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A bstract

W e solve perturbatively the quantum elliptic C alogero-Sutherland m odel in the regim e In which
the quotient betw een the realand Im aginary sam iperiods of the W elerstrass P function is am all.

T he class of quantum and classical integrable system s known as C alogero-Sutherland m odels were rst
Introduced by these authors in the seventies, ﬂ,@], and have since then attracted considerable interest,
both for their Intrinsic m athem atical beauty and depth and for the num erous applications found, which
range from condensed m atter to supersym m etric Y ang-M ills theory and strings/M -theory, see for instance
[E]. These m odels, whose Integrability stem s from the fact that their H am iltonians coincide w ith the
LaplaceBeltram i operators on som e symm etric spaces, can be form ulated for an arbitrary num ber of
particles. There are ve possible interaction potentials: (@) V() = g 2 ; (b) V(g) = sinh 2 a; (c)
V()= sh ?qg;(d)V ()= P (q),P behg the elliptic W eferstrass function;and (€)V (@)= g + !?¢. In
all cases, the particle coordinates enter in these potentials in com binations which are given by the roots
of som e sin ple Lie algebra, see [E] for details.

T he m ost general am ong these system s is the elliptic one: all the other potentials arise as suitable
In nite 1m its of one of both sem Iperiods of the P -function. N evertheless, to solve the quantum elliptic
C alogero-Sutherland m odel is, even in the m ost sin ple cases, a di cult task. T he elliptic problem for
only one particle and special values of the coupling constant was solved for Lam e m ore than one century
ago in the course of his analysis of the stationary distribution of tem peratures on an ellipsoid E], and
Jater In greater generality by Hem ite ]. Apart from this, one of the m ost successful results obtained
so far is the exact solution for the case of three particles given In ﬁ, E]. However, the nalformul for
the eigenvalues is a very com plicated expression involving transcendental functions, and it is therefore
quite hard to grasp its content. In this letter, we will show that in som e cases it is possble to take
advantage of the solutions of the trigonom etric C alogero-Sutherland m odel developed in g, LG, 1] to
give approxin ate solutions to the elliptic problem . These solutions are expressed by sin ple rational
functions and the procedure for nding them is fairly elem entary.

W e begin by recalling som e basic facts taken from [d,[Lq,[L]]. T he trigonom etric quantum C alogero—
Sutherland m odel of A , type describes the m utual interaction of N = n + 1 particles m oving on the
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T he quantum eigenstates depend on a n-tuple of quantum numbersm = (m1;m o;:::;m )

H™ = ES9() .
Ex9() = 20+ 5+ ) 2)
P
where isthe highest weight of the representation of A Jabe]]edbymp,Le. = L m; ;wih ;the

fundam entalweights of A, ,and is the standard W eylvector, = % sr+ With the sum extended

over all the positive roots of A, . T he center-ofm ass-fram e eigenfunctions are of the form
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and P, are the generalized G egenbauer polyncm ials related to A, . Som e properties of these polynom ials,
as well as explicit exam ples, can be found in E,@,, @,EJ. W e m ention, In particular, that each
product of the form z;P,, can be decom posed as a linear com bination of G egenbauer polynom ials w hich
m In ics the structure of the C kebsch-G ordan series for the irreducible representations of SU (n). Herewe
only quote two of these recurrence relations which are specially relevant for what follow s:

z, P = e.. P 7 (5)

In these formulas 5 is the n-tuple whose i-th element is 5 i 1 and Cim 7 Cjp are some coe cients

which can be obtained by known alorithm s, see {4, [[,[14]. Note that as z, = z] both recurrence
relations are sin ply related.

T he elliptic m odel related to A, has the sam e structure. The Schrodinger equation is H € =
E€Y( ) ,theHan iltonian behg
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where P (z;!1;!2) is the W elerstrass elliptic function w ith sem iperiods chosen to be !'; = 5 and !, an
In aginary num ber. T his ensures that the P function w ill take realvalues on the realaxis. For ', !4,
the W eferstrass function can be expanded in the param eter g = e 43 23;

n 1 *® ok
P(z;—;—.g)zsjnzz -+ 8 o
27 41 3 1 &

(1 cos2kz); (7)



that is, P is represented by the explicit pow er series
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w ith X
Vp(z)= 8 h(l cos2hz); (9)
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D, being the set of naturaldivisors of p, ie., D = fh 2 N jp=h 2 N g. T herefore,
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and a perturbative treatm ent of the elliptic problem becom es feasble. The rst order term in that

expansion is
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and thus, st order perturbation theory gives
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T he recurrence relations for the trigonom etric case allow an easy evaluation of the energy correction:
it follow s from ({) that
21ZnPy, = a, P, + ;

w here the dots stand for tem s proportional to polynom ials other than P, and
an = S Sm ¢ (15)

T he orthogonality properties of the system of generalized G egenbauer polynom ials guarantee that these
term s do not contribute to (E), and we com e to the sin ple result
h i
1En ()=4g (  1)N? g : (16)

W e can use the explicit expression of the coe entsc j,, ; €, given in ,@]to w rite this correction
forthe A,;A, and A 3 cases, ie. for two, three and four particles, respectively.

A case:Herem = (m ); N = 2 and
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T herefore
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T his expression becom es particularly sin ple when only one quantum num ber is non-vanishing:
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T he extension of the perturbative approach to higher orders is straightforward. T here is only a new
ingredient: due to the contribution of interm ediate states, the nomm s of the unperturbed eigenfunctions



enter explicitly in the corrections to the energies. Fortunately, these nom s are know n @, @]. Apart
from this, the procedure to follow is analogous to that used in  rst order and the keypoint is that the
recurrence relations w ill save us from doing all the di cult integrals. W e w ill analyse only the sin plest
exam ple, that is, second order perturbation theory for the A, case.

T he second order contribution to the Ham iltonian H &% )
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T he recurrence relations for the G egenbauer polynom ials related to A1 (see () and (I7)) also hod
for the eigenfunctions [ of the trigonom etric problem ,i. e, 21 , = L 4+17 G p 1 »fom which and
the H emm itian character of z; (for Aq) it follow s that

h jpi=ah 1 Jn 1 47 (30)

a very usefil relation which allow s to express the equation (@) In tem s of the coe cientsc,, only:
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Finally, using ) and the expression Erﬁrjg = m’+2m 2 for the energy levels, @) can be
evaluated quite easily, obtaining the sim ple result
(
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