011000} 30 _{100002} + 51 _{100010} + 13 _{200000} + 36 _{010001} + 23 _{001000} + 8 _{000001} z_3^2 z_6 = 002001 + 100101 + 010011 + 200002 + 2 111000 + 2 010100 _{001002} + 2 _{200010} + 4 _{001010} + 6 _{110001} + 3 _{020000} + _{000003} 4_{000011} + _{300000} + 6_{101000} + 6_{000100} + 7_{100001} + 4_{010000} + _{000000} z_{3}^{2}z_{5} = 002010 + 100110 + 010020 + 2 111001 + 2 010101 + 2 200011 2_{102000} + 2_{20000} + 4_{001011} + 4_{110002} + 3_{200100} + 3_{021000} 3_{000012} + 5_{001100} + 10_{110010} + 4_{000020} + 2_{300001} + 6_{020001} 12_{101001} + 13_{000101} + 9_{210000} + 9_{100002} + 14_{011000} + 17_{100010} 6_{200000} + 14_{010001} + 12_{001000} + 5_{000001} z_3^2 z_4 = _{002100} + _{100200} + 2 _{111010} + 2 _{010110} + _{200020} + 2 _{102001} 220001 + 3 001020 + 3 200101 + 3 021001 + 4 211000 + 5 001101 2_{130000} + 8_{110011} + 6_{012000} + 3_{00002} + 3_{000021} + 3_{020002} 12_{110100} + 6_{101002} + 9_{020010} + 3_{300010} + 16_{101010} + 7_{000102} 3_{100003} + 14_{000110} + 16_{210001} + 26_{011001} + 24_{100011} + _{40000} 11_{201000} + 14_{010002} + 16_{120000} + 11_{002000} + 29_{100100} + 17_{200001} 25_{010010} + 28_{001001} + 22_{110000} + 7_{000002} + 14_{000010} + 6_{100000} z_3^3 = 003000 + 2 101100 + 000200 + 210010 + 3 <math>011010 + 2 120001 3_{201001} + 3_{002001} + 2_{100020} + 6_{100101} + 3_{200002} + 4_{010011} _{030000} + 2 _{310000} + 10 _{111000} + 6 _{001002} + 8 _{010100} + 9 _{200010} ``` ``` _{000003} + 12 _{001010} + 18 _{110001} + 4 _{300000} + 10 _{000011} + 14 _{101000} 6_{020000} + 14_{000100} + 13_{100001} + 7_{010000} + 000000 z_2 z_4^2 010200 + 021010 + 2 001110 + 2 012001 + 2 110020 + 003000 000030 + 130001 + 4 110101 + 4 020011 + 4 101011 + 6 000111 4_{121000} + _{040000} + 6_{101100} + 3_{210002} + 7_{011002} + 6_{020100} 5_{000200} + 6_{100012} + 7_{210010} + 17_{011010} + 6_{201001} + 16_{120001} 10_{100020} + 10_{002001} + 24_{100101} + 9_{200002} + 4_{310000} + 4_{010003} 22 \quad _{010011} + 22 \quad _{111000} + 6 \quad _{030000} + 17 \quad _{001002} + 4 \quad _{000003} + 24 \quad _{010100} + 17_{200010} + 28_{001010} + 37_{110001} + 20_{000011} + 4_{300000} + 20_{101000} 12 \quad _{020000} + 21 \quad _{000100} + 17 \quad _{100001} + 9 \quad _{010000} + \quad _{000000} 011100 + 002010 + 120010 + 030001 + 2 100110 + 3 111001 + 2 010020 z_2 z_3 z_4 = 4_{010101} + 2_{102000} + 2_{200011} + 2_{220000} + 5_{001011} + 5_{110002} 3_{000012} + 4_{200100} + 5_{021000} + 7_{001100} + 13_{110010} + 8_{020001} 2_{300001} + 5_{000020} + 12_{101001} + 9_{210000} + 14_{000101} + 8_{100002} 15_{011000} + 16_{100010} + 5_{200000} + 13_{010001} + 9_{001000} + 4_{000001} z_2 z_3^2 012000 + 110100 + 2 101010 + 020010 + 2 000110 + 2 210001 + 4 011001 3_{201000} + 4_{100011} + 4_{120000} + 3_{002000} + 8_{100100} + 6_{200001} + 3_{010002} 7_{010010} + 10_{001001} + 10_{110000} + 3_{000002} + 7_{000010} + 4_{100000} z_2^2 z_4 = _{020100} + _{000200} + 2 _{011010} + _{002001} + _{100020} + 2 _{120001} 3_{100101} + 4_{010011} + 4_{111000} + 200002 + 3_{001002} + 2_{030000} 6 \ _{010100} + 3 \ _{200010} + 7 \ _{001010} + \ _{000003} + 10 \ _{110001} + \ _{300000} 6_{000011} + 5_{020000} + 6_{101000} + 9_{000100} + 7_{100001} + 4_{010000} + z_2^2 z_3 = 021000 + 001100 + 2 110010 + 000020 + 2 101001 + 2 020001 3_{000101} + 3_{210000} + 2_{100002} + 5_{011000} + 6_{100010} + 3_{200000} 6_{010001} + 6_{001000} + 3_{000001} z_2^3 030000 + 2 010100 + 001010 + 3 110001 + 2 000011 + 2 101000 3_{020000} + 4_{000100} + 4_{100001} + 5_{010000} + 000000 100101 + 010011 + 111000 + 2 010100 + 001002 + 200010 + 3 001010 z_1 z_4 z_6 4_{110001} + 2_{020000} + 3_{000011} + 3_{101000} + 5_{000100} + 3_{100001} + 2_{010000} Z_1 Z_4 Z_5 100110 + 010020 + 111001 + 2 010101 + 220000 + 102000 + 200011 3_{001011} + 3_{110002} + 2_{00100} + 2_{021000} + 2_{000012} + 4_{001100} + 7_{110010} 4_{000020} + _{300001} + 5_{020001} + 7_{101001} + 9_{000101} + 5_{210000} + 6_{100002} 10_{011000} + 10_{100010} + 4_{200000} + 9_{010001} + 6_{001000} + 3_{000001} z_1 z_4^2 = 100200 + 111010 + 2 010110 + 200020 + 102001 + 220001 2_{001020} + 2_{00101} + 2_{021001} + 2_{211000} + 4_{001101} + 2_{130000} 6_{110011} + 4_{012000} + _{300002} + 3_{000021} + 3_{020002} + 8_{110100} 4_{101002} + 7_{020010} + _{300010} + 10_{101010} + 4_{000102} + 3_{100003} 11 \quad _{000110} + 10 \quad _{210001} + 18 \quad _{011001} + 16 \quad _{100011} + \quad _{400000} + 6 \quad _{201000} ``` ``` 10 \quad _{010002} + \ 12 \quad _{120000} + \ 8 \quad _{002000} + \ 17 \quad _{100100} + \ 12 \quad _{200001} + \ 17 \quad _{010010} 17 001001 + 14 110000 + 6 000002 + 8 000010 + 5 100000 101001 + 000101 + 100002 + 210000 + 2 011000 + 3 100010 z_1 z_3 z_6 = 2_{200000} + 3_{010001} + 4_{001000} + 2_{000001} _{101010} + _{000110} + _{210001} + _{201000} + 2 _{011001} + 2 _{120000} 3_{100011} + 2_{002000} + 4_{100100} + 4_{200001} + 2_{010002} + 5_{010010} 7_{001001} + 3_{000002} + 7_{110000} + 5_{000010} + 4_{100000} 101100 + 000200 + 210010 + 2 011010 + 201001 + 2 120001 z_1 z_3 z_4 = 2_{002001} + 2_{100020} + 4_{100101} + 2_{200002} + 4_{010011} + 0_{30000} _{310000} + 6 _{111000} + 3 _{001002} + 6 _{010100} + 5 _{200010} + _{000003} 9_{001010} + 12_{110001} + 2_{300000} + 7_{000011} + 8_{101000} + 5_{020000} 8_{000100} + 8_{100001} + 4_{010000} + 000000 z_1 z_3^2 = 102000 + 200100 + 2 001100 + 2 110010 + 000020 + 020001 300001 + 4 101001 + 4
210000 + 3 000101 + 6 011000 + 3 100002 7_{100010} + 4_{200000} + 6_{010001} + 5_{001000} + 3_{000001} 110001 + 020000 + 101000 + 000011 + 2 000100 + 3 100001 z_1 z_2 z_6 = 3 010000 + 000000 110010 + 020001 + 101001 + 000020 + 2 000101 + 210000 + 2 100002 z_1 z_2 z_5 = 3_{011000} + 4_{100010} + 2_{200000} + 5_{010001} + 4_{001000} + 3_{000001} 110100 + 101010 + 020010 + 2 000110 + 210001 + 3 011001 z_1 z_2 z_4 = 201000 + 3 120000 + 3 100011 + 2 002000 + 5 100100 + 3 200001 2_{010002} + 6_{010010} + 6_{001001} + 6_{110000} + 2_{000002} 4_{000010} + 2_{100000} z_1 z_2 z_3 = 111000 + 010100 + 200010 + 2 001010 + 3 110001 + 2 000011 + 2 020000 300000 + 4 101000 + 4 000100 + 5 100001 + 3 010000 + 000000 z_1 z_2^2 120000 + 100100 + 2 010010 + 200001 + 2 001001 + 000002 4 110000 + 3 000010 + 3 100000 z_1^2 z_6 = 200001 + 001001 + 2 110000 + 000002 + 2 000010 + 3 100000 z_1^2 z_5 = 200010 + 001010 + 2 110001 + 2 000011 + 020000 + 2 101000 3 000100 + 4 100001 + 3 010000 + 000000 z_1^2 z_4 = 200100 + 001100 + 2 110010 + 000020 + 020001 + 2 101001 3_{000101} + 2_{210000} + 4_{011000} + {}_{100002} + 5_{100010} + {}_{200000} 4_{010001} + 3_{001000} + 000001 z_1^2 z_3 = 201000 + 002000 + 2 100100 + 2 200001 + 010010 + 3 001001 000002 + 4 110000 + 3 000010 + 2 100000 z_1^2 z_2 = 210000 + 011000 + 2 100010 + 2 200000 + 2 010001 + 3 001000 + 2 000001 z_1^3 = 300000 + 2 101000 + 000100 + 3 100001 + 2 010000 + 000000 ``` #### R eferences - [1] Calogero F., Classical Many Body Problems Amenable to Exact Treatments, Springer, 2001. - [2] Perelom ov A M .,Integrable Systems of Classical Mechanics and Lie Algebras, Birkhauser, 1990. - [3] Calogero F., J. Math. Phys. 12, 419 (436, 1971. - [4] Sutherland B., Phys. Rev. A 4, 2019 (2021, 1972. - [5] Moser J., Adv. Math. 16, 197 {220, 1975. - [6] Olshanetsky M. A. and Perelom ov A. M., Invent. M. ath. 37, 93–108, 1976. - [7] Olshanetsky M. A. and Perelom ov A. M., Lett. Math. Phys. 2, 7{13, 1977. - [8] Olshanetsky M. A. and Perelom ov A. M., Funct. Anal. Appl. 12, 121 (128, 1978. - [9] O $lshanetsky M A . and Perelom ov A M ., Phys. Rep. 71, 314 {400, 1981.$ - [10] Olshanetsky M. A. and Perelom ov A. M., Phys. Rep. 94, 313 (404, 1983. - [11] van Diejen J.F. and Vinet L. (Eds.), Calogero-Moser-Sutherland Models, Springer, 2000. - [12] Perelom ov A M ., J. Phys. A 31, L31 (L37, 1998. - [13] Perelom ov A M ., Ragoucy E. and Zaugg Ph., J. Phys. A 31, L559 (L565, 1998. - [14] Perelom ov A M., J. Phys. A 32, 8563 (8576, 1999. - [15] Garc a Fuertes W., Lorente M., Perelom ov A. M., J. Phys. A 34, 10963 (10973, 2001. - [16] Garc a Fuertes W ., Perelom ov A M ., Theor. Math. Phys., 131, 609-611, 2002; math-ph/0201026. - [17] Fernandez Nunez J., Garc a Fuertes W., Perelom ov A. M., Phys. Lett. A 307, 233{238, 2003. - [18] Fernandez Nunez J., Garc a Fuertes W., Perelom ov A.M., J. Math. Phys. 44, 4957 (4974, 2003. - [19] Onishchik A.L. and Vinberg E.B., Lie Groups and Algebraic Groups, Springer, 1990. - [20] ComwellJF., Group Theory in Physics, vol II,, A cadem ic Press, 1984; BourbakiN. Groupes et Algebres de Lie, Hermann, 1975. - [21] Baez J.C., Bull. Am er. Math. Soc. 39, 145 (205, 2002. - [22] Ram ond P., Plenary Talk in the XXIV International Colloquium on Group Theoretical Methods in Physics, Paris, 2002, hep-th/0301050. - [23] Slansky R., Phys. Rep. 79, 1{128, 1981. - [24] Dynkin E.B., Trudy Moskov.Mat.Obschchestva 1, 39{166, 1952 (Am.Math.Soc.Trans. Ser. 2, 6, 245{378, 1957). - [25] Cahn R.N., Sem i-Sim ple Lie Algebras and Their Representations, Benjam in/Cum mings, 1984.