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Cooperative Optical Non-linearity
in a blockaded Rydberg Ensemble

Jonathan D. Pritchard

Abstract
This thesis describes the observation of a novel optical non-linearity mediated
by the dipole-dipole interactions in a cold gas of Rydberg atoms. Electro-
magnetically induced transparency (EIT) is used to map the strong dipolar
interactions onto an optical transition, resulting in a cooperative effect where
the optical response of a single atom is modified by the surrounding atoms
due to dipole blockade. This optical non-linearity is characterised as a func-
tion of probe power and density for both attractive and repulsive interactions,
demonstrating a non-linear density dependence associated with cooperativ-
ity. For the case of repulsive interactions, excellent agreement is obtained
at low densities between experimental data and an interacting three-atom
model. The ability to tune the interactions with an external field is also
verified.

This cooperative effect can be used to manipulate light at the single photon
level, which is relevant for applications in quantum information processing.
A theoretical model is developed to show that the non-linearity can be used
to obtain a highly correlated single-photon output from a coherent laser field
interacting with a single blockade region. Progress towards observing this
experimentally is described, including details of the construction of a new
apparatus capable of confining atoms to within a blockade radius.
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Chapter 1

Introduction

1.1 Introduction

The ability to manipulate the optical properties of light propagating through

a medium was first discovered by Faraday [1] in 1846, who rotated the po-

larisation of light in lead glass using an external magnetic field. Similar

observations were made by Kerr in 1875 [2] using a static electric field. How-

ever, with the advent of lasers in 1960 [3], the high optical intensities made

it possible to modify the optical properties using the electric field of the light

itself.

As light passes through a medium it is both attenuated and phase-shifted,

providing control over the amplitude and polarisation. This optical response

can be characterised in terms of the susceptibility χ, which is related to

the refractive index of the medium by n =
√

1 + χ. The susceptibility is

a complex parameter, with the real part creating a dispersive phase shift

and the the complex component leading to absorption of the light passing

through the medium.

The non-linear response of the atom-light interaction is expressed in terms

1
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of a power expansion of the electric field E as [4]

χ = χ(1) + χ(2)E + χ(3)E2 + . . . , (1.1)

where χ(1) represents the linear optical response and the higher-order terms

describe non-linear optical processes, for example the Kerr effect corresponds

to a χ(3) process. One of the challenges in developing non-linear media relates

to finding processes for which the attenuation associated with the linear

susceptibility χ(1) does not dominate over the higher-order effects.

1.1.1 Single-photon non-linearities

Recently, attention has been focused on the development of non-linearities at

the single-photon level for applications in quantum information processing

(QIP) [5–7], where information is stored in a two-level quantum mechanical

system known as a qubit [8]. QIP has the advantage of being able to use

superposition states and entanglement between qubits to enable significant

enhancement in the computation of classically ‘hard’ algorithms which rely

on a brute force approach, such as searching through data [9] and prime

number factorisation [10]. More important though is that as the information

is represented by a quantum system, such a device could be used to directly

simulate complex quantum many-body systems that cannot be modelled us-

ing digital computers.

Photons are ideal carriers of quantum information as they are robust against

decoherence due to the incredibly weak interaction with the environment, and

can be transmitted over long distances either in free-space or using optical

fibres. Implementation of single qubit gates is trivially achieved using linear

optics such as beam-splitters and polarisation optics, meaning photons fulfil

most of the criteria for quantum computers laid out by D. DiVincenzo [11].

The key requirement for computation is the ability to perform deterministic
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two qubit gates to establish entanglement, such as a C-NOT or phase gate

[8]. However, the downside of the weak interaction with the environment is

that optical non-linearities at the single photon level are typically very weak

[12, 13], making the implementation of two-photon gates challenging.

One solution proposed by Knill, Laflamme and Milburn (KLM) [14] is to use

linear optics combined with ancillary photons to perform two-qubit gates

probabilistically. This scheme has been implemented to perform a C-NOT

gate [15–17], a π-phase gate [18] and a simple quantum circuit [19], however

this approach has a number of drawbacks. The requirement for additional

qubits, combined with the finite probability for success, makes the prospect

of scaling this to performing computation unfavourable. The enhanced speed

of the quantum algorithms is also negated by the need for many repetitions.

A more promising path to developing gates for quantum information is to ex-

ploit systems with a large single-photon non-linearity. Promising candidates

include cavity QED [20, 21] or atom-light interactions in free space using

electromagnetically induced transparency (EIT).

1.1.2 Electromagnetically induced transparency

EIT is the coherent phenomena arising from a three-level system coupled by a

weak probe field and a strong coupling field. On resonance, this changes the

medium from being optically thick to transparent for the probe transition

[22]. This process can be understood from the formation of a dark state,

which is a coherent superposition of the atomic levels of the system that no

longer resonantly couples to the probe field [13] (i.e. χ(1) → 0). This creates

a narrow transmission window in the probe-only absorption feature, as first

observed in a strontium vapour [23], resulting in a resonantly enhanced third-

order non-linearity (χ(3)) [22].

Associated with this change in transmission is a concomitant modification
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of the dispersive properties of the medium, dramatically reducing the group

velocity on resonance. This causes pulses to be slowed in the medium, as

demonstrated using a sodium Bose-Einstein condensate (BEC) to obtain vg =

17 m s−1 [24], which is the largest measured Kerr non-linearity in an atomic

system. Slow light is also possible in a room temperature vapour, enabling

propagation at speeds of vg = 8 m s−1 [25].

In addition to slowing light, pulses can be halted and stored for up to 1 ms

[26, 27] by turning off the coupling laser whilst the pulse is propagating

through the medium. The ability to coherently convert photons into excita-

tions in the medium [28] has lead to significant progress in development of

quantum memories for photonic qubits [7, 29]. EIT has since been used to

both generate, and store, single photon pulses to perform quantum commu-

nication between two remote quantum memories [30, 31].

The large non-linearity associated with EIT can be further enhanced using

a four-level system with an additional laser field. This results in a giant

Kerr non-linearity [5] capable of performing cross-phase modulation with a

pair of photons, which was originally suggested as a non-linearity suitable for

performing a conditional phase gate. However, subsequent work has shown

that Kerr-type non-linearities cannot be used to obtain high-fidelity quantum

gates due to distortion of the photons [32, 33].

The quest to achieve quantum gates therefore requires a novel non-linear

optical process. A recent proposal suggests use of a spin-wave interaction in

a BEC [34]. Below the effects of dipole-dipole interactions are considered.

1.1.3 Cooperative effects due to dipole-dipole

interactions

Typically, non-linear media can be understood as isolated, non-interacting

quantum systems which are driven by optical fields [4], such as an atom. From
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Figure 1.1: Cooperative optical non-linearity. (a) A single atom has suscpeptibility
χ1. (b) For a pair of independent atoms, the susceptibility is χ = 2χ1, and scales
linearly for increasing atom number. (c) Dipole-dipole interactions modify the
response of a pair of atoms such that χ 6= 2χ1, and instead the susceptibility is
a function of the separation between the atoms. This is a cooperative effect that
cannot be solved using a single-atom picture.

the properties of a single atom, the optical properties of the medium can be

understood from linearly scaling the system proportional to the number of

atoms. However, if dipole-dipole interactions between the atoms are intro-

duced, the properties of each atom now depend on the presence of the neigh-

bouring atoms, resulting in cooperative phenomena, illustrated in fig. 1.1.

This is fundamentally different from the ordinary non-linear mechanisms de-

tailed above, as the susceptibility is now a non-linear function of density as

well as electric field.

The best example of cooperative behaviour due to dipole-dipole interactions

is superradiance [35]. For an ensemble of N -atoms initially in an excited

state, the interaction of each atom with the dipole-field of all the surrounding

atoms causes their dipoles to become phased. This leads to rapid decay on

timescales much faster than the natural lifetime of the excited state, emitting

an intense pulse of radiation [36].

Dipole-dipole interactions are only observable for samples with an inter-

atomic separation R < λ, where λ is the wavelength of the transition. This

corresponds to densities of order 1015 cm−3 for optical transitions, at which

densities the collisional dephasing in thermal samples precludes observation

of superradiance without use of a BEC [37]. Consequently, a cooperative

optical non-linearity has only been previously observed in an up-conversion

process, requiring very high optical intensity [38].
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1.1.4 Rydberg atoms

The difficulty in achieving R < λ can be overcome by using states coupled

by microwave transitions, such as a Rydberg state [39]. Rydberg atoms

represent highly excited states of the valence electron, which are relatively

long-lived states with large orbital radii. Their large radius gives the Ryd-

berg states a very large dipole moment, resulting in very strong long-range

dipole-dipole interactions between atoms that shift the energy of the multiply

excited Rydberg states [39]. When the energy shift exceeds the linewidth of

the excitation laser, only a single atom can be excited to the Rydberg state,

an effect known as dipole blockade [40]. This enables deterministic creation of

a single excitation for atoms confined within around 5 µm, making Rydberg

atoms ideally suited to studies of quantum many-body physics and quantum

information processing.

The controllable interactions of the Rydberg states have been studied in a

variety of regimes, demonstrating resonant energy transfer [41–44] and me-

chanical effects of dipole-dipole interactions, namely ionisation due to the

attractive or repulsive potentials [45, 46]. Important steps towards exploit-

ing the strong interactions for quantum information were the observation of

coherent excitation of the Rydberg states [47–49] and the demonstration of

dipole blockade [50–59].

A number of theoretical proposals exist to realise quantum gates [40, 60–62]

and quantum simulators [63] using dipole blockade of the Rydberg states.

Recently, the conditional entanglement [64] and a C-NOT gate [65] have

been demonstrated for a pair of atoms separated by around 3 µm. Other

interesting applications of the dipolar interactions include the creation of

strongly correlated atomic states by weakly dressing ground-state atoms with

Rydberg character [66, 67], or novel phase transitions from resonant coupling

of the Rydberg states [68, 69].

As well as creating correlated atomic states, blockade can be used to create
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single photons through four-wave mixing [70], or collective emission of the

shared excitation [71]. Generation of more complex quantum states of light is

possible using a multi-level atomic system [72], or through photon subtraction

[73].

1.1.5 Rydberg EIT

The properties of the Rydberg states can be mapped onto optical transitions

using EIT. The original proposal by Friedler et al. to realise a photonic

phase gate using Rydberg atoms relied on using EIT to create weakly in-

teracting dark states that counter-propagate through an atomic vapour [74].

This treated the photons as being 1D, leading to an updated proposal of

entanglement by applying this scheme in a hollow core fibre filled with an

atomic sample [75]. One of the challenges with this approach is to overcome

the strong interaction between the Rydberg atoms and the surface of the

fibre [76].

Pioneering studies of Rydberg EIT were performed in a thermal vapour [77] to

demonstrate EIT as a coherent, non-destructive probe of the Rydberg energy

levels in contrast to detection using ionisation [39]. This also demonstrated

EIT as a method of performing spectroscopy of the Rydberg states, which was

also used in an atomic beam to measure isotope shifts in Sr [78]. Combining

EIT with the techniques of FM spectroscopy, an error signal suitable for

stabilising the frequency of the Rydberg excitation laser can be generated

[79]. This work was of fundamental importance to the results in this thesis,

as the ability to actively stabilise the frequency of the two-photon resonance

enabled high resolution spectroscopy to be performed, achieving narrow sub-

MHz resonances in a single measurement [80].

The Rydberg character of the EIT dark state has been exploited to control

the propagation of a probe beam through the cell using external electric

fields, demonstrating optical switching [81] and a giant electro-optic effect
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106 times larger than for typical Kerr media due to the large polarisability

of the Rydberg states. It has also been used for applications in electrometry

[82, 83]. However, for thermal samples the effect of dipole-dipole interactions

have yet to be observed due Doppler broadening reducing the size of the

blockade [76].

Studies of dipole-dipole interaction effects in EIT of a cold atomic gas form

the basis of this thesis, with initial experiments on low principal quantum

number states displaying cooperative behaviour consistent with superradi-

ance [80]. Complementary work revealed dipole-dipole interactions create

a dephasing of the EIT [84], however it will be shown that for highly ex-

cited Rydberg states the dipole blockade mechanism can be used to obtain

a cooperative optical non-linearity [85, 86]. This thesis describes the char-

acterisation of the non-linearity, and progress towards realising this effect at

the single photon level using a single blockade volume.

1.2 Thesis layout

The document is separated into four parts - part I explores the properties

of the Rydberg states and how the strong interactions can be mapped onto

an optical field to obtain a novel optical non-linearity. Part II details the

experimental setup and observation of cooperative effects through EIT spec-

troscopy of an ultra-cold atom cloud. Part III extends these ideas to consider

the non-linearity at the single-photon level. Finally, part IV draws these re-

sults together to consider future areas of study. The chapter breakdown is

as follows;

Part I: Rydberg Atom-Light Interactions

• Chapter 2 describes the properties of Rydberg atoms, detailing

the calculation of dipole matrix elements and their application in

computing Stark maps and static polarisabilities of each state.
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• Chapter 3 contains the theory of dipole-dipole interactions be-

tween pairs of Rydberg atoms, discussing the long- and short-

range regimes and their effect on motional dynamics. The ability

to tune the sign and strength of the interaction using an external

field is also considered.

• Chapter 4 outlines the theory of atom-light interactions required

to calculate the optical properties of a single atom and to under-

stand electromagnetically induced transparency (EIT).

• Chapter 5 considers the cooperative phenomena arising due

to dipole-dipole interactions, namely superradiance and dipole-

blockade. Blockade is discussed in the context of EIT, and a

few-atom model used to illustrate the resulting cooperative non-

linearity.

Part II: Observations of Cooperativity

• Chapter 6 gives an account of the experimental setup used to

perform EIT on a cold, dense atomic ensemble, including details

of the data analysis procedure.

• Chapter 7 presents the results of these experiments, demonstrating

a superradiant loss for low-n states, and characterising the coop-

erative optical non-linearity due to both attractive and repulsive

interactions for states around n ∼ 60.

Part III: Rydberg Atom Quantum Optics

• Chapter 8 discusses the blockade mechanism in the context of

quantum optics. A model is developed to show that a single,

optically thick blockaded ensemble can be used to create a train

of highly correlated single photons from a coherent input state.

• Chapter 9 describes the design and construction of a new appara-

tus to trap atoms in a single blockade volume, enabling studies of
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the optical non-linearity at the single photon level.

Part IV: Conclusion

• Finally, chapter 10 summarises the important results and discusses

future directions for this research.
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Chapter 2

Rydberg Atoms

The Rydberg series was originally identified in the spectral lines of atomic

hydrogen, where the binding energy W was found empirically to be related

to the formula [87]

W = −Ry

n2
, (2.1)

where Ry was a constant and n an integer. The theoretical underpinning

for this scaling arrived with the Bohr model of the atom in 1913 [88], from

which the Rydberg constant Ry could be derived in terms of fundamental

constants

Ry =
Z2e4me

16π2ε20~2
, (2.2)

and n understood as the principal quantum number. From the Bohr model

it was also possible to derive scaling laws for the atomic properties in terms

of n, which were later verified from the full quantum mechanical treatment

of Schrödinger in 1926 [89]. Table 2.1 summarises the scalings of the atomic

properties for the low-` Rydberg states. The most important property of the

Rydberg states is the large orbital radius, and hence dipole moment, ∝ n2.

The consequence of the incredibly large dipole moment is an exaggerated

response to external fields and the ability to observe dipole-dipole interactions

between atoms on the µm scale. Combining this with the relatively long

13
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Property n-scaling
Binding Energy W n−2

Orbital Radius n2

Energy difference of adjacent n states ∆ n−3

Radiative Lifetime τ n−3

Table 2.1: Scaling laws for properties of the Rydberg states [91].

lifetimes, Rydberg atoms are well suited to applications in coherent quantum

gates [90].

2.1 Alkali metal atom Rydberg states

Alkali metal atoms are similar to hydrogen, with a single valence electron

orbiting a positively charged core which gives a −1/r Coulomb potential at

long range. However, the nucleus is surrounded by closed electron shells

which screen the nuclear charge, giving the core a finite size. For the low

orbital angular momentum states with ` ≤ 3, the electron orbit is extremely

elliptic and can penetrate the closed electron shells. This exposes the va-

lence electron to the unscreened nuclear charge, causing the core potential

to deviate from the Coulombic potential at short range. The inner electrons

can also be polarised by the valence electron. These two interactions with

the core combine to increase the binding energy of the low-` Rydberg states

relative to the equivalent hydrogenic states. This difference in binding energy

is parameterised using the quantum defects δn`j

W = − Ry

(n− δn`j)2
, (2.3)

where for rubidium the Rydberg constant is Ry = 109736.605 cm−1 [39]. The

properties of the alkali metal Rydberg states are thus determined from the

effective principal quantum number n∗ = n− δn`j.

The value of the quantum defects depends on the quantum numbers for the
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Rydberg state of interest, where the S states have the largest defects as they

have a significant core penetration. The quantum defects are determined

empirically from spectroscopic measurements and can be calculated using

δn`j = δ0 +
δ2

(n− δ0)2
+

δ4

(n− δ0)4
+ . . . , (2.4)

where δ0, δ2 . . . are dependent upon ` and j. For rubidium, these have been

measured on a cloud of cold atoms by the group of T. F. Gallagher and

can be found in ref. [92] for the S, P and D states and ref. [93] for the F

states. For ` > 3 the quantum defects are zero, and the core potential is

purely Coulombic. These are referred to as the hydrogenic states, which are

degenerate for a given n.

2.2 Rydberg atom wavefunctions

The wavefunction for the valence electron is described by the Schrödinger

equation, given in atomic units (a.u.) as

[
− 1

2µ
∇2 + V (r)

]
ψ(r, θ, φ) = Wψ(r, θ, φ), (2.5)

where µ is the reduced mass of the electron, r is the radial coordinate and

V (r) is the core potential. Since V (r) has no angular dependence, the wave-

function is separable, giving ψ(r, θ, φ) = R(r)Y m`
` (θ, φ), where Y m`

` (θ, φ) is a

spherical harmonic dependent upon the orbital angular momentum ` of the

Rydberg state. Inserting this into eq. 2.5 gives the equation for the radial

wavefunction of the electron

[
− 1

2µ

(
d2

dr2
+

2

r

d

dr

)
+
`(`+ 1)

2µr2
+ V (r)

]
R(r) = WR(r). (2.6)
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Model potential VC(r)

To calculate the radial wavefunctions of the alkali metal atoms, it is necessary

to use an `-dependent core potential VC(r) to include the effects of core

penetration and polarisation. This is done using a model potential given by

[94]

VC(r) = −Zn`(r)
r
− αc

2r4
(1− e−(r/rc)6). (2.7)

The first term describes the Coulomb potential for a radial charge Zn`(r) to

account for core penetration, where radial charge is defined as

Zn`(r) = 1 + (Z − 1)e−a1r − r(a3 + a4r)e
−a2r. (2.8)

The second term in eq. 2.7 describes the long range potential of the induced

core polarisation on the valence electron. The strength of this effect is de-

termined by the core polarisability αc, which increases with the number of

electrons in the core.

Values for the parameters a1−4, rc and αc are taken from Marinescu et al. [94],

where the authors fit this model for the core potential to the measured en-

ergies of the Rydberg states for each `-series of the alkali metals.

In addition to the core potential, the spin-orbit potential VSO(r) which causes

the fine-structure splitting must also be included as [95]

VSO(r) =
α2

2r3
L · S, (2.9)

where α is the fine-structure constant and

L · S =
j(j + 1)− `(`+ 1)− s(s+ 1)

2
. (2.10)

The total potential is thus V (r) = Vc(r) + VSO(r).
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Numerical integration

Using this model potential, the radial wavefunctions can be calculated by

numerically integrating the radial Schrödinger equation of eq. 2.6. This is

simplified by performing a transformation to integrate the function X(r) =

R(r)r3/4 in terms of the scaled co-ordinate x =
√
r [96]. This transformation

converts eq. 2.6 to a form solved efficiently using the Numerov algorithm [97,

98], whilst using the coordinate x gives an approximately constant number

of points across each period of oscillation in the wavefunction. It is necessary

to truncate the range of integration as at short range the model becomes

unphysical and diverges, whilst at long range the wavefunction decays to

zero. Following ref. [99], the limits of integration are set to use an inner

radius of ri = 3
√
αc, and an outer radius of ro = 2n(n + 15) which is much

larger than the classical turning point of the wavefunction. To minimise

errors introduced by the approximate model potential at short range, the

integration is performed inwards, starting at ro.

Figure 2.1 (a) shows the calculated wavefunctions of the 50S1/2 states for

hydrogen and rubidium as a function of the scaled coordinate. Comparing

the two wavefunctions, the rubidium wavefunction is shifted to shorter radius

relative to the hydrogen wavefunction due to the increased binding energy

from the interaction with the core. In (b) the electron probability density is

plotted for the nD5/2 states, illustrating the large orbital radii of the Rydberg

states.

2.3 Dipole matrix elements

Transitions between atomic states primarily occur due to coupling with the

electric dipole moment µ = er of the valence electron, which is a factor

of (α/2)2 stronger than the magnetic dipole coupling [100]. The strength

of the coupling between states |n`m`〉 and |n′`′m′`〉 is given by the dipole
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Figure 2.1: Rydberg atom radial wavefunctions. (a) 50S1/2 radial wavefunction for
rubdium and hydrogen. (b) Radial probability density for nD5/2 states, illustrating
the scaling of the radial wavefunction with n∗2.

matrix element 〈n`m`|µ|n′`′m′`〉, which is dependent upon the overlap of the

wavefunctions with the electric dipole moment. From knowledge of the dipole

matrix elements, it is possible to calculate transition probabilities, radiative

lifetimes and many other properties of the atomic states [95].

The dipole operator is µ = er · ê, where ê is the electric field polarisation

unit vector. Transforming into the spherical basis, the dipole operator can

be decomposed into the operators µq, with q = {−1, 0,+1} corresponding to

{σ+, π, σ−} transitions, given by

µ−1 =
1√
2

(µx − iµy), (2.11a)

µ0 = µz, (2.11b)

µ+1 =
1√
2

(µx + iµy). (2.11c)



Chapter 2. Rydberg Atoms 19

These operators are related to the spherical harmonics by µq = er
√

4π/3Y q
1 (θ, φ),

which form a set of rank-1 irreducible tensors. As a result the Wigner-Eckart

theorem can be used to separate dipole matrix element into an angular cou-

pling and a reduced matrix element 〈`||er||`′〉 which depends only on ` and

the radial wavefunctions [101]

〈n`m`|µq|n′`′m′`〉 = (−1)`−m`


 ` 1 `′

−m` q m′`


 〈`||µ||`′〉, (2.12)

where the brackets denote the Wigner-3j symbol. Using the properties of the

Wigner-3j symbol, the selection rules of the electric dipole can be derived as

∆` = ±1 and ∆m` = 0,±1 corresponding to π, σ± transitions.

The reduced matrix element is defined as [102]

〈`||µ||`′〉 = (−1)`
√

(2`+ 1)(2`′ + 1)


` 1 `′

0 0 0


 〈n`|er|n′`′〉, (2.13)

where the radial matrix elements 〈n`|er|n′`′〉 represent the overlap integral

between the radial wavefunctions and the dipole moment

〈n`|er|n′`′〉 =

∫ ro

ri

Rn,`(r)erRn,`′(r)r
2 dr, (2.14)

This can be evaluated by numerical integration over the wavefunctions cal-

culated using the method described above.

2.3.1 Fine structure basis

The fine structure interaction VSO breaks the degeneracy of the ` states,

which split according to j = ` + s. As the electric field only couples to the

orbital angular momentum (`) of the electron, it is therefore necessary to

transform from the fine-structure basis into the uncoupled basis to evaluate

the dipole matrix elements. Using the Wigner-Eckart theorem (eq. 2.12),
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the matrix element can be expressed in terms of the reduced matrix element

〈j||µ||j′〉. This is related to 〈`||µ||`′〉 by [101]

〈j||µ||j′〉 = (−1)`+s+j
′+1δs,s′

√
(2j + 1)(2j′ + 1)




j 1 j′

`′ s `



 〈`||µ||`

′〉,

(2.15)

where the braces denote a Wigner-6j symbol. Combining these equations,

the dipole matrix element in the fine-structure basis is

〈n`jmj|µq|n′`′j′m′j〉 = (−1)j−mj+s+j′+1
√

(2j + 1)(2j′ + 1)(2`+ 1)(2`′ + 1)

×




j 1 j′

`′ s `






 j 1 j′

−mj q m′j




` 1 `′

0 0 0


 〈n`j′|er|n′`′j′〉.

(2.16)

2.3.2 Hyperfine structure basis

The hyperfine interaction couples the angular momentum of the electron (j)

and the nucleus (I), further lifting the degeneracy of the states which are

split according to the total angular momentum F = j + I. As with the

fine-structure splitting, the Wigner-Eckart theorem can be used to find the

matrix elements in the hyperfine basis in terms of the reduced matrix element

〈F ||µ||F ′〉, which can similarly be reduced to 〈j||µ||j′〉.

For the Rydberg states the hyperfine splitting is typically small compared to

the interaction with external fields e.g. νhfs ' 200 kHz at n = 60S1/2 [92].

The hyperfine splitting can therefore be neglected, treating Rydberg atoms

in the fine-structure basis.

2.3.3 Rydberg excitation transition strengths

In the experiments presented in this thesis, Rydberg states are excited by a

two-photon transition in rubidium, using a laser at 780 nm to excite from the
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5S1/2 ground-state to the 5P3/2 excited state, and a second laser at 480 nm to

couple from 5P3/2 to either nS1/2 or nD5/2,3/2 Rydberg states. The coupling

strength can be expressed in terms of the Rabi frequency Ω = −µ · E/~,
which scales linearly with the dipole matrix element. For experiments where

the coupling Rabi frequency is to be kept constant over a range of n, it is

necessary to calculate the dipole matrix elements for the transition. Using

the core potential and the energy of the 5P3/2 state1, an approximate 5P3/2

wavefunction can be calculated to find the radial dipole matrix elements

〈5P3/2|er|n`j〉 for the allowed transitions. The results are plotted in fig. 2.2,

showing a stronger coupling to the nD5/2 state. The matrix elements are

around 5 orders of magnitude weaker than the coupling to the nearest Ryd-

berg states (∼ 1000 ea0 at n=40), and are fitted using the scaling C`n?−3/2

to obtain the coefficients CS = 4.502 ea0 and CD = 8.457 ea0, in good

agreement with Deiglmayr et al. [47].

The total matrix element is obtained by multiplying the radial part by the

angular component. For transition between the stretched states with j =

1 Below n ∼ 20 the quantum defects give poor agreement as the electron has a strong
interaction with the core.
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Figure 2.2: Radial matrix elements for 5P3/2 to nS1/2 or nD5/2 transitions. The
matrix elements scale as n∗−3/2.
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`+ 1/2, |mj| = j, the angular coupling of eq. 2.16 reduces to

〈P3/2,mj = 3/2|µq|`′j′m′j〉 =

√
`max

(2`max + 1)
, (2.17)

giving
√

1/3 for transitions to nS1/2,mj = 1/2 and
√

2/5 to nD5/2,mj = 5/2,

further enhancing the coupling to nD5/2 relative to nS1/2.

2.4 Stark shift

Applying a static electric field E along the z-axis causes the states to mix,

shifting the energy levels relative to the bare atom, known as the Stark shift.

To calculate the atomic energy states in the presence of an electric field, it

is necessary to find the eigenvalues of the Stark Hamiltonian [99]

HStark = Hatom + Eẑ. (2.18)

The electric field term Eẑ creates off-diagonal couplings between states, with

the selection rule ∆mj = 0 such that |mj| states are coupled together. The

new energy levels are found by diagonalising HStark as a function of E for all

states with a given |mj| to create an energy diagram known as a Stark map.

Figure 2.3 shows Stark maps calculated at n = 40 for the |mj| = 1/2 and 5/2

manifolds. The angular momentum states are truncated at ` = 20 as this is

sufficient for convergence of the energy levels of the states for ` ≤ 3. From

(a), the effect of the quantum defects in shifting the energy levels is clear,

as the closest S1/2 state to the n = 40 hydrogenic manifold is 43S1/2. The

high-` hydrogenic states are degenerate, leading to a first-order linear Stark

shift. In the |mj| = 1/2 states, all of the levels are coupled leading to avoided

crossings between the states with closest `. In (b), the |mj| = 5/2 hydrogenic

states separate into |m`| = 2, 3 states. This is the relevant quantum number

as the electric field couples to `, leading to a mixture of real and avoided
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Figure 2.3: n = 40 Stark maps for Rb. (a) |mj | = 1/2 manifold shows avoided
crossings between states with ∆` = ±1. (b) |mj | = 5/2. Hydrogenic states are
split into |m`| = 2, 3 manifolds, resulting in a mixture of avoided and real crossings
between adjacent n states.

crossings observable between adjacent n states.

2.4.1 Scalar polarisability

At low fields, the Stark effect acts as a second-order perturbation on the

states with ` ≤ 3 to give a quadratic shift of the form

∆W = −1

2
α0E

2, (2.19)

where α0 is the static polarisability, which for state |n, `, j,mj〉 is given by

α0 =
∑

n′,`′,j′ 6=n,`,j

|〈n, `, j,mj|µ0|n′, `′, j′,mj〉|2
Wn′`′j′ −Wn`j

. (2.20)

The polarisability α0 ' µ2/∆, where ∆ ∝ n∗−3 is the energy of the near-

est state and µ ∝ n∗2, giving α0 ∝ n∗7. Consequently Rydberg states are

incredibly sensitive to electric fields, allowing precise control over the Ryd-

berg energy levels and making them suitable for applications in electrometry

[83, 103, 104].
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The static polarisabilities can be obtained experimentally by fitting the low-

field dependence of the energy-levels for each state. To test the accuracy

of the code, the polarisabilities calculated from eq. 2.20 for the nS1/2 states

are compared to the measurements of O’Sulivan et al. [105]. The results

are plotted in fig. 2.4 (a), showing excellent agreement between theory and

experiment. In [105] the authors fit the data to an empirical scaling of the

form

α0 = β1n
∗6 + β2n

∗7, (2.21)

where α0 is in units of MHz/(V/cm)2, obtaining β1 = 2.202 × 10−9 and

β2 = 5.53×10−11 for the measured data. Table 2.2 shows the results obtained

from least-square fitting this scaling to the calculated polarisabilities over

the range n=20–100 for all states with ` ≤ 3, which are consistent these

empirical values for the nS1/2 states. For |mj| = 1/2 in the D states, the

static polarisability is initially positive at low n and changes sign to become

negative for the higher excited states, shown in fig. 2.4 (b). This gives a

positive Stark shift at low field for states above 24D5/2. However, as the

electric field increases, the D-states have an avoided crossing with the F -

states and the energy shift becomes negative again. This can be seen from

the Stark map in fig. 2.3 (a).

State |mj| β1 (×10−9) β2 (×10−11) State |mj| β1 (×10−9) β2 (×10−8)
S1/2 1/2 2.188 5.486 F1/2 1/2 -1.655 1.612
P1/2 1/2 2.039 51.456 F1/2 3/2 -1.308 1.350
P3/2 1/2 2.449 62.011 F1/2 5/2 -0.634 0.826
P3/2 3/2 1.611 52.948 F1/2 1/2 -1.624 1.623
D3/2 1/2 2.694 -6.159 F1/2 3/2 -1.457 1.478
D3/2 3/2 1.725 22.259 F1/2 5/2 -1.077 1.188
D5/2 1/2 2.770 -12.223 F1/2 7/2 -0.530 0.753
D5/2 3/2 2.352 1.772
D5/2 5/2 1.513 29.763

Table 2.2: Parameters for calculating static polarisability α0 = β1n
∗6 + β2n

∗7 in
units of MHz/(V/cm)2.
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Figure 2.4: Scalar polarisability. (a) Comparison of calculated nS1/2 static polar-
isabilities α0 to experimental data from ref. [105]. (b) The static polarisability for
the D5/2,3/2 |mj | = 1/2 states changes sign, resulting in a blue-shift at low fields.

2.5 Summary

The Rydberg series describes a set of states with simple scaling laws for

fundamental properties such as transition frequencies, radiative lifetime or

static polarisability in terms of the principal quantum number, which can be

derived from the analytic solutions for the wavefunctions of hydrogen. For

the alkali metal atoms, the interaction with the core creates a perturbation

to the hydrogenic states that is characterised by the quantum defects. Using

a model potential, the wavefunctions can be obtained numerically, enabling

calculation of the transition dipole matrix elements between the states. From

these matrix elements a wide range of properties can be calculated, such as

the electric field sensitivity as described above. The most important property

of the Rydberg states is the large dipole moment for transitions to adjacent

Rydberg states ∝ n∗2. As will be shown in the following chapter, this leads

to very strong interactions between a pair of atoms excited to the Rydberg

state.



Chapter 3

Rydberg Atom Interactions

As discussed in the introduction, the strong dipole-dipole interactions of the

Rydberg states make them ideal for studying quantum many body physics,

and applications in quantum information [90]. One of the main advantages of

Rydberg atoms over other dipolar systems, such as polar molecules [106, 107],

is the ability to control the strength, sign and spatial dependence through

choice of state, in addition to be being able to turn the interactions off by

returning population to the ground state. This chapter outlines the principle

behind dipole interactions of the Rydberg states, detailing the properties of

the S1/2 and D5/2 states of rubidium.

3.1 Dipole-dipole interactions

Consider a pair of atoms initially in state |r〉 = |n, `, j,mj〉 separated by

distance R, shown schematically in fig. 3.1 (a). The dipole-dipole interaction

energy for this system can be written in atomic units as

V (R) =
µ1 · µ2

R3
− 3(µ1 ·R)(µ2 ·R)

R5
, (3.1)

26
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Figure 3.1: (a) Dipole-dipole interactions between two atoms with interatomic
separation R at an angle θ to the z-axis. (b) Transformation from atomic to pair
state basis reveals near-resonant states with an energy defect ∆ that are coupled
by the dipole-dipole interaction.

where µ1,2 are the dipole moments associated for the transitions from |r〉 to
|r′〉 and|r′′〉 respectively. TakingR along the z-axis (θ = 0), the dipole-dipole

interaction reduces to

V (R) =
µ1−µ2+ + µ1+µ2− − 2µ1zµ2z

R3
, (3.2)

where µiq denotes the dipole operator of atom i = {1, 2} and subscript

q = {−, z,+} corresponds to a {σ+, π, σ−} transition. In this geometry the

selection rules for the dipole-dipole interactions preserve the total angular

momentum M = mj1 +mj2 of the initial pair states.

To calculate the energy shift due to the dipole-dipole interaction, it is nec-

essary to transform from an atomic basis to a pair basis, as illustrated in

fig. 3.1 (b). The initial pair state |rr〉 is coupled by V (R) to a state |r′r′′〉
which has an energy defect ∆ given by

∆ = W|r′〉 +W|r′′〉 − 2W|r〉, (3.3)

which represents the energy difference of the pair states at infinite separation.

The Hamiltonian describing the dipole-dipole interaction for the basis states
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|rr〉, |r′r′′〉 is

H =


 0 V (R)

V (R) ∆


 . (3.4)

The eigenvalues of this Hamiltonian are

λ± =
∆±

√
∆2 + 4V (R)2

2
, (3.5)

such that the energy of the pair states is now dependent upon the separation

of the two atoms.

The form of the spatial dependence can be derived in two distinct limits:

(i) Long range (V (R)� ∆)

∆W = −V (R)2

∆
= −C6

R6
. (3.6)

This is the van der Waals (vdW) regime where the sign of the interac-

tion is determined by ∆. In this limit, the strength of the interaction

is characterized by parameter C6 which scales proportional to n∗11 as

V (R) ∝ µ2 ∝ n∗4 and the energy defect ∆ ∝ n∗−3.

(ii) Short range (V (R)� ∆)

∆W = ±V (R) = ±C3

R3
. (3.7)

This is the resonant dipole-dipole regime as it has a 1/R3 dependence

associated with a pair of static dipoles, scaling as C3 ∝ n∗4.

The transition between the 1/R3 and 1/R6 regimes occurs at the van der

Waals radius when V (RvdW) = ∆, where RvdW = 6
√
|C6/∆| ∝ n∗7/3.

An important difference between these two regimes is the contribution of the

nearest-neighbour to the total interaction when considering a many-body

atomic ensemble, as shown in fig. 3.2. For a uniform density ρ, the average
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Figure 3.2: Many-body interactions. (a) For the case of many-body interactions,
in the van der Waals regime V ∝ 1/R6 interactions are dominated by nearest-
neighbour allowing consideration of isotropic pair-wise interactions. (b) For the
resonant dipole regime V ∝ 1/R3 however, all of the surrounding atoms are equally
important and it is now necessary to consider the full many-body system.

interatomic spacing is given by Ravg = (5/9)ρ−1/3 [108]. Assuming the nearest

neighbour is at this radius, the pair-wise interaction with this atom is Vpair =

V (Ravg), whilst the interaction energy contributed by all other atoms in the

system can be evaluated from,

Vs =

∫ ∞

Ravg

4πR2ρV (R) dR. (3.8)

In the van der Waals regime, this reduces to Vs ' 0.7Vpair, showing inter-

actions are dominated by the nearest neighbour, allowing the many-body

system to be treated as an ensemble of interacting pairs. For the resonant

dipole interaction however, the integral diverges as the 1/R3 interaction can-

cels with the R3 scaling of the number of atoms at radius R. This means the

contribution from the surrounding atoms is significantly larger than the clos-

est atom, and the effect of all atoms must be included. A thorough discussion

of this relative contribution of the surrounding atoms is given in [109, 110].

3.2 Interaction strengths

In the long range van der Waals regime, the interaction strength is dominated

by the pair state with the smallest energy defect, which determines the sign
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of the interaction. However, to calculate the magnitude of the interaction

it is necessary to consider not only the near-resonant pair state, but all

combinations of states which are dipole coupled to the initial pair state.

Figure 3.3 shows the energy defects as a function of n for (a) nS1/2nS1/2 and

(b) nD5/2nD5/2 states in Rb. For the S1/2 states, the smallest energy defect

is given by the coupling to the nP3/2(n− 1)P3/2, which is negative for all n.

Thus C6 < 0, corresponding to repulsive interactions for the S1/2 states.

In theD5/2 states, there are a range of near-resonant dipole-coupled channels,

all with energy defects much smaller than the equivalent S states. The

dominant coupling is to (n+ 2)P3/2(n− 2)F , which changes sign at n > 43,

changing from repulsive to attractive interactions. In addition to smaller

∆, the matrix elements of the D5/2 → P, F are larger than the S1/2 → P ,

leading to stronger interactions with a larger RvdW [111]. For example, the

60D5/260D5/2 M = 5 pair state has C6 = 210 GHz µm6, compared to -140

GHz µm6 for the 60S1/260S1/2 M = 1 pair state.

Figure 3.4 (a) shows the calculated pair potential for the 60S1/260S1/2 state

obtained by diagonalisation of eq. 3.4 for all pair states with |∆| < 25 GHz,
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Figure 3.3: Rubidium pair-state energy defects in zero field. (a) nS1/2nS1/2 pair
states have ∆ < 0 for all n′Pn′′P states, leading to repulsive interactions. (b)
nD5/2nD5/2 pair states have the smallest energy defect for the (n + 2)P (n − 2)F
states, which gives attractive long-range interactions for n > 43.
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showing the effective splitting of the near-resonant 60P3/259P3/2 state. The

coefficients C3 and C6 are determined by fitting the potential curve ei-

ther side of RvdW = 2.1 µm. This gives C3 = −14.3 GHz µm3 and

C6 = −140 GHz µm6, in excellent agreement with [112] which calculates

C6 using second-order perturbation theory in the uncoupled basis. In (b)

the interaction potentials for a range of n are plotted, illustrating both the

increased interaction strength with n and also the transition from 1/R6 to

1/R3 at short range. For a typical experiment density of 1010 cm−3, the

average pair separation Ravg = 2.5 µm. This corresponds to interactions in

the van der Waals regime for n . 60, which is the largest n state used in

work presented in this thesis. Therefore all interactions can be modelled as

V (R) = C6/R
6 in later sections.
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Figure 3.4: nS1/2nS1/2 interaction potentials (a) 60S1/260S1/2 pair state energy
calculated including all pair states with ∆ < 25 GHz. The interaction is domi-
nated by the 60P3/259P3/2 state which is repelled by the coupling. (b) Comparison
of interaction curves as a function of n, showing shift of the van-der-Waals ra-
dius RvdW to larger R as n increases, with the 1/R3 resonant dipole interaction
becoming relevant at densities of 1010 cm−3 for n & 80.
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3.3 Angular dependence

In the discussion above it was assumed the dipoles were aligned with θ = 0.

More generally, the dipole-dipole coupling is a function of both θ and R given

by [113]

V (R, θ) =
µ1−µ2+ + µ1+µ2− + (1− 3 cos2 θ)µ1zµ2z

R3

+
3/2 sin2 θ(µ1+µ2+ + µ1+µ2− + µ1−µ2+ + µ1−µ2−)

R3

+
3/
√

2 sin θ cos θ(µ1zµ2+ + µ1zµ2− + µ1+µ2z + µ1−µ2z)

R3
,

(3.9)

where for θ 6= 0 the total angular momentum M of the initial pair state is

no longer conserved, allowing states of different M to be coupled together.

Figure 3.5 shows the van der Waals interaction strength for pairs of atoms in

the (a) 60S1/260S1/2 and (b) 60D5/260D5/2 states as a function of θ. From (a)

it is obvious the S1/2 state interactions are almost perfectly isotropic. This

occurs because the dipole-dipole interaction couples to the orbital angular

momentum, `, which is zero for the S state pair and has a spherically sym-
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Figure 3.5: Angular dependence of C6 on θ for (a) 60S1/260S1/2 and (b)
60D5/260D5/2 for pairs of atoms in state mj . This shows the S1/2-states are almost
isotropic whilst D5/2-states have >50 % variation with θ. The interaction is larger
for mj = 1/2 as it allows coupling to the (n+ 2)P1/2(n− 2)F5/2 channel which has
a smaller energy defect at n=60 (see fig. 3.3 (b)).
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metric distribution. The slight perturbation occurs from the fine-structure

splitting of the P states. For the D5/2 states however, the orbital angular

momentum of the initial pair state is 4, giving a significantly anisotropic

interaction which is reduced by more than 50 % at θ = π/2 from the value

aligned along z (θ = 0).

3.4 Tuning interactions with external fields

The strength and sign of the dipole-dipole interaction can be controlled by

choice of the n` state of the initial Rydberg pair states, however there will

always be a transition from the 1/R3 to 1/R6 regime. Choosing a very high

principal quantum number can extend the transition radius RvdW to large

R, however at the cost of a weaker coupling to the intermediate state which

scales as∝ n∗−3/2 (fig. 2.2). An alternative approach is to tune the interaction

by applying an external field to the system.

3.4.1 Static electric field

A static electric field causes a Stark shift of the Rydberg states as shown in

§2.4 which can be used to tune the sign and magnitude of the energy defect,

for example from attractive to repulsive interactions. A Förster resonance

occurs when ∆ = 0, leading to 1/R3 resonant dipole-dipole interactions for

all R [54, 114]. An example is shown in fig. 3.6 for the 44D5/244D5/2 pair

state, where two Förster resonances are visible, occurring at 0.2 V/cm for

the 46P3/242F state and at 1.1 V/cm for the 45P3/243F state. The shape

of the pair potentials is dominated by the linear shift of the hydrogen-like

states with ` > 3 which are plotted to illustrate the origin of the linear shift

of F pair states at high field.

Calculation of the interaction potentials in an applied field reveals the pres-

ence of long-range (∼ 9 µm) molecular bound states known as macrodimers
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Figure 3.6: Energy defect for states coupled to the 44D5/244D5/2 pair state as a
function of static field, revealing Förster resonances around 0.2 V/cm for the near-
resonant 46P3/242F states and around 1.1 V/cm for 45P3/243F pair states. This
figure shows interactions for all possible M states, with the hydrogenic manifold
plotted to illustrated the states causing the shift.

[115], which have been observed experimentally in Cs [116]. If the applied

field is increased further, the Rydberg atoms will have a permanent rather

than induced dipole moment, where the permanent dipole moment is given

by the gradient µ = − dW (E)/ dE.

3.4.2 Microwave dressing

The energy separation between close-lying Rydberg states typically corre-

sponds to microwave frequencies, e.g. 46S1/2 → 45P3/2 ∼ 40 GHz. Consider

a microwave field with detuning ∆µ = ωµ−ω0 tuned close to resonance with

the transition from states |r〉 to |r′〉, with Rabi frequency Ωµ (see sec. 4.1). As

the microwave field couples the single-atom states, whilst the dipole-dipole

interaction couples the pair states, all four pair states must be considered,

as shown in fig. 3.7 (a). The Hamiltonian for the interacting system in the
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basis {|rr〉, |rr′〉, |r′r〉, |r′r′〉} is

Hdd = ~




−∆µ Ωµ/2 Ωµ/2 V (R)

Ωµ/2 0 V (R) Ωµ/2

Ωµ/2 V (R) 0 Ωµ/2

V (R) Ωµ/2 Ωµ/2 ∆µ



, (3.10)

where the system has be transformed into the frame rotating at ωµ. In this

frame, the energy defect ∆ has been replaced by the microwave detuning ∆µ.

Therefore the microwave field now chooses which Rydberg state (|r′〉) should
contribute to the the dipole-dipole interactions. On resonance (∆µ = 0) the

eigenvalues of Hdd are λ = −V (R), V (R)± Ωµ, corresponding to an Autler-

Townes [117] splitting from the microwave dressing. The interaction is a

resonant dipole-dipole ∝ 1/R3 for all R, shown in fig. 3.7 (b) for the 46S1/2

state, calculated for a resonant coupling to the 45P1/2 state with a dipole

matrix element of µs→p =
√

2/9× 1924 ea0 and Ωµ/2π = 500 kHz. Plotted

on the same graph is the interaction curve for the undressed van der Waals

Figure 3.7: Microwave-dressing of dipole-dipole interaction. (a) Applying a near-
resonant microwave coupling between |r〉 and |r′〉 dresses the pair states giving a
new pair basis separated by ∆µ � ∆. (b) Interaction potential for 46S1/246S1/2

pair-state with a resonant (∆µ = 0) microwave coupling of Ωµ/2π = 500 kHz to the
45P1/2 state. The result is a 1/R3 behaviour for all R (green line), contrasting with
the case for no microwave field (blue line). Dashed line shows energy of microwave
splitting.
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interactions. This clearly shows that for R > 2 µm the microwave dressing

enhances the strength of the dipole interaction, although it only exceeds the

microwave splitting of Ωµ for R < 15 µm.

The advantage of the microwave dressing over applying a weak electric field

is two-fold. Firstly, any pair state can be tuned into resonance rather than

just the close lying states. Secondly, stabilising the microwave frequency to

< 1 Hz is much easier than controlling weak electric fields due to the stray

electric field of around 50 mV/cm typical for cold atom experiments [110].

3.5 Dynamic effects of dipole-dipole

interactions

For an ensemble of Rydberg atoms, the dipole-dipole interactions play an

important role in determining the dynamics of the system. The focus in this

work is the blockade effect that suppresses excitation (see sec. 5.3), however

it is important to consider other effects of interactions. The most important

process is ionisation of the Rydberg states due to collisions, resulting in

Penning ionisation of the form

Rb∗ + Rb∗ → Rb∗∗ + Rb+ + e− (3.11)

where the remaining atom is transferred into a different Rydberg state with

n′ . n/
√

2 from energy conservation [118]. For D-states, the attractive in-

teractions cause atoms to be accelerated towards each other, leading to very

rapid ionisation on timescales of a few µs [45, 119]. This rapid ionisation can

trigger plasma formation as electrons become trapped in the attractive po-

tential of the slow moving ions, leading to avalanche ionisation [120, 121]. To

overcome this rapid ionisation, the repulsive S1/2 states can be used. However

ionisation still occurs due to collisions or from `-changing due to absorption
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of a black-body photon, transferring the pair state onto an attractive po-

tential [46], although at a lower rate than for the D state. Interestingly,

the frequency of the excitation laser plays an important role in determining

the ionisation dynamics - if the laser has the opposite detuning to the sign

of the interaction, only long-range pairs are excited which take a long time

to collide. For a laser detuning equal to the interaction shift, it is now the

short-range pairs that are excited leading to rapid ionisation [45, 121]. Thus

it is possible to control the initial separation of the Rydberg pair states in

the system by choice of excitation frequency. This effect has been used to

map out the nearest-neighbour distribution for a cold atom cloud [122].

3.6 Summary

The large matrix elements of the Rydberg states leads to strong dipole-

dipole interactions between atoms. The interactions can be expressed in two

regimes; at long range (V (R) � ∆) this is the van der Waals regime with

∆W = −C6/R
6, whilst at short range (V (R) � ∆) the atoms experience

resonant dipole-dipole interactions ∆W = C3/R
3. For a typical experiment

density, the average atomic separation Ravg > RvdW, corresponding to van

der Waals interactions for n . 60. Interactions play an important role in the

dynamics of the system, with attractive interactions resulting in enhanced

ionisation compared to the repulsive S-states. The scaling with n allows

a great degree of control over the magnitude and sign of the interaction,

which can be additionally tuned using external fields to create long range

resonant dipole-dipole interactions. In chapter 5, the cooperative nature of

these interactions will be explored.



Chapter 4

Atom-Light Interactions

The simplest case in which to consider the interaction between atoms and

light is that of a two-level atom driven by a coherent optical field. This

system has been exhaustively studied e.g. [123, 124], revealing a range of

coherent effects such as Rabi oscillations [125] and trapping due to the optical

dipole force [126, 127]. Typically, the excited state in the two-level system

has a finite lifetime due to spontaneous emission back to the ground state.

On one hand this decay is advantageous, as it allows atoms to be cooled

by radiation pressure [128–130]. On the other hand, the susceptibility is

therefore dominated by a large, absorptive χ(1) component [4]. The driven

two-level system is thus poorly suited to applications in non-linear optics at

the single-photon level.

However, the addition of a third level and a second optical field gives rise to

a range of coherent phenomena including electromagnetically induced trans-

parency (EIT) [13, 22] which suppresses the resonant absorption. The result

is a very large dispersive optical non-linearity which can be used to control

the propagation of light through the medium.

38
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Figure 4.1: Three-level cascade system with ground |g〉, excited |e〉 and Rydberg
|r〉 states. A probe laser at frequency ωp drives the |g〉 → |e〉 transition whilst a
coupling laser at frequency ωc couples levels |e〉 and |r〉.

4.1 Three level atom

Consider a three-level atom with ground |g〉, excited |e〉 and Rydberg |r〉
states separated by energy ~ωeg and ~ωre respectively, as shown in fig. 4.1 for

a cascade, or ladder, configuration. The atom is driven by two laser fields;

a probe laser field at frequency ωp which drives the transition from |g〉 to
|e〉 with detuning ∆p = ωp − ωeg, and a coupling laser field at frequency

ωc detuned by ∆c = ωc − ωre from the |e〉 to |r〉 transition. The lasers are

assumed to be classical monochromatic electric fieldsEp,c(t) = Ep,c cos(ωp,ct)

which couple to the electric dipole moment of the atom d

d = deg(π̂
+ + π̂−) + dre(Ξ̂

+ + Ξ̂−), (4.1)

where dij = 〈i|−er|j〉 is the dipole matrix element for the transition from |i〉
to |j〉 and the dipole operators π̂±, Ξ̂± are the raising and lowering operators

of the atomic dipole for the two transitions, defined as

π̂+ = |e〉〈g|, π̂− = |g〉〈e|,
Ξ̂+ = |r〉〈e|, Ξ̂− = |e〉〈r|.

(4.2)
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Applying the dipole-approximation1 the coupling between the electric field

and the atom is V = −d · (Ep +Ec), where the magnitude of the coupling

can be expressed in terms of the Rabi frequencies Ωp = −Ep · deg/~ and

Ωc = −Ec · der/~ to give

V =
~Ωp

2
(π̂− + π̂+) +

~Ωc

2
(Ξ̂− + Ξ̂+), (4.3)

where the rotating-wave approximation has been used to remove the non-

resonant terms corresponding to emission of a photon with an excitation

of the atom and absorption of a photon with de-excitation of the atom (see

§A.11 of ref. [124]). The Hamiltonian for the coupled system is H = HA+V ,

where HA is the energy of the bare atom

H = −~∆pπ̂
+π̂− − ~(∆p + ∆c)Ξ̂

+Ξ̂−, (4.4)

which acts on a wavefunction of the form |ψ〉 = ag|g〉 + ae|e〉 + ar|r〉. The

states |g〉, |e〉 and |r〉 can be expressed as orthogonal normalised column

vectors

|g〉 =




1

0

0


 , |e〉 =




0

1

0


 , |r〉 =




0

0

1


 , (4.5)

from which the total Hamiltonian H is given in matrix form in this basis as

H = ~




0 Ωp/2 0

Ωp/2 −∆p Ωc/2

0 Ωc/2 −∆p − ∆c


 . (4.6)

Using the Hamiltonian it is possible to calculate the dynamics in the absence

of decoherence using the Schrödinger equation

i~
d

dt
|ψ〉 = H |ψ〉. (4.7)

1 Valid providing the electric field doesn’t change rapidly over the length scale of the atom.
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For a real atomic system however, the excited states have a finite lifetime τe,r

and it is necessary to treat the spontaneous emission of photons at rate Γe,r =

1/τe,r. Spontaneous emission is a dissipative process and cannot be included

in this Hamiltonian as a unitary process. Therefore the time evolution of

the density matrix σ is used, instead of the wavefunction |ψ〉, to derive a

master equation for the atom in which spontaneous decay can be included

whilst preserving the normalisation2. The density operator for a pure state

is defined as σ̂ = |ψ〉〈ψ|, resulting in the density matrix given by

σ =




|ag|2 aga
∗
e aga

∗
r

aea
∗
g |ae|2 aea

∗
r

ara
∗
g ara

∗
e |ar|2


 =




σgg σge σgr

σeg σee σer

σrg σre σrr


 . (4.8)

To include the effect of spontaneous emission, the atom can be considered to

couple to a reservoir initially in the vacuum state into which it can emit a

photon, causing a relaxation of the atomic excitation. The coupling to the

reservoir is described by the Lindblad superoperator L(σ) [132]

L(σ) = −1

2

∑

m

(C†mCmσ + σC†mCm) +
∑

m

CmσC
†
m, (4.9)

where the sum is over all decay modes m. For a given decay channel from

|i〉 to |j〉, the first summation describes loss of population from state |i〉 due
to emission of a photon, and the corresponding decay in the coherence terms

σji,ij, whilst the final term shows population being restored into state |j〉,
ensuring Tr{σ} = 1 for all times [133].

For the three-level atom there are two decay modes, one from |e〉 at rate Γe

2 Alternatively a stochastic approach can be used to solve the Schrödinger equation for the
wavefunction with dissipation [131].
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and another from |r〉 at rate Γr, which are described by the operators

Ce =
√

Γe|g〉〈e|, (4.10a)

Cr =
√

Γr|e〉〈r|. (4.10b)

Inserting these into eq. 4.9, the Lindblad operator for the three-level atoms

is

L(σ) =




Γeσee −1
2

Γeσge −1
2

Γrσgr

−1
2

Γeσeg −Γeσee + Γrσrr −1
2
( Γe + Γr)σer

−1
2

Γrσrg −1
2
( Γe + Γr)σre −Γrσrr


 . (4.11)

The time evolution of the density matrix is calculated using the Liouville

equation, which is the equivalent of the Schrödinger equation for the density

matrix, where now the Lindblad operator can be included to account for

spontaneous decay. The resulting equation, known as the master equation,

or optical Bloch equation (OBE), is

σ̇ =
i

~
[σ,H ] + L(σ). (4.12)

4.1.1 Finite laser linewidth

A nominally monochromatic source, such as a laser, does not emit at a single

frequency, but instead has fluctuations in the emission frequency. Typi-

cally, the frequency spectrum of the fluctuations is assumed to be Lorentzian

[134, 135]. The laser linewidth is therefore defined by the Lorentzian half-

width at half maximum of the emission spectrum. The effect of this fi-

nite linewidth is to increase the dephasing rate of the off-diagonal coherence

terms for the states coupled to the laser field, whilst leaving the diagonal

populations unchanged3. Expressing the off-diagonal dephasing terms of

the Lindblad operator in eq. 4.11 as L(σ)ji = −γjiσji, the effect of finite
3 This treatment of laser linewidth is valid providing γ � ωp,c and γ . Γe, Γr.
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laser linewidth can be included by modifying the dephasing rates as follows

[135, 136]

γeg → γeg + γp, (4.13a)

γrg → γrg + γrel, (4.13b)

γre → γre + γc, (4.13c)

were γp,c are the linewidth of the probe and coupling lasers respectively

and γrel is the linewidth of the two-photon resonance. For two independent

lasers γrel = γp + γc, which arises from the fact that the convolution of two

Lorentzians of width γ1,2 is equal to a Lorentzian whose width is γ1 + γ2.

In the experiments presented in this thesis, the coupling laser is stabilized

to the two-photon resonance in a thermal cell [79]. The fluctuations of the

two lasers are thus correlated, and consequently the relative linewidth of the

two-photon transition can be smaller than the linewidth of the individual

lasers.

The laser-induced dephasing cannot be expressed in the general Lindblad

form of eq. 4.9 as the population terms are unaffected. Instead, a phenomeno-

logical operator Ld(σ) is introduced to account for the additional dephasing

terms

Ld(σ) =




0 −γpσge −γrelσgr

−γpσeg 0 −γcσer

−γrelσrg −γcσre 0


 . (4.14)

The OBE equation is then modified as follows

σ̇ =
i

~
[σ,H ] + L(σ) + Ld(σ). (4.15)
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4.1.2 Steady-state solution

Probe-only (Ωc = 0)

Without the coupling laser, the system reduces to a driven two-level atom. In

the absence of spontaneous emission, the population oscillates between states

|g〉 and |e〉 at a frequency Ω =
√

Ω2
p + ∆2

p, known as Rabi oscillations [125,

137]. The effect of decay from the excited state at rate Γe is to damp these

Rabi oscillations, causing the system to reach a steady-state on timescales

t� τe.

It is simple to calculate the steady-state of the system by setting the left hand

side of eq. 4.15 to zero and using the normalisation condition Tr{σ} = 1.

This gives the following results for the steady-state populations and coherence

terms

σss
ee = (1− σss

gg) =
1

2

Ω2
pγeg

γeg Ω2
p + Γe(γ2

eg + ∆2
p)
, (4.16a)

σss
eg = (σss

ge)
∗ =

Ωp

2

∆p − iγeg
Ω2

p/2 + γ2
eg + ∆2

p

, (4.16b)

where γeg = Γe/2 + γp.

Weak-probe (Ωp � Ωc, Γe)

For the full three-level system it is not possible to solve the coupled-equations

analytically. Instead, for the case Ωp � Γe, Ωc, the population can be

assumed to remain in the ground-state for all times σss
gg = 1. Using this

assumption, the steady-state coherence for the probe transition is

σss
eg = −

i Ωp/2

γge − i ∆p +
Ω2

c/4

γgr − i( ∆p + ∆c)

, (4.17)

where γgr = Γr/2 + γrel.
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4.1.3 Complex susceptibility

The susceptibility at the probe laser frequency ωp for a uniform atomic den-

sity of ρ atoms per unit volume is related to the density matrix by [136]

χ(ωp) = − 2ρd2
eg

ε0~Ωp

Tr{σπ̂−}

= − 2ρd2
eg

ε0~Ωp

σeg.

(4.18)

χ is typically a complex parameter, and can be resolved into the real and

imaginary components, χ = χR + iχI. These components are related by the

Kramers-Kronig relations [4]

χR =
1

π
P
∫ ∞

−∞

χI(ω
′)dω′

ω′ − ω , (4.19a)

χI = − 1

π
P
∫ ∞

−∞

χR(ω′)dω′

ω′ − ω , (4.19b)

where P denotes the principle value of the integral. These relations mean

that the real part of the susceptibility can be calculated using measurements

of the imaginary susceptibility, providing the frequency dependence is known;

and vice-versa.

From the steady-state solution of eq. 4.17, the susceptibility of the three-level

system in the weak-probe limit is

χ( ∆p) =
iρd2

eg/ε0~

γge − i ∆p +
Ω2

c/4

γgr − i( ∆p + ∆c)

. (4.20)
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4.1.4 Optical response

In an experiment it is not the complex susceptibility that is measured, but the

back-action on the probe field propagating through the medium. The optical

properties are related to the susceptibility through the refractive index n by

n =
√

1 + χ ' 1 +
χR + iχI

2
, (4.21)

where the approximation is valid providing |χ| � 1, valid for the experiments

presented in part II for which |χ| . 10−4.

For a probe field propagating a distance ` through the medium, the output

electric field is

E = E0e i(kn`−ωt) = E0e−kχI`/2e i(kχR`/2−ωt), (4.22)

where k = 2π/λ is the wavevector. The medium can therefore attenuate

the field proportional to the imaginary part of the susceptibility, and change

the relative phase proportional to the real part of the susceptibility. The

resulting phase shift and intensity transmission are given by

T =
I

I0

= exp(−kχI`), (4.23a)

∆φ = kχR`/2. (4.23b)

Thus from measurements of transmission or phase along a known path length

it is possible to infer the value of the susceptibility.
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4.2 Electromagnetically induced transparency

To understand how transparency can arise in the three-level system, it is

instructive to diagonalise the Hamiltonian of eq. 4.6 to obtain the eigenstates

on the two-photon resonance (∆ = ∆p + ∆c = 0), given by [13]

|+〉 = sin θ sinφ|g〉+ cosφ|e〉+ cos θ sinφ|r〉, (4.24a)

|D〉 = cos θ|g〉 − sin θ|r〉, (4.24b)

|−〉 = sin θ cosφ|g〉 − sinφ|e〉+ cos θ cosφ|r〉, (4.24c)

where θ and φ are the Stückelberg mixing angles defined as

tan θ =
Ωp

Ωc

, tan 2φ =

√
Ω2

p + Ω2
c

∆p

. (4.25)

In the weak probe limit (Ωp � Ωc, Γe), the mixing angle θ → 0 to give

|±〉 = (|r〉 ± |e〉)/
√

2 and |D〉 = |g〉 on resonance (∆p = 0). The probe

laser only couples to the |e〉 component of the states |±〉, which have equal

magnitude but opposite signs. The result is a destructive interference of the

excitation pathways, so the probe laser is no longer absorbed. The state |D〉
is therefore known as a dark state as it is not coupled to the light field, having

a zero-energy eigenvalue. Since states |±〉 include the radiative state |e〉, they
decay to populate |D〉 on timescales of order τe. This coherent phenomenon

is known as electromagnetically induced transparency (EIT) [13, 22], as the

strong coupling laser changes the optical properties of the medium from res-

onant absorption of the probe laser to perfect transmission. EIT was first

observed experimentally by Boller et al. [23] using a Λ-configuration, where

the |r〉 state is replaced by a second ground-state transition, enabling very

narrow resonances.

Figure 4.2 shows the susceptibility for a range of parameters to illustrate the

effect of EIT. In (a), the coupling laser can be seen to switch the imaginary
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Figure 4.2: Three-level atom susceptibility. (a)–(f) show comparisons to the EIT
condition (solid line) to a two-level atom (dashed line), revealing the narrow trans-
parency window on resonance and the associated dispersion feature in χR. (g)–(h)
illustrate the effect of a finite laser-linewidth (solid line) compared to γrg = 0
(dashed line), which limits the visibility of the transparency. All curves are calcu-
lated for Ωp = Γe/10 and scaled relative to the probe-only resonant susceptibilty
χ̃ = 2ρd2

eg/ε0~Γe.

susceptibility on resonance (and hence absorption) from a maximum to zero,

giving complete transparency assuming Γr → 0, which gives a resonantly

enhanced χ(3) in the medium [22]. As Ωc is increased, the EIT resonance

splits (known as Autler-Townes splitting [117]), increasing the bandwidth of

the transparency. The Kramers-Kronig relations show it is not possible to

have a change in χI without a concommitant change in χR. This can be seen

in (d) with the appearance of a steep dispersive feature. The group velocity

vg of light as it passes through the atomic medium is [13]

vg =
c

n(ωp) + ωp

dn

dωp

, (4.26)
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which gives a drastically reduced group velocity on resonance due to the

gradient of χR, leading to light being slowed. Hau et al. used EIT in a BEC

to reduce the speed of light to 17 m s−1 [24], corresponding to χ(3) = 4.8 ×
10−8 m2V−2, the largest recorded optical non-linearity in a cold atom system.

As well as slowing light, pulses can be stored in the medium for a duration of

1 ms [26]. This can be used as an optical memory, and single photon storage

has been demonstrated between two spatially separate locations [30, 31].

EIT is very sensitive to dephasing, which destroys the coherence of the dark

state. In fig. 4.2 (g)–(i) the effect of the relative linewidth of the two-photon

resonance γrg is shown. The laser induced dephasing mixes the eigenstates,

causing the dark state to gain a contribution from |e〉 and hence suppression

of the transmission on resonance. It is therefore necessary for γrg � Ωc, Γe

to observe EIT. As well as dephasing, the Doppler effect is important in

thermal samples as the velocity averaging can wash-out the transmission on

the two-photon resonance [136]. For the ladder system, this can be minimised

using counter-propagating probe and coupling lasers, however EIT can only

be observed if kp < kc [138] unless cold atoms are used.

4.2.1 Related phenomena

If the probe Rabi frequency is increased beyond the weak-probe limit, the

state |D〉 is given by eq. 4.24b, forming a super-position of states |g〉 and
|r〉. For Γr → 0, this remains a dark state and population is transferred

into |r〉 without population of the radiative |e〉 state. This is known as

coherent population trapping (CPT) [139–141], illustrated in fig. 4.3 which

shows the evolution of population with the ratio of Ωp to Ωc (and hence

θ). An important distinction between EIT and CPT is that EIT only occurs

in an optically thick medium, where the atomic coherences induced by the

lasers cause a back-action on the probe laser.

In CPT the system is prepared in the dark state by decay from |±〉, limiting
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the fidelity of the state preparation for θ > 0 [142]. Alternatively, an adi-

abatic evolution of the field using a counter-intuitive pulse sequence allows

smooth evolution from θ = 0 with all atoms in |g〉 to θ = π/2 with all atoms

in |r〉. This is known as stimulated Raman adiabatic passage (STIRAP)

[143, 144] and can be used to transfer population via the dark state with

almost 100 % efficiency.

Figure 4.3: Dark-state populations as a function of Ωp, Ωc. On the left-hand side
Ωp � Ωc, resulting in electromagnetically induced transparency (EIT). On the
right-hand side Ωp � Ωp, leading to coherent population transfer (CPT) into |r〉.
If the laser intensities are changed in time from left to right, this is equivalent to
STIRAP.

4.3 Summary

The evolution of the three-level system can be calculated using the opti-

cal Bloch equations to model the effects of spontaneous emission and laser

linewidth. This enables the density matrix to be known for any time t, and

hence the optical properties of the medium from calculation of the complex

susceptibility.

On the two-photon resonance the lasers drive the system into a coherent

dark state |D〉, which is not coupled to the probe field. For Ωp � Ωc, this

dark state corresponds to a narrow transmission window in the absorption

feature of |e〉, leading to the phenomena of EIT. The associated change in

refractive index creates a steep dispersive feature which can be used to slow
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and store light in the medium. Thus EIT provides a means to create large

optical non-linearities without a significant absorption on resonance, as is

the case for a two-level atom. Another important feature of EIT is that in

this weak probe regime |D〉 ≡ |g〉, allowing the Rydberg state to be probed

without transferring population into the state. However, as the probe power

is increased atoms are excited to the Rydberg states and it is necessary to

consider the effects of the strong dipole-dipole interactions discussed in the

previous chapter.



Chapter 5

Cooperative Phenomena

In the previous chapter the atom-light interaction for a single atom was

assumed to describe the behaviour of a macroscopic sample, calculating the

susceptibility of a uniform gas with density ρ using the single atom density

matrix. This description is valid providing the atoms are both independent

and identical. In some circumstances the atoms behave independently but

the overall response of the system depends on the sum over all atoms. This

is known as collective behaviour. An example is spin-echo, where each atom

dephases at a different rate but reversing the phase leads to a restoration of

the initial state, resulting in a collective emission.

If the atoms are no longer independent but instead correlated, the ensem-

ble properties become fundamentally different to those of an isolated atom,

and cannot be determined by summing over the individual responses. This

situation is described by Mandel and Wolf in §16 of ref. [145],

“In other cases it is essential to include the effect of each atom
on all the other atoms, because this modifies the behaviour of
each in a significant way. These phenomena, such as self induced
transparency and superradiance are collective effects in a deeper
sense. They are sometimes called cooperative effects.”

Cooperative phenomena therefore occur in systems when the atom-atom in-

52
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teractions cannot be treated simply as a perturbation, but instead dominate

the evolution of the ensemble. The main mechanism for such effects is the

interaction of each atom with the dipole-radiation field of the surrounding

atoms, resulting in a well defined phase between the dipoles that modifies

the optical properties.

5.1 Cooperative behaviour for two atoms

To see how cooperative behaviour can arise, it is instructive to first study the

case of a pair of atoms. Consider an atom located at the origin which has

dipole moment d oscillating at frequency ω. The electric field at position R

due to this dipole is given by [146]

E(R) =
1

4πε0

{
k2

R
(R̂× d)× R̂+ (

1

R3
− ik

R2
)[3R̂(R̂ · d)− d]

}
e− ikR,

(5.1)

where R = |R|, R̂ = R/R and k = ω/c is the wavevector. The e− ikR

phase term arises due to the finite speed of light c, which creates a retarded

potential that lags behind in time by a factor t−R/c.

The electric field can be expressed in two distinct limits:

Far-field (kR� 1): At long range the 1/R term dominates,

E(R) =
k2(R̂× d)× R̂

4πε0R
e− ikR, (5.2)

which describes the propagation of a transverse spherical wave; this

limit is also known as the radiation zone.

Near-field (kR . 1): In the near-field the higher-order terms dominate,

equivalent to the field of a static dipole. [147]

If we now place a second atom at position R which is at an angle θ to the

z-axis (fig. 3.1 (a)), it will experience an interaction with the dipole electric
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field of the first atom that is described by the Hamiltonian Hdd = −d·E(R).

Using the definition of the spontaneous decay rate Γ from the excited state

in terms of the dipole moment [148]

Γ =
k3d2

3~πε0
, (5.3)

this interaction Hamiltonian can be written in terms of Γ as

Hdd = −3~Γ

4

[
1

kR
sin2 θ +

(
1

(kR)3
− i

(kR)2

)
(3 cos2 θ − 1)

]
e− ikR. (5.4)

If the atoms are initially excited to state |ee〉, they will decay into a Dicke

state |±〉 = (1/
√

2)(|eg〉 ± |ge〉) [35] by the spontaneous emission of a single

photon. This first emission creates a phase between the dipoles as either of

the atoms could have decayed. It can be shown that the effect of the coupling

between the two atoms due to Hdd is to modify both the decay rate and the

energy of the states |±〉 to give [149]

Γ± = Γ± Γ12, (5.5a)

W± = ~ω0 ± ~∆12, (5.5b)

where Γ12 is the enhanced broadening term and ∆12 is the shift in the energy

of the |±〉 states. These are related to the real and imaginary parts of Hdd

as follows1 [149, 150]

Γ12 = −2Im{Hdd}/~ (5.6a)

∆12 = 2Re{Hdd}/~. (5.6b)

Figure 5.1 plots these quantities as a function of kR for two different align-

ment configurations, showing that it is possible to observe decay of the single

excitation from |+〉 at a maximum rate of 2Γ. This is known as a superradi-
1 Comparison of Hdd to D12 in eq. (9) of [149] yields D12 ≡ 2 iHdd/~Γ.
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Figure 5.1: Dipole-dipole induced broadening Γ12 and level-shift ∆12 for a pair of
atoms. The level shift dominates over dephasing for kR < π/2, indicated by the
dashed line.

ant state, as the spontaneous emission occurs faster than Γ. Conversely, the

|−〉 state is a sub-radiant state, as the decay rate at close separations is less

than Γ, corresponding to an enhanced lifetime.

An important feature of fig. 5.1 is the relative magnitude of the energy shift

(∆12) compared to the broadening rate (Γ12). In the region π/2 . kR < 10,

the dominant effect is the modification of the decay rate to give sub- or

superradiant decay. This effect has been demonstrated experimentally for a

pair of trapped ions at variable separations [151]. However, at shorter range

(kR < π/2) the energy-shift diverges. Using equations 5.1 and 5.6b, the

energy shift is given by

∆12 =
d · d− 3(R̂ · d)(R̂ · d)

4πε0R3
. (5.7)

This is equivalent to the dipole-dipole interaction between two static dipoles

of eq. 3.1 that was used to calculate the interaction strength for a pair of

Rydberg atoms in chapter 3.

In summary, the dipole-dipole coupling between two atoms significantly mod-

ifies the effective energy and lifetime of the pair states. The effect cannot
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be reproduced by considering each atom as a single independent emitter.

Only by including the correlations between the dipoles of each atom can

the superradiant decay and level shift can be explained, making the process

cooperative.

5.2 Superradiance from N -atoms

Extension from a pair of atoms to a system of N -atoms is a complex problem

which has received much attention [35, 36, 152, 153]. In the original paper

on the topic, Dicke [35] assumed an ensemble of N -atoms were localised to

a region small compared to λ, allowing the e ikRi phase-factors of each atom

to tend to unity in the many-body wavefunction. In this approximation, the

decay of N -atoms initially in the excited state |e〉 is analogous to an ensemble

of spin-1/2 particles precessing in a magnetic field. The system starts in a

fully symmetric state |J,M〉 with total angular momentum J = N /2, which
has a projection along z ofM = N /2. As each photon is emitted, the system

decays from M →M − 1 at a rate given by [36]

ΓM→M−1 = (J +M)(J −M + 1)Γ. (5.8)

The initial decay from |J, J〉 to |J, J − 1〉 occurs at rate NΓ, the expected

decay rate for N -atoms. This projects the system into a symmetric super-

position state as any one of the N atoms could have decayed, introducing

correlations between the dipoles in the system. As subsequent photons are

emitted, these correlations cause the rate of spontaneous emission to increase,

reaching a maximum value of approximately N 2/4Γ for the decay of |J, 0〉
when exactly half the atoms have decayed. This is shown schematically in

fig. 5.2 (a).

To illustrate the dynamic effects of this enhanced dephasing, fig. 5.2 (b) shows

the decay of the average magnetisation 〈M(t)〉 for N=10, compared to the
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Figure 5.2: Dicke model for superradiant emission. (a) Decay rate between sym-
metric states |J,M〉 occurs at rate (J + M)(J − M − 1)Γ, reaching a peak of
∼ N 2/4 at M = 0. (b) Average magnetisation 〈M(t)〉 and (c) radiated intensity
I(t) calculated for N = 10 atoms (solid) compared to emission from independent
atoms (dashed), revealing a pulsed emission with a characteristic delay τD marked
as a vertical line.

decay of N independent atoms. This reveals an initial delay followed by rapid

decay at a rate much faster than Γ. The intensity of the emission is related to

I ∝ −d〈M(t)〉/dt [36], which is plotted in fig. 5.2 (c). The superradiant decay

is observed as a pulsed emission, with a peak intensity proportional to N 2

as opposed to an exponentially decaying intensity expected for independent

atoms. The characteristic delay time for the emission is τd ∼ ln(N )/NΓ�
1/Γ [153], getting increasingly shorter as more atoms are included.

For a sample of finite size, it is necessary to include the e ikRi phase fac-

tors. This creates a phase-matching condition in the sample, resulting in

an angular emission pattern that is strongly dependent upon the sample ge-

ometry [153]. These phases can also break the symmetry assumed in the

simple spin-model above, projecting the system into an effective sub-space

with J < N /2, suppressing the superradiant emission. This finite size effect

can be accounted for by replacing Γ with CΓ where C is the cooperativity
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parameter. For a spherical volume with radius R0, this is given by [154]

C =
9 [sin(kR0)− kR0 cos(kR0)]2

(kR0)6
. (5.9)

For the experiments performed on laser cooled atoms in a magneto-optical

trap (MOT) the sample size is around 1 mm, for which C becomes negligible

for n < 20.

Another important effect in finite size samples is the distribution of level

shifts in the system due to variation in the separations Rij between atoms.

This causes the relative phases between the dipoles to evolve at different

rates, which destroys the coherence built up during the collective emission,

turning off the superradiance. This effect is known as van der Waals de-

phasing which is analogous to an inhomogeneous dephasing of the dipoles

[36].

To observe these cooperative effects it is necessary to localise atoms to di-

mensions of λ. For optical transitions, this condition is very challenging, as at

these short ranges alternative dephasing processes such as collisional broad-

ening destroy the coherences between neighbouring dipoles, suppressing the

superradiant emission. Early observations of superradiance were therefore

for transitions in the infrared with λ ∼ 100 µm in HF molecules [155] and

2–9 µm in Na atoms [156].

Rydberg atoms, however, have transitions to close-lying n states that are in

the millimeter or microwave region, so even at modest densities it is pos-

sible to observe superradiance, first demonstrated by Gounand et al. [157]

for the 12S1/2 state in Rb. Superradiance from the original Rydberg state

leads to significant population transfer into close-lying states, which may then

also undergo superradiant decay. This is known as a superradiant cascade,

which is typically detected indirectly through the distribution of population

over a range of n` states rather than detection of the emitted field. Re-
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cent experiments exploring superradiant cascade from ultracold gases have

demonstrated good agreement between calculated and observed population

dynamics [154, 158].

For the low-` Rydberg states, the relative strengths of the broadening Γ12 and

shift ∆12 from eq. 5.6 can be considered in terms of the principal quantum

number using the fact that the spontaneous decay rate, Γ ∝ ω3d2. For an

isolated Rydberg atom, this is dominated by the high-frequency coupling to

the ground-state which has a dipole moment d ∝ n∗−3/2, leading to Γ ∝ n∗−3.

For superradiance however, the relevant decay channel is that of the close-

lying states with ω ∝ n∗−3 and d ∝ n∗2, and hence Γ ∝ n∗−5. Conversely,

the dipole-dipole energy shift scales as ∆12 ∝ d2 ∝ n∗4, so combining these

scalings with the fact that ∆12 dominates in the limit kR < π/2, for high n

states the superradiant broadening can be neglected due to the large van der

Waals dephasing. Therefore, for large n∗, the dipole-dipole interactions can

be treated purely as an energy shift of the multiply excited Rydberg states.

5.3 Dipole blockade

In this high n∗ limit, where the dipole-dipole interactions can be treated as

an energy shift, this leads to a pair of atoms excited to the Rydberg state

|rr〉 experiencing an interaction energy V (R), as discussed in chapter 3. At

large separations the interaction can be neglected, and the atoms behave in-

dependently. For the case of a pair of atoms resonantly excited from |g〉 to
|r〉 at Rabi frequency Ω, shown schematically in fig. 5.3 (a), the atoms will

populate |rr〉 at a rate Ω. If the atoms are now moved closer together, the

interaction causes the |rr〉 state to be detuned from resonance with the laser,

preventing excitation of the |rr〉 state. This process is known as dipole block-

ade [40], and occurs when the interaction shift is larger than the linewidth
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of the |rr〉 state
V (R) > ~×max(Ω, Γr), (5.10)

where the linewidth of the |rr〉 state is determined by the larger of the nat-

ural linewidth Γr or the power-broadened width Ω. As Rydberg states are

relatively long-lived, typically Ω� Γr for experimental parameters.

The condition V (Rb) = ~Ω defines the blockade radius Rb, which for van der

Waals interactions V (R) = C6/R
6 is given by

Rb =
6

√
C6

Ω
, (5.11)

forming a sphere around the Rydberg atom in which only a single Rydberg

excitation is allowed. The blockade mechanism is important as it enables

deterministic creation of singly-excited entangled states, which can be used

for implementing quantum gates [40, 60–62].

For an ensemble of N -atoms localised within a radius R < Rb, the blockade

Figure 5.3: Rydberg dipole blockade (a) Dipole-dipole interactions shift the en-
ergy of state |rr〉 by V(R), detuning the pair-state from resonance with the ex-
citation laser. If V (R) > ~ × max(Ω,Γr) then |rr〉 cannot be populated, known
as dipole-blockade. (b) For N independent atoms the Rydberg population Rabi
flops between 0 and N with frequency Ω. Dipole blockade causes oscillations to a
collective state with a single excitation with an enhanced frequency

√
NΩ.
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mechanism projects the system into the symmetric entangled state

|gN−1r〉 =
1√
N

N∑

i=1

e− ik·Ri |g1, g2, . . . , ri, . . . , gN 〉, (5.12)

as each of the atoms are equally likely to be excited. The dipole matrix

element between |gN 〉 and |gN−1r〉 is now enhanced to give a collective Rabi-

frequency
√
NΩ, instead of the oscillations between 0 and N at rate Ω for the

non-interacting case. This is illustrated in fig. 5.3 (b). If this collective state

can be mapped onto an intermediate excited state the result is cooperative

emission of a single photon [159], allowing enhanced atom-light coupling for

communication of quantum information between atomic ensembles [71].

Early evidence for dipole-blockade in cold atomic samples came indirectly

through a saturation in the resonant excitation of high n states [50–56, 160].

The collective scalings have since been seen from measurements on the co-

herence of a blockaded Rydberg gas [57, 161, 162]. More recently, two groups

have demonstrated the collective scaling for a pair of atoms [58, 59], as well

as realising entanglement [64] and performing a C-NOT gate [65] using two

single atoms loaded in microscopic dipole traps with an atomic separation of

R ∼ 3 µm.
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5.4 Cooperative optical non-linearity

The challenges of observing cooperative behaviour on optical transitions with

k = 2π/λopt make it impossible to directly use dipole blockade on a single

photon transition to realise non-linear photonic devices. However, this limi-

tation can be overcome by mapping the large dipole-dipole interactions from

the microwave dipoles of the Rydberg states with k′ = 2π/λµ onto a strong

optical transition from the ground state using EIT. The result is that the

optical response of a single atom now depends on the surrounding atoms

even though kR� 1, as for the Rydberg transitions k′R� 1.

An alternative proposal has been put forward by Friedler et al. [74] to utilise

dipole-dipole interactions to create an accumulated π phase-shift between

a pair of photons counter-propagating through an EIT slow-light medium,

which can be realised using atoms loaded into a hollow-core fibre [75]. In

such a system the interactions can be treated as a perturbation on the prop-

agation of the photons through the medium. However, in the following it is

the cooperative nature of the dipole blockade that gives rise to a non-linear

optical response.

5.4.1 N -atom model

To explore the effect of dipole blockade on the optical properties of the

medium, it is necessary to develop a many-atom model of the three-level

EIT system introduced in sec. 4.1, where the dipole-dipole interactions are

included as pair-wise couplings between the Rydberg states of each atom,

illustrated in fig. 5.4. For a system of N -atoms, the wavefunction in the

coupled basis is given by

|ΨN 〉 =
N⊗

i

|ψ〉i, (5.13)
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Figure 5.4: Schematic of an N -atom system with dipole-dipole coupling between
the Rydberg states creating an interaction V (Rij) dependent upon the atomic
separation.

where |ψ〉i is the wavefunction of the ith atom. In this basis, the operator Ô(i)

acting on atom i can be expressed in terms of the corresponding operator Ô

in the single-atom basis using

Ô(i) = I
⊗(i−1)
3 ⊗ Ô ⊗ I⊗(N−1)

3 (5.14)

where I3 is the rank-3 identity matrix. The Hamiltonian acting on the system

is

ĤN =
N∑

i

Ĥ (i) +
N∑

i<j

V (Rij)P̂
(i)
rr P̂

(j)
rr , (5.15)

where Ĥ (i) is the Hamiltonian for the atom-light coupling of atom i given

by eq. 4.6, P̂ (i)
rr = |r〉ii〈r| is the projector onto the Rydberg state of atom i

and Rij = |Ri −Rj| is the interatomic spacing between atoms i and j.

The time-evolution of the density matrix σ = |ΨN 〉〈ΨN | is calculated by

solving the optical Bloch equations of eq. 4.15, however the Lindblad operator

now includes a sum over the decay channels m for each atom i,

L(σ) = −1

2

∑

i,m

(C(i)†
m C(i)

m σ + σC(i)†
m C(i)

m ) +
∑

i,m

C(i)
m σC

(i)†
m , (5.16)

where the operators C(i)
m can be obtained from the operators in eq. 5.9. Sim-
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ilarly, the operator Ld for the laser-induced dephasing is modified to include

the dephasing of each atom. As this dephasing term is not of the Lindblad

form, it can only be generalised with the use of a Hadamard product2,

Ld(σ) = −γ ◦ σ, (5.17)

where the matrix γ contains the contributions from the linewidth of the

lasers, defined as

γ =
N∑

i

J
⊗(i−1)
3 ⊗




0 γp γrel

γp 0 γc

γrel γc 0


⊗ J

⊗(N−1)
3 , (5.18)

where J3 is the rank-3 unit matrix (matrix of ones).

Combining these equations together the density matrix can be propagated

in time, from which the complex susceptibility at the probe frequency ωp is

obtained by taking the trace over the dipole operators of all the atoms in the

system,

χ(ωp) = − 2ρd2
eg

ε0~Ωp

Tr{σ
N∑

i

π̂−(i)}. (5.19)

5.4.2 Two-atom model

The simplest system to consider is the case of two-atoms, shown in fig. 5.5.

For large R the interactions can be neglected, and on resonance each of the

atoms evolve into the single-atom dark state |D〉 of eq. 4.24b, resulting in

the product state

|D2〉 = |D〉1 ⊗ |D〉2 = (cos θ|g〉1 − sin θ|r〉1)⊗ (cos θ|g〉2 − sin θ|r〉2)

= cos2 θ|gg〉 − sin θ cos θ(|gr〉+ |rg〉) + sin2 θ|rr〉,
(5.20)

2 The Hadamard product defines element-wise multiplication of matrices A and B such that
[A ◦B]i,j = [A]i,j · [B]i,j (see e.g. [163], p205)
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Figure 5.5: Two-atom model, showing the dipole-dipole interaction V (R) acts as a
detuning on the |rr〉 state.

which is independent of the intermediate state and corresponds to perfect

transparency on resonance. As the atoms move closer together, the dipole-

dipole interactions act to detune the |rr〉 state by energy V (R), which mod-

ifies the dark state. For V (R) > γEIT, where γEIT is the width of the EIT

resonance, the |rr〉 state is blockaded. Diagonalisation of HN gives a new

zero-energy eigenstate [61]

|Ψ〉 =
(cos2 θ − sin2 θ)|gg〉 − sin θ cos θ(|gr〉+ |rg〉) + sin2 θ|ee〉√

cos4 θ + 2 sin4 θ
. (5.21)

This new eigenvector is no longer a simple product state, but instead repre-

sents an entangled state where the intermediate pair state |ee〉 is admixed in

place of the Rydberg pair-state. Recalling that tan θ = Ωp/Ωc, in the weak

probe limit |Ψ〉 = |gg〉 which is equivalent to |D2〉, resulting in transparency

on resonance. As Ωp is increased however, the relative contribution of |ee〉
increases, which resonantly couples to the probe laser. Thus |Ψ〉 is no longer

a dark state outside of the weak-probe limit.

This eigenstate picture neglects the effect of the radiative decay of state |e〉,
however the true steady-state of the medium can be obtained by solving

the optical Bloch equations on the two-photon resonance and extracting the

populations from the diagonal elements of the density matrix. Figure 5.6

shows the steady-state solutions calculated using parameters Ωp = Ωc =
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Figure 5.6: Two-atom dark state populations calculated for Ωp = Ωc = Γe/2. (a)
Non-interacting case (V = 0) gives a product state with each atom in the dark
state |D〉. (b) Strong interactions (V = 2 Γe) blockade population of |rr〉, causing
population of the radiative |e〉 state. Note unlike the modified eigenstate of (5.21),
|ee〉 is not populated.

Γe/2 (θ = π/4) for (a) V (R) = 0 and (b) V (R) = 2 Γe. In the non-interacting

case, the system evolves into the dark state |D2〉 with equal population of

|g〉 and |r〉 due to the choice of mixing angle. In (b) the blockade effect

is evident, as there is no population of state |rr〉. Futhermore, there is

also no population in |ee〉 as predicted by |Ψ〉. This is because |ee〉 decays
rapidly, leaking population into states |eg〉, |ge〉, |er〉 and |re〉 which each have

approximately 5 % population for these parameters. The interpretation of

this state is as follows; if one of the atoms is excited into the |g〉 − |r〉 dark
state, then the other atom has its |r〉 state detuned by V (R) > Ωc, meaning

it no longer sees the coupling laser. Instead, it now resonantly couples to

the probe laser and cycles between states |g〉 and |e〉, resulting in population

of |gg〉, |gr〉, |ge〉 and |re〉. As either atom can be excited to the Rydberg

state, this leads to an entangled state which can be seen from the symmetric

populations of each atom in (b).

Adding an extra atom to the system gives the three-atom model shown in

fig. 5.7, which has 27 coupled energy levels. The dipole-dipole interactions

are now dependent on the geometry of the atoms, however to see the effect

of blockade it is sufficient to assume V (R12) = V (R13) = V (R23) = V . As
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Figure 5.7: Three-atom model assuming an equilateral geometry where the dipole
interaction V (R12) = V (R13) = V (R23) = V .

before the steady-state populations can be found from the density matrix,

which reveals population of states |ggg〉, |gge〉, |ggr〉 and |ger〉 and their

respective permutations. This is expected from the analysis of the state for

two-atoms; the blockade means only a single atom can contribute to the dark

state, whilst the remaining atoms resonantly scatter on the two-level probe

transition.

As well as considering the effect of blockade on resonance, it is also necessary

to consider the shape of the spectrum. Figure 5.8 shows the real and imagi-

nary parts of the complex susceptibility as a function of probe laser detuning

for 1, 2 and 3 atoms compared to the probe-only susceptibility. This reveals

a suppression in the resonant transmission due to the blockade, associated

with a concomitant modification the dispersive lineshape in χR. An interest-

ing feature of the susceptibility is that there is no shift or broadening of the

two photon resonance, which may be expected as the interactions cause a

detuning of the Rydberg pair states. This is because the shifted pair states,

known as anti-blockade states, become resonant at ∆p = V (R)/2 which is in

the wings of the two-photon resonance when the blockade condition is met.
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Figure 5.8: Resonant susceptibility for Ωp = Γe/4, Ωc = Γe/2 and V = 2 Γe, with
the probe-only susceptibility plotted as a dashed line. χ is scaled relative to the
weak, probe-only resonant susceptibility χ̃ = 2ρd2

eg/ε0~Γe.

5.4.3 Cooperative optical non-linearity

The effect of dipole blockade is therefore to change the optical properties of

the medium from being perfectly transparent on the EIT resonance to having

all but one of the atoms resonantly coupled to the probe beam, suppressing

the transmission as the probe power is increased from the weak probe regime.

Figure 5.9 shows the susceptibility as a function of Ωp for a blockade sphere of

1–3 atoms calculated both on resonance and for the dispersive feature. From

the resonant susceptibility plotted in (a), it is clear to see the resulting optical

non-linearity in the system, which begins to saturate around Ωp = 0.3 Γe as

the two level transition becomes power broadened. The important feature

is that the optical non-linearity now depends not only on the probe electric

field, but also the number of atoms per blockade sphere. This makes it a

cooperative effect, where the optical response of a single atom depends on

the surrounding atoms, resulting in the single atom susceptibility χ ∝ Nb,

where Nb is the number of atoms per blockade sphere. Observation of this

non-linear density scaling is important as it is this that makes it different to

an ordinary non-linear medium.
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Figure 5.9: Cooperative non-linearity. (a) Resonant susceptibility calculated for
Ωc = Γe/2, showing saturation above Ωp = 0.3 Γe. Single points represent the
empirical scaling χemp of eq. 5.22. (b) Dispersive non-linearity on the peak of the
refractive index feature. χ is scaled scaled relative to the probe-only susceptibility,
χ̃.

Previously, a cooperative non-linear effect has only been observed in an up-

conversion process [38] requiring large laser intensities to overcome the relax-

ation mechanisms in the system, making it unsuitable for quantum informa-

tion processing. The Rydberg states however allow significant tuneability of

interaction strength through choice of n, enabling the mechanism to be used

for very weak probe powers.

Calculating the optical response for N > 3 is challenging as the Hilbert space

in the coupled basis scales as 3N , rapidly becoming intractable. One method

that can be used to reduce the basis states in a many-body system is to use a

mean-field theory, where each atom is modified by the mean interaction of all

surrounding atoms. This approach has been used successfully to reproduce

excitation suppression due to blockade in cold gases [50, 68, 164]. For the EIT

system however, it cannot reproduce the spectrum as the mean interaction

detunes the |r〉 states of the atoms, causing the lineshape to shift and broaden

[165] - an effect not observed in the full many-body model.

In the limit that the probe is strong enough to saturate the non-linearity,

an empirical scaling can be introduced to estimate the susceptibility of a



Chapter 5. Cooperative Phenomena 70

blockade with Nb atoms,

χemp =
1

Nb

χ1 +
(Nb − 1)

Nb

χ
( Ωc=0)
1 , (5.22)

where χ1 denotes the susceptibility of a single non-interacting atom. This

scaling arises from the fact only a single atom can contribute to the dark state,

whilst Nb− 1 atoms resonantly absorb light like an effective two-level atom.

This scaling is plotted on fig. 5.9 (a) as solid markers for Ωp = 0.5 Γe, showing

approximate agreement with the exact calculation which allows estimation

of the maximum suppression in the system. Thus for large Nb it should be

possible to suppress the transmission to the probe-only value.

Recently a Monte-Carlo method has been developed by Ates et al. to cal-

culate the steady-state density matrix for very large atom numbers [86]. In

this work, the authors show that the total susceptibility on resonance scales

quadratically with atomic density. This non-linear density scaling represents

clear evidence of a cooperative effect, rather than simply a collective scaling.

5.5 Summary

Cooperative phenomena arise when the interaction between the dipole of each

atom and the electric field of the surrounding atoms dominates, requiring

kR < 1. For the low n Rydberg states, this is manifested as superradiance,

with the decay reaching a maximum rate of N 2 Γr when half the atoms have

decayed. At high n, the energy shift dominates over enhanced dephasing,

leading to the dipole blockade which prevents creation of more than a single

Rydberg excitation within a radius Rb = 6
√
C6/Ω. This deterministic process

is important for applications in quantum information processing, as it allows

atomic quantum gates to be implemented. For the case of EIT, blockade

modifies the dark state, suppressing the transmission on resonance. This

creates a cooperative optical non-linearity in which the optical response of a
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single atom is modified by the neighbouring atoms, resulting in a non-linear

density scaling in the single atom response. In the experiments presented

in chapter 7 the non-linear density scaling and optical non-linearity will be

tested for these signatures of cooperativity.
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Chapter 6

Experiment Setup

There are two requirements for experimental observation of cooperative op-

tical effects in Rydberg EIT due to dipole-dipole interactions. Firstly, a high

atomic density is required to ensure a large optical depth on the probe transi-

tion whilst meeting the condition k′R < 1, where k′ is the wave-vector for the

Rydberg dipole; and secondly, the dipole-dipole interactions must dominate

over any other dephasing mechanisms in the system such as collisional broad-

ening or the Doppler shift. The Doppler effect is important as atoms moving

at different velocities observe different laser frequencies. This can shift the

blockaded-states back into resonance, leading to a significant reduction of the

blockade size for room temperature samples [76].

Both of these requirements can be met using the techniques of laser cooling

[130], with which alkali-metal atoms can easily be cooled to temperatures

around 100 µK with densities in the region of 1010 cm−3. At this density, the

average interatomic separation 〈R〉 ∼ ρ−1/3 ∼ 2 µm, smaller than the typical

blockade radius of Rb ∼ 5 µm. In this regime the sample can be treated

as a frozen Rydberg gas [41, 166] where the Rydberg interactions represent

the largest energy scale in the system, allowing studies of the excitation

dynamics e.g. resonant energy transfer [41–44], mechanical effects of dipole-

dipole interactions [45, 46], dipole blockade [50–56, 58, 59, 160] and formation

73



Chapter 6. Experiment Setup 74

of long-range molecules [116, 167]. These ultra-cold samples are also ideal

for precision measurements of quantum defects [92, 93, 168] and lifetimes

[169, 170] of the Rydberg states.

The experiments presented in this thesis are all performed using the setup

shown schematically in fig. 9.3. Atoms are cooled using three pairs of retro-

reflected, counter propagating beams which intersect at the centre of a Kim-

ball Physics spherical octagon vacuum chamber. This chamber was originally

designed for a CO2 lattice experiment [171], and therefore has no field plates

for controlling electric fields in the chamber, nor any form of ion detection.

The chamber is sealed and pumped down to a pressure below 10−10 torr as

measured using an ion gauge, with rubidium dispensers mounted inside to

provide a source of atoms. The probe beam is aligned through the centre

of the atom cloud, monitoring the transmission using a photodiode on the

opposite side of the chamber. Atoms are prepared using an optical pumping

beam which counter-propagates with the probe beam at a shallow angle. The

EIT coupling laser is also aligned to counter-propagate with the probe beam.

Figure 6.1: Schematic of experiment setup. Three pairs of orthogonal beams over-
lap at the centre of a vacuum chamber which is coaxial with a pair of magnetic
coils in an anti-Helmholtz configuration to form a magneto-optical trap (MOT)
that slows and traps atoms. Following collection of a dense cold atomic sample,
the cooling light is extinguished and the atoms are optically pumped, then probed
using counter propagating probe and coupling lasers which are overlapped using a
dichroic mirror (DM).
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A detailed description of each stage is presented below.

6.1 Laser Cooling

The starting point of any experiment with cold atoms is typically a magneto-

optical trap (MOT) [172] both to cool the atoms and provide 3D confinement,

resulting in a cold dense gas. Full details can be found in atomic physics text-

books e.g. [137], however a brief description follows. The MOT consists of a

pair of magnetic coils in an anti-Helmholtz configuration to create a magnetic

quadrupole field. At the origin the field is zero, however the field gradient is

linear in all directions. Three orthogonal pairs of counter-propagating circu-

larly polarised laser beams intersect the centre of the coils, aligned so that

the vertical beams are coaxial with the coils. The laser light is red-detuned

from the atomic transition (ω < ω0), such that as atoms move out from the

origin the Zeeman-shift due to the magnetic field brings the atoms closer to

resonance with the laser field propagating in the opposite direction. This

creates a position dependent restoring force which returns the atom to the

centre of the beams, trapping the atoms. Cooling occurs due to the Doppler

effect, which causes the atom to be shifted closer to resonance with the laser

counter-propagating with the direction of motion. This results in a frictional

force proportional to atomic velocity that slows the atoms. Combining these

mechanisms, atoms can theoretically be cooled down to the Doppler limited

temperature of TD = ~Γe/2kB, however in practise a MOT can get well below

this limit for atoms with hyperfine structure [173].

6.1.1 Cooling Lasers

Rubidium has two natural isotopes, 85Rb and 87Rb, with nuclear spins I of

5/2 and 3/2 respectively. The corresponding energy levels for the D2 line

from 5s 2S1/2 to 5p 2P3/2 are shown in fig. 6.2 (a), with the hyperfine splitting
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energies taken from D. Steck [174, 175]. Cooling is performed using the closed

transition from F = I+1/2 to F ′ = I+3/2 (C) at 780.24 nm, however some

atoms can fall into the F = I − 1/2 lower hyperfine ground-state due to an

off-resonant excitation of F ′ = I + 1/2. It is therefore necessary to use a

repump laser (R) on the transition from F = I − 1/2 to F ′ = I + 1/2 to

prevent atoms being lost from the cooling cycle.

The cooling light is derived from a Toptica DL-100-MOD diode laser which

is stabilised to the closed transition using modulation transfer spectroscopy

[176]. The lock setup is shown schematically in fig. 6.2 (b), where orthogo-

nally polarised pump and probe beams counter-propagate through an atomic

vapour cell. A homebuilt electro-optic modulator (EOM) is used to add side-

bands onto the pump laser at a frequency of 9.5 MHz with a modulation index

of 0.2. Inside the cell, only atoms with a velocity component along the axis of

light propagation with |kv| < Γe interact with both pump and probe lasers,

leading to a four-wave mixing process in which the sidebands are transferred

onto the probe laser on the F = I+1/2 to F ′ = I+3/2 resonance. The probe

Figure 6.2: Laser Cooling (a) Energy levels of rubidium D2-line [174, 175] showing
cooling transition (C) from 5s 2S1/2 F = I+1/2 to 5p 2P3/2 F

′ = I+3/2 and repump
transition (R) from F = I − 1/2 to F ′ = I + 1/2. (b) Schematic of modulation
transfer spectroscopy used for locking cooling laser. The probe and pump beams
have powers of 500 µW and 1.2 mW respectively. (c) Error-signal obtained after
demodulation. The large dispersive features correspond to the F ′ = I+1/2 cooling
transition for each isotope.
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beam is detected using a homebuilt photodiode with a 15 MHz frequency re-

sponse (see appendix A.1). This gives the usual saturation spectroscopy

signal, however when demodulated and low-pass filtered at 50 kHz gives a

narrow sub-Doppler dispersion feature on a zero-background, removing off-

set drift. Example error-signals are shown in fig. 6.2 (c). A Toptica FALC

module is used to lock the laser, with fast-current feedback via a FET on

the diode and slow correction through the grating piezo. Using beat-note

measurements with two different lasers, the feedback was optimised to give

a Lorentzian laser linewidth of γp/2π = 300 kHz when averaging over a 20 s

period. Light for the repump transition is derived from a homebuilt diode

laser, which is stabilised using dichroic-atomic-vapour laser locking (DAVLL)

[177]. This setup is described in §5.3.1 of [171]. Using these techniques both

lasers can be locked to either isotope.

6.1.2 MOT

The repump and cooling light are combined on a polarising beam splitter

(PBS) with orthogonal polarisations and coupled into a single mode polar-

isation maintaining fibre which delivers light to the vacuum chamber. The

MOT light is then expanded to a 1/e2 radius of 9 mm and separated on PBS

cubes into three beams that pass orthogonally through the chamber to over-

lap in the centre, as shown in fig. 9.3. These are then retro-reflected after

the chamber to create counter-propagating beams with orthogonal circular

polarisations. Each beam has 8.7 mW of cooling light, however, due to the

orthogonal polarisation of the repump light coupled into the fibre, the 6 mW

of repump light is distributed unequally among the three beam pairs. A pair

of water-cooled coils are mounted coaxially onto the vacuum chamber that

create a quadrupole field with a calculated gradient of 0.136 G/cm/A at the

centre, which agrees well with the current required for trapping in sec. 6.2.

Additionally, three pairs of rectangular bias coils are arranged around the
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chamber to cancel the offset magnetic field inside the chamber. Atoms are

loaded into the MOT from the background vapour provided from dispensers

(SAES Getters) which contain both isotopes in their natural abundance.

Once atoms are trapped in the MOT, it is necessary to characterise the atom

cloud to find the optimum parameters for cooling.

To determine the temperature and number of atoms in the MOT, a calibrated

IR CCD camera (JAI CV-M50) is used to perform fluorescence imaging. This

is setup with ×4.6 magnification to give an effective field of view of 5×5 mm,

allowing imaging after expansion times of up to 40 ms. The atom number is

calculated from summing over the pixel counts using

Natom =
κ

(Ω/4π)Γscτ

∑

px

cpx, (6.1)

where κ is the camera quantum efficiency, Γsc is the photon scattering rate for

each atom, Ω/4π is the collection efficiency and τ is the imaging duration.

The quantum efficiency was measured by pulsing a probe beam of known

power onto the CCD and fitting the pixel sum as a function of incident

photon number to obtain κ = 62 photons/count. The collection efficiency

of the imaging lens is Ω/4π ' r2/4d2, where r = 13 mm is the lens radius

and d = 200 mm the working distance, giving an efficiency of 0.1%. Finally,

the scattering rate is calculated from the excited-state probability multiplied

by the decay rate Γe, which using the steady-state excited state population

(eq. 4.16a) gives

Γsc = Γeσ
ss
ee =

Γe
2

I/Isat

1 + I/Isat + (2 ∆p/Γe)2
, (6.2)

where the relation Ωp = Γe
√
I/2Isat has been used and Isat is the saturation

intensity, defined as [137]

Isat ≡
2π~Γec

3λ3
. (6.3)

Using the decay rate from 5P3/2 of Γe/2π = 6.065 MHz [178] gives Isat =
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1.6 mW/cm2. This is only correct for the closed σ+-transition from (F = I+

1/2,mF = F ) to (F ′ = I+3/2,m′F = F ′), however in the MOT the atoms are

distributed unevenly over a range of mF states [179]. An effective saturation

intensity is used instead, averaging over the transition strengths from all

possible mF levels1 to give 3.9 mW/cm2 for 85Rb [174] and 3.6 mW/cm2 for
87Rb [175].

The temperature of the atoms can be found using time of flight imaging [181],

allowing the atoms to expand for a fixed time and fitting a Gaussian profile

to the cloud to find the radius, σr, which is defined as the standard deviation

of the Gaussian profile. Extracting the radius for a range of flight times ∆t,

the temperature T is then determined by fitting to the function

σr(∆t)
2 = σr(0)2 +

kBT

m
∆t2, (6.4)

which gives both the initial cloud width and the temperature. To avoid errors

in the cloud size due to re-scattering of light at high densities, the atoms are

imaged off-resonance by pulsing on the MOT beams for 100 µs at a detuning

of ∆p = −Γe for I = 1.5Isat to give Γsc/2π = 1 MHz.

Using the two diagnostics of atom number and temperature, the MOT pa-

rameters were optimised to give the greatest number of atoms, and hence

optical depth along the probe laser. Data taken for a 5 s load time at a gra-

dient of 13.5 G/cm are shown in fig. 6.3 as a function of detuning, in units of

the decay rate of the 5P3/2 state Γe. The coldest temperatures are obtained

at large detuning, giving cooling below the Doppler limit TD = 140 µK, how-

ever at the cost of atom number. The MOT detuning was therefore set at

∆ = −3.5Γ, with a temperature of 150 µK.
1 A useful discussion of this is presented in §4.1 of [180].
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Figure 6.3: MOT atom number and temperature as a function of detuning for a
5 s load time.

6.1.3 Optical Molasses

Once the quadrupole field of the MOT is turned off the atoms are cooled by

the radiation pressure of the MOT beams, known as an optical molasses. In

the molasses, temperatures far below the Doppler limit are achieved for multi-

level atoms due to the spatially dependent polarisation gradients formed by

the interference of the circularly polarised beams at the centre of the trap

[182]. The temperature obtained in the molasses is related to the dimension-

less light-shift parameter Ω2/|∆|Γ by [179]

kBT

~Γ
= Cσ+σ−

Ω2

|∆|Γ + C0, (6.5)

where Ω is the Rabi frequency calculated using the intensity per beam. The

minimum temperature achievable in sub-Doppler cooling is limited by the in-

tensity of the light becoming so weak that the atom doesn’t experience a po-

larisation gradient. This causes the linear relationship between temperature

and light-shift to break down below Ω2/|∆|Γ ' 0.05, and the temperature

approaches that of the MOT.

In order to test the relationship of eq. 6.5 for 87Rb, the molasses was first op-

timised by pulsing the quadrupole MOT field on and off and monitoring the
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cloud expansion on a camera in real time. The 3 bias coils were then set to

give a slow, isotropic expansion of the cloud when the coil is off, correspond-

ing to zero magnetic field at the chamber centre. If the field is not cancelled,

the Zeeman splitting due to the residual field leads to the atom being opti-

cally pumped into a particular mF state and preferentially absorbing light

from one direction, accelerating the atoms out of the molasses beams. Atoms

were then loaded into the MOT for 5 s and the temperature as a function of

molasses duration found. The results for I (per beam)= 3.3 mW/cm2 and

∆ = −10 Γe are presented in figure 6.4 (a), showing that the molasses tem-

perature changes significantly in the first 10 ms then remains approximately

constant. Temperature was then measured after a 20 ms molasses duration

for a variety of values of the light-shift parameter, varying both I and ∆,

with results shown in figure 6.4 (b). Each point represents the mean and

standard error of 8 measurements, which were used to perform a χ2 fit to

give Cσ+σ− = 0.58 ± 0.02. This was calculated using Isat=3.2 mW/cm2 to

allow direct comparison with the results of Wallace et al. [183] who measured

Cσ+σ− = 0.52± 0.03.

Subsequent improvement of the cancellation fields and beam-balance has
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Figure 6.4: (a) Temperature vs. molasses duration for molasses temperature as a
function of dimensionless light shift parameter Ω2/|∆|Γ. Fitting gives Cσ+σ− =
0.58± 0.02
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further reduced the temperature to 20 µK for a 1 s MOT load and 10 ms

molasses duration, resulting in an atom cloud with a Gaussian width of σr

of 0.5–0.7 mm.

6.2 Optical Pumping

As mentioned above, in the MOT and molasses atoms are distributed over

a range of mF states due to their interaction with the light-field. For

the EIT experiments however, the atoms need to be prepared into the

5s 2S1/2 (F = I + 1/2,mF = I + 1/2) (|g〉) stretched state to give the

strongest coupling to the 5p 2P3/2 (F = I + 3/2,mF = I + 3/2) state on the

closed σ+-transition. Preparing the sample in a single state has two other

advantages - firstly, it simplifies numerical modelling of the system as there

is only a single excitation pathway, and secondly, it prevents excitation of

Rydberg pair-states with different mj values, which experience weak or even

zero interaction strengths [111, 184].

Two of the possible optical pumping schemes that can be used to achieve this

are illustrated in fig. 6.5 for 87Rb. The simplest is bright-state pumping (a)

using the σ+ cooling transition to pump population across to the stretched

state. This requires no additional laser frequencies, however once atoms

Figure 6.5: Optical pumping schemes for 87Rb to prepare atoms in (F = 2,mF = 2)
(a) bright-state pumping (b) dark state pumping. The transition-strengths for each
transition are rescaled with respect to the closed transition from (F = 2,mF = 2)
to (F ′ = 3,m′F = 3).
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are pumped into (F = 2,mF = 2) they continue to scatter light from the

pumping laser, leading to heating. Another option is dark state pumping (b)

using σ+ light resonant with F = 1 to F ′ = 2, which makes mF = 2 a dark

state, allowing population to collect in this state without further scattering.

As atoms can decay from F ′ = 2 to the lower hyperfine ground-state it is

also necessary to use repump light with the same polarisation as the pumping

light. Dark-state pumping is therefore a much better method for preparing

the atomic sample, however it is necessary to obtain light resonant on the

F = I + 1/2 to F ′ = F transition.

The frequency of the cooling laser is controlled with a 200 MHz AOM in a

double-pass configuration which is set to lock 440 MHz off-resonance. Ad-

ditional AOMs are then used to control the frequency and intensity of the

probe and MOT light independently. As shown in fig. 6.2 (a), the detun-

ing required for the dark state pumping in 87Rb is 266.7 MHz which can be

achieved using another double-pass AOM at 86.65 MHz, whilst for 85Rb the

energy difference is 120.6 MHz, requiring a double pass at 159.7 MHz. The

transition in 87Rb is more convenient, so the optical pumping is setup for

this isotope.

To measure the efficiency of the optical pumping, the quadrupole coils were

used to create a magnetic trap which has a force along z given by [137]

F = −gFµBmF
d|B|
dz

, (6.6)

where gF is the Landé g-factor [100] and µB is the Bohr magneton. For atoms

withmFgF > 0, known as weak-field seeking states, the atoms can be trapped

when the force is larger than gravity (as first demonstrated for a cooled Na

beam [185]). For atoms in the (F = 2,mF = 2) state mFgF = 1, requiring

a gradient of 15 G/cm to trap them. The other weak-field seeking states are

(F = 2,mF = 1) and (F = 1,mF = −1) which both have mFgF = 1/2,

corresponding to a gradient of 30 G/cm. The maximum gradient for the
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experiment MOT coils is 20 G/cm, ensuring only the desired state can be

trapped.

Light resonant with F = 2 to F ′ = 2 and repump light are combined with

the same linear polarisation on a 50:50 beam splitter and coupled into a

polarisation-maintaining fibre. The fibre output is collimated to a 1/e2 beam

waist of 1.7 mm to ensure the MOT is approximately uniformly illuminated,

and circularly polarised to drive σ+-transitions. The beam is then aligned

into the chamber coaxial to one of the pairs of cancellation coils which pro-

vides a magnetic field along the beam axis to define the quantisation axis

for the atoms. Atoms are loaded into the MOT for 3 s at a gradient of

20 G/cm, which is then turned off for a 10 ms molasses with a peak atom

number of 33 × 106 at 25 µK. Light is extinguished from the chamber for a

period of 1 ms to allow the bias-coil to turn on, after which time the optical

pumping pulse is applied. The quadrupole field is then turned on and the

atoms are then held in the trap for at least 100 ms to let the un-pumped

atoms fall away, and imaged to determine the atom number. The bias field,

pumping duration and beam powers are then optimised by maximising the

atom number after a 100 ms trap time.

Figure 6.6 (a) shows atom number as a function of pumping duration with

400 nW of optical pumping light and 80 µW for the repump transition, with a

bias field of 2 G. For short pumping times the number of atoms in the trap is

significantly enhanced, obtaining approximately eight times more after 1 ms

compared to the unpumped case. This agrees well with the enhancement

expected relative to an isotropic distribution of atoms across the ground-

state hyperfine levels, for which only 1/8th of the population is expected in

the stretched state. Longer pumping times results in a gradual loss due to

atoms in the dark state being able to scatter off-resonantly with the F = 2 to

F ′ = 3 state and decay to un-trapped states. Using the coupling strengths

from fig. 6.5, the average transition-strength is
√

1/5 which gives a mean
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Figure 6.6: Optical pumping into quadrupole trap. (a) Atom number vs optical
pumping duration peaks close to the time required for each atom to scatter an
average of 10 photons, indicated by red dashed line. (b) Atom number vs. hold
time gives a 1/e lifetime of τ = 3.8± 0.3 s, limited by background collisions.

scattering rate of 20 kHz for these parameters. Assuming an average of 10

photons is required to pump the atoms across, this should give a peak number

around 0.5 ms, consistent with the observed pumping rate.

Fixing the pumping duration as 1 ms, the atom number is relatively insen-

sitive to the bias field for fields above 1 G, similarly for the repump power

above 50 µW which is sufficient to repump all of the atoms out of F = 1.

Additional parameters to improve the atom number are the wave-plate angle

and beam alignment to improve the matching to the bias-field. Ideally a

retro-reflected optical pumping beam should be used to prevent any heating

of the atoms, however this was not possible in the experiment setup. Having

optimised the parameters, the atom number is measured as a function of

hold time in the trap, fig. 6.6 (b). Fitting the data gives a 1/e lifetime of

3.8±0.3 s, which is limited by collisions with background Rb atoms. Extrap-

olating the lifetime fit to zero hold time, the peak atom number in the trap

is 23 × 106, corresponding to 70% pumping efficiency. This could be partly

limited by loss of atoms from the trapping volume during the time delay in

which the bias field is switched.
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6.2.1 Ground-state density

Atomic density is an important parameter to vary in the EIT experiments, as

it governs the number of atoms per blockade sphere in the sample. Ballistic

expansion gives a simple method of varying the ground-state density, however

it also changes the length of the sample and allows the atoms to drop under

gravity. These effects makes analysis of the transmission variation due to

the changing density rather than changing optical path length ambiguous.

Instead, the repump laser is used to depump atoms into the lower hyperfine

ground state by turning it off before the end of the optical pumping pulse.

This allows the fraction of atoms in (F = 2,mF = 2) to be changed in a

controlled way whilst keeping the cloud size fixed.

Figure 6.7 (a) shows the variation of cloud radius as a function of the depump

time, which is the time difference between the repump turning off and the end

of the optical pumping pulse. The cloud is imaged without any repump light

to ensure only atoms in F = 2 contribute to the image, which shows the cloud

size remains approximately constant during the depump process. Resonant

transmission data were recorded simultaneously using the probe beam, from
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Figure 6.7: (a) Cloud radius as a function of depump time with mean and standard
error plotted in red, showing the cloud radius is approximately constant. (b)
Transmission data shows the density variation is linear with depump duration.
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which the average density ρ is extracted (see below), which is plotted in (b).

This shows that the density variation is linear with the depump duration.

6.3 Rydberg Excitation

A key component of experiments on Rydberg states is the ability to excite

atoms coherently to the Rydberg state. Using a laser at 297 nm atoms can

be excited directly from the 5S1/2 ground state to the np states, however this

has two significant disadvantages. The first is that the transition strengths

are very low, requiring a high intensity laser; and second the np states do not

have isotropic interactions, and for some states have angles with zero interac-

tion [113]. A more convenient scheme is to perform a two-photon excitation

via 5P3/2 shown in fig. 6.8 (a), where the first photon is at the laser cooling

frequency (780 nm) and a second photon around 480 nm to either ns or nd

states, allowing a choice of repulsive or attractive van der Waals interactions

(as discussed in sec. 3.2).

The upper transition is provided by a Toptica TA-SHG laser, which fre-

quency doubles an amplified 960 nm diode laser to provide around 280 mW

Figure 6.8: (a) Two-photon excitation scheme with a probe laser at 780 nm on
the cooling transition and a coupling laser at 480 nm to the Rydberg states. (b)
EIT lock setup using the same EOM as for the modulation transfer lock described
above. (c) Example error signal.



Chapter 6. Experiment Setup 88

at 480 nm. To stabilise the laser to the Rydberg transition, an EIT lock-

ing scheme developed here in Durham [79] is used, shown schematically in

fig. 6.8 (b). The 480 nm laser acts as the coupling laser, which is focused into

a Rb vapour cell to maximise the Rabi frequency and drives σ±-transitions

dependent on whether an ns or nd state is required. The probe laser is modu-

lated using the same EOM as for the modulation transfer lock, splitting off a

5 µW frequency modulated beam which drives the σ+-transition. The probe

laser counter-propagates with the coupling laser to minimise the Doppler

mismatch which creates a frequency shift equal to (kc − kp)v, where kp,c are

the wave-vectors of the probe and coupling lasers, respectively, and v is the

velocity along the beam axis. A dichroic mirror picks off the probe beam

which is detected using a Hamamatsu C5460 APD module with 20 MHz

bandwidth. This signal is amplified and demodulated, finally using a low-

pass filter to obtain the error signal. The lock signal is generated from the

beat signal between the sidebands and the probe beam that acts as an optical

heterodyne resulting in a line-shape similar to Pound-Drever-Hall stabilisa-

tion to a cavity [186]. The laser is locked to this signal using a Toptica FALC

module to provide fast current modulation to the 960 nm diode and slower

correction using the grating piezo.

An example error signal for the 44D5/2 is shown in fig. 6.8 (c), obtained

using a 15 mW coupling beam, which shows the technique provides dispersive

feature which is much narrower than the 300 MHz Doppler width of the

probe transition. The vapour cell is wound inside a solenoid and mounted

in a mu-metal shield, which allows a Zeeman shift to be applied to lock

on the wings of the EIT resonance if required. One significant advantage

of this locking technique is that the EIT signal is generated from a two-

photon resonance, meaning that the coupling laser is locked relative to the

probe laser. This provides common-mode noise rejection which correlates the

frequency fluctuations of the two lasers. As will be shown later, the resulting

two-photon Lorentzian linewidth is measured from the cold atom EIT to be
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γrel/2π = 100 kHz, a third of the linewidth of the probe laser.

This laser is then coupled into a Schäfter-Kirchhoff (S+K) single-mode po-

larisation maintaing fibre, providing up to 100 mW at the vacuum chamber.

The output coupler has an adjustable collimator (S+K 60FC-4-M12) which

allows the beam waist at the centre of the chamber to be varied from a colli-

mated 1/e2 radius of 0.8 mm to a strongly focus waist around 70 µm to give

a large intensity for coupling to high n-states.

6.4 EIT Experiments

Having obtained a cold and optically pumped atomic ensemble, the opti-

cal pumping light is extinguished and the atoms allowed to expand freely

for 1 ms. The delay ensures the optical pumping AOM is turned off be-

fore the strong 480 nm coupling laser is turned on, preventing any unwanted

Rydberg excitation. As there is no AOM on the coupling laser, this is shut-

tered using a homebuilt mechanical shutter [187] which has a 100 µs switch-

ing time but around 250 µs jitter. Once the coupling laser is on, the EIT

spectroscopy is performed using the two-photon scheme shown schematically

in fig. 6.9 (a), with the probe laser driving the closed σ+-transition from

(F = I + 1/2,mF = F ) to (F ′ = I + 3/2,m′F = F ′). To obtain the EIT

spectra, the probe laser is scanned ±20 MHz across the transition in a time

τ using the frequency ramps shown in fig. 6.9 (b) and (c) whilst keeping

the coupling laser on resonance. Spectroscopy is typically performed us-

ing a negative-positive-negative (NPN) ramp shown in (b), however for the

D-states the scan direction plays an important role, and a positive-negative-

positive (PNP) ramp (c) is also used. Using this double-scan technique allows

the full EIT spectrum to be obtained in a single experiment, whilst giving

information about any loss or hysteresis from the first scan. The frequency

ramp is controlled using an Agilent 33250A arbitrary function generator to
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Figure 6.9: EIT spectroscopy (a) Level scheme showing the |g〉, |e〉 and |r〉 levels
probed in the experiment. (b) Negative-positive-negative (NPN) and (c) positive-
negative-positive (PNP) frequency ramps used to give a double-scan across reso-
nance.

vary the probe AOM frequency smoothly across the transition. Probe trans-

mission is detected using a Hamamatsu C5460 APD module with 20 MHz

bandwidth, which is connected to a Tektronix DPO 4034 digital oscilloscope.

The experiment is computer controlled using LabVIEW to output synchro-

nised digital and analog patterns via a DIO-32HS 32-channel digital output

card and PCI-6713 8-channel analog out card. This is interfaced with the

oscilloscope to allow automated data acquisition, with the probe power being

actively stabilised between experiments using an analog input on the probe

AOM attenuator to remove long term drifts in intensity.

For a given set of parameters, data are recorded in three stages - firstly probe-

only transmission is recorded with no atoms loaded to obtain the background

voltage, averaging over at least 10 repeats. The atoms are then loaded and

probe-only data recorded again, also averaging over at least 10 repeats. Fi-

nally, data are taken with both probe and coupling lasers, recording EIT

spectra as single experiment runs. This is done to prevent averaging out the

narrow transparency feature due to fluctuations in absolute frequency of the

EIT laser lock, or for parameters close to superradiant behaviour where two
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repeats give very different results at intermediate probe powers.

6.5 Data Analysis

The photodiode provides a voltage proportional to the power in the probe

beam, however the parameter of interest is the transmission. As some of

the data are taken at very low probe powers, it is necessary to ensure the

errors due to noise in the signal are dealt with correctly to obtain the correct

transmission. An example dataset is presented in fig. 6.10 (a) which shows

voltages obtained using a 5 nW probe beam for a τ = 0.96 ms scan time.

The background and absorption traces are both taken as 10 shot averages,

whilst the EIT data (red) is a single run, offset vertically by 1 mV for clarity.

The background probe trace is not flat due to the slight variation in fibre-

coupling efficiency as the frequency of the double-pass probe AOM is scanned.

Powers are therefore measured at zero detuning, to give the power on the EIT

resonance.

Due to the poor signal to noise ratio, directly dividing the absorption voltage
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Figure 6.10: Photodiode data for 5 nW probe beam. (a) Background and absorp-
tion traces are 10 shot averages, whilst the EIT (red) is a single experiment run
vertically offset for clarity by 1 mV. (b) Polynomial fit to the background data,
with fit residuals.
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data by the background data yields a very noisy transmission signal. Instead,

the background data are used to obtain the mean and standard deviation

of the intrinsic offset voltage (Voffs, σoffs) of the photodiode using the data

either side of the probe pulse. The pulse is then divided at τ/2 = 0.48 ms

to separate the two scans across resonance. Each of the datasets is then

fitted using a least-squares minimisation to a 10th-order polynomial, shown

in fig. 6.10 (b). Subtracting the fit from the data, the residuals are used

to determine the standard deviation of the fit, σfit. As the noise during the

background comes from the photodiode noise (σoffs) and the laser (σbg), then

providing they are uncorrelated the noise terms will add in quadrature to

give the standard-deviation in the fit. The variance in the background is

then given by

σ2
bg = σ2

fit − σ2
offs. (6.7)

The absorption signal, Vabs, is converted to transmission T using

T (Vatoms;Vbg;Voffs) =

(
Vatoms − Voffs

Vbg − Voffs

)
, (6.8)

where Vbg is replaced by the best-fit polynomial that was fit to the back-

ground. The uncertainty in the transmission, σT , can be calculated from

[188]

σ2
T = {T (Vatoms + σatoms;Vbg;Voffs)− T0}2 + {T (Vatoms;Vbg + σoffs;Voffs)− T0}2

+ {T (Vatoms;Vbg;Voffs + σoffs)− T0}2 ,

(6.9)

where T0 ≡ T (Vatoms;Vbg;Voffs) and the uncertainty in the absorption voltage

σatoms is assumed to be the same as the background uncertainty σbg. Data are

then binned in 10-point windows and a weighted average of each bin taken

to smooth the data and improve the signal to noise.

Finally, a Levenberg-Marquardt algorithm is used to perform a χ2-fit of the
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absorption data to the theoretical two-level transmission profile obtained by

combining equations 4.23a, 4.16b and 4.18 to give

T = exp

(
−kαd

2
eg

ε0~
γeg

Ω2
p/2 + γ2

eg + ∆2
p

)
, (6.10)

where α ≡ ρ`, ρ the density, ` the optical path length through the cloud, ∆p

and γeg are fit parameters and the dipole matrix element for the closed tran-

sition can be calculated using eq. 2.16 combined with the reduced matrix ele-

ment 〈5S1/2||er||5P3/2〉 = 5.177 ea0 [189, 190] to give deg =
√

1/3×5.177 ea0.

An example fit to the data from above is shown in fig. 6.11 (a), which shows

a good fit to the data set with a reduced chi-squared value of χ2
ν = 1.1 and

structureless residuals. The effective linear density ρ along the probe beam

is then calculated from the measured cloud size ` = 2σr from the time of

flight imaging to give ρ = α/`, with uncertainty calculated from the stan-

dard error. This is how the density measurements are obtained in fig. 6.7 (b)

above.

A similar procedure is applied to the EIT spectra, however as the traces are

recorded as a single experiment rather than as an average, it is necessary to

increase the size of the errorbar in eq. 6.9 to give σatoms =
√
Nσbg, where

0 0.12 0.24 0.36 0.48

−3

0

3

σ

Time (ms)

−20 −10 0 10 20

0

0.2

0.4

0.6

0.8

1

T
ra

n
sm

is
si
o
n

∆p/2π (MHz)(a)

χ2
ν = 1.1

0 0.12 0.24 0.36 0.48

−3

0

3

σ

Time (ms)

−20 −10 0 10 20

0

0.2

0.4

0.6

0.8

1

T
ra

n
sm

is
si
o
n

∆p/2π (MHz)(b)

χ2
ν = 1.0

Figure 6.11: Data Fitting. (a) Fit to probe-only absorption data using eq. 6.10 (b)
EIT transmission data fit using eq. 6.11. Both fits are well conditioned with struc-
tureless residuals.
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N is the number of averages used for the background data. Data are then

fit using the weak-probe EIT transmission calculated using the susceptibility

from eq. 4.17

T = exp

(
−kαd

2
eg

ε0~
Im

{
iγgr + ( ∆p + ∆c)

(γeg − i ∆p)(γgr − i( ∆p + ∆c)) + Ωc/42

})
,

(6.11)

to obtain the parameters γgr, Ωc and ∆c, where α, ∆p and γeg are con-

strained from the absorption fit. An example is shown in fig. 6.11 (b), which

has larger errorbars than (a) due to the
√
N factor. As before, the fit shows

very good agreement with the data, giving χ2
ν = 1.0 with structureless resid-

uals even around the EIT resonance. The weak-probe formula is therefore

an excellent description of the observed spectra, validating the underlying

assumption of each atom giving an independent optical response.

A number of values are extracted from these fit parameters. Firstly, for data

in the weak probe regime the relative two-photon linewidth can be calculated

from γrel = γgr − Γr/2, and similarly the effective probe laser linewidth can

be found from γp = γge− Γe/2, which typically agrees well with the measured

value of 300 kHz. Secondly, the position of the two-photon laser linewidth

can be used to determine the transmission on resonance, highlighted as the

blue datapoint on the inset of (b).

6.6 Summary

Using the techniques of laser cooling and optical pumping, the atomic sample

can be prepared in a well defined initial state from which EIT spectroscopy

can be performed. From the transmission spectra, properties such as detun-

ings and linewidths are obtained which give an insight into the cooperative

phenomena arising due to the strong dipole-dipole interactions between Ry-

dberg atoms. These cooperative effects will be the subject of the following

chapter.



Chapter 7

Results

Rydberg EIT in thermal samples has already demonstrated coherent optical

detection [77] and excitation [76] of the Rydberg states. In addition, the

large polarisability of the Rydberg states have been exploited to control the

properties of the probe field to create an optical switch [82] and a giant

electro-optic effect that is 106 times larger than a typical nitrobenzene Kerr

lens [191]. However, observation of dipole blockade in room temperature

samples is challenging.

Using the apparatus described in the previous chapter, EIT experiments are

performed on a cold atomic sample to look for evidence of the cooperative

effects arising from the dipole-dipole interactions. Data are presented in the

following sections for a range of principal quantum numbers, demonstrating

two distinct regimes of behaviour. At low n (. 26), the interactions are weak

and the superradiant broadening dominates over the level shifts. For the high

n states (∼ 60) the ensemble is blockaded, and the resulting non-linearity is

characterised as a function of probe power and density for both attractive

and repulsive interactions.

95
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7.1 Low-n EIT

For the initial experiments, spectroscopy is performed on the low-n states

(n . 26) to demonstrate EIT as a non-destructive probe of the Rydberg en-

ergy states. The probe beam is collimated and passed through an aperture

to give a beam of approximately uniform intensity with a radius of 0.75 mm,

ensuring the entire atom cloud is illuminated. The coupling laser was colli-

mated to a 1/e2 waist of 0.8 mm with a peak power of 100 mW. 85Rb atoms

are loaded in the MOT for 5 s to maximise the cloud size, and hence op-

tical depth along the probe beam, giving 108 atoms with a peak density of

1010 cm−3 and a cloud with a radius of σr = 0.7 mm. Following the mo-

lasses, atoms are prepared in the (F = 3,mF = 3) ground state using bright

state optical pumping with the probe laser for a pulse length of 10-100 µs

dependent upon the probe power. The atoms are then probed using an NPN

probe laser frequency sweep in a period of 960 µs.

7.1.1 Weak probe spectroscopy

Figure 7.1 shows exemplary transmission spectra for the 22D5/2 Rydberg

state recorded using 75 mW of coupling laser power at a range of probe pow-

ers. Considering first the weak-probe spectrum for Ωp/2π = 0.3 MHz, this

shows two symmetric scans with a narrow transparency window appearing

in the centre of the 5P3/2 F
′ = 4 absorption feature. These data represent a

single run of the experiment from which it is possible to determine both the

dephasing rate γgr of the two-photon transition and the effective coupling

Rabi frequency Ωc, with values of 0.30 ± 0.05 and 3.6 ± 0.2(×2π) MHz re-

spectively. The lifetime of the 22D5/2 state is 8 µs [192] corresponding to a

natural linewidth of Γr/2π = 20 kHz, an order of magnitude less than the

measured dephasing rate. This dephasing, γgr = Γr/2 + γrel, is therefore

dominated by the relative two-photon laser linewidth of 300 kHz, which lim-
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Figure 7.1: EIT data for 22D5/2 for probe powers of 200 nW to 3.6 µW corre-
sponding to Rabi frequencies of Ωp/2π = 0.3–1.5 MHz. At low power a narrow
EIT spectra is observed, however as the probe power is increased a non-linear loss
mechanism is observed.

its the frequency resolution of the EIT to a FWHM of γEIT/2π = 1 MHz for

these parameters. Subsequent improvements of the laser stabilisation have

reduced this relative linewidth to give γrel/2π ∼ 100 kHz, allowing resonances

with FWHM of 600 kHz to be observed for 26D5/2 [80].

EIT therefore provides a non-destructive probe of the Rydberg state ener-

gies without actually transferring population into the Rydberg state. The

sub-MHz resolution is comparable to spectroscopy performed on an isolated

single atom [49] and better than has been obtained previously in other ex-

periments using Rydberg ensembles [54, 162, 168, 193] which suffer from

interaction-induced broadening. Rydberg EIT is thus suitable for applica-

tions in electrometry [82], and has been used to measure electric fields close

to surfaces with a sensitivity of 0.1 V/cm [83].

7.1.2 Strong probe regime

Outside of the weak-probe limit, the Rydberg component of the dark-state

|D〉 increases proportional to∼ Ωp/Ωc. Neglecting the effects of interactions,
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this should result in a reduced absorption in the wings of the EIT resonance

due to population transfer out of the ground state. Returning to the data

presented in fig. 7.1, at high probe power a very asymmetric transmission

profile is observed, which has a pronounced enhancement in transmission

at the start of the two-photon resonance. This feature is associated with

significant loss of atoms, as can be seen by the reduction of optical depth in

the reverse scan across resonance. For this second scan where the density is

lower, there is a recovery of the EIT even for Ωp/2π = 1.5 MHz which has

no distinguishable resonant feature in the first scan.

To explore this effect further, EIT spectra are taken at Ωp/2π = 1.5 MHz for

a range of principal quantum numbers and for different densities. To maintain

a constant value of Ωc across the datasets, the power in the coupling laser

is scaled proportional to n∗−3/2 for each state, matching the scaling of the

transition dipole moment from 5P3/2 to n` (see sec. 2.3.3).

Transmission data for the first scan across the EIT resonance are presented

in fig. 7.2 as a function of (a) quantum number and (b) density. In (a),

the spectra evolve smoothly from a well resolved EIT resonance with slight
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Figure 7.2: (a) EIT spectra for n = 19 − 22D5/2 with uniform coupling Rabi
frequency of Ωp/2π = 1.5 MHz (b) Transmission as a function of density for
26D5/2.
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asymmetry at n = 19D5/2 to the pronounced loss at n = 22D5/2, as seen in

fig. 7.1. This loss is observed consistently for states up to 26D5/2, which can

be seen from the highest density trace in (b). Due to the wavelength range

of the coupling laser it was not possible to excite atoms below n = 19 to

see if the symmetry of the EIT recovers completely. In (b), the atom cloud

is heated by optically pumping for increasing durations on the closed probe

transition before performing the EIT on 26D5/2. This reduces the ground

state density in the system and increases the sample size. Spectra are taken

for fixed probe and coupling laser parameters, revealing almost complete

recovery of the EIT lineshape as the density is reduced. Comparison of (a)

and (b) reveal an almost indistinguishable evolution in the spectra, which

implies a density dependent interaction that causes rapid depopulation of

the Rydberg states. The timescale associated with this loss is much faster

than the expected lifetime of the Rydberg states, which are of the order of

10 µs at 300 K [192].

The non-linear density scaling can be modelled phenomenologically using a

modified set of optical Bloch equations from sec. 4.1, in which an additional

level |S〉 is introduced, shown in fig. 7.3 (a). This state |S〉 acts as a reservoir

state which the Rydberg atoms can decay into, removing them from the

three-level EIT system to consistently reproduce loss. To enable spontaneous

emission from |r〉 into both |S〉 and |e〉, a branching ratio ε is introduced to

control the weighting of these two decay channels. The density dependence is

included in the Lindblad operator L(σ) (eq. 4.9) by setting the operator for

the decay channel from |r〉 into |S〉 equal to Cs′ =
√

(1− ε) Γr + γ′σrr|S〉〈r|,
where the first term accounts for spontaneous emission from |r〉 and the

second term is an interaction-induced loss rate proportional to the Rydberg

state population, σrr. Correspondingly, the decay from |r〉 to |e〉 becomes

Cr =
√
εΓr|e〉〈r|. Finally, the decay from |S〉 back to |g〉 is included using

Cs =
√

ΓS|g〉〈S|. To calculate the transmission, the optical Bloch equations

are solved in time for the full frequency sweep. Values for the coupling



Chapter 7. Results 100

Figure 7.3: Density-dependent loss model. (a) Level scheme for model, with de-
cay into state |S〉 proportional to the Rydberg state density σrr. (b) EIT data
for 19D5/2 for Ωp/2π = 0.5 (red) and 1.5 MHz (blue). Black lines show results
obtained by fitting with four-level model. Below, the populations of the Rydberg
state σrr × 100 (solid) and the population of the reservoir state |S〉 for the strong
probe (dashed) are plotted, showing > 75% population transfer into |S〉.

Rabi frequency, relative linewidths and laser detunings are determined from

fitting the weak probe spectra, and the parameters ε, γ′ and ΓS are found by

comparing the OBE model to the strong probe data.

Figure 7.3 (b) shows EIT spectra for 19D5/2 at Ωp/2π = 0.5 and 1.5 MHz

compared to the best-fit transmission predicted by the OBE model, where

the only parameter changed in the calculation is the probe Rabi frequency.

The model is relatively insensitive to the value of ε, whilst the decay back

into |g〉 must occur very slowly, corresponding to an effective state lifetime

τS > 1 ms. The only significant parameter is therefore γ′, adjusted to give a

peak loss rate of 960× 2π kHz for the strong probe data. The model shows

very good agreement with the experimental traces, reproducing both the

EIT spectra and the loss observed in the second scan. In the lower panel, the

Rydberg atom populations are plotted showing a peak population around

2% due to the rapid loss with increasing population, and showing greater

than 70% of the initial population is transferred into the reservoir state |S〉.
Attempts to fit the higher n-states show good qualitative agreement with the
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lineshape of the first scan requiring an increased value of γ′, however it is

not possible to consistently reproduce the sharp loss feature and predict the

correct density in the second scan.

The model verifies the spectra are caused by a density-dependent loss from

the Rydberg state. Repeating the experiments for nearby S1/2 states yields

very similar results to those of fig. 7.2, showing the effect is independent of

the attractive or repulsive dipole-dipole interactions. This is expected, as the

interaction shift at the average interatomic separation of 2 µm for the 26D5/2

state is only around 250 kHz, too small to observe blockade effects. This weak

dipole interaction also rules out mechanisms such as dipole-dipole energy

transfer [194]. The most likely explanation is therefore superradiant cascade

from the Rydberg state. As discussed in sec. 5.2, the condition for observing

superradiant decay is kR ' 1, where k is the wavevector of the decay channel

and R is the sample size. For the nD5/2 states, the longest wavelength decay

channel is via the (n − 2)F states, which are approximately twice as big as

for decay via the nP states. The decay wavelengths are λDF = 0.35 and

1.0 mm for 19 and 26D5/2 respectively, which is comparable to the MOT

diameter of 1.4 mm for n = 26. The result is a geometric enhancement in

the superradiant decay, with the cooperativity parameter of eq. 5.9 changing

by two orders of magnitude from C = 10−5 to 10−3 from 19 to 26, which can

be seen in the evolution of the spectra for increasing n. Further evidence

for cooperativity is provided by the data in fig. 7.2. In (a) kR is varied by

changing wavelength to give a ratio of 0.57/0.35 = 1.6 between 19D5/2 and

22D5/2, whilst in (b) kR is varied by changing the density by a factor of 4,

and hence R by a ratio of 3
√

4 = 1.6. This scaling explains the similarity

between the two datasets, and shows this superradiant decay mechanism

gives the EIT a reproducible and characteristic lineshape. These findings are

consistent with more detailed studies of superradiance in cold Rydberg gases

for n = 20 − 30 [154, 158], however without ion detection it is not possible

to conclusively verify the population is cascading down to lower n states, as
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the mm-wave emission cannot be detected.

7.1.3 Summary

As discussed previously, the superradiant decay rate scales as n∗−5 compared

to n∗11 for the dipole-dipole interactions. To observe cooperative behaviour

due to the energy shift rather than enhanced broadening, it is therefore nec-

essary to use states with higher n. These initial results, however, show that in

the weak probe regime EIT provides a non-destructive, state-selective probe

of the Rydberg states which may be useful for high resolution spectroscopy.

7.2 High n EIT : Optical pumping and

polarisation

Extending the experiments to higher n states requires tighter focusing of

the coupling laser to give a sufficiently high Rabi frequency to observe EIT.

The probe laser also needs to have a smaller focus than the coupling laser

to ensure the condition Ωc > Ωp is achieved across the whole cloud. Using

the adjustable focal length fibre collimators, the probe and coupling lasers

are therefore focused to 1/e2 radii of 160 and 215 µm respectively. Another

important change in the experiment procedure is to use 87Rb to enable the

dark-state optical pumping scheme to be used, as detailed in sec. 6.2. To illus-

trate the importance of efficient optical pumping, fig. 7.4 (a) shows absorption

data recorded for a 1 s MOT load using a 10 nW probe (Ωp/2π = 0.5 MHz)

polarised to drive either σ+ or σ− transitions. The middle (black) trace shows

transmission for a σ+ probe beam without any optical pumping stage or bias

field, giving a peak absorption of 70%. If the optical pumping step is used

however, the absorption now increases to 85%, with the shift in frequency

due to the 2 G bias field causing a Zeeman shift of the (F = 2,mF = 2)
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Figure 7.4: Importance of optical pumping in EIT spectra. (a) Probe transmission
for σ± transitions with no optical pumping (UP) or dark-state pumping into (F =
2,mF = 2) (OP). (b) 44D5/2 EIT spectra for different coupling laser polarisations
with a σ+ probe beam.

state. If the probe beam polarisation is now reversed to σ−, the absorption

is reduced and Zeeman shifted to negative frequency as atoms are pumped

across to the (F = 2,mF = −2) state during the scan sequence, giving a

kink in the transmission curve at ∆p/2π = −10 MHz. The optical pumping

therefore significantly enhances the optical depth in the cold atom sample,

with all atoms on the closed optical transition. The MOT load time is 1 s in

all subsequent data.

Optical pumping is also important for enhancing the visibility of the EIT

resonance. Figure 7.4 (b) shows EIT on the 44D5/2 state with the probe

beam polarised to drive a σ+ transition, using the same beam power as in

(a). If the atoms are not optically pumped, the σ+ coupling laser gives a

broad transmission window on resonance with around 20% change in trans-

mission. If the atoms are optically pumped however, the EIT is dramatically

enhanced with 90% transmission on resonance. This is because the σ+—

σ+ configuration drives two closed transitions up to the D5/2 state. If the

coupling laser polarisation is reversed to drive the σ− transition, the EIT is

suppressed as the laser is now driving the weakest optical transition. This

trace shows an additional resonance at the same frequency as the un-pumped
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data due to the Zeeman shift of the Rydberg state combined with imperfect

optical pumping, which allows the atoms remaining in mF < 2 to have a

stronger coupling to the Rydberg state. Repeating this for the S1/2 states,

the EIT can be turned off completely when the coupling laser drives a σ+

transition as this violates the selection rule for excitation from 5P3/2.

Having optimised the optical pumping to maximise the optical density and

coupling Rabi frequency, spectra are taken for increasing probe powers to

look for evidence of an optical non-linearity. Results are presented in fig. 7.5

for the 46D5/2 state, which shows narrow EIT spectra at low power but a

sharp loss feature at high power, very similar to the lineshape observed in

fig. 7.1. This shows that even at n = 46 the superradiant loss mechanism is

still dominating over dipole-dipole interactions.
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Figure 7.5: EIT spectra for 46D5/2 showing the characteristic signatures of super-
radiant loss observed at low n.
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7.3 Optical non-linearity due to attractive

interactions

Continuing to focus on the nD5/2 states due to their stronger coupling to the

5P3/2 state relative to nS1/2 (and hence larger transparency on resonance),

states of higher principal quantum number were studied [195]. As discussed

in sec. 3.5, the nD5/2 states experience attractive long-range interactions

which causes atoms to be accelerated together and collide to form ions on a

timescale of around 10 µs [45]. It is therefore necessary to consider temporal

effects due to atomic motion.

7.3.1 Temporal dependence

The motional dynamics only play a role in EIT in the strong probe regime,

when the resonant dark state contains a non-zero Rydberg fraction. Using

the optical Bloch equations for a single, non-interacting atom it is possible

to calculate the probe susceptibility and Rydberg population σrr during the

probe frequency ramp as a function of scan speed. Figure 7.6 (a) shows

the results calculated using Ωp/2π = 0.9 MHz, Ωc/2π = 2.4 MHz and

γrel/2π=200 kHz to match experiment parameters. This illustrates the Ry-

dberg population has an excitation bandwidth comparable to the width of

the EIT transmission window, which for these parameters corresponds to a

FWHM of γEIT/2π = 1.2 MHz. The Rydberg states are therefore popu-

lated even in the wings of the EIT resonance. These results represent the

steady-state solution for the system, being independent of the frequency scan

parameters for scan speeds up to 1 GHz/ms. For higher speeds, the spec-

trum is distorted by transient effects as the probe frequency is changing on a

timescale comparable to the time required to establish the dark state coher-

ence. Thus, in the absence of any motion or interactions the spectra should

be independent of probe scan speeds below this rate.
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Figure 7.6: Temporal effects in EIT. (a) Probe susceptibility (solid line) and Ryd-
berg population (dashed line) calculated using the single-atom OBEs from sec. 4.1
show the Rydberg state population has the same frequency width as the EIT
resonance. The results are independent of scan duration for scan speeds up to
up to 1 GHz/ms. (b) Spectra recorded for 58D5/2 at different scan speeds for
Ωp/2π = 0.9 MHz. For the slowest scan (50 MHz/ms) there is broadening and loss
consistent with ionisation, however the faster scans show no evidence of ionisation
and are consistent.

To test this steady-state assumption for the interacting system, transmission

is recorded for the 58D5/2 state at a density of ρ = 0.9± 0.1× 1010 cm−3 for

a positive scan across the EIT resonance at a range of scan speeds, shown in

fig. 7.6 (b). For the slowest speed of 50 MHz/ms, the laser scans across the

EIT resonance in 60 µs, however the EIT feature is poorly resolved. Instead,

the resonance appears broadened, starting at ∆p/2π = −2 MHz on the edge

of the two-photon transition and showing a rapid change in transmission at

∆p/2π ∼ 0.5 MHz as atoms are lost from the sample, seen from the narrow-

ing of the width of the probe absorption feature. This lineshape is consistent

with initial loss due to ionisation of the close-spaced anti-blockade states

which are red-shifted due to the attractive interactions, and ionise rapidly.

These residual ions lead to a Stark-shift across the cloud, broadening and

suppressing the EIT. The large loss at ∆p/2π ∼ 0.5 MHz occurs approxi-

mately 10 µs after the exact two-photon resonance, which could be due to

the ionisation of the long-range pair states. For higher scan speeds however,

the spectra become symmetric with approximately constant transmission on
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the EIT resonance, showing the ion-induced loss is suppressed. The data

below are all taken using a scan speed of 80 MHz/ms, fast enough that there

is no evidence of loss or asymmetry across the EIT resonance.

7.3.2 EIT suppression

Having set the probe scan speed to avoid any obvious asymmetry or loss

in the scan across resonance, the experiment is repeated at an increased

density of ρ = 1.6±0.2×1010 cm−3 to look for evidence of cooperativity due

to dipole-dipole interactions. The resulting spectra are shown in fig. 7.7 (a),

which shows a strong, symmetric suppression of the resonant transmission

for high probe power as expected from the model in sec. 5.4. Whilst this

appears to show a cooperative suppression, it is necessary to consider the

effect of a small ion fraction within the atom cloud.

Ionisation is an incoherent mechanism that leads to a random distribution of

charges in the system. As the Rydberg states have very large polarisabilities,

these random electric fields can dominate over the quantisation axis provided

by the bias field, projecting the atom into a random |mj| state. Using the

fit parameters from table 2.2, the scalar polarisabilities of the 58D5/2 states

are α0 = −137, 111 and 607 MHz/(V/cm)2 for |mj| = 1/2, 3/2 and 5/2

respectively. These states therefore experience shifts of different sign and

strength, which means the signature of ionisation is not simply a net detuning

of the two-photon resonance. To give an idea of the effect of this mixture

of shifts on the lineshape, a Monte-Carlo model was used to randomly pick

105 atoms from a uniform density distribution and choose a fixed fraction

of them as ions. For each of the remaining atoms, the total electric field

due to all surrounding ions is calculated and the Stark-shift calculated using

a randomly assigned |mj| state. The susceptibility is then found using the

weak-probe formula of eq. 4.20 and the total transmission profile obtained

by summing over the susceptibility of each atom. The results are presented
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Figure 7.7: 58D5/2 EIT Suppression. (a) Transmission data showing strong sup-
pression of the EIT for a strong probe beam as expected from cooperative effects.
(b) Simulated lineshape to model the effects of ionisation. Due to the difference in
sign of α0 for the different |mj | states, the EIT is not shifted but instead suppressed
by ions, with the 0.3% ion fraction comparable to suppression data in (a).

in fig. 7.7 (b), calculated using Ωc/2π = 2.6 MHz and γrel/2π = 200 kHz to

match the values obtained from fitting the weak-probe spectrum in (a). This

shows that for only a 0.3% ion-fraction the EIT is suppressed to a similar

level to that observed in the experiment, making the effect of ionisation and

blockade difficult to distinguish.

One caveat to using this model for comparison to data is that it makes

several assumptions; firstly, that the ions are present for the full duration

of the scan rather than being created dynamically, and secondly, that there

is an even distribution of the atoms into each of the |mj| components. In

addition, the blockade mechanism should prevent excitation of closely-spaced

pair states, suppressing the ion creation during the scan across the two-

photon resonance. For the 58D5/2 mj1 = mj2 = 5/2 pair state the interaction

strength is calculated as C6 = 150 GHz µm6, which for the EIT linewidth

of γEIT/2π = 0.8 MHz corresponds to a blockade radius of Rb ∼ 8 µm.

For atoms with this initial separation, the timescale for collisions is tens of

microseconds, longer than the time taken for the probe laser to scan across

the EIT bandwidth.
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As the ion yield cannot be directly measured for these experiments, it is

not possible to completely discount the effect of ionisation in the observed

suppression data. However, the EIT remains symmetric with no shift or

broadening of the two-photon resonance over a wide range of probe powers,

suggesting the dipole-dipole interactions are the dominant mechanism. It is

still interesting though to consider the non-linear response of the system due

to a process such as ionisation. Whilst this is an incoherent effect, the long-

range Coulomb field could be used to Stark-shift the EIT off-resonance to

create an ion-blockade [164] which could switch the medium from transparent

to opaque, making a sensitive ion detector.

7.3.3 Frequency dependence of the EIT suppression

An additional handle that can be used to assess the importance of dynamical

effects in the EIT is to perform the spectroscopy with a reversed frequency

scan direction. The reason this should make a difference is due to the presence

of the red-detuned anti-blockaded pair states, which correspond to resonant

excitation of atoms with separation smaller than Rb. If these states are

important in the evolution of the EIT at high powers, then the spectra will

show signs of hysteresis dependent upon whether the probe laser scans across

them before or after reaching the two-photon resonance.

Figure 7.8 shows transmission data recorded at probe Rabi frequencies of

Ωp/2π = 0.3 MHz in (a) and (c), and 0.9 MHz in (b) and (d) for NPN and

PNP frequency sweeps across the EIT resonance at a density of 1.6± 0.2×
1010 cm−3. For the weak probe data, symmetric EIT spectra are observed for

both frequency sequences, with no evidence of hysteresis between the first and

second scan across resonance. This symmetry is due to the Rydberg state not

being populated for low probe Rabi frequencies. For the strong probe NPN

transmission spectrum in (b), there is again a significant suppression of the

EIT resonance in the first scan across resonance as seen above in fig. 7.7 (a).
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Figure 7.8: Transmission spectra for probe Rabi frequencies of Ωp/2π = 0.3 MHz
(a), (c) and 0.9 MHz (b), (d). Data are recorded for NPN (a), (b) and PNP (c),
(d) frequency sweeps. The weak probe data of (a) and (c) shows symmetric EIT
spectra with no evidence of hysteresis. For the strong probe data however, the
NPN scan (b) has enhanced suppression relative to the PNP spectrum in (d), with
more loss on the second scan.

However, in the reverse scan the EIT appears to recover almost completely,

with a slight reduction in the optical depth suggesting some atoms have

been lost during the scan sequence. Comparing this with the strong probe

PNP data in (d), this also shows a suppression of the EIT on the first scan

compared to the weak probe regime, though much less than is seen in (b). On

the second scan though, the suppression is significant, with a larger reduction

in the ground state density after the first scan. These figures clearly illustrate

a hysteresis effect in the EIT spectroscopy, with the suppression maximised

when scanning from negative to positive detunings across the two-photon

resonance. An additional parameter that can be found from the data is the

detuning of the two-photon resonance. For each set of parameters, the two-

photon resonance is compared across 20 data sets. No systematic shift is

observed above the ±300 kHz variation measured in the weak probe limit,

which arises due to the fluctuations in the frequency of the coupling laser.

These results show the EIT suppression is sensitive to the scan direction,

with the behaviour consistent with pair excitation. For the PNP sequence
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in (d), the laser scans across the two-photon resonance, with suppression

in the transmission appearing due to blockade of the resonant dark state.

The laser then becomes negatively detuned, and can resonantly excite the

anti-blockaded pair states which ionise, leading to the observed loss in the

second scan. For the NPN data however, the laser is initially red-detuned

and can therefore excite the closely-spaced pair states. These pair states

will ionise rapidly, creating a residual ion fraction in the cloud on the two-

photon resonance which would enhance the suppression of the EIT, as seen

in fig. 7.7 (b). This explains the difference in the first scan for the PNP scan

compared to NPN. Following ionisation, these short-range pairs will be lost

from the probe region, modifying the nearest-neighbour distribution in the

cloud. The result is less atoms in each blockade sphere, which leads to a

recovery of the EIT in the second scan across resonance.

Whilst this analysis is speculative, due to the lack of a time-resolved ion

signal to accompany the transmission spectra, the results are similar to direct

studies of Rydberg population in which the ion yield due to the anti-blockade

states is seen to be enhanced for excitation of the attractive D5/2 states with

a red-detuned laser relative to blue-detuned excitation [45, 121]. Despite the

exact mechanism for the strong suppression seen for the NPN sequence being

unclear, it is still useful to characterise the optical non-linearity resulting from

these interactions.

7.3.4 Optical non-linearity

To make a quantitative measurement of the optical non-linearity arising from

the suppression of the EIT resonance, transmission data are recorded for

a range of probe powers and densities, using a variable depump time to

systematically change the ground-state density without changing the cloud

size, as described in sec. 6.2.1. Spectra are recorded for both NPN and PNP

scan sequences, from which the transmission on the two-photon resonance
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is found. The transmission, T , is converted to the imaginary part of the

susceptibility using eq. 4.23a to give χI = − loge(T )/k`, where k is the probe

wavevector and ` is the optical path length through the cloud, measured to be

` = 0.9± 0.1 mm. For each set of parameters, the susceptibility is calculated

for 20 repeats, and then a weighted average taken to give the final value.

This is plotted against the probe electric field, Ep, to look for a non-linear

scaling.

Results are shown in fig. 7.9 (a) and (b) measured for the NPN and PNP

scan sequences respectively for a range of densities. Immediately obvious

is the difference in the non-linear scaling for the different scan directions.

For NPN, there is clear evidence of a third-order non-linearity in agreement

with the theoretical prediction of [86]. This non-linearity saturates for probe
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Figure 7.9: Resonant susceptibility as a function of probe electric field, Ep, and
density, ρ. (a) and (b) show data for NPN and PNP scan directions respectively,
taken for ρ = 0.4 (◦ ) 0.7 (ut) 1.0 (• ) 1.6 ( ) ×1010 cm−3. Data in (a) and (b)
is fitted to third- and second-order non-linearities respectively, and the resulting
density dependence plotted in (c) and (d). Both χ(2) and χ(3) display a quadratic
density scaling, consistent with pair-wise interactions.
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powers above 20 V/m at the peak density of 1.6× 1010 cm−3. Increasing the

probe power further, there is now an increase in the transmission rather than

suppression, most likely caused by loss as the blockade mechanism breaks

down and ionisation becomes dominant. The data are fit to the function

χI = χ(1)+χ(3)E2
p, from which the third-order susceptibility can be measured.

The peak value of χ(3) = 5.3 ± 0.4 × 10−7 m2 V−2 represents a very large

non-linear scaling for an atomic ensemble, comparable in magnitude to the

slow-light experiments in a BEC [24] performed at densities two orders of

magnitude higher than are used here. However, the PNP data in (b) are not

consistent with a third-order scaling, but instead agree well with a second-

order scaling. The data are therefore fit using χI = χ(1) + χ(2)Ep to extract

the value of χ(2), which has a peak value of χ(2) = 5.6 ± 0.4 × 10−6 m V−1.

Typically, this second order effect can only be seen in non-centrosymmetric

crystals in which the oscillating electrons that form the dipoles experience

an anharmonic potential [4]. The broken symmetry in crystals is an artefact

of the collective interaction of the atoms in each unit cell, so the observation

of a χ(2) dependence here is still consistent with a cooperative effect where

the optical response of a single atom is dependent upon the surrounding

atoms. Comparing the magnitude obtained in the experiment to that of bulk

crystals, which typically have χ(2) ∼ 10−10 mV−1 [4], the Rydberg blockade

mechanism gives a non-linearity 104 times larger than can be achieved in a

crystalline medium.

The important signature of a cooperative optical non-linearity is a non-linear

density dependence in the susceptibility, as increasing the number of atoms

in each blockade sphere enhances the suppression of the EIT resonance. Fig-

ure 7.9 (c) and (d) show the third- and second-order susceptibilities obtained

from fitting the NPN and PNP data respectively as a function of density. The

NPN third-order susceptibility shows very good agreement with a quadratic

scaling across the full range of densities, whilst the second-order susceptibil-

ity initially agrees with a quadratic scaling but saturates above a density of
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1010 cm−3. These results are consistent with a cooperative non-linear mech-

anism, and agree with theoretical predictions for a quadratic density scaling

obtained using a Monte-Carlo method to calculate the optical response of

very large atom numbers [86]. The Monte-Carlo model also predicts a satu-

ration in the quadratic density scaling around 1010 cm−3, as seen in (d).

7.3.5 Summary

These observations of suppression for the attractive Rydberg states show

clear evidence of cooperativity, reproducing the expected suppression of the

EIT resonance and displaying a quadratic density dependence consistent with

the blockade mechanism. The data also reveal some interesting dynamical

properties which can be seen through the hysteresis between both the first

and second scan across resonance. This is demonstrated by the recovery of

the EIT in the second scan in fig. 7.8 (b), and through the dependence upon

scan direction. These effects are most likely related to ionisation of the short-

range anti-blockaded states which are excited when the probe is negatively

detuned. Without being able to detect the ion fraction explicitly, this data

cannot be used as conclusive proof of the blockade-induced cooperative non-

linearity described in sec. 5.4. Rydberg EIT has, however, been demonstrated

to give a very large third-order non-linearity, and it would be interesting for

the exact mechanism to be verified in future studies. If ions are the cause of

the suppression, it could create a very sensitive optical method for performing

single ion detection.

The D5/2 states have two additional properties that have not been exploited

in this present work. Firstly, the anisotropic interactions mean that the

interaction depends on the alignment of the dipoles [196], which could be

used to control or tune the non-linearity. Secondly, the D pair states have

small energy defects, as seen in fig. 3.3, allowing tuning to 1/R3 resonant

dipole-dipole interactions using a Förster resonance. This would enhance
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the non-linearity by increasing the size of the blockade radius, and hence the

number of atoms contributing to the suppression.

An additional mechanism for suppression that has not been considered so

far is the van der Waals dephasing discussed in sec. 5.2, which leads to an

in-homogeneous broadening of the EIT resonance due to the distribution of

interaction strengths in the cloud. As the visibility of the EIT resonance is

limited in the present setup, it is not possible to distinguish this broaden-

ing effect from suppression due to interactions. A number of changes are

therefore needed to allow conclusive verification of the cooperative suppres-

sion due to interactions; namely a clear spectral signature of ionisation, and

increased transparency on the two photon resonance.

7.4 Cooperativity due to repulsive interactions

7.4.1 Experiment modifications

The main limitation in the analysis of the previous section arises from the

different signs in the Stark shifts of the |mj| components of the Rydberg state,

leading to a suppressed transmission without a clear shift in the resonance.

This can be overcome by using the S1/2 states [85], which have two important

advantages over the D states. Firstly, there is only a single |mj| component

for which the scalar polarisability α0 > 0, ensuring that all atoms experience

a Stark-shift to negative detuning if there are ions present in the sample.

Secondly, the atoms experience isotropic, repulsive dipole-dipole interactions,

which significantly reduces the ionisation rate relative to the D states, as

discussed in sec. 3.5.

The other issue to address is the magnitude of the transparency on the two-

photon resonance, which was limited by the weak coupling Rabi frequency

for the 58D5/2 state. The coupling laser is therefore focused down to a 1/e2
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Figure 7.10: (a) Modified setup to allow tight-focusing of probe beam down to
1/e2 radius of 12 µm, requiring a single-photon counter (SPAD) for detection. (b)
Single shot EIT dataset recorded at 15 pW probe power (c) Histogram for 100 shot
average clearly revealing the EIT resonance.

radius of 66±3 µm, the smallest waist possible using the fibre collimator. As

the Rabi frequency is inversely proportional to the waist, this gives a factor

of ∼ 3 enhancement in Ωc relative to the previous experiments. In addition

to maximising the coupling laser Rabi frequency, the probe beam was then

focused to a 1/e2 radius of 12 ± 0.2 µm. This ensures an approximately

uniform coupling Rabi frequency across the probe beam to give the largest

possible transparency for all atoms in the probe region. To achieve this tight

waist, the setup was modified as shown in fig. 7.10 (a), with the probe fibre

output collimated to a 1/e2 waist of 3.4 mm which was then focused using

a 15 cm focal length doublet outside the chamber. Since the output probe

beam is highly divergent, it is necessary to re-collimate it with another lens

after the chamber. This required moving the optical pumping fibre to co-

propagate with the probe beam, making a 1:1 telescope that uses the doublet

as the second lens to ensure the optical pumping beam is not focused inside

the chamber. After the chamber, a second telescope is used to spatially filter

the optical pumping light, and the probe beam is coupled into a multi-mode

fibre.

Using a tight probe focus means that the probe Rabi frequency is enhanced
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by a factor of ∼ 13, and so even for a 1 pW beam Ωp/2π = 0.08 MHz. At

these weak probe powers, it is no longer possible to use a photodiode to detect

probe transmission. Instead, a Perkin-Elmer SPCM-AQRH-15 single photon

avalanche photodiode (SPAD) is used, chosen for its very low dark count of

42 counts/s. The SPAD output is not proportional to the probe intensity

like a photodiode, instead a 15 ns TTL pulse is emitted when one or more

photons is detected. The SPAD is therefore connected to a SensL HRMTime

time correlated counting card which records the arrival times of these TTLs

with 27 ps resolution. To protect the photon counter from damage due to a

large photon flux, the detector is gated off using the circuit in appendix A.2

during the MOT load and optical pumping stage, and activated during the

probe pulse. To avoid errors due to pile-up or saturation of the counter, the

probe beam is attenuated after the chamber to give a count rate of 1 MHz,

giving on average 1 count/µs. Data are recorded by taking 100 repeats to

build up a histogram of arrival times, using a 1 µs bin width. The errors

in each bin are assumed to be Poissonian, such that for each bin with m

counts the standard deviation is
√
m [188]. Transmission is then calculated

from the histograms as described for the photodiode voltages in sec. 6.5. An

example of a histogram obtained in a single experimental run is shown in

fig. 7.10 (b) for EIT on the 60S1/2 state with a 15 pW probe power. A single

run gives a noisy outline of the EIT resonance, however after 100 repeats a

much clearer lineshape is obtained, shown in (c). A final change from the old

setup is an improvement in the stability of the coupling laser lock to reduce

the ±300 kHz frequency jitter observed above.

7.4.2 Suppression mechanisms

EIT spectroscopy is performed on the 60S1/2 state at a range of probe powers

using a 1 s MOT load, which gives a density of ρ = 1.2±0.1×1010 cm−3 with

around 7000 atoms contained within the probe volume. The results are shown
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Figure 7.11: (a) EIT spectra for 60S1/2 showing significant suppression of the
resonant transmission. (b) Fitting the detuning of the two-photon resonance δ and
(c) FWHM linewidth γEIT show there is no shift or broadening associated with the
suppression.

in fig. 7.11 (a) which for the low Rabi frequency data shows a narrow EIT

feature with 75% transmission on the two-photon resonance, corresponding

to a coupling Rabi frequency of Ωc/2π = 4.6±0.1 MHz. Another noteworthy

feature is that the histogram represents data recorded over 100 s, however

the effective linewidth of the two-photon resonance obtained from fitting

is γrel/2π = 110 ± 50 kHz, showing the coupling laser lock is much more

stable than before. For increased probe powers, the data shows significant

suppression of the resonant transmission by more than 50% for Ωp/2π =

2 MHz whilst giving a completely symmetric EIT lineshape. From the spectra

the detuning of the two-photon resonance, δ, and the FWHM of the EIT,

γEIT, are determined, plotted in (b) and (c). These graphs show there is

no shift or broadening of the EIT resonance accompanying the suppression,

even for Ωp/2π = 5 MHz. It is now necessary to compare these observations

to alternative mechanisms for suppression other than dipole blockade of the

EIT dark state.

The lack of a shift in the data rules out ionisation as a suppression mechanism.

This can be seen clearly from fig. 7.12 (a) which shows the results of the ion

model described above calculated using experiment parameters, with the
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Figure 7.12: Alternative suppression mechanisms. (a) Ion model showing the effect
of Stark-shift, resulting in a large red-shift. (b) Mean-field model for the Rydberg
interaction showing a blue-shift and broadening of the resonance accompanying the
suppression.

scalar polarisability of α0 = 180 MHz/(V/cm)2 for the 60S1/2 state. Another

comparison that can be made is to a mean-field model. As with the ion model,

a random distribution of atoms is generated, and a fraction of these selected

as Rydberg atoms. For the remaining atoms, the level shift is calculated

by summing over the C6/R
6 interaction energy with the Rydberg atoms.

The resulting lineshape is found by summing over the susceptibility of each

atom, using the interaction strength of C6 = −140 GHz µm6. The calculated

spectra are plotted in fig. 7.12 (b), which shows that whilst the mean-field

model predicts suppression of the EIT resonance, this is associated with a

shift and broadening of the two-photon resonance, as discussed in sec. 5.4.3.

This observation is important, as it validates the assumption that the mean-

field treatment is incomplete and that the many-body cooperative model is

an accurate description of the dynamics.

The final alternative suppression mechanism is van der Waals dephasing,

which was introduced in sec. 5.2. Van der Waals dephasing leads to an

inhomogeneous broadening of the Rydberg states, caused by distribution of

level shifts in the medium. To reproduce this effect, a single atom optical

Bloch model was used in which the dephasing rate of the Rydberg state
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Figure 7.13: Van der Waals dephasing model. (a) Schematic of model, with the
dephasing rate of |r〉 proportional to the population in |r〉. (b)–(d) Comparison
between theory and data for Ωp/2π = 0.1, 2 and 4 MHz. (e) FWHM for model
compared to data, showing the dephasing model is not consistent with observations.

is proportional to the fraction of population in the Rydberg state, shown

schematically in fig. 7.13 (a). This is done by adding the dephasing rate γ′ =

γvdWσrr to the relative laser linewidth terms γrel and γc in eq. 4.14 to increase

the dephasing rate of the coherence terms without changing the decay rate

out of |r〉. The model is solved using the parameters obtained from the weak-

probe fit for a range of Rabi frequencies and the value of γvdW optimised to

reproduce the resonant transmission observed in the experiments. The results

are shown in fig. 7.13 (b)–(d) for Ωp/2π = 0.1, 2 and 4 MHz respectively

for γvdW ∼ 7 Γe. These show that the dephasing can reproduce the resonant

suppression for the 2 MHz data quite well, with only a slight broadening of

the EIT resonance. For higher probe powers however, the EIT resonance

is broadened significantly, and this also causes a broadening of the probe

absorption which is not observed in experiment. The FWHM of the model

traces is compared to the experiment in (e), clearly showing van der Waals

dephasing cannot explain the observed suppression as there is no broadening

in the data.
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The result of this analysis is that the only mechanism consistent with obser-

vations is the cooperative optical non-linearity arising due to dipole-dipole

interactions. The best proof for this however is to look for a non-linear den-

sity scaling to show the optical response of a single atom is dependent upon

interactions with the surrounding atoms.

7.4.3 Density scaling

To test the density dependence of the suppression, transmission data is

recorded at probe Rabi frequencies of Ωp/2π = 0.1 and 2.0 MHz as a func-

tion of density for the 60S1/2 and 54S1/2 states. Unlike the method described

in sec. 7.3.4, it is not possible to directly convert the transmission data into

susceptibility using the relation χI = − loge(T )/k`. This is because for the

strong probe data, the transmission changes from 80% at low density to

20% at high density. Over this range, the non-linear absorption through the

cloud cannot be neglected as the probe is attenuated as it propagates through

the medium. The modification of the susceptibility due to the optical non-

linearity will therefore vary strongly through the cloud at high density, and

only very weakly at low density. This makes comparison between the sus-

ceptibility calculated in each regime unreliable. Instead, the optical depth

− loge(TEIT) is scaled relative to the probe-only optical depth − loge(TABS)

to remove the first-order density dependence in the medium.

Looking first at the weak-probe data, this shows there is no non-linear density

scaling for either state. This is expected from the weak probe dark state

|D〉 = |g〉, which means the optical response of each atom is independent of

the surrounding atoms. For the strong probe however there is a very clear

second-order density scaling, as seen above in fig. 7.9 for the D5/2 states,

which verifies the cooperative nature of the EIT suppression.

The 60S1/2 state shows a steeper density dependence than is observed for

54S1/2. The difference in the gradients is due to the increased interaction
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Figure 7.14: Optical depth as a function of density, scaled relative to the probe-only
optical depth to remove the trivial linear density scaling. This shows a second-order
density dependence for the strong probe data, verifying the cooperative nature of
the non-linearity.

strength of the 60S1/2 state compared to the 54S1/2 state, which leads to a

larger blockade radius. Making the assumption γEIT ∝ Ωc (consistent with

experiment observations) and using the scaling relations for C6 ∝ n∗11 and

Ωc ∝ n∗−3/2, the number of atoms in the blockade sphere should scale as

Nb ∝ R3
b ∝

√
C6/γEIT ∝ n∗25/4. This gives a ratio of 2.0 for the number of

atoms per blockade sphere for the two states. Applying a linear fit to the

strong probe data, the ratio of the gradients is 2.7± 0.7 which is consistent

with the suppression scaling with Nb. The non-linearity can therefore be

tuned by choice of density and principal quantum number, offering a high

degree of control.

7.4.4 Comparison with the N -atom model

Having proved the suppression is caused by the cooperative interaction be-

tween atoms, it is interesting to compare the experiment to the N -atom

model developed in sec. 5.4. For the spectra presented in fig. 7.11 (a) the

EIT linewidth is γEIT/2π = 3 MHz, giving a blockade radius Rb = 6 µm. At

a density of 1.2×1010 cm−3 this corresponds to an average of Nb = 11 atoms
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Figure 7.15: Comparison of N -atom model to data. (a)–(d) show EIT spectra
recorded at a density of 0.35×1010 cm−3 with an average Nb = 3 for Ωp/2π = 0.1,
1.0, 2.0 and 3.2 MHz respectively. Transmission calculated using the three-atom
model is plotted on top (thick line). (e) Resonant transmission compared to the
N -atom model for N = 1–3.

per blockade sphere. Solving the model for this number of atoms is not pos-

sible due to the large number of states required, so instead the experiment

is repeated at a density of 0.35 ± 0.03 × 1010 cm−3 which gives an average

of Nb = 3. Transmission data for Ωp/2π = 0.1 to 3.2 MHz are shown in

fig. 7.15 (a)–(d), which shows the familiar suppression at increasing probe

powers but by less than fig. 7.11 (a) due to the reduction in Nb. Plotted

on the data is the transmission calculated from the three-atom model us-

ing parameters of Ωc/2π = 0.8 MHz and γrel = 110 kHz obtained from the

weak-probe fit to (a), changing only Ωp between the figures. The only free

parameter in the model is the interaction strength V (R). The transmission

spectra presented here are calculated using V (R)/2π = 15 MHz, however the

result is insensitive to the interaction providing V (R) > γEIT to match the
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blockade condition for the three atoms. The model is in excellent agreement

with the data, reproducing not only the resonant transmission but also the

full EIT lineshape. In (e) the resonant transmission is plotted as a function of

Ωp compared to the resonant transmission calculated for the 1, 2 and 3-atom

models. This shows that the agreement for the three-atom model is better

than for 2, as expected from the average Nb at this low density.

Blockade dephasing rate

The excellent quantitive agreement between the model and experiment show

that the EIT is sensitive to the coherence of the blockaded ensemble, as

only by considering the coherence of the many-body system is it possible to

reproduce the observed suppression without broadening. Thus on the two-

photon resonance the system evolves into an ensemble of blockaded ensembles

at large probe power. Dephasing between neighbouring blockade spheres

would lead to broadening of the EIT resonance, equivalent to an increase

in the relative two-photon laser linewidth γrel. As there is no broadening

observed in this regime (seen from fig. 7.11 (c)), this places an upper limit

on the dephasing rate equal to the measured linewidth in the weak-probe

regime. Thus the dephasing rate between neighbouring blockade spheres

< 110 kHz for the 60S1/2 state.

Monte-Carlo modelling results

Using the complete N -atom model has shown excellent agreement with data

for this low density data, however as it cannot be scaled to larger atom

numbers its application is limited to this low Nb regime. As mentioned in

sec. 5.4, an alternative method has been developed by C. Ates, S. Sevinçli

and T. Pohl [86] which uses a Monte-Carlo approach to model the steady-

state populations for very large numbers of interacting atoms, from which

the transmission can be calculated. As the EIT experiments are performed
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slow enough to be in the steady-state regime, this model has been used

to reproduce the high density 60S1/2 data of fig. 7.11 (a). The calculation

makes no assumptions about how many atoms are in a blockade sphere,

and instead creates a random distribution of atoms and calculates the real

interaction strength with the surrounding atoms. It also fully accounts for

the Gaussian distributions of the atomic density and laser intensity, making

it more complete than the treatment presented above.

The results are presented in fig. 7.16, with the data in (a) and the model

output in (b). Looking first at the resonant transmission, the model very

accurately reproduces the height of the EIT peak for each value of Ωp. How-

ever, the calculated spectrum is asymmetric, showing evidence of both shift

and broadening that is not observed in the experiment. The cause for the

asymmetry in the model is the laser resonantly exciting the anti-blockaded

pair states, which due to the repulsive dipole-dipole interactions lie at posi-

tive detunings. The reason these are not observed in the experiment is most

likely due to motion from the strong van der Waals interactions. For a pair

of atoms separated by the blockade radius of 6 µm, the interaction shift is

3 MHz. The laser takes a time of 38 µs to scan from ∆p/2π = 0 to 3 MHz,
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Figure 7.16: Monte-Carlo model of the high density 60S1/2 EIT spectra. (a) shows
the experiment data and (b) the theoretical transmission. These calculations were
performed by S. Sevinçli et al..
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during which time the atoms have been repelled to a separation around 10 µm

with an interaction energy of 0.5 MHz. Thus, by the time the laser reaches

the resonance frequency of the short-range pair states, they have been re-

pelled to long range. This argument is consistent with the slight asymmetry

observed around ∆p/2π = 2 MHz for the low density data in fig. 7.15 (d),

as at low density the atoms are initially further apart, making the repulsive

motion less important.

Complementary work has been done in the CPT regime discussed in

sec. 4.2.1, where the atoms are initially excited to the Rydberg state and the

interacting CPT dark state studied by measuring the population remaining

in |r〉 as a function of laser detuning [165]. Using this Monte-Carlo method,

it has been shown that these two regimes can be collapsed onto a universal

curve relating the transmission to the Rydberg population [86], and a more

detailed comparison of this model to both experiments is presented in [197].

Unfortunately however, neither experiment measured both transmission and

population. The universality therefore remains to be demonstrated.

7.4.5 Summary

Using the repuslive S1/2 states it has been possible to conclusively demon-

strate the observed suppression of the EIT for strong probe powers is due to

the cooperative optical non-linearity arising from dipole-dipole interactions.

This is characterised by a suppression without shift, which also displays a

second-order density scaling dependent upon the number of atoms in the

blockade volume, seen from the comparison of 54S1/2 to 60S1/2 in fig. 7.14.

Excellent agreement between experiment and the full N -atom model is ob-

tained at low density, reproducing both the resonant transmission and the

full frequency spectrum. As EIT is a probe of the coherence between the

atomic states, this allows an upper limit of 110 kHz to be placed on the de-

phasing rate between neighbouring blockade spheres, showing the coherent
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interaction in each blockade volume is not destroyed by surrounding atoms

at longer range.

7.5 Microwave dressing

The EIT experiments so far have all been performed in the regime of van

der Waals interactions between the Rydberg states, with a 1/R6 interaction

potential. An alternative is to resonantly couple two closely spaced Ryd-

berg states together using a microwave field, as described in sec. 3.4.2. This

microwave dressing changes the interactions to resonant dipole-dipole which

scale as 1/R3 resulting in a longer range interaction, and hence larger Rb.

To measure the effect of this change in interaction strength, the 46S1/2 state

is resonantly coupled to the 45P1/2 state using microwaves at 44.58 GHz,

as shown schematically in fig. 7.17 (a), derived from an Anritsu MG3696A

synthesiser. At this frequency it is necessary to use waveguide rather than

coaxial cables, and a WR19 waveguide was used to direct the linearly po-

larised microwave field onto the cold atom cloud. EIT spectra taken for

Figure 7.17: Microwave Dressing (a) A linearly-polarised microwave field couples
the 46S1/2 state to 45P1/2, which due to quantisation drives σ+ + σ− transitions.
(b) Microwave EIT showing Autler-Townes splitting of the resonance due to the
microwave coupling.



Chapter 7. Results 128

Ωp/2π = 0.08 MHz and Ωc/2π = 5.5 MHz are shown in fig. 7.17 (b) for dif-

ferent microwave Rabi frequencies, Ωµ. Without the microwave field, a single

EIT resonance is obtained. The effect of the strong microwave coupling is

to create an Autler-Townes splitting of the Rydberg states, causing the EIT

resonance to split proportional to ∝
√

Ω2
c + Ω2

µ.

As both the microwave polarisation and propagation direction were orthog-

onal to the quantisation axis along the probe axis, shown schematically in

fig. 7.17 (a), the microwave drives both σ+ and σ− transitions simultane-

ously. This makes the interpretation of the spectra more complex as the σ±

transitions have different angular transition dipole matrix elements, giving

a range of splittings for the Rydberg states. To reproduce the spectra it is

necessary to use a 10-level model which includes all of the hyperfine levels of

the two Rydberg states. This model was developed by M. Tanasittikosol and

is described in detail in ref. [198]. Using this model, the effective microwave

Rabi frequency, Ωeff
µ was extracted by averaging over all of the transition

strengths, enabling calibration of the microwave coupling strength.

To observe an enhancement of the non-linearity, it is necessary to apply

a weak microwave coupling with Ωµ < Ωc for all transitions to prevent an

Autler-Townes splitting of the EIT resonance. Data are recorded at Ωp/2π =

0.1 and 1.9 MHz without the microwave field, shown in fig. 7.18 (a) at a

density of ρ = 1.2 ± 0.1 × 1010 cm−3. This shows suppression of the EIT,

as expected from the previous experiments. Repeating this with Ωeff
µ /2π ∼

500 kHz, shown in (b) for the same probe powers, the enhancement in the

non-linearity due to the microwave source is dramatic - there is no evidence

of loss or asymmetry, instead the EIT is completely suppressed.

The 46S1/2 state has a van der Waals interaction strength of C6 =

−5.6 GHz µm6, which corresponds to a blockade radius of Rb = 3.8 µm for

the fitted EIT linewidth of γEIT/2π = 2 MHz. Thus in (a) there are an aver-

age of 3 atoms in each blockade sphere contributing to the EIT suppression.
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Figure 7.18: Enhanced suppression from microwave dressing of 46S1/2. (a) EIT
spectroscopy without microwave field. (b) Applying a weak microwave field
Ωeff
µ /2π ∼ 500 kHz results in a dramatic enhancement of the EIT suppression.

Applying the resonant microwave coupling to the 45P1/2 state, the interac-

tions are now resonant dipole-dipole with a strength of C3 ' 0.8 GHz µm3

which gives Rb ' 7.4 µm, almost twice the size of blockade in the undressed

system. Consequently, the average number of atoms in each blockade volume

increases to around 20 which is sufficient to suppress the EIT almost to the

probe-only transmission. Microwave dressing therefore provides a method

to significantly enhance the optical non-linearity by increasing the blockade

radius without requiring excitation to very high n states.

7.6 Conclusion

In this chapter the results of performing Rydberg EIT on an interacting cold

atom cloud have been presented. In the weak-probe regime Ωp � Ωc, EIT

has been demonstrated to allow the Rydberg energy levels to be probed with

sub-MHz resolution. This has the benefit that the Rydberg state itself is

not populated, preventing shifts due to dipole-dipole interactions that can

affect detection using ionisation. It is also non-destructive, allowing repeated

probing over timescales of ms. EIT is therefore suitable for applications in
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precision spectroscopy or electrometry of the Rydberg states.

In the strong probe regime however, Rydberg EIT reveals a wide range of

cooperative phenomena. For the low-n states this was manifested as a super-

radiant loss from the Rydberg state on the two photon resonance. This is seen

from the scaling of the data with kR, and for 19D5/2 has been successfully

modelled as a density-dependent loss. Similar behaviour is also observed for

44D5/2, with higher n states required to observe the effects of dipole-dipole

level shifts dominating over the collective broadening.

For the repulsive S-states, suppression of the EIT resonance due to a coop-

erative optical non-linearity has been conclusively verified, reproducing not

only the non-linear density scaling but also obtaining a quantitative agree-

ment to theory for low density data with an average of Nb = 3 atoms per

blockade sphere. As EIT probes the coherence of the blockaded system,

this places an upper limit of 110 kHz on the dephasing rate of the blockade

sphere, making it suitable for applications in quantum optics. These results

are significant, representing the first observation of a novel cooperative opti-

cal non-linearity in an atomic system, mediated by the tuneable, long-range

dipole-dipole interactions of the Rydberg states.

Similar suppression was observed for the attractively interacting D5/2 states,

which show different non-linear scalings in the susceptibility dependent upon

the direction of the probe frequency sweep, suggesting motional effects from

the pair-wise interactions play a role in the observed spectra. For both

scan directions the non-linearity has been characterised, which again shows

a quadratic density dependence expected for a cooperative effect. Finally, a

microwave coupling was shown to dramatically enhance the suppression by

switching the interactions to resonant dipole-dipole, providing an additional

control of the non-linear effect alongside choice of n` state.

One of the limitations of the present experiments is the lack of information

about the ion fraction accompanying the optical spectra. Combining these
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two detection methods could provide a complete understanding of the hys-

teresis observed in the D state data and assess the relative importance of

ionisation, motion and blockade in the optical non-linearity. From measure-

ments of both transmission and Rydberg population for a range of ratios of

Ωp to Ωc, the universal scaling predicted by Ates et al. [86] for the coopera-

tive non-linearity could be tested.

Another area not considered is working with the coupling laser detuned off-

resonance to measure a dispersive non-linearity due to the interactions. This

would allow characterisation of the regime in which the non-linearity could

be used for providing controlled phase-shifts of optical fields, rather than the

present regime in which the light is attenuated by the effect. To measure

phase shift directly, an interferometer is required with the atoms in one arm

[199]. This avoids the issues encountered in trying to extract the imaginary

part of susceptibility from the transmission and having to use the Kramers-

Kronig relations to calculate the dispersion.

As will be seen in the next chapter, the cooperative non-linearity offers a far

more subtle effect which has not been considered so far, but will present itself

as far more relevant to the objective of creating single-photon non-linearities.
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Chapter 8

Photon Blockade

In the preceeding chapters the laser field has been treated in the semi-classical

approximation, where the electric field is represented by E = E0 cos(ωt).

This assumption is adequate for considering the interaction between strong

laser fields with macroscopic ensembles of independent atoms, as in this limit

the quantum description of the light-field is indistinguishable from the classi-

cal treatment, for reasons that will be discussed below. However, in order to

exploit the effect of the cooperative non-linearity at the single-photon level

it is necessary to consider the quantised electromagnetic field, without which

the concept of a photon becomes meaningless. Importantly, in quantum op-

tics it is not the amplitude of the electric field, but rather the temporal and

spatial correlations of the field that reveal the non-classical nature of light.

Before considering the cooperative effect, it is necessary to first outline some

fundamental ideas of the quantised field.

8.1 The quantised electric field

A full derivation of the quantisation of the electromagnetic field can be found

in many standard quantum optics textbooks e.g. [200], and here only the

final results are detailed. The electric field is quantised in a finite volume V

133



Chapter 8. Photon Blockade 134

to obtain a set of spatial modes described by wavevector k, each of which

has two transverse polarisations λ defined by the polarisation unit vector,

êk,λ. Each mode represents a quantum harmonic oscillator with a ladder

of energies separated by ~ωk, where ωk = c|k|. In this picture, a photon

corresponds to a single excitation of the oscillator mode. Photons are added

or removed from the mode using the creation (â†k,λ) and annihilation (âk,λ)

operators which act on the wavefunction |nk,λ〉 representing the number of

photons in mode k as follows,

âk,λ|nk,λ〉 =
√
nk,λ|nk,λ − 1〉, â†k,λ|nk,λ〉 =

√
nk,λ + 1|nk,λ + 1〉. (8.1)

These combine to give the photon number operator, n̂k,λ = â†k,λâk,λ. Eigen-

states of this operator are known as Fock states, with exactly n photons in

the mode.

As a consequence of the quantum nature of light, the electric field amplitude

and phase can no longer be known simultaneously. This is because they are

conjugate variables of the field, analogous to position and momentum, which

are therefore constrained by the Heisenberg uncertainty principle1. Instead,

the electric field is represented by the operator [200]

Ê(r, t) = i
∑

k,λ

√
~ωk

2ε0V
êk,λ(âk,λ(t)e

−iωkt+ik·r − â†k,λ(t)eiωkt−ik·r),

= Ê(+)(r, t) + Ê(−)(r, t),

(8.2)

where êk,λ is the polarisation unit vector. The operator is separated into the

positive and negative frequency components such that Ê(+) contains only

annihilation operators and Ê(−) contains creation operators, with [Ê(+)]† =

Ê(−).
1 An important consequence of the uncertainty principle is spontaneous emission, which
arises due to the coupling between an atom in the excited state and the vacuum fluctuations
for the |0〉 state of each mode [201, 202].
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8.1.1 Coherent states

The electric field emitted by a laser above threshold is described by a super-

position of Fock states, known as a coherent state |α〉 [200]. The coherent

state is defined as

|α〉 =
∑

n

αn√
n!

e−|α|
2/2|n〉, (8.3)

which is an eigenstate of the creation and annihilation operators with eigen-

values of

â|α〉 = α|α〉, â†|α〉 = α∗|α〉, (8.4)

where α is the complex amplitude of the state. The probability of observing

n photons in this coherent state is

Pα(n) = |〈n|α〉|2 =
α2n

n!
e−|α|

2

, (8.5)

which is a Poissonian distribution with a mean-photon number of n̄ = |α|2,
and a fractional uncertainty ∆n/n̄ = 1/

√
n̄. The coherent states are mini-

mum uncertainty states with equal uncertainty in phase and amplitude, thus

for n̄� 1 the coherent state electric field 〈α|Ê|α〉 = E0 cos(ωt) [200], equiv-

alent to the semi-classical laser field used previously.

Having laid out a framework in which the photon can be defined, it is in-

structive to consider how to discriminate between a coherent state and non-

classical light.

8.2 Photon statistics

For a classical electric field, a photodiode can be used to generate a continuous

signal proportional to the intensity of the field. Similarly, for a quantum field,

the intensity at a detector is related to the expectation value for the intensity

〈Î(r, t)〉, where the intensity operator is defined as Î = Ê(−)(r, t) · Ê(+)(r, t).
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However, this is the same for both a single photon state and a coherent state

with n̄ = 1. It is therefore insufficient to simply measure the field intensity,

instead it is necessary to consider the photon statistics of the input field.

The photon statistics can be quantified using the second-order correlation

function, also known as the intensity correlation function. For a pair of detec-

tors at positions r1 and r2, the normalised second-order correlation function

is defined as

g(2)(r1, r2, t, t
′) =

〈Ê(−)(r1, t)Ê
(−)(r2, t

′)Ê(+)(r2, t
′)Ê(+)(r1, t)〉

〈Ê(−)(r1, t)Ê(+)(r1, t)〉〈Ê(−)(r2, t′)Ê(+)(r2, t′)〉
, (8.6)

which describes the correlations between the field at time t and t′. If a

continuous light source is used, the relative time t′ can be related to a delay

τ using t′ = t+ τ , reducing this to the evaluation of g(2)(τ).

For a classical field, the correlation function is bounded by the Cauchy-

Schwarz inequality [203]

g(2)(0) ≥ 1, (8.7)

however for a quantum field 0 ≤ g(2)(0) ≤ ∞. The g(2) function can therefore

be used as evidence of a quantum or non-classical light field if g(2)(0) < 1.

If the electric-field is single mode, the correlation function can be written

in terms of creation and annihilation operators to simplify evaluation of the

correlations,

g(2)(τ) =
〈a†(t)a†(t+ τ)a(t+ τ)a(t)〉
〈a†(t)a(t)〉〈a†(t+ τ)a(t+ τ)〉 . (8.8)

For a coherent state, g(2)(τ) = 1 for all time independent of α, as expected

for a classical plane wave field. For a Fock state |n〉, g(2)(0) = 1− 1/n. Thus

for the single photon state g(2)(0) = 0, violating the classical inequality as

expected for this purely quantum state of light. The physical interpretation

of this result is that as there is only a single photon, it cannot be simulta-

neously observed by both detectors. This effect is known as anti-bunching,

applicable to all states with g(2)(0) < 1, as photons arrive at well spaced
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Figure 8.1: Hanbury Brown Twiss Interferometer. The input light is separated
onto a pair of single photon counters using a 50:50 beam-splitter, and coincidence
counts are detected as a function of delay τ to build up the correlation function.

intervals compared to the random distribution of arrival times expected for

the coherent state. Similarly, states with g(2)(0) > 1 are bunched as photons

are more likely to arrive together.

In practise, g(2)(τ) is measured with a Hanbury Brown Twiss (HBT) interfer-

ometer [204], shown schematically in fig. 8.1 which uses a 50:50 beam-splitter

to separate light onto a pair of photon counters. The correlator records the

coincidences between the counters as a function of delay τ which can be used

to determine the normalised correlation function. The first experimental ev-

idence of anti-bunching was from observation of suppressed correlations at

τ = 0 in the resonance fluorescence of a single sodium atom [205], followed

by the measurement of g(2)(0) = 0 for fluorescence of a single ion [206].

8.3 Photon blockade

As every mode of the quantised electric field is a harmonic oscillator, there is

a discrete ladder of energies which for laser light is initially populated with

the Poissonian distribution of the coherent state. However, if the harmonicity

of this ladder can be broken, it is possible to observe non-classical states of

light. An example of this is the interaction between a single atom and the

mode inside an optical cavity. The effect of the atom-light interaction is to

create an anharmonic energy ladder dependent upon the photon occupation,

as illustrated in fig. 8.2 (a). The interaction causes the cavity to be shifted off



Chapter 8. Photon Blockade 138

Figure 8.2: Photon Blockade. (a) Placing an atom at the centre of an optical
cavity causes the cavity modes to be detuned by ±√ng0, where g0 is the coupling
constant, preventing more than a single photon entering the cavity. (States are
labelled |n,±〉 to denote the photon number n and dressed state of the atom) (b)
For the EIT system with no interactions, all photons form the dark state |D〉,
so for two photons there are two dark states |2, D2〉. Dipole-dipole interactions
detune this state, breaking the EIT condition for the second photon and causing
it to couple to the intermediate excited state |2, De〉. This state decays at rate Γe,
scattering the photon into a different mode so only a single photon remains in the
probe beam.

resonance with the probe laser after the first photon is absorbed, preventing

another photon from entering the cavity until the first photon leaves. This

system allows a coherent state to be filtered into a train of single photons, an

effect known as a photon blockade [207] or a photon turnstile. The resulting

anti-bunched output has been observed experimentally for optical cavities

[208, 209], and more recently in a superconducting microwave cavity [210],

where an artificial atom is used to overcome the limited fidelity in optical

cavities due to residual motion of the atom.

For the cooperative non-linearity due to dipole blockade, a similar effect can

be realised. In chapter 5, the suppression of transmission was interpreted

as the formation of an entangled state with one atom in the EIT dark state

and the remaining atoms resonantly scattering light from the probe beam.

Combining this with the concept of a quantised electric field, the formation of

the single collective dark state can only involve a single photon from the probe

field. Any other photons arriving in the blockaded ensemble now resonantly
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couple to the excited state of the atoms and are scattered out of the mode

of the probe beam, as shown schematically in fig. 8.2 (b). This allows only

a single photon to pass through un-scattered, resulting in a single photon

output in the mode of the probe laser.

An important difference between these two schemes is that for the atom+cavity

system, the energy of the optical transition is shifted for n > 1 so the cav-

ity completely rejects all but a single photon, ensuring there will never be

multiple photons at the cavity output. The Rydberg blockade mechanism,

however, does not shift the energy of the optical transition for the probe laser.

Instead, the medium changes from being transparent for the first photon, to

opaque for n > 1. The photon scattering process for n > 1 is probabilistic,

which may limit the fidelity as a photon turnstile. Nonetheless, it provides

a mechanism to generate non-classical states of light from an input field

initially in a coherent state without the need for an optical cavity.

8.3.1 Dark state polariton

To aide the interpretation of a single-photon dark state, it is useful to in-

troduce the concept of a dark state polariton [28]. In the analysis of EIT in

section 4.2, the dressed states of the atom were introduced to explain the EIT

dark state assuming a constant amplitude driving field. For a weak probe

beam, the probe electric field can be coupled to the atomic evolution using

the Maxwell-Bloch equations to model the propagation through the medium.

The result is that on the two-photon resonance, the system forms a stable,

lossless quasi-particle known as a dark state polariton Ψ [13]

Ψ(z, t) = cosϑEp(z, t)− sinϑ
√
ρσg,r(z, t)e

i∆kz, (8.9)

where Ep = Ep/
√

~ωp/2ε0 is the normalised probe amplitude, ∆k = kc − kp

is the wave-vector mismatch, and the mixing angle ϑ is related to the group
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index,

tan2 ϑ =
6πcρΓe
k2

p Ω2
c

= ngr. (8.10)

The polariton represents a coherent superposition of the electromagnetic field

and atomic excitation, denoted by the coherence σrg. For a small group index,

the mixing angle is small and the electromagnetic component of the polariton

dominates, with a group velocity around c. For a large group index however,

the energy from the probe field is transferred to the atomic excitation, giving

the field ‘mass’ and enabling slow propagation at speed vgr � c. At the edge

of the medium, the excitation is converted back into an electromagnetic field

without loss due to the perfect transmission achieved in EIT. Treatment of

the probe as a quantised field yields equivalent results, with the electric field

replaced by the electric field operator from eq. 8.2 [28].

The polariton picture gives two insights relevant to achieving photon block-

ade. The first is that it shows that a large group index is required in order

to transfer the single-photon field into atomic excitation in the medium.

Without this, the Rydberg state is not populated and there is no dipole

blockade. The second follows on from this, as the requirement of a large

group-velocity means the single-photon polariton propagates slowly through

the medium. During this propagation time, subsequent photons entering the

medium should be scattered, introducing a characteristic delay between pho-

ton emission at the output which will be referred to as the blockade time, τb.

In the limit of a strong driving field, this should result in a regular train of

single photons separated by time τb.

Applying the condition for ϑ to the experiments presented in fig. 7.11 (a) for

the suppression of transmission for the 60S1/2 state, the weak-probe group

index was ngr ∼ 4×104, corresponding to a mixing angle of ∼ 90◦. For these

experiments, the polariton is almost entirely composed of atomic excitation,

meaning these photon-statistics must play a role in the observed suppression.

However, comparing the blockade radius of Rb ∼ 5 µm to the 10 µm 1/e2
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radius of the beam waist shows the probe laser interacts with of order 16

blockade spheres over the beam cross-section. Thus, whilst each blockade

region can potentially create a single-photon, the total output can still have

as many as 16 photons which makes the direct observation of non-classical

light in the probe beam challenging using g(2), as will be demonstrated below.

This analysis of the photon blockade due to dipole-dipole interactions gives a

qualitative description of the mechanism, but a more quantitative approach

is required to determine the potential fidelity and parameter range in which

photon blockade can be realised. Solving the complete quantum dynamics

for a quantised field coupled to an interacting N -atom system is a non-trivial

problem, and will not be attempted here. However, it is still possible to gain

an insight into the expected correlations for the light output from a single

blockaded ensemble. This will be the subject of the following sections.

8.4 Simple model for g(2)(τ )

As a first attempt at predicting the photon statistics of the probe beam

output from the blockade region, a simple model of the blockade mechanism

is developed. Consider an ensemble of N -atoms confined within a sphere of

diameter Rb to ensure all atoms meet the blockade condition. This is probed

by a tightly focused laser beam with a 1/e2 radius of w0 < Rb/2 such that the

probe beam is completely contained within the interaction volume to enable

complete absorption of the probe beam. As mentioned above, the probe laser

can be represented as a coherent state |α〉 with a Poissonian distribution

of photon numbers, however it is necessary to determine the mean photon

number for |α〉. To do this, a quantisation volume must be defined, which is

trivial for a cavity but not for light in free-space. The purpose of the model

is to determine the coincidences of photon arrival times at a detector, so

quantisation can be achieved by defining a time window ∆t in which photons
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Figure 8.3: Simple g(2) model (a) The probe laser field is quantised in a cylinder
of length c∆t. The probe power can then be converted to n̄ to randomly generate
photons in each window ∆t. (b) The blockade mechanism is simulated by dividing
the input photon train C(t) into the forward mode of the probe beam Cf(t), with
only one photon passing through in a period τb, and a scattered channel Cs(t) for
the remaining photons. Each box represents a time period ∆t, with dots showing
photon number in each window.

are binned. In this time light travels a distance c∆t, so the probe beam can

be quantised by introducing a cylindrical volume V = πw2
0c∆t as illustrated

in fig. 8.3 (a), where the cylinder is assumed to have a radius equal to the

beam waist. For a probe of power P , the mean photon number can then be

calculated using eq. C.5,

n̄ =
2P∆t

~ω
. (8.11)

From the mean photon number, a random input photon train C(t) is gener-

ated for 106 time-bins of width ∆t, with the photon number in each time bin

determined from the Poissonian distribution of eq. 8.5. To model the effect of

the photon blockade, two output modes are defined - a forward channel Cf(t),

which represents the probe light on the other side of the atomic ensemble,

and a scattered mode Cs(t), which represents all other modes in which pho-

tons can be scattered by the interaction with the medium. Starting at t = 0,

the first photon to arrive in the medium is placed in the forward channel

and all photons arriving within a period of τb are put in the scattered chan-

nel. This process is repeated across the entire photon train, as illustrated

schematically in fig. 8.3 (b).

During the propagation of the slow polariton, the other photons are scattered

by resonantly coupling on the two-level transition between |g〉 and |e〉. If
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the ensemble is not completely optically thick on this probe-only transition,

then the efficiency of this scattering process is limited. To account for this

effect, photons in the scattered channel can be transferred back into forward

channel with a probability equivalent to the probe-only transmission, which

is parameterised in terms of the optical depth OD = − loge(T ).

Finally, the second order correlation function is calculated for each of the

two output modes. This is achieved by taking the photon train Ci(t) and

simulating the effect of a beam-splitter to separate it into the counts detected

by a pair of detectors D1 and D2, equivalent to the HBT interferometer in

fig. 8.1. If there are n photons in a given time-bin, the probability of detecting

m photons at detector D1 can be found using the binomial distribution

P (m) =
n!

m!(n−m)!
pm(1− p)(n−m), (8.12)

where p is the probability of success which for a 50:50 beam-splitter is 0.5.

This distribution allows the beam-splitter to be modelled efficiently to obtain

the counts arriving at the first detector in each time window, D1(t), from

which D2(t) = Ci(t) − D1(t). The normalised correlation function is then

calculated using the Weiner-Khintchine theorem [145] as

g(2)(τ) = Re




F−1[F [D1(t)]F [D2(t)]∗]∑

D1(t)
∑

D2(t)



 , (8.13)

where F and F−1 denote the Fourier transform and its inverse.

Having introduced the g(2) model for the correlations, it is useful to explicitly

define the optical depth in terms of physical parameters. From the definition

of transmission in eq. 4.23a, OD = − loge(T ) = kp`χI. Taking ` = Rb and

using the weak-probe limit for the probe-only susceptibility χI from eq. 4.20,
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the optical depth is given by

OD = kp ·
2ρd2

eg

ε0~Γe
·Rb =

6πRbρ

k2
p

=
36N
k2

pR
2
b

, (8.14)

where eq. 5.3 has been used to eliminate d2
eg and a uniform density approxi-

mation used to obtain ρ = 6N /πR3
b. It is then trivial to re-scale the group

index, and hence velocity, of the dark state polariton from eq. 8.10 in terms

of OD as

ngr =
ODcΓe
Rb Ω2

c

, vgr =
c

1 + ngr

' Rb Ω2
c

OD Γe
. (8.15)

This results in the following simple relation for the blockade time,

τb =
Rb

vgr

=
OD Γe

Ω2
c

. (8.16)

Combining these relations together, we consider the case ofN = 200 confined

within a blockade radius of Rb ∼ 5 µm, corresponding to a density of ρ ∼
3×1012 cm−3. This is two orders of magnitude larger than the MOT density,

however this is achievable using an optical dipole trap, as will be discussed

in sec. 9.2. The optical depth for this case is OD = 4.4, resulting in 99%

probability for scattering photons out of the probe beam. Taking Ωc =

Γe (consistent with a 5 µm blockade radius for 60S1/2) the corresponding

blockade time is τb = 120 ns. The probe laser is assumed to be focused

to a waist of w0 = 1 µm to satisfy w0 < Rb/2, and the model is run for

probe powers of 500 fW and 10 pW, equivalent to Ωp/2π = 0.6 and 2.6 MHz

respectively.

The results for low power are shown in fig. 8.4 (a) which shows significant

anti-bunching up to τ = τb in the forward mode, and bunching for the scat-

tered mode. This occurs because at low power there is a very low probability

of observing any photons, so a large proportion of the photons arrive in the

medium separated by times t > τb and pass through. For the scattered chan-

nel, there are now a relatively large fraction of multi-photon events compared
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Figure 8.4: g(2) Model Results. Correlation function for OD = 4.4 calculated for
(a) P = 500 fW and (b) 10 pW, clearly showing a strong anti-bunching for τ < τb.
(c) Effect of varying OD for the forward mode Cf at 10 pW, showing at OD ∼ 2
the anti-bunching is heavily suppressed. (d) Changing the number of blockaded
ensembles Mb in the probe beam for Cf at 10 pW, OD = 4.4 shows even two
blockade regions significantly reduces the visibility of the anti-bunching.

to Poissonian statistics as the single photon component is suppressed, giving

the observed bunching. For the strong probe results in (b), the bunching of

the scattered channel becomes insignificant as most photons are scattered,

with only a very slight change in the photon count distribution from the

Poissonian input. In the forward channel however, a periodic anti-bunching

is observed with strong bunched peaks at harmonics of τ = τb. These spikes

are asymmetric as it is not possible for photons to arrive closer in time than

τb, but the next photon may arrive at anytime later, smearing out the sharp

peak. This also damps the amplitude of peaks at later times. For higher

powers, the probability of having at least one photon in each time step ∆t

tends to unity, causing the g(2) to look more like a comb of delta-functions2.
2 This sharp-edged correlation function is similar to that predicted for a p− i−n junction in
which the Coulomb blockade prevents more than a single photon emission [211], however
the output coupling efficiency for such devices is too weak to measure the correlations
[212].
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To explore the dependence on the optical depth, the model is run for a

10 pW probe with N = 100 and 400, corresponding to OD = 2.2 and 8.8

respectively. The results are shown in (c) compared to N = 200, with the

variation in τb clearly visible from the arrival of the first peak. In the inset,

the effect of small optical depth is easy to see, as it suppresses the anti-

bunching at short times and rapidly damps out the peak visibility. An optical

depth of OD & 4 is therefore required to observe blockade experimentally.

Another effect that can be added to the model is having more than one block-

aded volume in the cross-section of the beam. This is achieved by randomly

splitting the input train C(t) betweenMb blockade regions, and performing

the scattering on each blockade independently. The forward scattering from

each is then combined, and the correlation of the total output found. Re-

sults calculated for the original parameters of OD = 4.4 are shown in (d).

As more blockade regions are included, the anti-bunching of the output light

is suppressed asMb photons can propagate through the medium, which for

Mb � n̄ allows the initial coherent state to be unchanged. Thus the visibil-

ity of the anti-bunching of the output light is very small for the experiments

of sec. 7.4 withMb = 16, as mentioned above.

In summary, these results show that the blockaded ensemble can be used to

create a regularly spaced, highly correlated train of single photons, analogous

to creating ‘hard-edge’ photons in a 1D lattice. The repetition rate of the

photon pulses is τ−1
b ∼MHz, which could be used as a semicontinuous single-

photon source for quantum information. The fidelity of the single photon

output state is limited by the optical depth of the ensemble, however for

400 atoms the model predicts g(2)(τ < τb) < 10−2 which is smaller than

the uncertainty in a typical measurement of g(2) [208, 209]. An implicit

assumption of this simple model is that the polariton is formed as soon as

the photon is in the medium. However, there may be a finite timescale

associated with the formation of a polariton. During this time two-photons
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could pass through the medium, which would compromise the fidelity. These

EIT transients are considered in the next section.

From this simple model, it has been possible to verify the parameter range

over which photon blockade can be realised, requiring an optical depth equiv-

alent to several hundred atoms confined within a single blockade volume.

This clearly represents a complex system to model rigorously, however if we

consider the case of only a few atoms it is possible to calculate the correlations

of the scattered field.

8.5 Resonance fluorescence correlation

functions

8.5.1 The source-field expression

In chapter 5 an N -atom model was developed to calculate the properties of

the interacting EIT system. Whilst this model is based on classical driving

fields, these optical Bloch equations can be used to calculate the properties

of the scattered light field from the atoms using the source-field expression

[200]. This states that the electric field operator at position r is given by

Ê(+)(r, t) = Ê
(+)
f (r, t) + Ê

(+)
sf (r, t), where Ê(+)

f (r, t) is the incident field and

Ê
(+)
sf (r, t) is the radiation field of the atomic dipole, known as the source-field

term. This is the quantum analogue of the classical Ewald-Oseen extinction

theorem [147], which describes ‘absorption’ as a destructive interference be-

tween the incident plane wave and the radiated dipole field.

For an ensemble of N -atoms located at positions ri, the source-field term in
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the far field (k|r− ri| � 1 for all i) is given by [203, 213]3

Ê
(+)
sf (r, t) = −k

2(deg × r̂)× r̂

4πε0r

N∑

i

e−ikr̂·riπ̂−i (t− r/c) , (8.17)

which is equivalent to the classical dipole radiation field of eq. 5.2 with the

dipole moment replaced with operator degπ̂
−.

The source-field expression therefore relates the scattered electric field to

the properties of the atomic system. If we consider only positions off-axis

with respect to the probe and coupling lasers, the incident field Ê(+)
f (r, t)

vanishes, and the electric field reduces to a sum over the dipole operators

for the system. Absorbing the geometric factors into the function f(r), the

scattered electric field is Ê(±)(r, t) = f(r)Π̂∓ (r, t− r/c), where Π̂± are the

combined raising and lowering operators for the system,

Π̂±(r, t) =
N∑

i

e±ikr̂·ri π̂±i (t). (8.18)

8.5.2 Correlation function

Using this definition of the electric field, the second order correlation function

of eq. 8.6 can be written as

g(2)(τ) =
〈Π̂+(t)Π̂+(t+ τ)Π̂−(t+ τ)Π̂−(t)〉
〈Π̂+(t)Π̂−(t)〉〈Π̂+(t+ τ)Π̂−(t+ τ)〉

, (8.19)

where 〈. . .〉 denotes a trace over the density matrix for the atomic system.

The correlation function is calculated using the quantum regression theorem

which gives [133, 214]

G(t; t′) = 〈Â(t′)B̂(t)〉 = Tr{Âσcond(t; t′)} (t′ ≥ t) (8.20)
3 In [203] the atom is assumed to be at the origin, however for a finite displacement an
additional phase-factor is required which can be found in eq. 7.13 of [213].
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where the σcond is the conditional density matrix defined at time t as

σcond(t; t) = B̂σ(t), which represents the state of the system after the ac-

tion of B̂ is applied.

Applying this theorem to eq. 8.19 allows the steady-state density matrix σss

for the N -atom system to be calculated from the optical Bloch equations

derived in sec. 5.4. The conditional density matrix is evaluated using

σcond(0) = Π̂−σssΠ̂+, (8.21)

which describes the state of the system after a photon has been emitted.

The conditional density matrix is then re-normalised and used as an initial

condition for the same optical Bloch equations, which are integrated until

time τ to obtain σcond(τ). Finally, the second-order correlation function is

g(2)(τ) =
Tr{Π̂−σcond(τ)Π̂+}

Tr{σcond(0)} . (8.22)

For large τ , the conditional density matrix will evolve back to the steady-state

σss, resulting in g(2)(τ � 1) = 1 as required. The fluorescence correlations

therefore arise from the dynamic evolution of the system back to the steady-

state after emitting the first photon.

8.5.3 Cooperative emission from incoherent atoms

As a first approximation, the atoms are assumed to be incoherent emitters

such that the cross-phase factors average to zero, for example due to atomic

motion. In this case, the combined operators become separable to give

Π̂−σΠ̂+ =
N∑

i

π̂−i σπ̂
+
i . (8.23)

The resonance fluorescence correlations of independent two-level atoms for

Ωp = Γe/5 is shown in fig. 8.5 (a), showing anti-bunching with g(2)(0) =
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Figure 8.5: N -atom fluorescence correlations. (a) Independent two-level atoms for
Ωp = Γe/5 displaying anti-bunching. (b)–(d) interacting EIT system with Ωc =
Γe, V (Rij) = 2 Γe and Ωp = Γe/5, Γe/2 and Γe respectively shows blockade causes
bunching, which becomes anti-bunched if the strong probe violates the blockade
condition.

1− 1/N as each atom can emit a single photon at a random time, with the

possibility to observe two photons at zero delay from two atoms but with a

non-Poissonian probability. In (b) the correlation function for the EIT system

with Ωc = Γe and V (Rij) = 2 Γe is plotted. The N = 1 trace is anti-bunched

at τ = 0, and then increases to give g(2)(τ) � 1 at τ ∼ 1/Ωp. This occurs

because in the resonant EIT condition, the emission of a photon projects the

atom out of the dark state, requiring another photon to be emitted at a later

time to allow the atom to return to the dark state. Assuming a perfect laser

system, this would not be observable in an experiment as the probability

to emit the initial photon is vanishing due to the EIT condition. This very

small probability for emission of the first photon leads to an an anomalously

large correlation for the emission of the second photon.

If V (Rij) = 0, similar curves are obtained for N > 1, however when

V (Rij) > γEIT, fig. 8.5 (b) shows that interactions cause the two and three

atom system to be very strongly bunched at τ = 0, as expected from the sim-

ple model in sec. 8.4. This bunching can be understood from the analytic EIT

dark state for the interacting two-atom system in eq. 5.21, which has a |ee〉
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component in place of the |rr〉 state expected without interactions. If one of

the atoms emits a photon, then |ee〉 was populated and correspondingly the

other atom must emit a photon within a few spontaneous lifetimes. This is a

cooperative emission process mediated by the dipole-dipole interactions. The

correlation function therefore verifies that the blockade mechanism scatters

multiple photons with very high probability. In (c) and (d) the correlations

for Ωp = Γe/2 and Ωp = Γe are plotted, showing that for a strong probe

field the blockade condition is violated and the light becomes anti-bunched

at short times, similar to the correlations for the probe-only system in (a).

Figure 8.5 (b) therefore shows that a Rydberg superatom could be used as

a correlated photon source. The directionality of the emission is considered

below.

8.5.4 Distinguishable emission

Making a further assumption that the fluorescence emitted by each atom

is distinguishable (for example in spatially separated dipole traps as in the

experiments in Orsay [59] and Madison [58]) it is possible to also calculate

the self- and cross-correlations between atoms i and j using

g
(2)
ij (τ) =

〈π̂+
i (t)π̂+

j (t+ τ)π̂−j (t+ τ)π̂−i (t)〉
〈π̂+

i (t)π̂−i (t)〉〈π̂+
j (t+ τ)π̂−j (t+ τ)〉 , (8.24)

which is evaluated in exactly the same way as for g(2) except Π̂± is replaced

by the single-atom dipole operators. The cross-correlation provides an in-

sight into whether the emission from one atom is related to emission of a

neighbouring atom.

Figure 8.6 shows the results for the two-atom model calculated for the same

parameters as before. In the case of two-level atoms, (a), g(2)
21 (τ) = 1 for

all times as the atoms are independent with no correlations between their

emission. This is why the self-correlation shows the same correlation func-
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Figure 8.6: Self- and cross-correlations for N = 2. (a) Ωp = Γe/5. Two-level
atoms have an independent cross-correlation as the atoms are non-interacting.
(b)–(d) Interacting EIT system with Ωc = Γe, V (Rij) = 2 Γe and Ωp = Γe/5,
Γe/2 and Γe respectively. This shows the bunching arises from the strong cross-
correlation between the atoms, which are correlated by the dipole blockade. For a
strong probe, this cross-correlation is suppressed as the system is no longer block-
aded.

tion as for N = 1 in fig. 8.5 (a). For the interacting EIT system how-

ever, the bunched behaviour is dominated by the cross-correlation, seen from

fig. 8.6 (b), which is consistent with the interpretation of the bunching as

the population of |ee〉 discussed above. For (b)–(d), the self-correlation re-

mains approximately constant, whilst the cross-correlations change from be-

ing strongly bunched to anti-bunched as the probe power is increased.

These results show that it is possible to not only use the strong Rydberg

interactions to generate a single-photon output train, but also to obtain

highly correlated fluorescence emission from a pair of atoms. In the current

assumption of incoherent phase, the direction of the fluorescence will be

uncorrelated, however if the phases are well defined there exist geometries in

which the correlations are insensitive to the atomic position.
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8.5.5 Coherent emission

To check the effects of the the incoherent assumption from above, the corre-

lation function is evaluated using the e±ikr̂·ri phase-factors. This also requires

a modification of the optical Bloch equations to include the phase of the driv-

ing field in the Rabi frequencies as given in eq. C.4. The correlation function

is then calculated for a pair of atoms with the detectors placed orthogonal

to the probe wave-vector kp as a function of atomic separation in terms of

the probe wavelength λ for Ωp = Γe/2, Ωc = Γe and V (R) = 2 Γe.

The results are plotted in fig. 8.7 which shows the correlations for atoms

aligned parallel (a) and perpendicular (b) to the probe beam. For the par-

allel geometry in (a), the photons are bunched independent of separation R,

whilst for the perpendicular configuration in (b) there is a destructive inter-

ference for R = mλ+λ/4, 3λ/4, . . . resulting in anti-bunching. This suggests

the geometry of (a) is more robust for observation of photon blockade, and

could be used to generate highly correlated photon pairs. For other detec-

tor and atom geometries, the correlation function becomes more sensitive to

displacement, resulting in more complex correlation functions.
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Figure 8.7: Correlation function for coherent emission for different separations R,
where m is an integer. (a) Atoms aligned parallel to the probe beam are bunched
for all separations. (b) The perpendicular configuration shows anti-bunching due
to destructive interference for R = mλ+ λ/4, 3λ/4.
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8.6 Summary

In this chapter the concept of a quantised light-field has been introduced,

along with its relevance to generating non-classical light-fields using the

blockade effect. Rydberg atom interactions ensure only a single dark state

polariton can pass lossless through the blockade region, whilst other photons

arriving at the medium will be scattered to achieve photon blockade.

A simple model has been used to predict the correlation function arising

from this interaction, which shows that a large optical depth in a single

blockade sphere is required to obtain a high fidelity single photon output

train. Quantitative calculations of the correlations in the scattered light

from a few blockaded atoms verify that the blockade causes the atoms to

scatter pairs of photons with very high probability, as seen from the strong

bunching in the correlation function at short times. These calculations also

highlight the importance of geometry in the system, with photon blockade

working better for atoms parallel to the probe to avoid sensitivity to atomic

position.

The process considered in this chapter is photons scattered out of the probe

beam which is destructive. However, this scattering is conditional on whether

another photon is in the medium. This conditional behaviour for the case of

one or two photons is a first step towards the development of a two-photon

quantum gate, as it shows the blockade mechanism is already sufficient to

give a non-linearity at the single photon level. Future work should look for

ways to use this effect in the dispersive regime to create a phase-shift on the

photons. The first challenge though is to create, and probe, a single block-

aded ensemble which has a sufficiently large optical depth. Measurement

of the anti-bunching from the photon blockade would enable verification of

confinement to R < Rb before moving on to explore the dispersive regime.



Chapter 9

Progress towards a single

blockade sphere

9.1 Design constraints

In the previous chapter photon blockade was considered to illustrate the

ability to realise non-classical states of light using the strong dipole-dipole

interactions of the Rydberg states. From the results of the simple model in

sec. 8.4, two key requirements were determined to enable creation of a highly

correlated single-photon output;

1. A single blockade region in the transverse mode of the probe laser with

waist w0 < Rb/2 to prevent formation of more than a single dark state

polariton,

2. An optical depth OD & 4 to maximise the probability of scattering

photons out of the probe beam.

An implicit assumption relevant to both of these requirements is that the

atomic cloud has a comparable size to the probe waist to ensure that light

can be scattered from the edges of the probe beam whilst maintaining the
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blockade condition R < Rb across the sample.

Typically Rb ∼ 5 µm (although this can be increased by choice of n), requir-

ing a probe beam focus around 1 µm to meet the first constraint. This waist

corresponds to >98% probe beam intensity contained within a diameter Rb.

For a perfect lens with numerical aperture NA, the smallest possible focus

is given by the Airy radius r = 1.22λ/2NA. Comparing this to the 1 µm

waist for the 780 nm probe laser, a diffraction limited lens with NA ∼ 0.5 is

needed.

In the apparatus detailed in part II there is insufficient optical access to

obtain a diffraction limited probe waist. A new experiment has therefore

been designed and built, which is described in the sections below.

9.2 Trapping atoms in a single blockade volume

For the second requirement of large optical depth in the blockade volume,

it is insufficient to simply probe atoms in the MOT as the density is too

low, as discussed in sec. 8.4. Instead, atoms must be loaded into an optical

dipole trap which typically gives a density of 1012 cm−3 [127, 130]. Using

a dipole trap coaxial with the probe beam has the advantage of providing

tight transverse confinement of the atoms to a dimension smaller than the

blockade radius. It can also be focussed using the same optics as the probe

laser.

9.2.1 Dipole force

The dipole trapping force arises from the AC Stark shift of an atom driven

by a far detuned laser field, which creates a potential U ∝ I/∆ where I is

the laser intensity [137]. This creates a conservative force F = −∇U that

is proportional to the gradient of the potential, where the sign depends on
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the detuning of the laser. The atomic dipole also has a component out of

phase with the driving field, and this causes atoms to scatter photons from

the trapping laser at a rate ∝ I/∆2. This scattering heats atoms out of the

trap, so a large ∆ is desirable, requiring increased laser intensity to maintain

trap depth.

For a red detuned laser (∆ < 0), the atom is trapped at the point of highest

intensity, and atoms can be confined using a focused Gaussian beam with

waist w0. The resulting trap potential is given by [127]

U(r, z) =
U0 exp{−2r2/w(z)2}

1 + (z/zR)2
, (9.1)

where zR = πw2
0/λ is the Rayleigh range, w(z) = w0

√
1 + (z/zR)2 and U0

is the trap depth. Approximating the trap to a harmonic potential well,

the density distribution in the trap is described by a 3D Gaussian. The

radii of this distribution are σr =
√
kBTw2

0/4U0 and σz =
√
kBTz2

R/2U0 in

the transverse and longitudinal directions respectively [127], where T is the

temperature. Typically, the atoms thermalise in the trap at a temperature

of kBT ∼ U0/10 [130, 215]. Using this empirical factor, the spatial extent of

the cloud in the trap is around σr ∼ 0.16w0, σz ∼ 0.2zR, resulting in a very

tight transverse confinement but an elongated sample along the beam axis.

9.2.2 Dipole trap setup

For the new experiment, a wavelength of 915 nm is used for the dipole trap

laser, which is derived from a home-built TA system giving 1 W output. For

the transverse confinement, a waist of w0 = 5 µm is used to obtain a cloud size

comparable to the probe waist to give good mode matching whilst confining

atoms within a blockade radius. This waist corresponds to a Rayleigh range

of zR = 86 µm, resulting in a longitudinal cloud length of ∼ 35 µm, much

larger than the blockade radius as shown schematically in fig. 9.1 (b). It is
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Figure 9.1: Dipole trap geometry. (a) Focusing the probe down to 1 µm in the
MOT gives almost no absorption, as the density is too low. (b) A 5 µm dipole
trap along the probe axis provides tight transverse confinement < Rb, however the
longitudinal cloud size equivalent to around 6Rb. (c) Adding a 6 µm transverse
beam to create a crossed dipole trap allows complete 3D confinement within a
blockade sphere.

therefore necessary to use a crossed dipole trap configuration, where a second

laser beam is used to provide longitudinal confinement along the probe axis.

The high numerical aperture required to obtain a tight probe focus places

a number of constraints on the optical access perpendicular to the probe

beam. The horizontal MOT beams cross at an angle of 20◦, which leaves

an effective NA ∼ 0.12 for the cross-trap. Using Zemax optical modelling

software, a multi-element lens configuration has been designed to give a 6 µm

Gaussian waist, requiring a high optical quality viewport. Using this second

laser, the atoms can be confined to a longitudinal radius of 1 µm, enabling

confinement within a single blockade volume, as illustrated in fig. 9.1 (c).

This second beam must be orthogonally polarised to the first to prevent

creating unwanted effects due to interference.

There are a number of advantages to using the cross-trap geometry. The

increased volume of the larger dipole trap can be used to load a greater

number of atoms into the dipole trap. This can be used as a reservoir of

atoms for enhanced loading of the tighter trap, and may enable techniques

such as evaporative cooling [216] with a dimple trap [217, 218] to be used to

increase the density of atoms in the blockade region. It also allows the relative

cloud size, and hence aspect ratio of the cloud, to be varied by changing the

relative powers in the trapping lasers. This could be useful for exploring the
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angular dependence of the emission from a single blockade volume [71].

9.3 Experiment setup

9.3.1 Diffraction limited optics

There are a number of options for achieving a diffraction limited imaging

system with NA = 0.5, such as commercial microscope objectives or custom

multi-element lens configurations [219, 220]. Typically these components are

not compatible with ultra-high vacuum, and must focus light tightly through

a vacuum window which can introduce aberrations into the system. The al-

ternative is to place a diffraction limited aspheric lens inside the vacuum

system, greatly simplifying the optical design. This approach has been suc-

cessfully demonstrated in a number of groups for creating microscopic dipole

traps in which only a single-atom can be loaded [221, 222], enabling mea-

surement of 10% absorption from a single atom [223].

For the new experiment, a pair of aspheric lenses manufactured by Lightpath

Technologies, Inc. (catalogue number 350240) are used to focus and recollect

the probe beam. These lenses have been chosen following their extensive

characterisation for applications in single atom trapping [224]. The aspherics

have NA = 0.5 and are designed to be diffraction limited at 780 nm for a

collimated input beam if a 0.25 mm glass window is placed in front of the

lens. However, if this window is absent, diffraction limited performance can

be restored by using a weakly convergent input beam.

The relative alignment of the lenses in the vacuum chamber is crucial. It not

only affects the collection efficiency of the probe laser after the focus, in future

experiments it may be required to use counter-propagating probe lasers with

overlapped focii. A symmetric alignment is therefore needed. The lenses are

glued onto a custom V-block machined from 316LN stainless steel, shown in
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fig. 9.2. The V-block defines the optical axis for the two lenses, however the

lenses can still be tilted relative to this axis. These degrees of freedom were

set by careful alignment of the lenses using a commercial Shack-Hartmann

interferometer to measure the wavefront curvature and distortions, performed

by A. Gauguet. The first lens is aligned to be perpendicular relative to a

well-defined input beam. The lens is then clamped in place and the glued

using UHV compatible Epotek H77. To cure the glue, the V-block must be

heated to 135 ◦C for four hours in an oven. Once cooled, the V-block is placed

back in the input beam and the second lens adjusted to match the wave-front

curvature of the input beam using a three-axis translation stage. The second

lens is then clamped and glued. After curing, the peak and rms wave-front

errors added to the input beam by propagation through the aspheric lens

pair are measured to be λ/5 and λ/20 respectively, showing this setup gives

very good relative alignment of the two lenses. Reversing the lenses results

in the same magnitude of wave-front errors, demonstrating the symmetric

and reversible alignment achieved using this method. As a further test, the

assembled V-block was additionally heated to 140 ◦C for 6 hours without

any clamps to ensure the alignment would survive the vacuum bakeout in

the chamber. Repeated tests with the Shack-Hartmann reveal no change in

Figure 9.2: V-block designed for mounting the aspheric lenses in vacuum. The
lenses are surrounded by electrodes which enable cancellation of stray fields in all
axes, which are insulated from the V-block using ceramic spacers (white). (a)
CAD model showing lenses aligned in V-block. (b) Actual V-block mounted in
experiment. Holes in the block prevent virtual leaks from trapped air pockets.
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the alignment from the repeated baking. Finally, a piezo-electric translation

stage was used to knife-edge the probe focus, obtaining a waist of 1.2±0.1 µm

using a beam with a 6 mrad convergence angle and a 1/e2 waist of 2 mm at

the first lens face. Tighter foci are possible using larger input beams, however

this results in loss due the lens aperturing the beam.

9.3.2 Electric field control

As discussed in sec. 2.4, Rydberg states have extreme electric field sensitivity.

It is therefore necessary to be able to cancel stray-fields around the atoms

or to apply a well defined electric field, e.g. to change to 1/R3 interactions

using a Förster resonance. To provide electric field control, four polished

steel electrodes are mounted around each lens, as shown in fig. 9.2, which

enables electric fields to be applied or cancelled on all three axes. These are

insulated from the grounded V-block using ceramic spacers. The electrodes

and spacers are glued onto the V-block using Epotek H77.

One of the biggest sources of stray-field in this setup could come from patch-

potentials building up on the surface of the lenses over time, for example

due to deposition of rubidium atoms and ions [83]. The lenses have therefore

been coated with a conductive indium tin oxide (ITO) layer in addition to an

anti-reflection (AR) coating for 780 nm and 480 nm, preventing charge build

up on the lens. The disadvantage of this layer is that its refractive index

cannot be well matched to provide a low reflection AR coating, resulting in a

transmission of 90% through each lens at 780 nm. It also limits the bakeout

temperature to 150 ◦C to prevent degradation of the ITO from reaction with

oxygen in the air. The electrical contact is made using a piece of solder (see

appendix B) clamped onto the top of the lens by the mounting bar for the

electrodes above each lens.



Chapter 9. Progress towards a single blockade sphere 162

9.3.3 Vacuum chamber

The V-block is mounted at the centre of a pancake-shaped chamber, as shown

in fig. 9.3 (a), with the probe axis aligned to be in the horizontal plane. The

two large viewports at the side of the chamber are constructed using the

method detailed in appendix B to provide high optical quality viewport win-

dows close to the edges of the V-block. These windows minimise the aber-

rations induced on the cross-trap, and provide good optical access. There

are eight DN16CF flanges around the edge of the chamber, with the vertical

and horizontal pairs used for the vertical MOT beam and probe axis respec-

tively. A pair of Alvasource dispensers are mounted diagonally above the

lens axis. These are contained in a conical reducer with a 45◦ bend to avoid

direct line of sight from the dispensers onto the lenses. This prevents the

lenses being coated with rubidium, which will cause them to become opaque.

The two lower 45◦ flanges are used for an electrical feedthrough for the eight

electrodes and the Gamma Vacuum Titan 20S ion pump, which has a 20 l/s

pumping speed. This is connected via a T-piece with an all-metal valve to

seal the chamber off after pumping down. The chamber was baked at 150◦C

to enable pumping down to a vacuum of 10−11 torr, measured using an ion

gauge.

Figure 9.3: New Experiment Vacuum Chamber. (a) The V-block is mounted in
a pancake shape vacuum chamber, with the lens axis aligned horizontally. (b)
Assembled chamber including magnetic coils. The cage visible above the chamber
delivers the vertical MOT beam to the chamber.
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9.3.4 Beam alignment

Alignment of the probe beam through the chamber requires very high toler-

ances on the matching of the input and output convergence and beam waist

to obtain a reversible optical path with a focus as the centre of the chamber.

As the probe beam fills the clear aperture of the lens, it must also be well

centred on the optical axis of the two lenses to prevent clipping of the beam

edges, which will introduce aberrations and limit the transmission through

the system.

The probe beam is set up using a fixed cage-mount system to expand the

light from a bare single mode polarisation maintaining (SPM) fibre, as shown

in fig. 9.4 (a). The beam is weakly focused using an achromat to obtain a

convergence angle of 6.48 ± 0.07 mrad, measured by knife-edging along the

beam over a 1 m path length and fitting to a Gaussian beam profile. The

probe is aligned into the chamber using caps on the viewports to provide

mechanical alignment onto the optical axis of the lenses. The divergence of

the output beam is then measured by profiling the beam with a minimum of

5 knife-edge measurements at 10–20 cm separations. The distance between

the input cage and the first aspheric lens in the chamber is then adjusted

until the output beam matches the input, with a divergence angle of 6.49±
0.1 mrad. The output beam is then coupled back into a second SPM fibre

with an identical cage setup, adjusting the alignment to give a reproducible

and reversible coupling between both fibres. This output beam is connected

to the SPAD to record probe transmission. Using the input beam convergence

angle and 1/e2 beam waist of 2.17 ± 0.07 mm on the first lens, Zemax lens

modelling software was used to find the effective focal length of the lens pair

as 5.63± 0.03 mm.

The desired waist for the longitudinal dipole trap is 5 µm. Using the effective

focal length from the probe measurement, Zemax is used to find the input

beam waist and convergence angle required to achieve this spot size at the
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Figure 9.4: New Experiment Setup. (a) Schematic of beam alignment around
chamber. Light for dipole trapping and Rydberg excitation is overlapped with the
probe beam using dichroic mirrors (DM), and filtered out of the collection optics
using interference filters (IF). (b) Image of MOT at the centre of the V-block. The
electrodes and ceramic spacers are clearly visible around the atoms.

position of the probe focus. The dipole trap light is then set to a convergence

angle of 1.93 ± 0.04 mrad using an adjustable focal length collimator, and

aligned in the same manner as the probe beam to match the input and output

convergence. The final alignment corresponds to an input beam waist of

0.45±0.02 mm, giving a calculated focus of 5.0±0.2 µm inside the chamber.

The probe and dipole trap light are combined using a dichroic mirror before

the chamber, which allows both beams to be coupled into the output fibre

to provide transverse alignment of the beams. An interference filter is then

added to prevent dipole trap light reaching the SPAD. Similarly, the 480 nm

light is aligned into the chamber to counter-propagate with the probe beam.

This is set to give a spot size of 18 µm inside the chamber, ensuring a uniform

illumination of the blockade region to prevent Ωc changing across the sample.

9.3.5 MOT alignment

Due to the high NA of the aspheric lenses, it is not possible to use the

standard MOT geometry with three pairs of orthogonal beams. Instead, the

horizontal MOT beams cross at an angle of 20◦. The vertical MOT beam is

coupled into a polarisation maintaining fibre and expanded to a 1/e2 waist of
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2.4 mm using a cage mount on the top of the chamber, as seen in fig. 9.3 (b).

The horizontal beams have a waist of 1.4 mm to ensure they do not clip the

electrodes mounted around lenses. The MOT coils and three axis bias coils

are mounted on a frame around the chamber, which provides an additional

degree of freedom, combined with the beam alignment, with which the MOT

can be position at the centre of the lens axis. This is crucial, as the probe

beam is aligned to be in the centre of the two lenses, and the dipole traps

only collect atoms from a region equivalent to the Rayleigh range. Thus,

even for the larger transverse dipole trap, the MOT must be aligned onto the

centre to better than around 100 µm.

The MOT has the best loading at a field gradient of 15 G/cm for cooling

light detuned by ∆ = −2.3 Γe at an intensity of 0.35 mW/cm2 in each beam.

For a load of 1 s, around 500,000 atoms are collected in the MOT with a

cloud size ∼ 0.1 mm. An image of the MOT at the centre of the V-block

can be seen in fig. 9.4 (b). The position of the MOT is very sensitive to

beam balance and magnetic field cancellation around the chamber. Further

optimisation of the alignment and position is required to improve the stability

and reproducibility of the atoms in the lens axis.

9.4 Summary and outlook

In this chapter the construction of a new experiment for the observation of

non-classical light from interaction with a single blockade volume is described.

The initial steps towards localising atoms within a single blockade sphere

have been made, with the probe and dipole traps aligned into the chamber

and cold atoms being collected in the MOT. One of the major difficulties in

building the chamber was to develop a method to mount the aspheric lenses

in vacuum. Gluing the lenses onto the V-block using the Shack-Hartmann,

as described above, provides a reliable technique for obtaining the required
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robust, symmetric alignment of the lenses.

Given the opportunity to build this apparatus again, alternative lenses would

be chosen to enable use of a collimated probe beam. This reduces the tol-

erances required for the alignment of the input beams, and is better suited

for experiments seeking to measure the phase-shift of the probe by build-

ing an interferometer around the setup. Currently, the weak divergence of

the probe beam makes mode-matching with a reference beam challenging,

potentially requiring a second aspheric lens pair to be aligned in the refer-

ence arm [199]. The ITO coating would also be neglected in a future setup

as there are already dark-spots appearing on the lenses from where rubid-

ium has reacted with the coating. Despite these suggested improvements,

the current apparatus meet the requirements for probing a single blockade

region and will provide an excellent test-bed for looking for single-photon

non-linearities. The next steps will be to begin optimising the loading of the

dipole trap to get a large optical depth in the blockade volume.

Once obtained, an optically thick, isolated ensemble of atoms confined within

a blockade radius opens the possibility of studying a rich variety of non-

classical states of light in addition to photon blockade, such as generating

single-photons using four-wave mixing [70, 225] or photon-subtracted states

[73]. This setup should provide a flexible and versatile apparatus with which

to characterise the blockade mechanism, as there is the possibility of us-

ing different trap geometries and also the ability to tune the interactions

with electric fields. Dipole blockade has currently only been demonstrated

in macroscopic ensembles or for isolated atom pairs, however probing a sin-

gle ensemble allows direct testing of the collective blockade state. This is

important not only for experiments to generate and manipulate light at the

single photon level, but also for proposals to utilise the collective nature of

blockade to build atomic quantum gates [40, 62].
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Chapter 10

Conclusion

In this thesis, Rydberg EIT has been used to combine the strong dipole-dipole

interactions of the Rydberg states with the resonant dark state to realise a

novel cooperative optical non-linearity. An interacting N -atom model was

developed to show the effect of the dipole blockade is to prevent more than

a single dark state in each blockade region. The remaining atoms scatter

photons from the probe laser, suppressing the resonant transmission.

Experiments have been performed on a cold atomic ensemble to look for evi-

dence of interaction effects using EIT for Rydberg atoms with n = 19–60. For

states with n . 26, interactions are manifested as a density-dependent loss,

consistent with superradiance, that dominates over the suppression mecha-

nism due to the geometric enhancement from the atom cloud diameter com-

pared to the emission wavelength.

At n ∼ 60, the cooperative optical non-linearity has been observed and char-

acterised for both attractive and repulsive dipole-dipole interactions. Results

for the repulsive interactions conclusively rule out alternative mechanisms

for the suppression, and excellent quantitative agreement is obtained at low

density to the three-atom model, placing an upper limit of 110 kHz on the

relative dephasing rate between neighbouring blockade spheres. Attractive

interactions result in a non-linearity dependent upon the direction of the fre-
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quency scan, characterised by second- (third-)order non-linear susceptibilities

for scanning across the two-photon resonance with an initially positive (neg-

ative) probe frequency. For both directions, the magnitude of the non-linear

susceptibility is significant when compared to other non-linear media, and a

quadratic density dependence consistent with cooperativity is observed.

One of the limitations of the data presented in sec. 7.3 for attractive inter-

actions is the lack of information about the ion fraction to complement the

transmission spectra. Using an MCP and electrodes in the vacuum chamber,

the attractive regime could be studied further to give insight into the under-

lying mechanism for the second or third order non-linearities. This would

also allow the universal scaling predicted by Ates et al. [86] to be tested.

The blockade mechanism allows a single blockaded ensemble to transmit

a single photon through formation of a single-photon dark state polariton

whilst scattering additional photons out of the probe mode. The concept

of photon blockade was introduced in chapter 8 to show the single-photon

character of the observed cooperative optical non-linearity, and a model de-

veloped to predict the correlation function of the probe after a single blockade

region. This can be used to generate a highly correlated train of photons sep-

arated in time by τb ∼ 100 ns with several hundred atoms confined within

a single blockade sphere. Equivalently, the blockade can be used to create

a highly correlated photon pair source by collecting light scattered from the

side of the blockade region.

Progress towards obtaining a single blockade region has been presented,

describing construction of a new apparatus in which the requirements of

the photon blockade can be realised. This new setup allows studies of a

wide range of novel and interesting physics relevant to realising optical non-

linearities on the single photon level. Two key areas of future study are;
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• Collective single photon emission Blockade allows excitation of a

collective wavefunction with the Rydberg excitation shared across the

ensemble, as discussed in sec. 5.3. If this excitation is mapped onto the

intermediate excited state following a π-pulse, the result is collective

emission of a highly collimated single photon at a superradiant rate [70,

71, 159]. This process gives enhanced coupling between a single photon

and an atomic ensemble, which could allow high-fidelity transport of

quantum information between spatially separated ensembles [71]. The

cross-trap geometry in the will enable studies of emission for different

aspect ratios of the atomic cloud.

• Single-photon phase-shift All of the experiments presented in this

thesis are performed through measurements of the transmission. Build-

ing an interferometer with the blockade region in one arm will allow

measurement of the single-photon phase-shift in the dispersive regime.

This can be done using homodyne detection [202] in which the ampli-

tude and phase of the single photon are amplified by a strong reference

beam. This setup also allows tomographic reconstruction of the light-

field [226], allowing better characterisation of the non-classical light.

Observation and characterisation of the blockade in a single ensemble is

important not only for developing photonic devices, but also for other ap-

proaches to quantum information processing. In the long term, it may be pos-

sible to combine these approaches to develop a high-fidelity photonic phase

gate.
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Appendix A

Useful Circuits

A.1 Fast photodiode

The photodiode is designed using a Hamamatsu S5972 500 MHz photodiode

combined with a Texas Instruments LT1222 op-amp, which has a 1 GHz

gain bandwidth product. This circuit gives a gain of 2.4 × 103 V/W with

a 15 MHz bandwidth, which is used for the modulation transfer lock of the

cooling laser, as discussed in sec. 6.1.1. Best performance is obtained by

placing a grounded guard-rail around the non-inverting input (dashed line)

and minimising the distance between the chip and the photodiode.

Figure A.1: 15 MHz bandwidth fast photodiode. Dashed line denotes grounded
guard loop around photodiode anode and non-inverting input on the op-amp to
prevent the parasitic oscillating.
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A.2 SPAD protection circuit

Protection circuit for the Perkin-Elmer SPCM-AQR photon counters. This

ensures the detectors are gated for a low TTL, preventing damage from over-

exposure of the SPAD. The counter can be enabled using an active high Gate

TTL. This transistor is chosen based on the more detailed protection circuit

in [227].

Figure A.2: SPAD protection circuit to gate by default



Appendix B

Home-made viewport

construction

For the new experiment, two large high-quality vacuum windows were used

to provide good optical access from the side of the lens axis. The viewport

construction method builds on the design detailed in [228], using a soft solder

seal between the glass and metal to prevent stress, and hence birefringence,

on the glass window which is typical for standard conflat viewport windows.

The difference here is that the windows are now sealed directly onto the

vacuum chamber, which reduces the physical size of the viewport and enables

the width of the chamber to be kept small.

The windows are high quality BK7 glass with dimensions �70×9 mm, which

are AR coated for 780 and 480 nm with a 5 mm mask around the edge of

the lens. This ensures the seal is made directly onto the glass, as placing

the solder on the AR coating can reduce the reliability of the vacuum seal.

The chamber is designed with a flat rim 2 mm thick, with an outer diameter

of 70 mm to match the glass. Around this rim, eight lugs are welded onto

the chamber which have an M4 thread to hold the window in place. A

cross-section of the viewport is shown in fig. B.1 (a), showing the window

is clamped onto the chamber using an external flange with a pair of solder
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seals.

The solder seals are constructed using Indium Corporation WIREOT-51831

�=0.030" alloy wire (97.5 % Pb, 1.5 % Ag and 1 % Sn). Wire is wrapped

round a metal former and soldered into a ring the same diameter as the

chamber rim, shown in fig. B.1 (b). The ring is then pressed flat to a thickness

of 0.3 mm, leaving excess around the solder join (c). This must be inspected

to ensure the solder join is not visible, as if the join can be seen the seal will

be compromised. The excess solder is then removed using a scalpel. All tools

must be clean to prevent getting grease inside the vacuum chamber.

Finally, the window is assembled as shown in (d). The outer flange is secured

Figure B.1: Home-made viewport assembly. (a) Cross-section showing outer flange
clamping the glass onto the rim of the chamber using two soft solder seals. (b)
Solder wire is soldered into a ring using a metal former. (c) The ring is then pressed
to a thickness of 0.3 mm to make the seal. (d) Solder seal on glass window. (e)
Finished window with outer flange tightened to a torque of 2 N m.
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to the chamber using M4 bolts, with two conical disk springs placed base-

to-base as washers on each bolt, which are tightened to a torque of 2 N m.

The chamber is then baked at 150◦C (limited by the lens ITO coating) and

pumped down to a pressure of 10−11 torr. During baking, the solder rings

become soft, however the conical disk springs maintain a force on the flange

to prevent leaks. Once cooled, the bolts should be retightened to the original

torque. However, the windows on the new chamber remain leak-tight even if

the outer flanges are removed, demonstrating the robust seal formed during

baking. This design is poorly suited to chambers requiring repeated access

to the chamber, as the windows cannot be removed without risking damage

to the rim of the chamber, but is a very simple technique for obtaining high

quality viewport windows.



Appendix C

Quantised Atom-Light

Interactions

Consider a two-level atom at position rA interacting with modes of the quan-

tised electromagnetic field, as introduced in chapter 8. The Hamiltonian for

the coupled system is given by Ĥ = ĤA + ĤE + ĤI, where each of these

terms represents the energy of the bare atom, the energy of the quantised

field and the interaction between the atom and the field respectively. Apply-

ing the rotating wave approximation, the Hamiltonians for this system are

given by [200]

ĤA = ~ω0π̂
+(t)π̂−(t), (C.1a)

ĤE =
∑

k

~ωkâ
†
k(t)â(t), (C.1b)

ĤI = i
∑

k

~gk
{
π̂+(t)âk(t)eik·rA − â†k(t)π̂−(t)e−ik·rA

}
, (C.1c)

where π̂± are the raising and lowering operators for the atom introduced in

eq. 4.2, â†k and âk are the creation and annihilation operators for photons

in mode k, and gk = (ωk/2ε0~V )1/2êk · deg is the coupling constant for the

electromagnetic field of mode k and the atomic dipole.
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For an atom driven by a single-mode laser, the light field can be described by

a coherent state |α〉. Taking the expectation of the interaction Hamiltonian

HI with respect to the wavefunction of the coherent state, the creation and

annihilation operators can be replaced with the eigenstates of eq. 8.4 to give

HI = i~gk
{
απ̂+(t)e ik·rA − α∗π̂−(t)e− ik·rA

}
. (C.2)

Comparing this to the interaction with a classical field from eq. 4.3 yields

igkα = Ωp/2 and − igkα
∗ = Ωp/2. Combining these and using the definition

of the mean-photon number of a coherent state as n̄ = |α|2, the equivalence

between an atom driven by a classical field with Rabi frequency Ωp and a

coherent-state is
Ω2

p

4
≡ g2

kn̄. (C.3)

Thus for an atom displaced from the origin, the semiclassical coupling of

eq. 4.3 should be modified to include the position dependent phase-factors

as follows,

V =
~Ω

2
(π̂+e ik·rA + π̂−e− ik·rA). (C.4)

For the simplified g(2) model in sec. 8.4, a quantisation volume of V = πw2
0c∆t

is assumed for the probe laser, where w0 is the 1/e2 beam radius. Taking the

intensity of the laser as I = 2P/πw2
0, eq. C.3 reduces to

n̄ =
2P∆t

~ω
. (C.5)
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