arXiv:math-ph/0406067v1 29 Jun 2004

IJNM P styke Preprint

Irreducible characters and C lebsch-G ordan series
for the exceptional algebra Eg4: an approach
through the quantum C alogero-Sutherland m odel

J FernandezNunez Y, W Garc aFfuertesY and A M Perelom ov ?

¥ D egpartam ento de F sica, Universidad de O viedo, E-33007 O viedo, Spain
E-m ail: nonius@ uniovies (JEN ), wifredo@ uniovies (W GF)

“ Departam ento de F sica Teorica, Universidad de Zaragoza, E-50009 Zaragoza, Spain
E-m ail: perelom o@ dftuz2 unizar.es

Received M onth *, 200%; Revised M onth *, 200*; Acoepted M onth *, 200*

A bstract

W e reexpress the quantum C alogero-Sutherland m odel for the Lie algebra E ¢ and the
particular value of the coupling constant = 1 by using the fundam ental irreducible
characters of the algebra as dynam ical variables. For that, we need to develop a
system atic procedure to obtain all the C lebsch-G ordan series required to perform the
change of variables. W edescribe how the resulting quantum H am ilttonian operator can
be used to com pute m ore characters and C lebsch-G ordan serdes for this exceptional
algebra.

To Francesco Calogero on ocassion of his seventieth birthday.

1 Introduction

D uring the three lJast decades of the past century, a plethora ofhighly nontrivialm echanical
integrable systam s were discovered, see [11,[2] for com prehensive review s. Am ong these,
the C alogero-Sutherland m odels form a distinguished class. The rstanalysis of a system

of this kind was perform ed by Calogero [3]who studied, from the quantum standpoint,
the dynam ics on the in nite line of a set of particles interacting pairw ise by rational plus
quadratic potentials, and found that the problem was exactly solvable. Soon afterwards,
Sutherland [4] arrived to sin ilar results for the quantum problem on the circle, this tim e
w ith trigonom etric interaction, and M oser [§] showed that the classical version of both
m odels en pyed integrability in the Liouville sense. T he denti cation of the general scope
of these discoveries cam e w ith the work of O Ishanetsky and Perelom ov [@H8], who realized
that it was possible to associate m odels of this kind to all the root systeam s of the sin ple
Lie algebras, and that all these m odels were integrable, both in the classical and in the
quantum fram ework [9,[10]. Nowadays, there is a w despread interest in this type of
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Integrable system s, and m any m athem atical and physical applications for them have been
found, see for instance [1111.

T he study of the form and properties of the Schrodinger eigenfiinctions for the quan-
tum version of these m odels constitutes an interesting line of research. In fact, these
eigenfunctions have very rich m athem atical properties. In particular, for the case w ith
trigonom etric potential, if we tune the coupling constants to sam e especial values, the
wave functions correspond to the characters of the sin ple Lie algebras, while if we select
a di erent tuning, we can m ake them to coincide w ith zonal spherical functions. T hus,
the C alogero-Sutherland theories provide us w ith a new tool for com puting these quan—
tities. In this spirit, we w ill describe in the present paper how to use the trigonom etric
C alogero-Sutherland m odel to obtain both particular characters and C leosch-G ordan se—
ries for the exceptional Lie algebra E¢. Them ain point of our approach is to express the
C alogero-Sutherland Ham iltonian in a suitable set of independent variables, indeed the
fundam ental characters of E¢. T he use of such kind of variables has been quite useful to
sokve the Schrodinger equation for the m odels associated to som e classical algebras, [10],
M2 HI8).

T he organization of the paper is as follow s. Section 2. is a rem inder of the properties
of E ¢ relevant for the contents of the paper. Section 3. describes the C alogero-Sutherland
m odel associated to Eg and explains how to perform the change of variables m entioned
above. Section 4. gives a detailed account of the com putation of the C lebsch-G ordan
series of E ¢ needed to pass to the new variables. In Section 5. we present the H am iltonian
in these variables and describe its use for com puting new characters and to reduce tensor
products of representations. Som e conclisions are given In Section 6., and nally, the
appendices show som e explicit results for characters and C ebsch-G ordan series of E ¢ .

2 Summ ary of results on the Lie algebra Eg

In this Section, we review som e standard facts about the root and weight system s of the
Lie algebra E¢, w ith the ain of xing the notation and help the reader to follow the rest
of the paper. M ore extensive and sound treatm ents of these topics can be found in m any
excellent textbooks, see for instance [19], 20].

The com plex Lie algebra E ¢, the lowest-din ensional one In the E <fam ily of exceptional
Lie algebras in the Cartan-K illing classi cation, has din ension 78 and rank 6, as the
nam e suggests. From the geom etrical point of view , it adm its (w ith som e subtleties,
see [211]) an Interpretation which extends the standard-one for the classical algebras: In
the sam e way that these correspond to the isom etries of projpctive spaces over the rst
three nom ed division algebras | SO(n+ 1) / Isom RP"),SU N+ 1) ’ Isom (CP"),
Spn+ 1) ' Isom HP")| ,F4,Eg, E7 and Eg are the Lie algebras of the projctive
planes over extensions of the octonions, giving rise to the socalled \m agic square": Fy /
Isom (OP?),Eg ' Isom [(C O)P ?L,E; ' Isom[H O)P ?],Eg’ Isom [(O O)P ?1. In
Physics, them ost ram arkable role played by E ¢ is in the heterotic ten-din ensionalEg E g
superstring theory when the extra six din ensions are com pacti ed to am anifold of SU (3)
holonom y: in such a case, one of the E g breaks to an E ¢ which gives the G rand U ni cation
group of fourdin ensional physics [22]. The D ynkin diagram of E¢, see Figure 1, encodes
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Figure 1. The Dynkin diagram for the Lie algebra E¢.

the euclidean relations am ong the sin ple roots, which are

(17 1) = 2; i= 1;2;3;4;5;6
(4i 1) = 1; i= 2;3;5
(17 3) = (575 6)= 1;
(17 5) = 0; in all other cases:
T herefore, the C artan m atrix reads
0 1
2 0 1 0 0 0
g 0 2 0 1 0 0 &
A E 10 2 1 0 0 § )
E o 1 1 2 1 0 &°
© 9o o o 1 2 1A
0 0 0 0 1 2

It is convenient to use a realization of the sin ple roots in tem s of the generating system
£ """ "5 "5 "g of R 7 (endowed w ith the standard Euclidean m etric) satisfying the
conditions "1 + "2+ "3+ "4+ "s+ "g = 0, ("y;"y) = % + 4, (M) = % and (";"5)= 0
19]. W ith reference to this system , we have

"4 + "5 + "6 + n

1 = 1 27 2=
3 — "2 n 3 ; 4 — "3 n 4 (2 .l)
5 — "4 n 5; 6 — "5 " 6 .
T he positive roots, which are given by all linear com binations of the form s
"j_ n j ; "j_ + "j + "k + "; 2"; i6 j 6 k; (2 2)

can be classi ed by he:kgkf:_]:s as indicated in the Table 1. T he fuindam entalweights  follow
from the equation ;= ;%:lAji 5. They are

n

1 = "+

5 = on

3 — "1 + "2 + 2"

4 — "1 + "2 + "3 + 3"

5 — "1 + "2 + "3 + "4 + 2"

6 — "1 + "2 + "3 + "4 + "5 + ":
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Height | Positive roots

1 17 27 3i 4i 57 6
2 1+ 37 3+ 47 a4t 57 s+t ;i 2t 4
3 1+ 3+ 47 3+ a4t 57 4+ 5+ 65 2t 3+ 4;
2t a4t 5
4 1+ 3+ 4+ s5; 3+t 4+ s+ 6; 1+t 2+ 3+ 45
2t 3+ 4+ 57 21t 4+ s+ ¢
5 1+ 3+ 4+ s+ 67 1+ 2+ 3+t g4+ s5; 2+ 3+ 2 4+ 55
2t 3+ 4+ 5+ ¢
6 1+ 2+ 3+ 2 4+ s5; 1+ 2+ 3+ 4+ s+ 6;
2+ 3+ 2 4+ 5+ ¢
7 1+ 2+ 2 3+ 2 44+ 55 2+ 3+ 2 4+ 2 5+ ¢;
1+ 2+ 3+ 2 4+ 5+ ¢
8 1+ 2+ 2 34+ 2 4+ 5+ g5 1+ 2+ 3+ 2 44+ 2 5+
9 1+ 2+23+24+25+ 6
10 1+ 2+23+34+25+ 6
11 1+ 2 242 3+3 4+ 2 5+ 4

Table 1. Heights of positive roots.

T he geom etry of the weight system is sum m arized by the relations
(17 9)= Aijl;

w ith (Aijl ) the inverse C artan m atrix. The W eyl vector is

X X0

i=81+11 >+ 15 3+21 g+ 15 5+86
2R * =1

with R * the set of positive roots of the algebra. The W eyl form ula for din ensions applied
to the frreducible representation associated to the integraldom inantweight =m 1 1 +
My 2+ M3 3+Myg g+ My 5+ Mg 6gi\7€S

Yo+ ) P

din R = (:) 22 3 4 % & 7 & 9 10 11

2R *

P
whereP isa product extended toghe set of positive roots In which theroot = i 1G i

contributes w ith a factor ht( )+ f: ;¢m i, whereht( ) istheheight of . In particular,
for the fundam ental representations, one nds:

dim R | = 27 dimR , = 78
dim R , = 351 din R , = 2925
dim R , = 351 dim R , = 27:

5 6

N ote that, these din ensions re ect the fact, com ing from the Z , sym m etry of the D ynkin
diagram , that the representations R | and R , are com plex conjigates, and the sam e is
trueforR , andR . ,whileR , (the adpint representation) and R , are real

4
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3 The Calogero-Sutherland m odel associated to the Lie al-
gebra Eg

TheH am iltonian operator for the trigonom etric C alogero-Sutherland m odel related to the
root system of a sin ple Lie algebra has the generic form

1 X 5
H = E(p;p)+ ( 1)sin = ( ;q);
2R *
where g and p are vectors w ith dim ensions given by the rank r of the algebra, ( ; ) is
the usual euclidean inner product n R*, and = if 7= 7 J In particular,

because E ¢ is sin ply-laced, the C alogero-Sutherland m odelassociated to E ¢ depends only
on one coupling constant . To write H in a m ore explicit way, it is convenient to use
the orthonoj;m albasis fe;; ﬂj:e 1;:::;6g In R . The expression of g and p in this basis is
simply g= | Qi€ ,p= izlplel,whﬂethesmp]erootsaregwen by:

1 e €2 | |
p-- p—-
1 3 % 1 3 0%
— 1+ — e+ - 1+ — &5
2 3 ) 2 3 )
=1 j=4

K = &1 €x; k= 3;4;5;6:

The g coordinates are assum ed to take values in the [0; ] interval, and therefore the
Ham iltonian can be interpreted as descrbing the dynam ics of a system of six particles
m oving on the circle, but notice that there is not translational nvariance. W e recapitulate
som e in portant facts about this m odel which follow from the general structure of the
quantum C alogero-Sutherland m odels related to Liealgebras [10]. T he ground state energy
and (non-nom alized) wave function are

Eo( ) = 2(;) °=156"°
Y
o@ = sin ( ;q);
2R *
w hile the excited states depend on the quantum numbersm = (mq;m;m3;m 4;ms;mg),
and satisfy
H o = Ex () 4
En () = 20+ 5 + ) (3.1)

whe1§ is the highest weight of the irreducilble representation of E ¢ labelled by m , i. e.

¢ m; ;.By substitution in ) of

n@= 0@ L @); (32)

=) . (3.3)
w ith
1 X
= 5 + Ctg( /q)( 2e q) (34)
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and
" ()=En () Eo()=2(; +2 ) (35)
Taking Into account thatAji = ( 4; x), it ispossible to give a m ore explicit expression
for ", ():
x® x®
" ()=2  Agmamy+ 4 Agom §: (36)
jk=1 k=1

The main problem is to solve (B33). As it has been shown for other algebras [10}
(14], 18], the best way to do that is to use a set of independent variables which are
invariant under the W eyl symm etry of the Ham iltonian, nam ely the characters of the
six fundam ental representations of the algebra E ¢ . Unfortunately, the expression of these
characters z, In tem s of the gvariables (w hich play the role of coordinates on them axim al
torus of E¢) is com plicated and m akes the direct change of variables from q; to z, very
cum bersom e. W e are forced to follow a m uch m ore convenient, indirect route, which has
proven be usefil for other root systam s, [18]. First of all, we can infer from (34) the
structure of when written in the z-variables:

X6 x6 h i
- aj (2)@,, @, + B (z)+ B (z) ey (3.7)
jk=1 =1

Now , to obtain the fill expressions for the coe cients appearing in ([3), we rely on
the very fact that m akes the Calogero-Sutherland m odel useful for the purposes of the
present paper: for = 1, the eigenfunction rf]l) is propo%jonalto the character [ of
the Irreducible representation of E¢ w ith m axin al weight f; ;m; ;. This mplies that
we can com pute the com bination by (z) = b;o) (z)+ b;l) (z) by sin ply using that, from (3X12),

mzj = by(z),and thus

Hzj=Dbjz)= " (1)z (38)

for my) = ( 4). Suppose now that we know the expressions in the z-variables of all
second-order characters, that is, the characters of the form - and we know also
the form of the C lbsch-G ordan serdes for the quadratic products of the fiindam ental
characters, ie. we know themultplicities n @, 44) In
X
2iZy = N (3.9)

AJ) (i)

(m ;i3)

for every pair i;j. Then, by applying the operator *) to the two m em bers of these
productswe can x the ran aining coe cients a 5 (z;) through the equations
X
aii(z)+ aji(z) + bi(z)zg + by(z)z; = Cm i) " m A4 1) @ a9)°

(m 7ij)

T hese characters and series are, therefore, all that we need to accom plish the task of xing
the form of the Ham iltonian in the lim it = 1. A Ythough there are som e results already
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available in the literature [19,123], a num ber of the required C lebsch-G ordan serdes rem ain,
to our know ledge, to be calculated . W e have thusdeveloped a systam atic strategy, entirely
based In a few elam entary facts, to obtain them . W e devote the next Section to give a
description of this strategy.

4 Com putation of the quadratic C lebsch-G ordan series

Tocom putea particular C kbsch-G ordan seriesR | R, weproceed through the follow ing
Steps:

1. W e elaborate a list of all the irreducible representations which could possbly enter
in the serdes. To thisend, starting from the highestweight ;+ 5, which isdirectly
given by the characters we are multiplying z;; z5, we subtract all the integral linear
com binations of the sin ple roots such that the result is an Integraldom nant weight.
To do that we have to express the sin ple roots in the basis of the fundam ental
welghts, that is to say, the com ponents of the k-th fundam ental weight are the
entries In the k-th arrow of the Cartan m atrix. It tums out that for the series at
stake, the list of the possible representations is never very long, the Iongest one being
the corresponding to the case zf which has 24 tem s.

2. W e dentify som e of the representations w ith nonzero m ultiplicity by the use of two
technigues orighhally devised by Dynkin [24]]: the socalled Dynkin theorem and
D ynkin m ethod of parts. W e here explain them brie y, and refer the reader to the
book by R .N .Cahn 23] for a m ore careful exposition w ith proofs and exam ples.

Dynkin theorem deals with som e series of elam ents of the root space called

x 1s an integer linear com bination of the sin ple roots which is at right angles
w ith allm em bersof the chain otherthan  ; and 1, 1,butit isnotorthogonal
to any of these two elam ents. T he theorem establishes that if ; and , are
integraldom lnantweightsand £ 1; «, ; Kpiiiii kai 29 isa chain in which all
the , are sinple roots, then 1+ 1 x, 1Is the highest weight of an
frreducible representation entering In the direct product of the representations
w ith highest weights ; and ;. In m ost cases, the inform ation com ing from
D ynkin theorem refers only to the second highest weight representation in the
product, but som etin es the theoram can be used to get som e clues about the
m ultiplicity of other representations beyond that.

The m ethod of parts uses the reduction of E4 to several subalgebras, nam ely
those appearing when one of the extram e nodes of the diagram of E¢ is re—
m oved: A 5 for the node corresponding to  , and two di erent D 5 for the nodes
of 1 and ¢.Each irreducible representation of E ¢ contains as a subrepresen—
tation the irreducible representation of these subalgebrasw hich arise by rem ov-
Ing the index associated tofghe node deleted : for exam ple, the representation
of E¢ with highest weight f: ;m; ; contains the irreducible representation
mipT1+m3 2+mg 3+msTg+me s ofAs,with 75 the fundam entalw eights of
thatalgebra. A Iso, the product of tw o Irreducible representations of E ¢ contains
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the product of the irreducible subrepresentations of A s or D 5 which m ake part
of the representations being m ultiplied, and one can take advantage of the fact
that the irreducible com ponents of these products of subrepresentations are eas-
ily worked out through Young diagram s or by using results available in the lit-
erature, see for instance the R eference C hapter in [19]. O nce these com ponents
are denti ed, they can be converted back into irreducible representations of E ¢
by rejnstatjng Indices in the obviousway:m 171+ m3 2+ mg 3+ ms s+ mg 5
of A s gives f:lm ; 1 of Eg, but now with an unknown m,. We try to x
this Index by sin ply inspecting the list of possible irreducible representations
m aking part of the product. In m any cases there is only one possibility, and
thus we conclude that the corresponding representation enters in the product
w ith non-—zero m ultiplicity.

3. W e use the orthonom ality of the system of frreducible characters, ie.

to x the multiplicity of som e Irreducible com ponents, tipically the associated to
the fundam entalweights. For instance, suppose we want to  x themultiplicity n |
of the representation R | in the product z;z;, which isgiven by n | = hz jzizi.
Im agine that we have worked out the serdes 7 z; before of the serdes z;z . Then, as
hzy jzi241 = hzkz; jzii and hzez; jz4i is nothing else that the multplicity ofR | In
7y Z; ,which we know , the problem is solved . N ote then that to use orthogonality the
order In which we obtain the series is In portant, and, of course, we should begin by
the sin plest ones. Note also that In these m anjpulation we use that, as pointed in
Section 2,2z, = Zg, 23 = 25,2, = Zp and z, = Z4.

4. Once the m ultiplicities of a num ber of the irreducible com ponents entering in the
product have been xed by m eans of the form er techniques, we w rite a D iophantine
equation by com paring the din ension of the product w ith the dim ensions of the
possible irreducible representations w hose m ultiplicities are yet to be xed. In m ost
cases, f we have been su clently exhaustive in our previous analysis, this D iophan—
tine equation w ill have only one solution, and then we are done. For a few series,
however, we can have to dealw ith a D iophantine equation w ith several solutions
and, In these cases, to choose the correct one am ong them , we have to go through
one supplan entary step.

5. W e take advantage of the structure As U (1) In E ¢, which is apparent from the

expression (2.1) of the roots of Eg in the generating system £";;"g: the roots

17 37 4; s and ¢ are given by linear com binations of the "; which are suitable

to dentify those roots as corresponding to A s, while the root , ncorporates the

new generator ", which is orthogonal to the others and can be associated with a

subalgebra U (1). Ifwe now look to the weights of the fiindam ental representation
ofE¢,R | ,which are [19]

w,oown. no,oown . (4.1)
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we extract the branching structure

o . . 1,
Z1= ~10000Et ~op0ap0t “10000t 7 d (42)

where t is the character of U (1) and “maimomamamg T characters of A5. In the
sam e way, given that the roots ) of E ¢ are the weights of the ad pint representa—
tion R ,,wehave

— ~ ~ ~ 1 2.

T he branching expressions for the rem aining fundam ental representations follow by
taking antisymm etric powersofR | : R , = ALE(R R )R ,=AXR R

1 1 1 1 1
R ,),and so on. The results are

3 = No;l,o,o,otzJr ~1p0a0 T Yoppoa BT Toappo T 20000t Tooana
t ~1gpa0t ~opppa Bt Yoapppt’

Z4 = ”0,0;1,0,05* ~oa0an T Tip00a T L t
o ~10a0at Yoppaat 2Y00a00t “1a000
T 2000t Yoapant 2710002t “oaopzt Yopzon T L
+ ~1pa0at ~oppant 2¥opapet “iapes T
t o ~oapant ~1oppnt L tPH ~opagat’®

25 = No,o,o,-l,otzJr 10000t Topooa TF Yoppap T Topppet T1p100
t ~1p0p0t Yopppn Tt ~oppapt’

Z = ~opppatt ~ogppnt “oppoat (44)

T hus, the quadratic products of characters of E 4 give som e linear com binations of
powers of t, whose coe cients are sum s of irreducible characters of A 5 which can
be com puted from the previous form ulas through the usual Young diagram m atic
com binatorics. A 1so, the character of each irreducible com ponent appearing in the
product has the sam e structure, and it can be com puted if the expression of the
character In tem s of the z’s is known. In favourable circum stances, by com paring
powers of t in both m em bers of the C lebsch-G ordan series one can set som e bounds
on m ultiplicities entering In the D iophantine equation, and it can happen that this
bound are enough to determ ine that only one of the solutions is acceptable.

A swehave seen, when we are com puting a series, both In the use of orthogonality relations
and in the explotation of the branching rules, we often rely on the form of other series that
we should have com puted before. T herefore, the order in which the series are obtained is
very In portant. The orderjng Zf 1212272126721 23 ;ZS 12124 12325 712223 7122724 ,‘Z% 1212572324 ,‘Zi
proves to be good enough for a fruitfiil use of the m entioned techniques *

Letusnow show In a concrete case how all thisworks. Suppose we want to reduce the
product z3z4, which corresponds to a representation of din ension 351 2925 = 1026675.

N ote, how ever, that specially when we need to obtain the expression of one of the second-order charac-

ters, it can happen that we have to obtain som e cubic series. W e can do that w ith the procedure described,
starting always by the character of lowest height am ong those that we need to calculate.
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W ebegin by w riting a list w ith allpossible dom nant w eights entering in the series, starting
with 3+ 4 and going down in the ordering by height. These weights, along w ith the
din ensions of the corregponding representations, are given in the Tabl 2. Now , one can

R epresentation | D In ension
R .+, 386100
R 4 .+ o 314496
R 4 o+ o 112320
Ry, 34398
Ry ,+ 46332
R ,+ 51975
Ry 4, 19305
R ..+ 17500
R .2, 7722
R .+ . 7371
R .+ 1728
Ry, 351
R | 351
R . 27

Table 2. Representations in R R

3 4 °

see from them etric relations given in Section 2 that £ 3; 3; 4; 49 isa chain, and given
that 3+ 4 3 4= 1+ 2+ 5,Dynkin theoram guarenteesthatR ,, ,, . appears
in the series w ith non—zero m ultiplicity. Let us next tum to consider the reduction to the
subalgebra A 5 by deleting the dot corresponding to the root , in the D ynkin diagram .
Thism eans that the product under consideration can bew ritten . 1900 0; 015002a0d
thus can be related to the product ~45.0050 ~00100 1 As. Then,using Young diagram s
we nd

0; 1000 0; P00~ 0; A100% 1; poaot  0; 000a°

F inally, we have to re-introduce the index corresponding to ,,and looking at the table of
dom Inant weights, we see that the rst weight in the right-hand m em ber corresponds to

004000 While the second can be adjudicated to 140400 OF 110p0a,0, @0d the third
0 900001 OF 020004 SO, In this case, the reduction to As gives quite am biguous
Inform ation. Then, we do the reduction to the subalgebra D 5 in two possible ways, rst
by rem oving the dot corresponding to ;1 and then doing the sam e w ith the node of g,
and in each case we perform an analysis along the sam e lines than for A 5. This gives us
very useful inform ation : the representations:

R 1+ 3+ 6;R 3;R21+ 2;R 1+26;R 4+ 6;R 2+ ¢

have all non-zero m ultiplicities. Now , the multplicity of R ,, , is one because it cor-
responds to the highest weight in the serdes. Furthem ore, given that R |, .. , has
non-zero m ultiplicity, and taking into account the balance of din ensions, we see that the
m ultiplicity ofR |, ,, . is necessarily one.
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So far we have used the D ynkin theorem and the m ethod of parts. Let us now try to
exploit orthogonality to nd out themultiplicity ofR ,, , by computingh , | jzzzgi.
G ven that we have been follow Ing the order m entioned above, we can by now extract the
expression of (44,0, from the series we had already com puted, see 1) below ,and we

nd

2 .
O,’l;l,'O;O,‘O: ZpZ3 Z1Zs Zl+ Z3+ Zg;
and thus

, , 2 , . . , 2 . ,
h . [ Jz3z4l = hzpzzs 2125 27+ Z3+ 26 JZ3zal= h2325 Jzoz41 Tz 5 Jzaz61

hz 125 jZ4Z6i+ hz3zs jZ4i+ hzszg jZ4i= 9 6 3+ 1+ 1= 2:

W e have used that all quadratic products entering in the com putation have been com —
puted previously, and given that, all inner products follow from the orthonom ality of
the irreducible com ponents appearing in each one of them . So, themultplicity n ,, , of
R ,. , Istwo,and asbyproduct of this and of the list of weights obtained by applying the
m ethod of parts to D 5, we conclude that the multplicity ofR . ,+ ( isn . .. , =1,
otherw ise the dim ensionality of the right-hand m em ber of the series would exceed that
of the left-hand m ember. Sin ilar use of orthogonality considerations allow us to x the
multplicitiesn . .= 2,n ,, (= 2,n,,=1,n,=1landn = 2. At thispoint, only

ve m ultiplicities rem ain to be calculated, and we can try to obtain them by solving a
D iophantine equation. From the table of din ensions, we w rite

34398n, . + 46332n, ,, . + 51975n ,, .+ 19305n, ,, ,+ 7722n ,, . = 159732:

From the reduction to Ds,we know thatn ,, , andn ,,, , are grater or equal to one,
but the other m ultiplicities could be zero. T he equation can be readily see to have three
solutions

ng,=1inz,. ,=0in, =1in . ,=1n,.,,=7
ng,=1inz,. ,=0in, =1iny,+.,=3;n,.2,=2;
ng,=1;ny,. ,=1;n, ;=1; np . ,=1; n 4o ,=1:

To x thecorrectone,we resort to the branching relationsdescribed above. By m ultiplying
the expressions (£4) and using the Littlew ood-R ichardson rule,we nd that

X5
2324 = akﬁ‘
k= 5
w ith
ag = 2~,9p0,0 + other irreduchle characters
az = 6~1949p + other ireduchle characters
while
x4 X3
210000 = bt 100002 = o th

k= 4 k= 3
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withly = ~; 5900 and 3= ~1400p- T herefore, them ultiplicitiesofR ., ; andR, 4
can respectively be non higher than 6 and 2. The only acceptable solution is then

2

n25=1;n22+6=1;n4+6=1;n21+2=1;nl+26=

and the series is xed.
Applying the m ethod that we have just described, the nal results we have found for

the quadratic C lebsch-G ordan serdes (expressed here in tem s of representationsR ), are

R, R, = R, R, R _; (45)

R, R, =R, ,, R, R

R, R, =R, R, R ., R ,;

R, R, =R, R ., o0 R ;v ., R+, R .;

R, R. =R, R , ., R, R

R, R, = R ., R , Rygj

R, R, = Ry, R, R +, R , Ryo;

R, R, =R,,, R . R ., Ry, R, R ,;

R, R, =R, ,, R 4., R +,;7., R _ ., R 4+, Rz, R,
R .+ R ;7

R, R, =R, ,, R ,, ., R +, Ry, R . R ;

R, R, = R,,, R, R

R, R, =Ry, R 4+, R ., R+, R .., 2R ,, Ry,
R . R ;

R, R, = Ry, R+, R 4+, Rog Royw o R v Rojw,
2R, ., R 42, 2R . 2R ., ., Ry, R |, Ryg;

R, R, =1R_,. R + 4+, R .+, R +, Rz, R, 2R .
R , Ry,

R, R, =R, ,, R +, R ., R ;

R, R, = Rz, R ;4 5+ R 4200 Rogw o R 42,4 R 1+ 4+
2R, g+ 6 2R 14,05 Rz, 2R v, Royi2, R Si25
R+, 3R ,+ . 4R , ,+, R3, Rz, 2R ., , 2R ..,
2R,, 2R , 3R ,+, R , Ry,

R, R = R+ R 4+ 5+ R v+ Royg R 42, R 4, R 42
2R .. o Ry v, 2R v, 2R ., Ry, R ., R ,;

R, R = R,y R ,+ ., R +. R .+, R ,;

R. R = R,. R ,,, R ., R 2, R . 2R R,
R , R .;

R. R = R.,,., R, R +, R ,;

R, R = R, R ., R |
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From these series, the second order characters are

100000 — A7 (46)
010000 = %27

001000 37

000100 — 247

000010 ~ 257

000001 — %67

200000 = Zf Z3 Zgy

110000 — 2122 Z1 Z5y

102000 = 2123 Z1Zs Za+ 1;

100100 = Z124 2225+ Zg Z 5y

100010 — 2125 Z2Z6g

100000 = Z1%Z Zz2 1j

020000 =~ Zg Zy4 Z1Zg;

01000 — Z2Z3 Z17Zs Zf+ Z3+t Zgj
000100 = 2224 Z3Zs5+t Z1Z¢ Z2j

00000 — Z2Z5 Z3Z6 Z§+ Zs + 715
010001 = 2226 Zg¢ 23y

002000 = Zg Z 124 ZfZ6+ Z3Z¢ + 21 + Zgjy
001400 — 2324 Z1Zp2Z5+ 2125+ 2476 Zg;
00papAn = 2325 Z1ZpZ6+ Z1Zg+ 24+ Zp 1;
001,001 — 23%26 Z1Z27

000200 = Zf 222375 + 212624 F sz5+ Z3z§ 22325 Z12 2Z4+ 1;
000000 = Z4aZs Z223Z¢+t Z%Z6+ 2124 Z1;
000001 = 2426 Z2Z3F Zf Z3y5

000,020 = Zg Z 4Z¢ leg-l- 2125+ Z3+ Z6
000011 = 2526 Z1Zg Zat 1;

000002 Zg Zs5 Z1:

5 The Calogero-Sutherland H am iltonian for = 1 and som e
app lications

A fter having com puted the necessary series and characters, we can now follow the lines
Indicated towards the end of Section 3 to obtain the Ham iltonian operator for = 1. The
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result for the coe cients n (Z2) is

8 >
aji(z) = 521 4z 3 20z ¢;
aip(z) = 2zzp 26z1 10z 5;
10
aiz(z) = ?Z]_Zg-i' 18 12z, 6z4 18z12z;
aia(z) = 4zyzg+ 1821 10z 41z, 18z5 8z 25 8z3z6+ 8262)-;
8
ais(z) = 52125 10z3 26z¢ 10z 5276;
4
aig(z) = 52126 36 12z ,;
asp(z) = 225 18 6z , 2z4 8z1zs;
ansz(z) = 4zpz3 24zf+ 14z3 8z 125 2z¢ 10z 526;
apsa(z) = 623z 18z, 1225 10z 123+ 24z4 62325+ 262126 8z 12226 10z 5265
apss(z) = 4zpzs 2z41 10z1zp+ 14z5 8z 3z 242%;
aze (z) = 22226 10z 3 26z 67
10, 2 2,
assz(z) = ?23 + 14zy 12z 12z 2z1z4+ 1625 4z 525 8z 1z + 4z3z5 6zZ¢;
asza(z) = 8zzzg + 102% 10zfzz+ 1823 2z573 6212225 102% 18z ¢ + 82,76
102526 8z 12326 + 202424 + 82125;
16
ass(z) = ?2325 36+ 24z, 122§ 10z 123+ 24z, 16z 412z 8z1222¢ 10zs5276;
8
aszg(z) = 52326 26z71 10z 1z, 10z 5;
aga(z) = 625 4zf 6z§+ 182123 6z12p23 18z 4+ 18zp2z4 + 82%25 18z 325
27 27375 4zlz§ 18z 126 + 14212526 4212526 4z§z6+ 8212476
+ 18252z 62z 22Z52¢ + 82325 422;
ass(z) = 82425 18z 1+ 8z127; 10z175 10z 5+ 20Z124 + 1825 27 525 + 827
6z 2237 8z 1252 + 1025 102225;
age(z) = 4zgzg + 82% 18z 3 8z,z3 8zqz5+ 18z 10z ,z4;
10
ass(z) = ?zé 6zf+ 1623 4z 23+ 4z125 + 14z 12z 525 2747 82 lzg;
10
asg (z) = ?25z6+ 18 12z, 6z4 18z127;
4,
ags (z) = 526 10z, 2z5;
104 200
b (z) = 721;102(2): 482y ; b3 (z) = 3 %

200 104
by(z) = 96z4; bs5(z)= ?25/‘136(2): ?26:

W ith the explicit expression at our disposal, we can now try to use the Schrodinger
equation as an e cientm ean to com pute particular characters of E ¢. G iven that all these
characters are polynom ials in the z variables, the Schrodinger equation can be solved
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by applying a system atic procedure, which is suitable to be in plem ented In a com puter
program able to carry out sym bolic calculations. W e propose two altemative m ethods to
nd the Schrodinger elgenfinctions:

1.Given a welght n1{ 1+ ny 4+ N3 3+ Ng 4+ N5 5+ ng 5, let us denote z" =
ni; nz _ns _ng _ns _ng (1) : n :
7, 2,°23°7," 725”2 . T he operator acting on z' gives

(5.1)

where only includes integral linear com binations of the sim ple roots w ith non—
negative coe cients and, of course, in the exponent of ([Ll) we express in the
basis of fundam ental weights. In particular, ko, = ", (1). The elgenfunctions
can be written as

X

m

20" (m )

where again the 1n Q" (m ) are Integral linear com binations of the sin ple roots
w ith non-negative coe cients such that they do not give rise to negative pow ers of
the z’s. By substituting in the Schrodinger equation we nd the iterative form ula

To use this form ula In practice, one should take into account the heights of the %
Involved, because each coe cient ¢ can depend only on som e of the ¢ such that
ht( )< ht( ).

2. The C lebsch-G ordan serdes for the product zj 'zj *z3 * 2z, “zs *z; ° reads

X
mi _mp2_m3 _mg4_Mms _Meg _
2y 2p°237Z4 25 Zg = p * n ,

2R

Here it isnotdi cult, In each particular case, to elaborate a list w ith all the elem ents
In Ry, (ie., the integral dom nant weights appearing in the series). Furthem ore,
the operator @ m n (1) annihilates the character
we can m ake use of the sin ple-looking form ula

o - Having this into account,

n vy o
2R p

to obtain the eigenfunctions.

T hrough any of thesem ethods, it is possible to com pute the characters rather quickly. A s
an ilustration, we o er a list of the third order characters in the A ppendix A .

Once we have a m ethod for the com putation of the characters, we can extend it to
produce an algorithm for calculating the C kebsch-G ordan series. Suppose that we want to
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obtain the series for L - W e list the possible dom inant welghts entering in the serdes
arranged by heights

m n= mentn +n + iz

Themultiplicity n |, issin ply thedi erence between thecoe cientsofz * in L and
n Then,n , is the di erence between the coe cient ofz 2 In L, and the
sum of the corresponding coe cients in ., and ,rand so on. Asan example, we
present in Appendix B a list w ith all the cubic C lebsch-G ordan serdes.

T he approach we are describing is also usefulto nd the general structure of the series
for product of som e speci ¢ types. Let us consider, for instance, series of the type z; , |
w ith arbitrary n. Ifwe express the weights of the representation R | {Jl) in the basis of
fundam entalweights, we see that there are only three whose coe cients for 3,16 1, are
allnon-negative: ;; 1+ 3 and 1+ ,hence, the form of the series should be

m+n °

Z1 n00000= n+1000001 @ n 102000 T P n 1000017 (52)

where we have to x a and b. Now , by solving the Schrodinger equation by m eans of the
rst of the two m ethods described above, one nds

_ n n 2 n 2
nppopo = Zt (L mjzy Tzzozy Tzed i
= nl LAY
n 101,000 = Zl Z3 Z12+ i3
— nl * e o
n 1;0000;1 = Zl Zg + e

Ifwe substitute n (&J), we can solve ora and b,a= b= 1. W e can now check that w ith
these coe cients, the balance of dim ensions in ([E2) is correct.

W e listbelow the seriesofthe form z; , | obtained through the sam e procedure. Note
that the serdes z¢ ; mm ediately ollow by duality.

n

21 0n0000 =  1m00007T o0m 10010 v 1m 10000

21 00n000 = 10n0007F 00m 1200 T 0im 1000 T 10m 1003

21 000m00 = 100m00 7T 0a0m 120 T 0p0am 101t 110m 100 v 000m 110
21 0000m0 = 10000 T 0100n 12 T 0010n 10 T 0000mn 12

21 00000n = 10000n T 01000m 1 T 00000m 1°

6 Conclusions

In thispaperwe have shown how the C alogero-Sutherland H am iltonian for the Lie algebra
E¢ can be used to com pute both C lebsch-G ordan series and characters of that algebra.
T he treatm ent we have presented can be applied to the cases of other sin ple algebras. It
can be also extended to dealw ith the system of orthogonal polynom ials based on E¢ for
general values of the param eter . Thisway in which this should be done is the sub fct
of a research now in progress and w ill be published elsew here.
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A ppendix A : A list of the characters of E¢ of third order.

000300

001110

001200

002001

002010

002100

003000

010200

011010

011100

012000

020100

021000

030000

-+

-+

1+ 20+ 212023 + z§+ 324 22324 71222374 3z§+ ZZZ§+ zi
zfz§z5+ 27375 Z%ZgZ5+ 212525 27 32475 27 2737475 + zlz§+ zlzgzg

z%zé zlz4z§+ z§+ 3212¢ 2Z12pZ¢ + 212526 25222326+ z§z6+ z§z§z6

027 124Z¢ + 221727474 21252426 z§z4z6 + 3212526 + Z02Z5Z¢ 27173252

Z 1227375%Z¢ Z 2Z475Z¢ zfz§z6+ 232526 32%2625+ zfz2zg zfzgzg

2.2 2.2 2.2 2 3.3
25737¢ Z1252¢ + 32124Zf Z1Z2Z5Z¢ + Z]Z;

zf zfzz+ zg Z123+ 212223 + 212523 Z 4 z§z4+ z§+ zfz5 zfzzzg)
Z 325 + 232475 lezzé Z1Z¢ + 212274 212526 ZZZ§Z6+ Z1Z4Z6 Z 5Z¢
ZpZ5Zg t+ 252526 + Z1Z3Z5Zg Z%Zé + ZfZZZg + 2325 222325 + Zg Zzzg
zf+ zsz+ 273 + 212§+ sz4 szZZ4 32 324 + 23z§+ 712525 + 212525
22%2325 22%25 222525 Z 12475 Z1ZpZ475 + zzz§+ z§z§+ zlz3z§
24z§+ 276 + 2526 Z 276 zszZ6+ 2526 2712376 + 21252326 4z 47¢
707476 2524z6+ 22526 252526 27 372576 Z 2237574 212526 3z 1262)-
Z]_ZZZg Z 12322 Z ]2_2322 + zgzg + 321242% + Z5Zg 222525 + zfzg + 2322
Z]3_ Zo 27123 Z1Z2Z3+ Za+ ZpZg + 2525 Z 325 + Z1ZpZg + Z§Z6
Z 12476 zfzg+ 2325
zfzz+ zfz§+ 7573 2523 zfz4 + 22324+ 7125 Z1ZpZ5 + z§z5
Z1Z47Z5 + Zé Z 526 7 12273Z6 + 2Z4Z¢ + ZpZ47Z¢ + 212225 Z 525
Z1Z + sz3 z§+ 7174 Z1Z2Z4 + z§z4 zlz§+ zfz5+ z§z5 Z 12375
Z 1227325 + Z4Zs + ZpZ4Z5 + z%zé 23z§+ 2526 22%2226+ 252526 27 37¢
7573 %6 252326 22%24z6+ 323247¢ Z12Z5%Z6 z§z6 zg zfz§+ zzzg
z§z§ + 2212325 + 24z§ + 2122
zsz+ 7173 2712323 + zg Zg4+ ZpZ4 2212324 + zf+ ZfZZZ5+ 7375
Z 27375 Z1Zp%Z¢ 22%23z6+ 22§z6+ 712476 + Z5Z¢ Z 2Z5Z¢ + 2325
1+ 2o+ 2123 224 22324 Z123Z4 + zf+ ZZZ§+ 22%2225 Z 325
3z 92325 252325 Z 32475 + zlzzzg 27 12¢ sz3Z6+ 222526 + 221247¢
7Z5Z¢ Z 42576 + zfzg zfzzzg+ 2222325 212525
zf+ 7123 + 212273 22%25+ 27375 + Zp73Z5 zlzg Z12Z¢ + 2122%Z6
212526 z§26+ 71Z4Z¢ + Z5Z¢ + ZpZ5Z¢ + 22%25 22 325 zg
zf Z 573 zfz4+ 7,7374 + 212275 212525 z§z5+ zzzg 2326+ 7173%¢
212272375 + 252526 Z 3Z5Z¢ Z5Z§

2523 + Zg + 2225 Z12pZ4 v+ ZpZ5 Z1Z3Z5 + ZaZs + Z3Zg + Z1Z5Zg 2225

Zg Z1Z23 + Zg + Z§Z4 242+ Z%Z5 Z 325 Z2Z3Z5 + Z]_Zé + Z1Z + Z1Z27Zg

z§z6 2712476 Z 5Z¢ zfzg+ 2322

25224' Zpz3 + 2523 Z 324+ Z1Z5 Z1ZpZg + Zg Z 4Zg

z§+ 7123 Z4 2Z9Z4+ Z3Z5 2Z1ZpZ¢ + Z5Zg
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3 3
100101 = Z] 2123 Z1ZpZ3 t+ Z3Zs 27 1Z¢ + Z122Z¢ * Z124Z¢ Z52Z¢ Z2Z5Zg t Zg
2 2 2 2 2
100110 = Z]_ZZ+ ZpZ3 + 2223+ Z1Z4 Z3Z4 Z1ZpZ5 + 212475 Zg 2225+ Zg

+ ZfZ6 712326 Z1Z2Z3Z¢ Z4aZe + Z3Z5Z¢ 2Z 12§+ 21222§+ 2525
2 2 3
100200 = 2122t Z3 2124 212224+ Z1Z4 + Z1Z5+ ZpZs Z1Z32Z5 Z1Z2Z37Z5

Z 27475 + Z3Z§ 252226 + 252326 + 252426 Z 3Z24Z¢ Z125Z¢

2 2 2

101001 = 41 Z1Z2 23t Z1Z5+ ZpZg+ 21737 Z4Z¢ Z17Zg
2 2 2 2 2
101010 — Z1+ 212y 2225+ 2172325 Z4Z5t 2726 Z 712327 Z3Z¢ Zgt Z2Zg
101100 = Zp + 2123+ Z4 ZpZ4+ 2172324 Z f + Z]2_Z5 Z 52225 + Z]_Zé 27 1Z22Zg

+ 212526 Z124%Z¢ Z5Z¢

102000 = Zf+ zsz Z 223+ 2125 zfz4 2324 + 2125 + 212275 Zfze Z2%Z¢

110001 = z§ 2123+t 24t Z1Z2Z¢ Z5Zg

110010 = 2223 Z1Zs+ Z1ZpZ5 Zé Zg+ Z2Z6 2526 Z123Z¢ + ZaZg + zlzg

110100 = 21 Z1Z2 Z124 %t 217274 Z 275 2525 Z 12325 + Z223Z¢ + Z1Z5Z¢
Zg-l— 2225

111000 = Zf+ 2123+ 212223 Z4 Z2Z4 Zfz5+ Z1Z6 + Z5Zg

120000 = Z12p + 2125 Z1Z4 Z2Z5 2526+ Z3Z¢ + zg

200001 T 212y + Zs + ZfZg Z 326 zg

200010 Z§ Zat Z%ZS 2325 Z1Z2Z¢

200100 = 237 zfz4 Z324 Z1Z2Z5 * Zg Z 2Z¢ + 2526 27 4%¢

201000 = 21t Z1Zp + Zfza Z% Z 124 + Z3Zs 2526 Z 37

210000 = Zf+ zsz Z273 Z12Zst+ Zg

300000 = Zi+ Z2 221Z3+ Zi Z1%Z

A ppendix B : A list of cubic C lebsch-G ordan series for Egq.

z; 000300 * 2 o11110 002020 ¥ 120020 * 022001 * 3 002101

3 120100+ 3 100120 * 2 013000+ 2 030011 *+ 3 100201 T 8 111011

2 010030 * 10 010111+ 3 220002 * 3 102002 * 2 131000 * 3 200021

9 oo1021 + 7 200102 % 10 111100 * 9 021002 * 4 030100 ¥ 8 010200

9 220010 * 12 go1102 + 9 102010 T 12 200110 * 21 021010 * 18 110012
16 130001+ © 020003 300003 7 18 211001 * O 040000 * 27 qo1110
30 110020 % © 2020007 © 000022 F 30 012001 T 62 110101 + 10 101003
13 oo0103 + 10 000030 T 42 020011 + 10 300011 + 4 100004 + 62 101011
10 003000 * © 320000 * 42 121000 * 13 300100 * 42 210002 + 58 00111
73 011002 % 98 101100 T 73 210010 t 42 020100 + 4 400001 + 39 000200

117 p11010 + 98 120001 + 57 100012 28 010003 T 05 100020 ¥ 57 201001

+ + 4+ + + 4+ + + o+ o+ 4+

65 002001 t 28 310000 + 156 100101 + 119 010011 t 25 030000 + 91 200002
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232425

Z3 Zf

23 Zs

+

+ + + + 4+ + + + + W+ + 4+ o+ o+ o+

+

+

+ o+ o+ o+

+ o+ o+ o+ o+ o+

+

119 111000 + 87 200010 + 106 410100 + 87 001002 128 gp1010 + 150 110001

16 500003 + 16 300000 * 72 101000 * 72 000011 + 39 020000 + 70 000100
50 100001 + 21 010000 * 2 000000
oo1110 ¥ 110020 ¥ 012001 * 003000 * 2 110101 t 3 101011t 000030
2 020011 T 2 121000 * 4 000111 + 2 210002+ 3 020100 T O 011002
4 101100 7 3 000200 7 5 210010 ¥ O 100012 T 3 010003 * 12 011010
S 201001 + 8 002001 + 8 100020 * 11 120001 * 4 030000 * 20 100101
8 200002 7 19 010011 * 3 310000 T 19 111000 * 16 001002 + 4 000003
16 200010 * 20 010100 T 26 001010 ¥ 35 110001 + 11 020000 * 4 300000
20 101000 * 20 000011 + 23 ooo100 + 18 100001 + 9 010000 T 000000
001200 ¥ 012010 * 003001 * 2 110110 * 2 101020 * 020020
3 00120 * 2 121001 t 3 o0z0101 + 4 101100+ 3 000201 T 4 210011
3 201002 % 230000 % 10 011011 + 4 112000 T © 210100 * © 100021
4 002002 © 120002 % 7 201010 ¥ 3 031000 * 12 011100 * 12 002010
11 100102+ 16 120010 * 9 010012 * 23 100120+ 3 200003 + © 310001
7 001003 T 000004 * 36 111001 + 16 010020 * 8 030001 T 16 220000
35 o10101 + 24 200011 * 40 oo1011 * 38 110002 + 28 021000 + 4 301000
14 102000 * 28 200100 T 39 001100 * 13 300001 + 66 110010 + 19 000012
58 101001 + 34 210000 T 33 020001 * 22 000020 + 98 ooo101 + 51 011000
30 100002 * 51 100010 * 13 200000 * 36 010001 + 23 001000 + 8 000001
002001 * 100101 * 010011 * 200002 T 2 111000 ¥ 2 010100
001002 * 2 200010 * 4 oo1010 * © 110001 + 3 020000 * 000003
4 gooo11 300000 * © 101000 ¥ © 000100 * 7 100001 T 4 010000 * 000000
002010 * 100110 * 010020 * 2 111001 t 2 or0101 t 2 200011
2 102000 % 220000t 4 oo1011 * 4 110002 % 3 200100 * 3 021000
3 go0012 * O oo1100 ¥ 10 110010 * 4 000020 * 2 300001 t © 020001
12 101000 + 13 ooot01 + 9 210000 + 9 100002 * 14 011000 * 17 100010
6 200000 7 14 010001 T 12 001000 * O 000001
002100 ¥ 100200 * 2 111000 ¥ 2 o10120 ¥ 200020 ¥ 2 102001
220001 * 3 001020 ¥ 3 200101 + 3 021001 + 4 211000 + O 001101
2 130000 7 8 110011 * © 012000 7 300002 T 3 000021 T 3 020002
12 110100 7 © 101002 % 9 020010 T 3 300010 * 16 101010 + 7 000102
3 100003 14 ooo110 * 16 210001 t 26 011001 + 24 100011 * 400000
11 201000 * 14 010002 * 16 120000 * 11 002000 + 29 100100 + 17 200001
25 010010 * 28 oo1001 * 22 110000 * 7 000002 * 14 000010+ © 100000
003000 * 2 101100 * 000200 * 210010 * 3 o11010 * 2 120001
3 201000+ 3 002000 * 2 100020 © 100101 T 3 200002 * 4 010011

030000 ¥ 2 310000+ 10 111000 ¥ © 001002 * 8 010100+ 9 200010
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V) Zi

222324

Zy Z§

Z% Z4

ZyZ3

Z124Z¢

21247275

Z1Zy

—+

—+

+ o+ o+ o+ o+ + o+

+ o+ o+ 4+

+

+

—+

+ o+ o+ o+

000003 * 12 go1010 + 18 110001 * 4 300000 * 10 000011 * 14 101000
6 020000 % 14 000100 * 13 100001 * 7 010000 * 000000
010200 ¥ 021010 * 2 oo1120 * 2 012001 + 2 110020 * 003000
000030 + 130001 * 4 110101t 4 020011 + 4 101011+ © 000111
4 121000 % 040000 T © 101100 * 3 210002+ 7 011002 F © 020100
S 000200+ & 100012+ 7 210000 + 17 011010 7 © 201000 * 16 120001
10 100020 ¥ 10 002001 + 24 100101 * 9 200002 * 4 310000 * 4 010003
22 g10011 + 22 112000 T © 030000 7 17 001002 * 4 000003 * 24 010100
17 200010 * 28 001010 T 37 110001 * 20 gooo11 + 4 300000 + 20 101000
12 420000 * 21 000100 T 17 100001 + 9 010000 * 000000
or1100 ¥ 002010 * 120010 * 030001 * 2 100110 * 3 111001 t 2 010020
4 010101+ 2 1020007 2 200011 * 2 220000 T O oor011 T O 110002
3 oooo12 * 4 200100 7 O 021000 * 7 oor100 * 13 110010 * 8 020001
2 300001 * O 000020 7 12 101001 * 9 210000 * 14 000101 t 8 100002
15 411000 * 16 100010 * O 200000 * 13 010001 t 2 001000 t 4 000001
012000 ¥ 110100 T 2 101010 * 020010 + 2 000110 * 2 210001 T 4 011001
3 201000 + 4 100011 + 4 120000 + 3 002000 8 1001007 © 200001 * 3 010002
7 010010 * 10 001001 * 10 110000 * 3 000002 * 7 000010 * 4 100000
020100 ¥ 000200 ¥ 2 o11000 ¥ 002001 * 100020 * 2 120001
3 100101+ 4 o1oo11 + 4 111000t 200002+ 3 001002 F 2 030000
6 010100 * 3 200010 ¥ 7 001010 ¥ 000003 * 10 110001 * 300000
6 gooo11 * O 020000 © 101000 % 9 000100 * 7 100001 T 4 010000 T 000000
021000 001100 * 2 110020 * 000020 * 2 101001 + 2 020001
3 ooot01 * 3 210000 7 2 100002 F O 011000 * © 100010 T 3 200000
6 010001+ © 001000 * 3 000001
030000 * 2 010100 * 001010 * 3 110001 + 2 000011 * 2 101000
3 020000 7 4 000100 * 4 100001 + O 010000 * 000000
100100 ¥ oroo1r ¥ 111000 ¥ 2 010100 ¥ 001002 ¥ 200010 ¥ 3 001010
4 110001 2 020000 7 3 000011 * 3 101000 T O 000100 T 3 100001 * 2 010000
100120 ¥ 010020 ¥ 111001 ¥ 2 010101t 220000 ¥ 102000 ¥ 200011
3 o011 + 3 110002 ¥ 200100 ¥ 2 021000 * 2 oooo12 + 4 oo1100 ¥ 7 110010
4 000020 * 300001 + O 020001 ¥ 7 101001 9 000101 T O 210000 T © 100002
10 611000 * 10 100010 * 4 200000 * 9 010001 t © 001000 * 3 000001
100200 ¥ 111000 * 2 010120t 200020 * 102001t 220001
2 go1020 % 200101t 2 021001 * 2 211000 * 4 oo01101 T 2 130000
6 110011+ 4 0120007 300002 7 3 000021 * 3 020002 F 8 110100
4 101002+ 7 020010 * 300010 ¥ 10 101010 * 4 000102 * 3 100003

11 000110 * 10 210001 + 18 011000 + 16 100011 + 400000 + © 201000
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Z123Z¢

212325

212324

Z1 Zg

212276
212275

212274

212273

Z1 Zg

2526

2525

2524

+

+

+

+ + + + + + + o+ + o+

+

+

+

-+

-+

+

+

10 010002 + 12 120000 + 8 002000 ¥ 17 100100 ¥ 12 200001 + 17 010010

17 001001 + 14 110000 + © 000002 * 8 000010 t 5 100000

101001 T 000101 T
2 200000 T 3 010001 *

101010 ¥ oo0o110 T

3 100011 T 2 002000 % 4 100100 F 4 200001 * 2 010002+ O 010010

7 001001 + 3 000002 +

101100 T 000200 T

100002 ¥ 210000 * 2 011000 T 3
4 001000 T 2 000001

210000 + 201000 ¥ 2 o11001 + 2

7 110000 * O 000010 T 4 100000

210010 ¥ 2 011010+ 201001 T 2

100010

120000

120001

2 002000 T 2 100020 ¥ 4 100101+ 2 200002 * 4 010011+ 030000

310000 ¥ © 111000+ 3 001002 * © 010100 ¥ 5 200010 +

9 oor010 * 12 110001+ 2 300000 * 7 000011 t 8 101000+ O 020000

8 000100 + 8 100001 +

102000 ¥ 200100 + 2

4 010000 ¥ 000000

001200 ¥ 2 110010 ¥ 000020 T

000003

020001

300001 * 4 101001+ 4 210000 T 3 000101 t © 011000 * 3 100002

7 100010 * 4 200000 *
110001 T 020000 T
3 010000 ¥ 000000

110010 T 020001 T

3 011000 T 4 100010 ¥ 2 200000 F O 010001 * 4 001000 + 3 000001

110100 T 101010 T

6 010001 + 5 001000 ¥ 3 000001

101000 + 000011 ¥ 2 ooo100 + 3

101001 ¥ 000020 F 2 ooo101 T 210000+ 2 100002

020010 ¥ 2 000110 + 210001 T 3

100001

011001

201000 ¥ 3 120000 * 3 100011 T 2 002000 ¥ O 100100 * 3 200001

2 010002 T © 010010 *
4 000010 T 2 100000

111000 T 010100 T

6 001001 t © 110000 * 2 000002

200010 * 2 001010 + 3 110000 T 2 000011 t 2 020000

300000 ¥ 4 101000 * 4 000100 T O 100001 * 3 010000 *

120000 ¥ 100100 T 2
4 110000 * 3 000010 *
200001 ¥ 001001 T 2
200010 ¥ 001010 T 2
3 000100 ¥ 4 100001 *
200100 ¥ 001100 T 2
3 000101 T 2 210000 *
4 910001 * 3 oo1000 *

201000 ¥ 002000 + 2

010010 ¥ 200001 T 2 ogo1001 t

3 100000

110000 ¥ 000002 T 2 oooo10 T 3

110001 ¥ 2 000011 T 020000 T 2

3 010000 ¥ 000000

110010 ¥ 000020 T 020001 T 2

4 011000 * 100002t O 100010 *
000001

100100 ¥ 2 200001 * 010010 T 3

000002 * 4 110000 ¥ 3 000010 T 2 100000

000000

000002

100000

101000

101001

200000

001001

210000 ¥ 011000 ¥ 2 100010 T 2 200000 * 2 010001 * 3 001000 T 2 000001

300000 * 2 101000 *

000100 * 3 100001 * 2 010000 T

000000
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