W Durham
University

AR

Durham E-Theses

Strategies for Optimising DRAM Repair

MILBOURN, JOSEPH,JOHN

How to cite:

MILBOURN, JOSEPH,JOHN (2010) Strategies for Optimising DRAM Repair, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/685

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way
The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, Durham University, University Office, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

https://core.ac.uk/display/108039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.dur.ac.uk
http://etheses.dur.ac.uk/685/
 http://etheses.dur.ac.uk/685/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Strategies for Optimising DRAM
Repair

Joseph Milbourn

A Thesis presented for the degree of
Doctor of Philosophy

Centre For Electronic Systems
School of Engineering
Durham University
England

September 2010

Strategies for Optimising DRAM Repair

Joseph Milbourn

Submitted for the degree of Doctor of Philosophy
September 2009

Abstract

Dynamic Random Access Memories (DRAM) are large complex devices, prone to
defects during manufacture. Yield is improved by the provision of redundant struc-
tures used to repair these defects. This redundancy is often implemented by the
provision of excess memory capacity and programmable address logic allowing the

replacement of faulty cells within the memory array.

As the memory capacity of DRAM devices has increased, so has the complexity of
their redundant structures, introducing increasingly complex restrictions and inter-

dependencies upon the use of this redundant capacity.

Currently redundancy analysis algorithms solving the problem of optimally allo-
cating this redundant capacity must be manually customised for each new device.
Compromises made to reduce the complexity, and human error, reduce the efficacy

of these algorithms.

This thesis develops a methodology for automating the customisation of these re-
dundancy analysis algorithms. Included are: a modelling language describing the
redundant structures (including the restrictions and interdependencies placed upon
their use), algorithms manipulating this model to generate redundancy analysis al-

gorithms, and methods for translating those algorithms into executable code.

Finally these concepts are used to develop a prototype software tool capable of

generating redundancy analysis algorithms customised for a specified device.

Declaration

The work in this thesis is based on research carried out at the Centre for Electronic
Systems, the School of Engineering, the Durham University, England. No part of
this thesis has been submitted elsewhere for any other degree or qualification and it

is all my own work unless referenced to the contrary in the text.

Copyright (© 2010 by Joseph Milbourn.
“The copyright of this thesis rests with the author. No quotations from it should be
published without the author’s prior written consent and information derived from

it should be acknowledged”.

11

Acknowledgements

This work would not have been possible without the kind support of my supervisors,

Professor Alan Purvis and Dr Simon Johnson at Durham University.

I would also like to thank Dr Erik Volkerink, Verigy Chief Scientist; his colleagues
Tien Pham, Andy Niemic, and Scott West of the memory test division in Cupertino,
Justin Cui of the memory test division in Shanghai, and also Klaus Dieter Hilliges of

the SoC test division, Germany, and Jimmy Jin of the SoC test division, Shanghai.

Finally, I would acknowledge the Engineering and Physical Sciences Research Coun-

cil for funding this project, and Verigy for their sponsorship.

iv

Contents

Abstract

DeclarationJ
Acknowledgements
1 Introduction
1.1 Requirement for DRAM Redundancyl
1.2 Redundancy Implementation
1.3 Repair Processo
1.4 Redundancy Analysis Algorithms
1.5 Industrial Background oo
1.6 Problem
1.7 Proposed Solution/.
1.8 Sponsorship L
2 Background
2.1 Introduction to Repairable DRAM
2.2 Structure of Repairable RAM Devices
2.3 Causes of Complexity
2.3.1 Hard Wired Fusebox Bits
2.3.2 Shared Fusebox Bits
2.3.3 Shared Redundant Elements
2.4 Modelling DRAM devices‘
2.5 Repair Algorithms
2.6 Proposed Solution o
2.7 Conclusions

ii

iii

iv

CONTENTS vi
3 Modelling DRAM Failure Maps 23
3.1 Introduction 23
3.2 The Statistical Model oo 24
3.3 Implementation Lo 27
3.4 Conclusions 30

4 DRAM Redundancy Analysis 32
4.1 DRAM Repair Background 32
4.2 Introduction 36
4.3 The Spare Allocation Problem 37
4.4 Algorithms 38
45 Analysis 40
4.6 Repair in Hierarchical Devices 44
4.7 Experiments 46
4.7.1 Apparatus‘ 48

4.72 Results. 48

4.8 Conclusions 50

5 A Redundancy Model for DRAM 52
5.1 Background 52

5.2 Imtroductiono 55
5.3 Problem o7
5.3.1 Model Concepts 58

5.4 Mathematical Model oL 58
5.4.1 Possible Placements. 61

54.2 Constraintso 62

5.4.3 Interaction Between Placements and Constraints 65

5.5 Functions of Model Elements 66

66

67

5.5.3 Compatibility 68

5.6 Modelling Rules and Syntax 69
5.6.1 Rules. 69

CONTENTS vii
5.6.2 Syntax and Semantic Checkingj 70

5.7 Abstraction in the Graphical ModeJ 70
5.7.1 Atomic Abstract Models 72

5.8 Conclusions 72

6 Textual Model Language 79
6.1 Introduction 79

6.2 Language RequirementJ 80
6.3 Grammar 80
6.4 Expression Syntaxo 82
6.5 Example Text Model 84
6.6 Conclusions 84

7 Automatic Code Generation 87
7.1 Introduction 87
7.2 Background 90
7.3 Algorithms 92
7.3.1 Off-line Redundancy Analysis Algorithms. 93

7.3.2 On-line Redundancy Analysis Algorithms 103

7.4 Approach 103
7.5 Examples . . . L 114
7.5.1 Region Identification 114

7.5.2 Must Repain 116

7.5.3 Branch and Bound RepaiJ 116

7.6 Conclusions L 117

8 DRAM Redundancy Analysis Modelling Tool 119
8.1 Imtroduction 119

8.2 Usersand Use Cases i 122
8.2.1 Modelling a New Device 122

8.2.2 Syntax and Semantic Checking 124

8.2.3 Exportinga Model 125

8.2.4 Importing a Model oo 125

CONTENTS viii
8.2.5 Generating Code 126

8.2.6 Implementing a new Redundancy Analysis Algoritth 126

8.2.7 Requirements Lo 128

8.3 Implementationo 129
8.3.1 Architecture 129

8.3.2 Interface components 130

8.3.3 Text Model Import/ 131

8.3.4 Model Objects 132

8.3.5 Model FunctionJ 132

8.3.6 Code generation 133

84 Releases 133
8.5 Examples e 134
8.6 Conclusions 135
8.7 Further work 136

9 Experiments 145
9.1 Imtroduction 145
9.2 Comparing Repair Algorithms 146
9.3 Apparatus 147
9.4 Results 150
9.5 Conclusions 153
10 Conclusions 157
10.1 Problem Review 157
10.2 Objectives 158
10.3 Achievements 159
10.3.1 Concepts 159

10.3.2 Implementation L. 161

10.4 Results 162
10.5 Further Work 163
10.6 Closing Remarks 165

A Template Application Programming Interface 166

Al

The Template Class

A2

The Algorithm Class

B Supporting Source Code

B.1

File: bitmap.c

B.2

File: bitmap.h,

B.3

File: bnb.c

B4

File: bnb.h

B.5

File: model.c,

B.6

File: model.h,

B.7

File: must_repair.c

B.8

File: queue.c

B.9

File: queue.h,

B.10 File: region_generation.c

B.11 File: region_generation.h

B.12 File: repair.c

B.13 File: repair.h

B.14 File: solution_record.c.

B.15 File: solution.record.h.

B.16 File: utils.c

B.17 File: utils.h

B8 File: kaf.rml

List of Figures

1.1 Redundancy Analysis in the context of DRAM manufacture.
1.2 The manual repair process
1.3 Predicted DRAM Capacity
1.4 Proposed System Overview

X

LIST OF FIGURES X

2.1 Simple DRAM structure 10
2.2 Effects of fixing least significant bits in the fusebox. 12
2.3 Effects of fixing most significant bits in the fusebox 12
2.4 Effects of a fusebox with shared bits. 13
2.5 Two redundant elements with a shared fusebox bit 13
2.6 Shared redundant row repairing in both of two memories 15
2.7 Shared redundant column repairing one of two memories. 16
2.8 Example Complex Devicg 17
3.1 Experiments with Real and Modelled Failure Maps 25
3.2 Overlay of Generated Failure Maps 29
3.3 Calibration curve for the yield mode!J 30
4.1 Most Repair Solution 33
4.2 Must Repair Solution 35
4.3 Yield Improvement after Simple Repair 37
4.4 Repair Solutions 41
4.5 Device with hierarchical repair 44
4.6 Yield results for three redundancy analysis algorithms. 49
4.7 Repair time for three redundancy analysis algorithms. 50
5.1 Model Abstraction in DRAM 53
5.2 Block Diagram of a Simple DRAM 57
5.3 Placement and Model Parameters 60
5.4 Graphical Model Placements 61
5.5 Possible Placements 63
5.6 Tied Redundant Rows 64
5.7 Placements Constrained to One Memoryl 64
5.8 Constrained Placements‘ 64
5.9 Sets of Placements oL 66
5.10 Sets of Placements VisualisedJ 74
5.11 Total and Specific Coverage 75
5.12 Compatible and orthogonal redundant blocks. 75

LIST OF FIGURES xi

5.13 Associative Compatibilityl 75
5.14 Modelling Rule Representatiorl 76
5.15 Modelling Rule Replication 76
5.16 Modelling Rule Allocation 76
5.17 Graphical Model Overlay 77
5.18 Simplification using Abstract Models 77
5.19 Atomic Abstract Model L 78
6.1 Text Model Grammar 81
6.2 Layout and graphical models of the example device. 85
6.3 Full Text Mode!J 85
6.4 Minimal Mode!J 86
7.1 Repair Decision Tree &9
7.2 Repair Decision Tree oo 93
7.3 Repair Decision Tree, limited by placements 93
7.4 Repair Decision Tree, limited by constraint 94
7.5 Repair Regions 95
7.6 Independent Banks L. 97
7.7 Example Filter Function and Effects 100
7.8 Connected Elements 101
7.9 An Example Hierarchical Partitioning 102
7.10 Template architecture 106
7.11 Class Responsibilities and Control Flow During Code GeneratiorJ .. 108
7.12 Class Responsibilities and Control Flow (Complex Examples) 112
7.13 Example Device 115
8.1 Advantest Memory Repair Analysis Tool [mra0O1]. 120
8.2 Graphical Model Editor 122
8.3 High level tool architecture block diagram. 129
8.4 New Design Creation 138
8.5 Create New Graphical Model 138
8.6 Imitial Graphical Model 139

8.7 Syntax Error HighlightingJ
8.8 Graphical Model Editor,
8.9 Useof Abstract Models
8.10 Contents of Abstract Model
8.11 Layout Editor
8.12 Text Model Editor
8.13 Generated Configuration File
9.1 Experimental Device and Failure Map
9.2 Experimental Results: Repairs
9.3 Experimental Results: Consumption Diagrams
94

Experimental Results: Execution Flow Diagrams

List of Tables

3.1

Parameters for the statistical failure model

4.1

Redundancy analysis complexity comparison

4.2

Repair Algorithm Comparison

5.1

Mathematical Model Elements

5.2

Placement Representations

5.3 Common placement examples

6.1
6.2

Placement and Constraint Expression Variables

Placement and Constraint Expression Operators

7.1

Identified Regions‘

7.2

Regions identified for the example device.

8.1

Tool Release Details,

xii

LIST OF TABLES xiii

A.1 Basic Methods of the Template API. 167
A.2 Advanced Methods of the Template API. 168
A.3 Language Specific Methods of the Template API. 169
A.4 Language Specific Methods of the Template API (continued). 170
A.5 Variables of the Algorithm Class.‘ 171
A.6 Methods of the Algorithm Class.‘ 172

Chapter 1

Introduction

The manufacture of dynamic random access memories (DRAM) is a low yield pro-
cess. Adding a small amount of redundant memory capacity allows the repair of
many devices which would otherwise be unusable. To maximise the memory density
limitations may be placed on the use of this redundant capacity and, as modern

devices become larger, these limitations become more complex.

As the equipment necessary to test and repair DRAM devices requires a very large
capital investment, and the value of each device tested and repaired is small, in
order to maximise the return of this high value equipment the time taken for test

and repair must be minimised, and the throughput maximised.

Redundancy analysis algorithms are responsible for solving the NP-Complete prob-
lem of optimally using this redundant capacity to repair faults in a failed device.
Currently these redundancy analysis algorithms are designed, and customised, man-
ually for each new device. This manual construction of repair algorithms is error

prone and handling the high level of complexity is difficult.

The development of a tool capable of automatically generating customised redun-
dancy analysis algorithms would automatically handle the high complexity inherent
in current DRAM devices, and the increased complexity of the next generation
devices. Automatic algorithm generation requires a formal description of the re-

dundancy structures in a DRAM device. Both this description, and the automatic

1

1.1. Requirement for DRAM Redundancy 2

algorithm generation are implemented in a prototype tool presented here.

1.1 Requirement for DRAM Redundancy

As the memory density of DRAM devices increases the manufacturing process be-
comes more sensitive to defects reducing the overall yield, and as new devices often
operate at the limits of the manufacturing process the yield is further reduced. Many
devices fail due to defective cells in the memory array: these devices could be made
viable if redundant memory capacity were to be included in the device, along with
some means by which this redundant capacity could replace faulty cells in the mem-

ory array, thus improving the overall yield.

The provision of this extra memory capacity and the logic to allow its use requires
extra silicon area on the die, reducing the maximum capacity possible for a given

process and silicon area available.

1.2 Redundancy Implementation

The redundant capacity in DRAM devices is provided by memory arrays with in-
creased capacity; programmable address logic allows the remapping of addresses in
the memory array into this redundant capacity. This redundant capacity is often
modelled as a set of spare rows and spare columns repairing rows and columns in

the main array.

The programmable address logic is controlled by a set of fuses, laser cut or non
volatile memory, which can be set after manufacture to control the placement of
specific rows and columns of redundant capacity. These fuses, and the additional
wiring and logic required to implement the redundant capacity takes a considerable
area on the chip; in an attempt to reduce the silicon area required to implement
redundancy (and therefore to increase the amount of storage per device) compro-

mises are made in both the logic, and in the number of fuses. Reducing the number

1.3. Repair Process 3

of fuses, or simplifying the remapping logic, introduces complexity into the repair
process: limiting the addresses at which some redundant rows and columns may
be placed, and constraining the addresses which redundant rows and columns may

repair dependant on the use of other redundant capacity.

1.3 Repair Process

Understanding the process by which memory is tested and repaired allows a greater
understanding of the limitations placed upon redundancy analysis algorithms by the
environment. After DRAM devices are manufactured they are tested before packag-
ing. Each die is tested, those shown by a heuristic test to be probably unrepairable
are discarded. A redundancy analysis algorithm calculates a repair solution for each
device, and the results written to the fuses, after which the devices are packaged.
The devices are tested once again, and those still faulty are discarded; figure 1.1

outlines this process.

As can be seen from figure [1.1, redundancy analysis must take place in the critical
path of DRAM manufacture. As a result, and due to the huge cost of the automatic
test equipment, there is a strong incentive to reduce the time taken by redundancy
analysis. Many redundancy analysis algorithms allow a trade-off between the time
taken for analysis (the throughput) and the performance: an algorithm taking less

time is likely to achieve a lower overall yield than an algorithm taking more time.

1.4 Redundancy Analysis Algorithms

Redundancy analysis algorithms are responsible for selecting from all the possible
combinations of uses of redundant elements one potential solution. Selecting the
optimum from all the potential solutions has been shown to be NP Complete for a
single memory array with a number of spare rows and columns with no limits on
their placements and no interdependencies. As memory size increases (both of mem-

ory array, and the number banks) the size of the repair problem also increases. The

1.4. Redundancy Analysis Algorithms 4

Manufactured
Devices

Test on
ATE

Discard Device

Repair
Packaging
Test on
ATE
I
Fail Pass _

Discard Device Passed? WOI"I.{IIlg
Devices

Figure 1.1: Redundancy Analysis in the context of DRAM manufacture.

introduction of limitations and interdependencies between redundant elements de-
creases the number of possible solutions but makes the selection of possible solutions

given a set of failures more complex.

The current generation of redundancy algorithms are designed, and customised to
each new device, manually; figure 1.2 illustrates this approach. The size and com-
plexity of devices, and the lack of a formal modelling methodology for redundancy
structures in DRAM, makes this manual approach either very time consuming or

compromises in the correct handling of the complex interdependencies found.

1.5. Industrial Background 5

Device De-
scription Manual Algo- Mafnual Al Repair Code
. . gorithm Im-
rithm Selection .
plementation

Figure 1.2: The manual repair process: the memory design is interpreted by an
engineer, an algorithm selected, and the algorithm manually implemented.

1.5 Industrial Background

The International Technology Roadmap for Semiconductors (ITRS) [fS07] predicts
an increase in the memory density and the size of DRAM devices; figure[1.3] com-
piled from the ITRS data, shows this predicted increase in memory size. As the
memory size and density increases the size of the redundancy analysis problem be-
comes much larger, and the complexity of the limitations and constraints imposed

by area optimisations is also increased.

600 - 7

=~
)
e}
T
|

200 .

Predicted Memory Size (Gb)

e}
T
|

| | |
2010 2015 2,020
Date (Years)

Figure 1.3: Capacity of DRAM devices as predicted by the ITRS. Compiled from
tables le and 1f of [fSO07].

Despite the relatively low value of each DRAM device the massive number of devices
produced means that even small improvements in yield made by improved redun-

dancy analysis algorithms can be worth many millions, even billions, of dollars.

1.6. Problem 6

1.6 Problem

Given the large memory capacity and complexity of the redundancy structures in
modern DRAM devices, both of which are expected to increase, the manual con-
struction and customisation of redundancy analysis algorithms is often unable to
correctly represent the device complexity, and may include manual errors, leading

to overall yield loss.

1.7 Proposed Solution

The creation of a tool to automatically generate and customise repair algorithms,
accounting for the high complexity in modern devices, could eliminate the errors
introduced by manual algorithm design and greatly reduce the engineering time
required. Automatic generation of redundancy analysis algorithms requires a formal
description of the redundancy structures in a device; this description, or model, must
be capable of representing not only memory and redundancy arrays but also all the

limitations and interdependences imposed upon the uses of that redundant capacity.

To use such a tool the user must first describe the device; two input methods are
proposed, a parser for a simple text based language describing the model, and a

graphical editor manipulating an intuitive graph based representation of the model.

From these inputs the tool can construct an internal representation of the device.
Techniques are proposed to use this model representation to customise repair algo-
rithms including optimisations based on the model structure. Figure /1.4 shows an

overview of such a system.

1.8 Sponsorship

This project has been sponsored by both the Engineering and Physical Sciences
Research Council (EPSRC) and Verigy under an EPSRC Industrial CASE. Verigy

1.8. Sponsorship

I
[
l

Device Description
_

Manual ‘
Algorithm |[—
Selection 3
Manual | 1 prodel Ma- Code
Model . . .
i ' | nipulation Generation
Creation ‘
i Algorithm
1 Library

1

Automated by Tool —ﬂ:

|
I
|
I
I
I
I
I
I
I
|
|
I
1

Repair Code

Figure 1.4: Proposed System Overview: The user must first describe the device
using the graphical editor and select the repair algorithm required. The tool then
manipulates the model and draws upon a library of repair algorithms to generate

repair code.

manufacture both logic and memory automatic test equipment (the 93000 and V6000

series respectively). Verigy was formed in 2006 from the parent company Agilent,

who in turn spun out from Hewlett-Packard in 1999.

The project has also included two internships at Verigy in Cupertino, CA during
the summer of 2007 and 2008.

Chapter 2

Background

Before developing a solution to the problem proposed this chapter will give an
overview of the history of repairable DRAM devices, of the causes of complexity
in modern devices and a review of modelling techniques. An outline of of the redun-

dancy analysis problem will also be presented.

2.1 Introduction to Repairable DRAM

The first repairable memory devices were configured using discretionary wiring
[CDJ67], after manufacture extra metal layers were used to connect only good cells
forming a functioning memory array. Later [TA67] discretionary wiring was used to
connect only good rows, simplifying the metal layers required. In 1969 Chen [Che69]

extended the method to include both good rows and columns.

Much later, in 1978, Schuster et al [Sch78] introduced the reconfigurable device com-
mon today; using extended address logic and a bank of laser cut fuses [KGB84] row
and column re-mapping could be controlled without discretionary wiring (some more
advanced devices use electrically reprogrammable fuses [KGB'84]). This system of
redundant capacity allocated by manipulations in the address logic and controlled

by a set of fuses, written to after manufacture, is still in common use today.

As devices became more complex the problem of optimally allocating spare rows

8

2.1. Introduction to Repairable DRAM 9

and columns to repair the devices became more time intensive. In 1986 Kuo and
Fuchs showed that this spare allocation problem was NP Complete [KF86]. They
developed a branch and bound technique with a cost function dependent on the type

of element to quickly arrive at the optimum solution.

As any repair algorithm must be run between the testing and repair of each man-
ufactured device the time taken in redundancy analysis has a direct impact on the
throughput of the manufacturing process. In an attempt to reduce the running time,
and increase the throughput, heuristics are used to either discard the device if it
seems unrepairable, or to reduce the search space of the spare allocation problem
(SAP). Kuo and Fuchs use the Must Repair heuristic [Day85] to provide a seed
solution for their NP Complete SAP solver.

An alternative approach to solving the SAP (with shared spares) was proposed by
Kuo et al [LYCKO04, YTH" 05, LFMKO06] where the problem is represented as a set
of boolean functions manipulated using a Binary Decision Diagram. The algorithm
developed is a perfect algorithm that like the branch and bound algorithm, will
always find the optimum solution. The later papers extend the modelling approach,
and map the SAP to the use the well known Boolean Satisfiability Problem; as
there are many application of boolean satisfiability problem solvers, there are many

available implementations.

Modern practical repair of DRAM devices relies on early abort heuristics [TBM84]
to prevent repair being attempted on unrepairable dies, followed by heuristic repair
algorithms the result of which is used to reduce the search space for an NP complete
solver. Very often must repair is used to generate an initial solution before the

application of an NP complete SAP solver [Bha99].

The International Technology Roadmap for Semiconductors [fS07]| predicts an in-
crease in the complexity of redundancy structures in DRAM devices. This increase
in complexity increases the search space a repair algorithm must traverse making
efficient repair algorithms even more important, but also increases the complexity
an engineer must manage when creating a device description from which the repair

algorithm could be customised. Understanding the causes of this complexity allows

2.2. Structure of Repairable RAM Devices 10

more efficient algorithms to be developed, but also allows modelling of the redun-
dancy analysis problem and therefore the development of algorithms to manipulate

the device model and create redundancy analysis algorithms.

2.2 Structure of Repairable RAM Devices

Analysis of the structure of repairable RAM devices allows the development of bet-
ter repair algorithms, but it also provides the necessary information to develop an
accurate model of the redundancy structures which in-turn allows the automatic

manipulation and exchange of repair algorithms.

The basic description of modern DRAM devices is still similar to that given by Schus-
ter [Sch78], with extra logic and a set of fuses controlling the use of redundant rows
and columns; though modern devices are considerably more complex. Redundant
rows and columns may be shared between one or more memory arrays, and these

sets of redundant elements and memory blocks may be arranged into many banks.

Fusebox

Redundant Cells

N

Memory Array

Address Logic

Y

Address Row and
Input Column
Select

Figure 2.1: Simple DRAM structure, those blocks with additional blocks for repair
with redundant spare rows and columns.

Figure represents the key elements in one such bank: incoming addresses are
translated by the address logic into addresses in the memory array, the bits in the

fusebox control that mapping. The design of DRAM devices is under constant

2.3. Causes of Complexity 11

pressure to increase memory density, which is possible by reducing the area required
for redundancy structures. One such reduction is possible, by the sharing of fuses
within the fusebox [Vol98], further reductions are possible by the elimination of a
number of fuses to be replaced by either permanently open or permanently closed

circuits.

2.3 Causes of Complexity

These reductions made in the silicon area available for redundant memory add com-
plexity to the spare allocation problem: hard wired fuses impose restrictions on the
addresses at which redundant cells can be used, and the sharing of fusebox bits
introduces dependencies between sets of redundant cells where the use of one set
of redundant cells can impose restrictions on the use of one or more other sets of

redundant cells.

2.3.1 Hard Wired Fusebox Bits

The hard wiring of fuse box bits (i.e. their replacement by permanent connection or
disconnection) imposes restrictions upon the use of a single set of redundant cells.
The fixing of the least significant fusebox bit limits the placement of the relevant
set of redundant cells to addresses with a matching least significant bit: should the
fusebox least significant bit (LSB) be set to zero, then the address at which the set

of redundant cells is used must be even, as shown in 2.2a.

Fixing the two least significant bits in the fusebox to zero restricts the use of the set
of redundant cells to addresses at multiples of four, fixing the last three bits restricts
to addresses at multiples of eight, fixing more bits increases the address as expected,

as can be seen in figure 2.2b.

Fixing the most significant bit (MSB) in the fusebox similarly restricts the addresses
at which a set of redundant cells can be used. Setting the most significant bit in the

fuse box to one limits the placement of a redundant element to the top half of the

2.3. Causes of Complexity 12

(a) Fusebox with fixed LSB (b) Fusebox with many fixed LBSs

Figure 2.2: The effects of fixing least significant bits in the fusebox. Given the
fusebox settings shown (X denotes don’t care bits) the redundant column R can be
placed only at the shaded columns in M.

memory that is only those addresses where the MSB is set. It is possible that
a combination of fusebox bits may be hardwired, in which case the limitations on
the use of a set of redundant cells becomes more strict: figure 2.3b shows the result

of a MSB set to one and a LSB set to zero.

(a) Fusebox with fixed MSB (b) Fusebox with fixed MSB and
LSB

Figure 2.3: The effects of fixing most significant bits in the fusebox, and of the
combination of setting the most and least significant bits in the same fusebox (X
denotes don’t care bits.)

2.3.2 Shared Fusebox Bits

An alternative technique for reducing the area required by redundant structures is
to share some bits in the fusebox between redundant elements, however when this
is done the use of one redundant element may be limited by the use of another.

For example, if two redundant elements share the least significant fusebox bit then

2.3. Causes of Complexity 13

if one is placed on an odd address so must the other, and visa-versa: if the most
significant bit is shared then both redundant elements must be placed in the same

address range; figure 2.4a illustrates such a case.

R1 X X R1 X0
Fusebox: R2 X XX Fusebox: R9 1 X 1

(a) Effects of a fusebox with a shared MSB (b) Effects of fixed and shared fusebox bits

Figure 2.4: Effects of a fusebox with a single shared bit, and of combining shared and
fixed fusebox bits (again, X indicates not fixed, or don’t care bits in the fusebox).

Real devices have large fuseboxes, controlling the placement of many redundant
elements, therefore the possibility for sharing and fixing of fusebox bits is greatly
increased. Several types of exception arise from these area reducing compromises
made in the fusebox: bits shared in the middle of the fusebox force the redundant

elements to be placed at a region offset from the original placement, as shown in

figure

Figure 2.5: The two redundant elements R1 and R2 share a single fusebox bit. If
R1 is placed at column 2, with the fusebox 010, then the fusebox for R2 must be
X1X (again, X denotes don’t care bits), limiting the placement of R2 to rows 2,3,6
and 7.

Given these large fuseboxes in realistic DRAM devices the possible limitations which

the use of one redundant element may place on another can become very complex.

2.4. Modelling DRAM devices 14

By the sharing a number of the least significant fusebox bits two redundant ele-
ments must be placed at a multiple of a certain address apart: should the two least
significant fusebox bits be shared between two redundant elements then given the
placement of one redundant element the other must be placed at an offset of a

multiple of four bits from the original redundant element.

2.3.3 Shared Redundant Elements

An alternative technique for reducing the area required for redundant structures is
to share a whole fusebox between redundant elements which are placed in different
memories, thus if redundant rows R1 and R2 are placed into memory arrays M1 and
M2 respectively, and share a fusebox (figure 2.6¢) then they must both be used at
the same row address (2.6b) and resemble a single larger row, spanning the width of
both memory arrays, and as a result are often represented as such in ad-hoc models

as shown in figure 2.6a))

In addition to sharing fuseboxes between redundant elements, redundant elements
with a single fusebox can be shared between memories [TK99]. Figure 2.7a shows
the commonly used representation of such a shared column, figures |2.7bland [2.7c

show the fusebox and logic configuration that cause this exception.

In a large complex device, such as [YHO97, JHCHKC'96,K"99], it is very probable
that not only will all these exceptions be seen, but also that many of the excep-
tions may be combined. This additional complexity introduces the size of the spare
allocation problem and the complexity of repair algorithms, increasing the cost of
repair calculation, with possible impact on the overall test and repair throughput

and therefore on the cost of the final product.

2.4 Modelling DRAM devices

One of the best ways to work with very complex problems is to create a model, from

a formal mathematical model to the implicit models created by the data structures

2.4. Modelling DRAM devices 15

M1 M2 3
Rl | R2 |
| R | Shared Fusebox:
(a) Common Ad-hoc repre- (b) Possible placements of two redundant
sentation of redundant rows rows with a shared fusebox.

with shared fusebox.

Address
Input L%] M1

A

Fusebox

Address z M2
Input I——_IL

(¢) Block diagram of a DRAM device, illus-
trating the sharing of one fusebox between two
address decoders (marked CL).

Figure 2.6: Representations of a redundant row shared between two memory blocks
such that a row repair in the first memory requires a row replacement at the same
address in the second memory.

within a computer program. Once a model has been developed it is possible to
manage the high level of complexity, including the implementation of abstraction
barriers to allow a user to concentrate on only those elements of the complex problem

of particular interest.

Often, ad-hoc models and sketches of DRAM redundancy structures are used (as
seen in the previous sections), for example 2.8/ from [HD00] and [LTH*06], however
these models cannot easily represent the complexity of element locations and effects

of fusebox optimisation in even a small device.

A model of DRAM redundancy need only represent those structures in the device
relevant to redundancy analysis: the memory arrays, the redundant elements, their

use, and the exceptions placed upon them by the fusebox optimisations.

The common model used in [KF86] can be trivially extended to cover shared redun-

2.4. Modelling DRAM devices 16

M1 < R — M2

Fusebox:

(a) Ad-hoc representation. (b) Shared fusebox representation, X bits
in the fusebox denote don’t cares, the M
bit selects the memory array.

Address c > M1
Input L
Fusebox M2

(c) Cause of shared column.

Figure 2.7: The redundant column R can repair in either memory M1 or M2. The
extra bit it the fusebox, marked M, select the memory addition bits select the
address.

dant elements, for example [SVZ01] and [YHAA™], but representing the exceptions
found in real complex devices is often impossible (models do exist for simpler embed-
ded devices [SDMT05]), any new model must be developed capable of representing

all the complexity seen in modern, and future, devices.

The availability of accurate models allows the development of tools to manipu-
late complex problems, such as efficient use of grid computing resources [HohO6a,
Hoh06b]; allows the exchange of data with known reliability, and most importantly
the development of algorithms to manipulate the model. Without a model, or with
an unsuitable model, many of these techniques become at best very difficult, and at

worst impossible.

To allow the creation of repair algorithms from a model of DRAM the model must
be capable of expressing all the possible combinations of the types of complexity
detailed above — in a large complex device [GSP91] many of the exceptions will be

combined. If the model and associated tools are to be continually useful then the

2.5. Repair Algorithms 17

EXOUE B
RO EE

Figure 2.8: Example complex device from [HD00].

model must be capable of representing any combination of complexity.

2.5 Repair Algorithms

Kuo and Fuchs [KF86] have shown the spare allocation problem to be NP Complete.
That is any repair algorithm which attempts to arrive at a perfect solution is NP
Complete (a perfect solution is one that is known to be optimal for a given device
and a given set of failures). Another class of redundancy analysis algorithms trades
the guarantee of a perfect solution in order to reduce complexity and therefore the

time taken for repair.

Filtering out those devices which cannot be repaired before attempting the costly
repair process can increase overall thoughput. Often heuristic early abort filters
[TBM84] are used to sort devices into three types: faulty unrepairable devices,
faulty repairable devices, and correct devices, ideally eliminating the time spent
attempting to repair unrepairable devices but at the cost of a heuristic incorrectly

marking a repairable device at unrepairable.

Heuristic repair algorithms are also often used to reduce the search space for an

NP complete algorithm, by suggesting an initial set of repairs [HL88, BP93, LL96a,

2.6. Proposed Solution 18

Blo96, LL96b, SF92] . The two most common heuristic algorithms are the Must
Repair [Day85,Bha99] and Most Repair or Greedy algorithm. The greedy repair al-
gorithm calculates the number of failed cells in each row and column in the memory
array, and repairs, in order, those with the most failed cells until no more redun-
dant resources are available; this is a common heuristic approach to NP complete
problems. The must repair algorithm again calculates the sum of failed cells in
each row and column in the memory array. Each row with more failed cells than
there are unused redundant columns is marked as a must repair, and one of the
redundant columns is marked as used. The same criteria are used to denote must
repair columns, and are re-applied recursively until either there are no redundant
resources available, or no further must repairs. The must repair algorithm is so
named as any row in the memory with more failed cells than there are available
redundant columns can only be repaired by a redundant row: if the device is to
operate correctly that row must be repaired. The must repair algorithm does not
produce a complete solution for the repair of a device; very often there will be a
number of failures not matching the must repair criteria. The solution generated by
the must repair algorithm is used to seed an NP Complete solver, again reducing

the size of the SAP, decreasing repair time, and increasing overall throughput.

Other methods have been used to try and solve the spare allocation problem in
reasonable time, without the use of heuristics: the expression of the SAP as a
boolean satisfiability problem [LYCKO04, YTH"05, LEMKO06] and genetic algorithms
and neural networks [CS96] to optimise repair algorithms, but these approaches are

uncommon in practice.

2.6 Proposed Solution

The implementation of the tool proposed in the introduction (section [1.7) as a
solution to the problem of generating customised DRAM redundancy analysis al-
gorithms and their implementation on a given platform will cover many areas of

previous scientific investigation.

2.6. Proposed Solution 19

There is only one direct competitor for the tool proposed in this thesis: “MRA tool”
developed by Advantest [mra0l]. MRA tool provides a graphical interface repre-
senting a much simplified model of a DRAM device and it is capable of customising

some repair algorithms.

As there are few comparable tools described in literature it is interesting to examine
a number of similar tools that are described; by recognising those areas which the
proposed tool must cover and understanding tools which cover one of those areas

valuable comparisons may be made.

Graphical tools are often used to model complex problems, a particular example in
this field is the DRAM BIST Tool described in by Su et al in [SHZLO1]. This tool
provides a graphical editor for the patterns used to test DRAM devices, allowing
the user to design march patterns. The tool parses this pattern description and
generates test code implementing these patterns and circuit descriptions of the BIST
logic. The tool can generate test code for many different devices and many different

test algorithms.

CACTT is a mature modelling program [TAM™08] representing many memory based
products; for example commodity DRAM on a DIMM module, embedded SRAM in
a system on chip design, or cache memory in a processor. CACTI models several
physical properties of a memory system: particularly power consumption and read-
/write timings, allowing a designer to simulate the use of several competing memory
products in a particular application and select the device most suitable for their

specific needs.

Like CACTI, the development of DRAMsim [WGT*05] has been driven by the
growing disparity between CPU and DRAM core speeds. DRAMsim provides an
easily configurable model of the whole memory system, providing a large number
of configurable model parameters to accurately represent a particular device and
allow performance comparisons between different devices and technologies in a given

system and can provide estimates of manufacturing cost for each system.

A modelling framework closer to that proposed in this thesis is Raisin [HLYWOQ7].

2.7. Conclusions 20

Raisin is a framework for the evaluation of DRAM redundancy analysis algorithms,
and for the planning and optimisation of the redundancy strategies used during
the design of DRAM devices. To perform this evaluation Raisin provides a simple,
text based model of the structure of DRAM, a simulator generating memory failure
bitmaps and a framework in which to execute sample redundancy analysis algorithms
and record their running times and repair performance. Raisin can perform this
analysis for a range of different devices and with different model parameters allowing

comparisons between redundancy analysis algorithms in realistic situations.

Of these tools only MRAtool and Raisin deal directly with DRAM repair, but they
do demonstrate the need for tools to manipulate complex problems (DRAM BIST
tool’s graphical march test editor), and all show the power of simulation in the

design and optimisation of large systems.

Raisin might seem suitable for possible integration with the tool being developed
here however the model developed is not sufficiently flexible to represent the devices
on which the tool is expected to operate (section [5.2]for a further discussion of the

model used by Raisin).

The tool developed by Advantest, MRA tool, provides a graphical interface to the
internal model of DRAM but this interface cannot represent the complexities and
interdependencies found in modern DRAM devices (as described in sections (2.3 and
. The tool proposed as a solution to the problem described in the introduction
requires a more sophisticated model of DRAM devices to properly represent the

complexity and generate redundancy algorithms with a high yield.

2.7 Conclusions

This chapter has surveyed the history of repairable dynamic access memories: from
individual good cells connected by discretionary wiring, good rows and later good
columns also connected by discretionary wiring ending finally with the controllable
address logic and fusebox used today. Pressure to reduce the silicon area devoted

to redundant structures forces compromise in the fusebox: the elimination of con-

2.7. Conclusions 21

figurable bits in favour of hard-wired and the sharing of configurable bits between

one or more redundant elements.

The development of the tool proposed as a solution to the problem set out in the
previous chapter must cover many areas: the structure of DRAM, including the
complexities and interdependencies imposed upon the use of redundant resources by
the physical design of the device; the modelling of this structure and the provision
of a graphical tool to manipulate this model and subsequently generate customised

redundancy analysis code solving the spare allocation problem.

Analysis of the spare allocation problem has shown it to be NP Complete, and that
the execution time effects, directly, the overall throughput of the manufacturing
process. The increasing complexity of redundancy structures makes both modelling
the device and solving the spare allocation problem more challenging, so much so
that current algorithms often combine heuristic methods with an NP Complete solver
to reduce repair time. Commercial solutions have been known to ignore aspects of

this complexity with a measurable yield loss.

As devices become more complex, and the uses of redundant elements more inter-
dependent, previous ad-hoc methods of modelling redundant structures become a
limiting factor when exchanging designs and generating repair algorithms specific to
a device. A generic model of DRAM would allow the exchange of designs, the cre-
ation of tools to manipulate and translate the model, and the automated generation

of repair algorithms and code.

Evaluating DRAM repair algorithms requires a source of many failure bitmaps. Man-
ufacturers of DRAM devices regard this failure data as highly sensitive intellectual
property and are reluctant to release it to any external entity. If a statistical model
of failure bitmaps can be constructed then not only can this obstacle be avoided
but a wide range of devices can be simulated, over a range of manufacturing yields,
allowing a more thorough investigation of the algorithms than would be possible

with real failure data.

The following chapters will investigate repair algorithms for DRAM using a statis-

2.7. Conclusions 22

tical yield model; the structure of DRAM will be examined, and mathematically
modelled including both an intuitive, user friendly, graphical model and a machine
friendly text model language. Functions will be defined to manipulate these models
and techniques developed to generate code for repair algorithms and ATE configu-
ration. Finally these modelling and code generation ideas will be integrated in a

prototype graphical tool.

Chapter 3

Modelling DRAM Failure Maps

3.1 Introduction

Experimenting with DRAM redundancy repair algorithms requires a large number
of failure bitmaps, ideally showing a wide range of: bitmap size, overall yield, and

error clustering properties.

Many models of failure maps in DRAM are designed for the analysis and improve-
ment of memory test techniques, particularly the use of different march patterns; for
example the RAMSES fault simulator developed by Wu et al [WHCWO02]. These
simulators are often used for development and characterisation of march test pat-
terns which depends upon the type of faults encountered: a simple test pattern
writing ones into each bit and expecting to read ones from each bit can only detect
“stuck at one” faults; and so the simulator must replicate as many fault types as
are expected in the memory device to be tested. Repair algorithms do not require

information about the type of failure, only the location of those cells that have failed.

Obtaining a statistically significant number of memory failure bitmaps, from a range
of devices can be difficult, making the comprehensive test of repair algorithms chal-
lenging. Though testing the large number of devices required would be time consum-
ing, it would not be impossible; however, obtaining such devices, or the test data

from such devices, can be difficult: memory manufacturers often see failure data as

23

3.2. The Statistical Model 24

part of their key intellectual property, and keenly protect it.

Figure[3.1alillustrates a possible methodology for such experiments using real mem-
ory failure maps: after manufacture devices are tested, producing a number of failure

maps, on which experiments can be conducted.

Many frameworks for the analysis of algorithms manipulating memory failure bitmaps
simulate the failed bitmap with a simple probability for failure of each cell [HLYWO07,
SVZ04]. However real devices show much more complex failure patterns. A common
failure patten is caused by a defect in the sense amplifiers or addressing logic forcing

cells in a particular row or column out of the limits of their tolerance.

Approaching the test of repair algorithms using real memory failure bitmaps as the
only input limits the points at which test data can be obtained. Data can only
be taken from real devices at the sizes and yields at which they occur. A model,
capable of producing memory failure bitmaps with many controllable parameters
would allow testing of repair techniques over a wide range of devices and processes.
A flexible model would also allow the simulation of the yield learning curve, where

the test results of previous batches of devices are used to improve the next.

Developing such a model requires access to failure data during the initial construc-
tion, but once constructed could generate many failure maps without further access
to real data. This model might take as parameters the size of the failure bitmap,

the required yield, and a number of parameters describing the nature of the failures.

Figure 3.1b illustrates the construction of such a model: analysis of memory failure
maps from real devices, followed by the establishment of a statistical model. The
model can be used to produce many failure maps, with controllable clustering and

yield parameters.

3.2 The Statistical Model

The faults common in DRAM devices have previously been categorised in many

academic and industrial models. van de Goor [vdGAA00, AAvdGO1] presents a

3.2. The Statistical Model 25

: ; Failure Maps
Manufacturing Devices Test on ATE p, Experiments

Y

Process

Devices | Manufacturing
Process

A

Test on ATE

Failure Maps

Create
Statistical
Model Run Once
Clustering parameters | Model Fajlure
Uniform error | Simulate Maps +| Experiments
Yieldi Model P

(b)
Figure 3.1: Experiments with Real and Modelled Failure Maps.

formal representation of fault models: a fault model is a set of fault primitives; each
fault primitive represents a failure as a sensitising operation, and the observed and

expected values read from the device after the sensitising operation.

In general industrial models of DRAM failure models are less formal than the aca-
demic model presented by van de Goor [Cro00]. This model is designed for the
optimisation of test routines, particularly march patterns, and so must represent
the type of failure. Models used for the testing and development of redundancy
analysis algorithms need not represent the cause of failure, only the consequences.
Such models assume that any failure anywhere in the device will manifest as a fail-
ure in the memory array; for example a fault in the address decoding logic might
appear as a row of neighbour faults (where a cell, when read, returns the value of
one of it’s neighbours). Industrial models often limit the types of failure possible.
Common faults represented are failures in single cells in the memory array, failures
of complete rows or columns in the memory array, or failure of the complete memory

array [DBT90].

The redundancy analysis framework Raisin [HLYWO07] uses four parameters to con-

trol its failure bitmap simulation; a number of defects per die, the percentage of

3.2. The Statistical Model 26

faulty rows and faulty columns and clustered errors. In this scheme a fixed number
of defects are injected into each die, these defects are distributed amongst the four
fault types. (Probabilities are specified for the percentage faulty rows and columns
and clustered errors, the probability of a single cell failure is not listed but defects

not otherwise allocated form single cell errors.)

Ideally a model would be developed by analysis of many thousands of failure bitmaps
from real devices; however in industry this information of closely guarded as key
intellectual property which DRAM manufacturers are unwilling to release. Verigy
hold a number of statistics about a certain commercial device and it is this data

upon which the model described below is based.

A statistical model representing memory failure bitmaps must represent those fail-
ures which occur in real devices. There are two common causes of failures in DRAM
devices: random defects, spread independently over the whole bitmap, often as a
result of contamination during the manufacturing process and systematic defects,
perhaps due to mask miss-alignment during manufacture, or defects in the support-

ing circuits.

Modelling the first of these fault types can be simple, each cell is assigned a probabil-

ity that it will fail due to contamination, and each cell is considered independently.

Systematic defects affect sets of cells in the device; an imperfection in the sense
amplifier for a column could lead to cells on that column functioning improperly,
and failing, while other cells are unaffected. Both rows and columns have decoding
circuits, but only columns have sense amplifiers: as a result the probability of a
column failing may not be the same as that of a row failing. Should a part of the
circuit driving a row or column fail then some of the cells on that row (column) may

fail, while others continue to operate correctly.

The model described in this chapter is controlled by four parameters. The first
of these, “Failure Map Size” describes the dimension of the memory array to be
modelled; the units of each dimension are memory cells. As a result of die contami-

nation or imperfections small areas of the device may not function, often this results

3.3. Implementation 27

in one or more cells in the array; the model parameter “uniform failure probabil-
ity” represents this chance of a cell failing. Should this contamination effect the
circuits supporting the memory array then a particular row or column may fail (if
for example the sense amplifier was rendered inoperable then none of the cells in
the column read by that amplifier would function correctly). The model represents
this probability of failure with the parameter “probability of row failure”. These
support circuits required for rows and columns differ: rows require only address de-
coders whereas columns require address decoders, sense amplifiers and connections
to the data bus. As a result of this difference in complexity the probability of failure
in support circuits for rows and columns differs, represented in the model by the
parameter “ratio of row to column failures”. It is possible that defects in the sup-
port circuits will not disable an entire row or column; for example a sense amplifier
operating near the design tolerance may successfully read values from some cells
on a column but not from others. To represent this limited operation the model
describes the independent probability of each cell on a failed row or column failing,

referred to as the “probability of cell failure on a failed row or column”.

The values of individual model parameters can be derived from a simple analysis
of failure bitmaps from a single device. Adjusting these parameters allows the
simulation of devices with different yield (from that of original device), allowing

experiments to be carried out at many points on the yield learning curve.

3.3 Implementation

The model described in the section above has been implemented using the Matlab
programming language. The algorithm first adds independent failures to the bitmap,
the uniform error probability determining the pass/fail state of each cell. The prob-
ability of a row having failed is considered to be the probability of a row or column
failure multiplied by the ratio of row to column failures. Should a row be determined
to have failed, each cell on that row has a higher probability of failure; Columns are

considered similarly. Pseudo code for this procedure is shown in algorithm [1.

3.3. Implementation 28

Algorithm 1: Failure Bitmap Generation

Input: Model Parameters

Output: Memory Failure Bitmap, bitmap

bitmap = Array of Failure Bitmap Size square working cells
foreach Memory Cell in bitmap do

if Random (0...100) < Uniform Error Probability then
| Memory Cell = Failed

foreach row in bitmap do
if Random (0...100) < Row Failure Probability then
foreach Memory Cell in row do

if Random (0...100) < Probability of Cell Failure on a Failed Row then
| Memory Cell = Failed

foreach column in bitmap do
if Random (0...100) < Ratio of Row to Column Failures x Row Failure
Probability then

foreach Memory Cell in column do

if Random (0...100) < Probability of Cell Failure on a Failed Row then
| Memory Cell = Failed

Parameter Value (%)
Uniform error probability 0.003
Row/Column failure ratio 0.8
Probability of a row or column failure 0.5

Probability of cell failure on a failed row or column 80

Table 3.1: Parameters for the statistical failure model. The data used in the con-
struction of this model is derived from data held by Verigy.

Matlab was chosen as the implementation environment as it allows rapid prototyping
of largely mathematical algorithms, which was considered to be more important than

the overall running time.

Though the model probabilities are derived from a single set of real failure data,
manipulation of the parameters controlling uniform errors and row and column
failures allows the simple simulation of a similar device at different points on the

yield learning curve.

The values of the model parameters used are defined in table and were derived
from confidential failure data held by Verigy; an overlay of many generated failure

maps is shown in figure(3.2l From this figure it can be seen that column failures are

3.3. Implementation 29

predominant, as expected given the model parameters. This overlay technique can
be used for quick visual comparison of model data with real failure maps, for the

assessment of model parameters.

64 128
O T = 8 T 5
i e R b 70
HE D VL RAEE il
1E: e L :
R 65
::E. : :': !.l' 'E:": .] .\1 4 :] - 1
64 r CiRId i] -'::: | 60 _
g £t | £ EREE 8
f; SR A % 155 5
c e I;. i i £ Q
5 (B e H e B 1508
2 i IRLE S M E
£rzef. i R
T 8 1 ERE LRI B 5
© il H PRl R E A i I 140 5
1R iR R { i
192 & '% S el 30
h EEE LA E R
: vl & i] o
E b S
f o8 B E 20
2551 St

Cell Position

Figure 3.2: In this overlay of ten thousand failure maps the colour of each cell shows
the number of failures in that cell over all ten thousand bitmaps; the parameters
used for all bitmaps are those shown in table

It is often useful to test repair algorithms at a range of yields. Without a statistical
model the only yields available would be those from real tested devices. With
a statistical model many yields can be simulated. Ideally the model parameters
would be calibrated at each of these yields using real failure data. In the absence
of such data it is possible to manipulate the uniform and clustered error probability
to create failure maps of the required yield. The calibration curve shown in figure
shows, for each yield requested, the average (over 10000 bitmaps) of the yield
generated. As can be seen from the curve, above approximately twenty percent
average yield the accuracy of the model is very poor, experiments in later chapters

will be restricted to yields of twenty percent or less.

3.4. Conclusions 30

80 | :

60 |- :

Modelled Yield (%)
S
(e
I
|

20 | -

|
0 20 40 60 80 100
Requested Yield (%)

—o— Generated Yield = Expected Yield

Figure 3.3: Calibration curve for the yield model.

3.4 Conclusions

The yield model described in this chapter simulates realistic memory failure bitmaps,
allowing the off-line test and comparison of any process which takes failure maps as
an input (typically memory repair algorithms). Though realistic failure maps are
produced, no further failure data, e.g. the cause or type of the failure, is available,

or is modelled.

Due to the difficulty in accessing a large sample of memory failure maps the model
described in this chapter uses statistical information already available within Verigy.
The necessity of the use of this information limits the development of the model —
the model could be improved by detailed analysis of many thousands failure maps at

different points on the yield learning curve and ideally from many different devices.

This chapter has presented a novel implementation of the model described and also
shown a novel technique allowing the generation of memory failure bitmaps over a
range of per die yields, providing a means to test the performance of memory repair

algorithms at several points on the yield learning curve.

3.4. Conclusions 31

Further work on this failure model should include parameter sets derived from one
device at different points on the yield learning curve thus calibrating the model fully.
With the collection of parameter sets for many different devices the model can more

accurately represent each device and therefore many types of device.

Chapter 4

DRAM Redundancy Analysis

4.1 DRAM Repair Background

Before a detailed discussion of repair algorithms it is useful to review the need for
repair in DRAM devices, the methods by which these devices may be repaired, and

the algorithms used to calculate repair solutions.

The manufacture of memory devices is a low yield process due to errors in manufac-
turing (e.g. mask miss-alignment or contamination). To improve yield, redundant
capacity is included in the memory design and a repair step is introduced after

manufacture.

To allow this repair an amount of spare cells are included during the design of the
device. In most cases this spare capacity takes the form of extra cells in the memory

array, providing extra rows and columns in that memory array.

Modification to the logic used to translate memory addresses into row and column
addresses allows these redundant rows and columns to be used in place of rows or

columns with faulty memory cells.

Compromises made in the design of the device, often so as to improve the capacity
of that device, introduce constraints upon what this remapping logic can achieve;

these are further discussed in chapter |5.

32

4.1. DRAM Repair Background 33

Each manufactured device has a particular set of failures and therefore a particular
set of row and column replacements that will best repair the device. In many cases
there will be many possible sets of row and column replacements that will leave no
un-repaired failures, but it is quite possible that there may be one unique solution,

or no solutions at all, capable of repairing the whole device.

One of the simplest strategies used for repair is to calculate the number of failed
cells in each row in the memory array and replace the row with the most failed cells.
The process is repeated while there are spare rows remaining and while there are
rows with failures to repair. The same process is applied to columns to complete the
repair of the device Figure shows the repair of a small device of eight by eight

memory cells, thirteen failures, three redundant rows, and three redundant columns.

(D)
3 EERE/ RN Y
s XIXIXIXIX! X
ool @)
2 e X XA
o || (O
3 s I XIXIXy e
vofer X

Figure 4.1: Most repair solution for a small device. The device is eight by eight cells
with three redundant rows and three redundant columns. Failures (X) are repaired
by these spare rows and columns (shown shaded). Per row and column failure sums
are shown, and during row first most repair the rows and columns are repaired in

the order labelled.

The repairs made in figure [4.1] are calculated using the most repair algorithm, first
replacing the row the row with the most failures, label (A), and repeating the process
until there are no redundant rows left, making the repairs labelled (B) and (C).
Finally the column with the most failures is repaired, (D), and as there are no

un-repaired failures remaining the algorithm terminates.

Though in this case a solution completely repairing the device was found very often

that is not the case, and the most repair heuristic will exhaust the redundant capacity

4.1. DRAM Repair Background 34

without repairing the device.

The order in which the most repair algorithm addresses failures in rows and columns
can have an effect upon the repair solution made and therefore in the success of the
algorithm. A more sophisticated algorithm might attempt to generate solutions

independent of these factors; one such algorithm is the “Must Repair” algorithm.

The must repair algorithm operates by applying a simple selection criterion to choose
those rows and columns to be repaired. This criterion (from Bhavsar [Bha99]) de-
scribes a row must repair as “a repair solution forced by a failure pattern with more
defective cells in a single row than there are spare columns”. Alternatively, and
identically, it may be said that a row with more faults than can be repaired with
the available spare columns must be repaired with a spare row. (Both definitions

can be reversed to define must repair columns in terms of the available spare rows.)

During the first iteration of the must repair algorithm this criterion is applied to
each row and column, comparing the number of failed cells with the available spare
columns and rows. The result of this application to the example device of figure
4.1 is shown in figure [4.2a. These iterations continue repairing rows and columns
with more failures than there are spare rows and columns until either: there are no
must repairs, there are no failures, or there are no unused redundant elements. As
in the example of figure[4.2b it will often be the case that the must repair algorithm

terminates before all the failures are repaired, even if a complete repair is possible.

The must repair algorithm does however provide a guarantee that all of the redun-
dant elements used cannot be used in a better arrangement: the rows and columns
repaired were unrepairable by other means. Given this guarantee the must repair
algorithm is often used before other, more complex, repair algorithms to reduce their

running time.

Neither the most repair nor the must repair algorithms can provide a guarantee that
they will find a solution, even if one exists. Algorithms do exist that can guarantee
the best possible solution will be found, if there are many solutions then the solution

with fewer repairs will be chosen, if there are no complete solutions then the best

4.1. DRAM Repair Background 35

01 1120814151617 01 1121814151617
XIXIXXIXL X I S I R
[XL X [XX
1\ | | | | | | I\ | | | | | |
[XXX o XX
o X S R R R I
(a) First Tteration (b) Second Iteration

Figure 4.2: Must Repair Solution for a small device with three redundant rows and
three redundant columns. During the first iteration the must repair criterion states
that any row or column with more than three failed cells must be repaired, and two
such repairs are made (part @D. As one redundant row and one redundant column
have now been used during the second iteration (part (b)) the criterion states that
any row or column with more than two failed cells must be repaired. As there are
no matching rows or columns the algorithm terminates.

attempt will be chosen, and if there is only one complete solution it is guaranteed to

to chosen. This class of algorithms are commonly called perfect repair algorithms.

These perfect repair algorithms have another important property: they are NP
Complete [KF86]. The execution time of NP complete algorithms is large, and
grows rapidly with increases in the input size making them expensive to compute.
The most repair algorithm presented previously is an implementation of the greedy

heuristic commonly used to “solve” NP complete problems.

A typical approach to simplify memory repair uses the must repair algorithm to
reduce the problem before application of an NP complete solver. There are many
possible algorithms available to solve the NP complete spare allocation problem
(SAP), Kuo and Fuchs propose a branch and bound algorithm which will be analysed
further in this chapter.

Current work on repair algorithms very often focuses upon one of these two areas:
upon heuristics to simplify the problem before a complex repair; and improved

perfect repair algorithms.

One such improved perfect repair algorithm represents the entire problem, the de-
vice layout, the possible use of redundant elements, and the failures, as a boolean

satisfiability problem [YTH'05]. The boolean satisfiability problem is a common

4.2. Introduction 36

instance of NP complete algorithm finding application in electronic design automa-
tion and scheduling algorithms found in academia and industry. Due to the common
application of boolean satisfiability problems powerful solvers are readily available

and can now be applied to memory repair.

The repair techniques in this chapter focus on those algorithms executed upon ded-
icated test and repair hardware but much of the modern research is focused upon
algorithms operating as part of Built in Self Test (BIST) and Build in Self Repair
(BISR) [TLC06, BCDN*02,OBNHO08]. These two operational environments impose
quite different requirements and constraints upon the algorithms chosen. Repair
algorithms operating on external test and repair hardware may have large amounts
of storage and many execution cycles to spend upon repair calculations; BISR al-
gorithms are restricted in complexity and in memory usage due to the hardware

limitations imposed by their packaging alongside the RAM device.

This chapter will give an overview of the algorithms used to repair DRAM devices.
By analysing in detail a number of common redundancy analysis algorithms com-
parison will be enabled between these algorithms and criteria for the selection of a

suitable algorithm for a given device or repair situation.

4.2 Introduction

Before attempting to automatically generate redundancy analysis algorithms for
specific devices it is important to survey the need for such algorithms, and the

current implementation of some common examples.

The manufacture of DRAM is a low yield process, indeed often dominating the yield
of system on chip devices, and driving the profits of semiconductor manufacturers.
Any improvement in the yield of a device can have a large impact on the success of

a manufacturer.

To attempt to control the yield of a manufactured device redundant capacity is

included in the design. Using these redundant elements faulty devices can often

4.3. The Spare Allocation Problem 37

be repaired, improving the overall yield; figure [4.3 illustrates the application of a
simple redundancy analysis algorithm to faulty devices over a range of yields, and

the improvement in overall yield.

This chapter discusses problems involved in developing redundancy analysis algo-
rithms, and analyses some of the more common. Also developed are approaches to

adapt traditional solutions to more complex modern devices.

100 A
S
S 90f -
Q
~
g
= 80| B
=
=
>
70 [:

0) 10 15 20 25
Manufactured Yield (%)

Figure 4.3: Yield improvement after simple repair. Using a greedy algorithm to
repair a device of 256 x 256 cells, with four redundant rows and four redundant

columns.

4.3 The Spare Allocation Problem

Kuo and Fuchs [KF86] have shown that the finding the optimal configuration of re-
dundant elements for a failed device is an NP complete problem. During production
the time taken to test and repair each device, or test throughput, is of paramount

importance and the time taken for optimal repair may be considered too high a cost.

Not all repair elements within a device are equivalent. They may have different
shapes (e.g. rows and columns) but also the use of the redundant element may
impact the performance of the repaired device. As a result designers often want to
add priorities to redundant elements such that the repair algorithm can attempt to

produce a repaired device with the least compromise in performance, and therefore

4.4. Algorithms 38

a device that can be sold for the maximum price. A particular example might be a
preference to repair faults using redundant columns; as the use of a redundant row
(in this device) requires either extra logic, or increased wiring length, reducing the

maximum bandwidth and therefore the possible selling price of the memory.

Heuristic tests can be used to select only those devices where a complete repair
is probable, increasing the throughput of the repair process at the expense of a
possible small yield loss. Heuristics tests can also be used in the development of
repair algorithms, quickly reducing the search space before application of an NP

complete SAP solver.

A common heuristic used within complex, multi-array, problems is to prefer the use
of redundant elements capable of repairing in only one memory array, thus reserving
the more flexible redundant elements (capable of repairing in more that one array)
for those situations where that flexibility is required. Another often used heuristic
is a simplification of complex devices, removing the constraints between redundant
elements; previous experiments have shown the yield loss from this heuristic to be

up-to one percent, and a considerable financial penalty.

4.4 Algorithms

A commonly used heuristic repair algorithm is “Must Repair”, in [Bha99] Bhavsar
defines a row as being a must repair if there are sufficient failures that the row can
only be repaired using columns (assuming there are only rows and columns, and

that all rows and all columns are identical).

Modern devices are considerably more complex, having many types of redundant
elements rather than the two assumed in the conventional must repair definition;

any improved must repair definition must account for this increased complexity.

Definition The placement of a redundant element at a specific address in a memory
is a must repair if the failed cells so repaired cannot be repaired by any combination

of placements of any other redundant elements.

4.4. Algorithms 39

The conventional must repair algorithm must be applied recursively until either
there are no redundant elements available to cover the remaining faults, no must
repairs remaining, or no failures remaining; as the must repair condition changes
as redundant elements are used to repair faults. This requirement for recursive

application is also present for the improved must repair definition.

The most repair algorithm [TBM84] is a greedy approach to solving the NP complete
spare allocation problem; a non-optimal solution repairing, in order, those rows and
columns with the most failures. Its implementation for a simple device with one
memory array, spare rows and spare columns calculates the sum of failures in each
row and column before iteratively replacing the rows and columns with the most
errors until there are either no further failures to repair, or no redundant elements

remaining.

Both the most and must repair algorithms are heuristic solutions to the NP complete
spare allocation problem, and as such, the solutions so generated are not guaranteed
to be optimum solutions, or are not guaranteed to be the best possible solution for

a given device and set of failures.

The most obvious perfect solution is to test every combination of placements of
every redundant element. For a simple device, a single memory of size N by N cells,
with SR spare rows and SC' spare columns, the size of this search, as defined by the
unique possible placements of SR spare rows in /N rows, are defined by the binomial

coeflicient:

@ - #'—w (4.1)

Then the possible placements of all spare rows and all spare columns is

N N
‘ N _ 4.2
Unique possible placements (SR) (SC) 2

For a typical memory of size two hundred and fifty six cells square, with eight each

4.5. Analysis 40

spare rows and columns the total number of possible combinations is 1.7x10% H Of
course implementing such a search over a realistic device is not a feasible proposition,

given the time constraints placed upon redundancy analysis algorithms.

Several well known algorithms can be applied to the solution of such NP complete
problems, one of the best known is the branch and bound algorithm as described by
Kuo and Fuchs for repair in redundant RAMs [KF86]. Having defined a cost function
for the use of each type of redundancy the algorithm always selects the solution with
the lowest total cost; branching to repair each new fault, and bounding to a lower

cost solution if one is available.

Though this approach is, in almost all cases, quicker than a simple search the time
taken may still be to great; using the results of the must repair heuristic as a starting
point the search space of the algorithm can be greatly reduced. Often the time
available for repair is limited, but known before hand; adding a cut off time to the
branch and bound algorithm (and other complex redundancy analysis algorithms)
allows the generation of a solution as close to the optimum as the available time

allows.

Figure [4.4 illustrates the different solutions generated by the must repair, most
repair, and full search solutions for a small device with eight rows and columns and
two each redundant rows and columns; only the full search solution is capable of

calculating a solution repairing the device.

4.5 Analysis

Analysis of these repair algorithms allows a fuller understanding of both their oper-
ation and their complexity, which will be of use in later chapters. Understanding
the properties of these repair algorithms will allow the selection of the correct class
of algorithm for a particular problem, or the combination of algorithms best suited

to that problem.

2
1(226) (226) _ (%) — 1.7%102°

4.5. Analysis 41

T T

O1 1121314151 6 O1 112131 4.1 1617 o111 2 4151617
- - - - - - 4 - — |- — 4+ — |- — - - - - — - —] — - -+ — |- — - - 4+ - - — - - - — = -4+ - - —

I I
T | | | \><\ | o | | | \><\ | L | | | \X\ |
| 0 T T T T | 0 o T T o | 7 T T T T T T
2 | | | | | | 2 | | | | | | 2 | | | | | |
R B e B e e I R R e T e e I R B e T e e I
3 1 | | | | | | 3 | | | | | | 3 I I I I I I
,,4,,\,,L,J,,\,,L>,<,\,, ,,4,,\,,L,J,,\,,L>,<,\,, ,,4,,\,,L>,<J,,\,,L>,<,\,,
3 N X X
[~ 7 0 T T T I, T T e) e B e S e
5 I | I \><\ | 5 I | | \><\ | | I | | \><\ |
F -4+ - - A - - - e -+ - - = — -
6 | | | | | | | 6 | | | | | | | 6 | | | | | |
T e T I I g I

| | i | | | | o | | | I | | ol | | | i | |

I | I | | | | [| | | I | | [| | | I | |
(a) Most Repair Solution (b) Must Repair Solution (c) Perfect Solution

Figure 4.4: Solutions generated by most repair, must repair, and a perfect repair
algorithm. Each memory array has two each redundant rows and columns. Failures
in the device are shown by red crosses, and the repaired rows and columns by shaded
rows and columns.

This section will first present pseudo-code describing the must and most repair
heuristic repair algorithms, and both a branch and bound and exhaustive search

implementations of a perfect repair algorithm.

Assuming the number of spare rows and columns in a device is much lower than
the number of rows and columns in the main array then the complexity of the most
repair algorithm is dominated by the calculation of the sums of errors in each row
and column of the main array. This calculation must consider each cell in the device,
and therefore assuming the memory array is N by N cells the complexity of the most

repair algorithm is O(N?).

Function most_repair (failure map, spare rows, spare columns)

row error sums = |
column error sums = ||
foreach cell in failure map do
if cell is failed then
row error sums [cell.x]++
L column error sums [cell.y]++

while available(spare rows) do
repair row(row with most failures)

| mark row as repaired
while available (spare columns) do

repair column(column with most failures)
| mark column as repaired

Like the most repair algorithm, the complexity of the must repair algorithm is

4.5. Analysis 42

dominated by the calculation of row and column error sums, and the complexity
is O(N?). As written below the recursive must repair function would re-calculate
these sums on each invocation, but this can easily be avoided by maintaining a data

structure across recursion levels.

Function must_repair (failure map, spare rows, spare columns)

row error sums = ||
column error sums = ||
foreach cell in failure map do
if cell is failed then
row error sums [cell.x]++
L column error sums [cell.y|+-+

foreach row in row error sums do

if row error sums [row/ > count (spare columns) then
| repair row with spare rows

foreach column in column error sums do

if column error sums [column] > count (spare rows) then
| repair column with spare columns

if failure map changed then
| must_repair (failure map, spare rows, spare columns)

A simplistic approach to finding a perfect solution is to compute all the possible
permutations of all the available redundant elements and test each of those solu-
tions, selecting the best. Iterating over all these combinations can be seen to have
a complexity of O(N!). Two modifications can be made to this algorithm, poten-
tially reducing the complexity: filtering the set of generated permutations to only
those where redundant elements repair faults, and where the must repair solution
is satisfied, can potentially reduce the complexity to only O(N?) if the must repair

solution is the only permutation remaining.

Function full search repair (failure map, spare rows, spare columns)

N = size (failure map)
foreach column repair combination in nchoosek (/V.z, spare rows) do

foreach row repair combination in nchoosek (/N.y, spare rows) do
Repair failure map according to row repair combination and column repair

combination
Score solution

Select solution with best score

4.5. Analysis 43

The branch and bound implementation of the NP Complete solution to the spare
allocation problem has a complexity of less than O(N!), but is capable of finding
a perfect solution, should one exist. The algorithm requires the provision of a cost
function generating a value given the placement of a particular redundant element.
Should this cost function return the same value for any placement of any redundant
element then the solution using the fewest redundant elements would be selected,
but the use of a more flexible cost function allows more complex decisions to be

made.

Function branch _and bound repair (failure map, spare rows, spare columns)

queue = must repair (failure map, spare rows, spare columns)

while queue not empty and faults remaining do
current solution = pop (queue)

fault = get next fault(failure map)

if count (spare rows) > () then
Repair fault.y with spare rows

Compute cost
| Append new solution to queue

i o

f count (spare columns) > (then
Repair fault.x with spare rows

Compute cost
| Append new solution to queue
Sort queue by descending cost
| Remove duplicates keeping solution with longest path

if queue is empty then
L No Solution Found
else
| Solution is head of queue

Table summarises the performance of these repair techniques and shows, as
expected, that an algorithm capable of calculating a perfect solution to the spare
allocation problem has a much higher execution time than a heuristic solution. The
must repair heuristic finds rows and columns for which can be repaired by only one
type of redundant element. The perfect solution must therefore include these must
repairs. Using the must repair algorithm to pre-populate the solution of a algorithm
capable of perfect solutions reduces the search space that algorithm must consider,
in turn reducing the complexity. (A lower bound on this complexity is set when the

must repair solution is the only solution possible, covering all faults.)

4.6. Repair in Hierarchical Devices 44

Algorithm Complexity Perfect Solution
Most Repair O(N?)
Must Repair O(N?)
Full Search O(N!) Yes
Branch and Bound O(N!) Yes

Table 4.1: Redundancy analysis complexity comparison

4.6 Repair in Hierarchical Devices

Modern DRAM devices are made from many sets of smaller memory arrays. These
sets of smaller memory arrays are often referred to as banks. Each bank may consist
of a number of memory arrays with redundant elements repairing in those arrays.
Banks may arranged hierarchically, where a bank can be composed of two or more
other banks, possibly with shared redundancy [HCL06, YHO97, Kir98]; these banks
are often each very similar, if not identical. Figure 4.5 shows an example device

with three hierarchical levels, and many identical banks.

M1
M2 -
M1 B
M1 RA M1
21 5 M3 M2
L M2
M2
= — R
R1 M3 M3
M
° M4 R§
R3 2 M4 M4
L L]
M4
RA Level 1 Level 2 Level 3
(a) Example device (b) Hierarchical levels for the given device. There are four banks at
with hierarchical re- level one, two at level two and one at level three.

pair.

Figure 4.5: Device with hierarchical repair. Redundant elements R1-4 can repair
only memories M1-4 respectively, R5 and R6 repair M1, M2 and M3, M4 respectively
and R7 can repair any memory.

The introduction of devices with more than one memory array requires the introduc-
tion of different types of redundant element: redundant elements may now be able

to repair cells in more than one memory array. These types can be thought of as

4.6. Repair in Hierarchical Devices 45

local redundant elements, which repair in only this memory array, and shared redun-
dant elements which can repair in more than one memory array; shared redundant
elements can be further split into those which repair in either one memory array or
another, and those which repair in one memory array and another. These definitions
call also be applied hierarchically, such that a redundant element repairing in one

of two banks is considered local. (The causes of these shared redundant elements is

discussed in sections 2.3.3 and 2.3.2.)

Introducing devices with many hierarchical levels requires a different approach to
the development of repair algorithms if an optimum solution is to be found. The NP
complete full search technique, testing the placement of every redundant element at
every possible placement is still capable of producing a perfect solution, but the
search space is greatly increased. If this search space can be reduced, then the time

taken for repair can be greatly reduced.

Dividing a large problem into several smaller problems can reduce the search space.
Banks with no external dependencies (a bank has no external dependencies if all the
redundant elements in that bank only have placements in memory elements within
that bank) can be repaired without consideration of any other part of the device.
Solving these all independent sub-problems has a much smaller complexity than
attempting to solve the larger problem; if the repair platform supports it then these

independent sub-problems can be solved in parallel.

Simplifications can also be introduced for sub-problems which do have dependencies:
starting at the lowest hierarchical level (see figure[4.5) attempt to solve all the sub-
problems. If a sub-problem can be solved with only local redundancy, then no better
solution exists and that memory can be considered repaired for all hierarchical levels.
The results of this repair are propagated to the next level, where repair is again
attempted using redundant elements from both hierarchical levels; the results from
this repair are further propagated until the device is fully repaired or a solution is

unobtainable.

The traditional must repair definition cannot operate in a device where the redun-

dant elements are more sophisticated than simple local rows and columns. The

4.7. Experiments 46

new definition given previously in this chapter does allow for any shaped redundant
element, with any particular placement, including the possibility of placement in
different memories. Even this modified definition becomes useless with the introduc-
tion of shared redundant elements: in the example device of figure (4.5 both R7 and
R5 could repair what would otherwise be a must repair column in M1. Applying
the must repair definition at each hierarchical level allows this heuristic to be used

in modern, complex, devices.

4.7 Experiments

To show that the modelling results are realistic it is useful to perform repair using
the algorithms described and compare the results with those expected. Performing
such tests upon real devices, especially over a range of yields, would be prohibitive
if real devices were used (due to the requirement for a large number of identical
failed devices over a range of yields); using the yield model developed in a previous

chapter (chapter[3) allows simulation over a range of devices and yields.

To compare the redundancy analysis algorithms with each other and with the the-
oretical results a number of metrics are required. There are two key metrics for
the comparison of redundancy analysis algorithms: the improvement in yield after
repair and the time taken to make that repair. The computational complexity of
each algorithm has previously been calculated and predicts order of magnitude of
the running time of each algorithm which should be expected in the experimen-
tal results. There is no direct predictor for the yield improvement calculated, but
perfect repair algorithms should have a higher yield after repair than an imperfect
algorithm. Measuring these metrics allows comparisons between the theoretical and

experimental results and also between each algorithm.

The measurement of these metrics can be made using a simple experimental frame-
work: the measurement of yield improvement can be made by repairing a number
of devices with a number of repair algorithms and recording both the yield before

and after repair.

4.7. Experiments 47

The computational complexity values previously calculated for each algorithm can-
not be directly compared to the running time of those algorithms. Clearly imple-
mentation details will have a large effect as will the structure of the device repaired.
What the complexity figures do predict are the differences in running times between

algorithms that might be expected.

Measuring the running time of each algorithm will allow these comparisons to be
made, and the measurement can easily be implemented in the experimental appara-

tus.

To measure these parameters the experimental framework must be able to record
the running time of each algorithm, and the yield before and after repair over many
failure bitmaps. As the yield model is a stochastic process it is necessary to repair
many failure bitmaps with each repair algorithm for each input yield point, and each

time record the time taken and the yield after repair.

After each execution of a repair algorithm the result are to be stored; after all
algorithms have been tested at all yields the results can be manipulated to generate

average values for the time taken and yield after repair.

Having noted which parameters it is important to change during the experiments
it is also necessary to note which parameters must be kept the same. To allow
comparisons between the use of each redundant algorithm at at every yield point
the device repaired must be kept constant. Keeping the device constant requires
that the size of the memory array, and the number of available redundant rows and

columns be kept constant.

The results of the execution of each algorithm over the range of yields will be pre-
sented on two graphs: one showing input yield verses yield after repair, and the
second graph the input yield verses the time taken to make the repairs. Each point
on the either curve will represent the average of many measurements made at that

yield.

4.7. Experiments 48

4.7.1 Apparatus

A framework for the testing of repair algorithms requires a source of failure data
at many different device yields, and instrumentation for measuring the run time of
several algorithms and the yield after repair. The source of failure data can easily
be provided by the DRAM failure model developed in chapter (3, bitmaps of various

sizes and at various yields can be easily generated.

Both redundancy analysis algorithms and the instrumentation framework have been
implemented using the MATLAB programming language as it allows for rapid algo-
rithm development, provides easy instrumentation for timing algorithms, and inte-

grates with the failure model developed previously.

As the yield model is a stochastic process, it is necessary to repeat the test of every
algorithm at every yield point many times to obtain accurate values for the output

yield and timing parameters.

4.7.2 Results

Three repair algorithms have been implemented: a most repair algorithm, a full
search NP complete solution and an NP complete solution using the algorithm de-
scribed by Kuo and Fuchs, including the must repair heuristic. The results of the
application of these algorithms to a large number of simulated failure maps are pre-
sented here. The graphs in figures 4.7 and show the yield after repair, and the

time taken for repair, for failure bitmaps showing a range of yields (before repair).

All these experiments were conducted on sixty four cell square memory arrays with
two each redundant rows and columns. Though these examples seem small, this
keeps the running time of the full search algorithm manageable. For each point on
the yield curve, each redundancy analysis algorithm has been tested thousands of

times, and the mean of both the yield after repair and the time taken.

Analysis of the curve showing repair results (figure shows, as expected, that

the NP complete full search always manages to repair the failed bitmap, and that

4.7. Experiments 49

100 - 7—.—.—.—.—.—.—.—.—.—.—.—.—.—.—.—.—.—. =
=
= 98| :
o)
o)
=
— 96 [|
e
=
= 94 :
&
>
92 |
\ \ \ \ \
0 5 10 15 20

Input Yield(%)
—eo— Full Search —=— Must Repair and Branch and Bound —e— Most Repair

Figure 4.6: Yield results for three redundancy analysis algorithms.

Algorithm Yield After Repair (%) Repair Time (s) Perfect Relative

Low High Low High Algorithm Runtime
Most Repair 94 99 0.05 0.1 No 1
Branch & 99 100 5 4 Yes 10!
Bound
Full Search 100 100 500 100 Yes 10%

Table 4.2: Repair algorithm comparison table, summarising the graphs of figures
4.6 and 4.7, Values for the yield after repair and the time taken for repair are given
for bitmaps with low yield (0-5%) and high yield (20-25%); as are indications of the
expected performance. The relative runtime column compares the relative orders of
magnitude of running time using the most repair algorithm as a baseline.

the most repair algorithm repairs a very high percentage of memory failure bitmaps

with a distinct upward trend as the input yield increases.

The second graph, figure showing the time taken for repair makes very clear the
cost of a more complete repair solution: even the branch and bound algorithm is

several orders of magnitude slower than the greedy repair.

These two graphs allow the selection of the type of redundancy analysis algorithm
required given requirements for input yield, required output yield, and the time

available to solve the spare allocation problem.

The tablel4.2 summarises the results shown in figures and allowing compari-

son between the different algorithms, and the selection of an appropriate algorithm

4.8. Conclusions 50

Time to Calculate Repair (s)
=)

USRI 11 1 111 o U3 B A

TN T 1 B B WU T1 R B I M N H1T1 R B R AT

—_
e}
w

—_
S
[\

5 10 15 20
Input Yield(%)
—o— Full Search —=— Must Repair and Branch and Bound —e— Most Repair

e}

Figure 4.7: Repair time for three redundancy analysis algorithms.

for a given problem. If, for example, you were required to choose an algorithm
for a high throughput, low yield manufacturing process then clearly a most repair

algorithm will be ideal.

4.8 Conclusions

This chapter has introduced algorithms capable of solving the spare allocation prob-
lem in DRAM. The problem has also been investigated, particularly the NP Com-
plete nature of perfect repair algorithms which guarantee to find the best possible
solution given a device and set of failures. These algorithms have been analysed,

and the results of the analysis confirmed by experimentation.

Redundancy algorithms for modern, complex, devices have been investigated, with
particular reference to the hierarchical architecture of these devices. This architec-
ture introduces new types of redundant elements which many existing redundancy
analysis algorithms cannot properly, or optimally, manipulate. Techniques to cor-

rectly repair such devices have been discussed.

This chapter has provided in table [4.2 and in the graphs of figures 4.6/ and 4.7/ a

novel means by which a user may choose between a number of algorithms commonly

4.8. Conclusions 51

used in industry to repair DRAM devices. More complex, and more capable, repair
algorithms do exist but as they are not commonly used an industrial context they

have not been covered in this chapter.

Having understood the need for redundancy analysis, and having inspected possible
implementations of several algorithms, this knowledge can be used to develop a
model of DRAM specifying everything necessary to automatically generate such

algorithms and nothing not necessary.

Chapter 5

A Redundancy Model for DRAM

5.1 Background

Before a detailed discussion and development of a model for the redundancy struc-
tures in a DRAM device it is useful to discuss the necessity for such modelling. The
arguments for modelling these redundancy structures are the same as may be made
for the modelling of any complex system. As in any model of a physical device it
would be possible to derive all the required information directly from the device
but the process required to do so may be complex, and there will much information
that is not required to solve the problem at hand; for example it is not necessary to
know the number of metal layers used in the DRAM die to calculate the memory
capacity of that device. A model suited to a particular problem allows the repre-
sentation of only the information of interest when solving the problem: the model

allows abstraction.

In the particular example of a model representing redundancy capabilities and struc-
tures in a DRAM device the model allows the abstraction of these capabilities away
from the physical implementation of the device. This abstraction allows the simpli-

fication of a very complex physical device to a simple model, an example is given in

figure

In the first abstraction, from figure [5.1a to figure [5.1b, only those elements of the

52

5.1. Background 53

EX08 8l

- N—

=

and bank

selection.

Input

Identical stacked
IMEImory arrays
with redundant
rows and columns.
(b) Repair Structure Abstraction
1 4N 1

e
=
=)
=]
=)
=

| R |
(¢) Repair Capabilities Abstraction

Figure 5.1: Model Abstraction in DRAM devices. The device shown in part @
has many identical memory banks arranged around logic controlling power, access
and, repair functions. In part \@ an abstraction of the same device is presented:
omitting all those elements not required for repair and leaving only a representation
of the input address connections, logic translating those addresses into references to
particular memory cells, and the memory banks containing those cells. The final
part, part (c), shows a further level of abstraction, representing only the memory
cells in the device, represented as one large array, and those which can be re-mapped

to provide repair.

5.1. Background 54

design effecting the repair capabilities have been retained. The device is now con-
siderably simplified, but there is no direct representation of the repair capabilities
of the device. Extending the abstraction, from figure to figure [5.1¢, simpli-
fies the device further to a single large memory array with a number of redundant
columns and one redundant row, the exact process by which this simplification is

made depends on specific details of the device.

This extended abstraction allows a simple model of a complex device in a way
specific to a particular problem; a formal specification of this model would allow the
mathematical manipulation of the data and the development of algorithms acting

upon the model.

Though formal, mathematical models are often the most academically useful there
are two other common classes of model: those informal intuitive models used in
discussion, often graphical; and the configuration files or source code describing a
particular problem as part of the software written in the course of a project. In
the development of a model from any of these classes it is important to select only
those properties of the modelled system that are relevant to the problem the model

attempts to solve.

A type of graphical intuitive model is often used to discuss redundancy structures
in DRAM, but the model is ad-hoc and not formally specified; an example of this
model is shown in figure These informal models are ideal for the explanation,
in person or in writing, of redundancy structures, and can easily be extended to
include failure data for a specific device; there are many common examples of this

model in literature [KF86, TLC06,Bha99, LYK06, KONT00, HLYW07, HDS91].

Tools and programs manipulating DRAM repair problems require a representation of
the DRAM repair problem - a model of DRAM redundancy - but the model is rarely
treated formally. For example there may be a header file describing the redundancy
structures in a device that must be compiled and linked against the repair executable.
These models are never graphical, and are unlikely to be intuitive, but are designed
to be easily machine readable, while also being human read and writeable. Typical

formats include: customised XML schema; source code (including header files) con-

5.2. Introduction 55

taining specific data structures; and text based description languages. Each of these
formats attempts to encode the ad-hoc model described previously, but does not
attempt to formally model the problem. There are no doubt many informal tools
in use all of which will require some representation of the DRAM repair problem;
two published examples are the Raisin [HLYWO07] and CRESTA [KONT00] repair
analysis tools both of which employ simple machine readable representations of the

DRAM repair problem.

In this chapter a formal model representing the DRAM repair problem will be devel-
oped. This model will provide a formal mathematical representation of the problem,
and additions to the model will allow an intuitive graphical representation of the

problem.

5.2 Introduction

Creating mathematical models of complex systems brings many benefits: using a
model users can exchange representations of complex systems, each confident that
the other possesses an identical representation even if the tools used to create the
model were different. In fact even the creation of tools to manipulate a representa-

tion of a complex system is impossible without a formal model.

A particular example of the effects of a formal model on a complex system can
be seen in An OQuverview of Deterministic Functional RAM Chip Testing [vdGV90],
where a function model of DRAM is developed, reduced, and extended to represent
the faults that can occur within that model. From this fault model van de Goor
derives a set of test patterns to detect the sets of faults defined along with a model

and notation to represent these test patterns.

Without this fault model deriving the set of test patterns could only have been es-
timated with experience and empirical data; by constructing a formal model frame-
work it was possible to show that the test patterns derived must detect the fault

types specified.

5.2. Introduction 56

In general the creation of models for complex problems allows the development of
formal methods to manipulate the model, and the modelling of only those sub-
problems of particular interest. Once a model has been developed it is possible to
create tools that manipulate the model, implementing the algorithms developed by

analysis of the model.

The most common model of a DRAM device is never formally defined; a de facto
model is commonly used in literature [KF86] and represents memory devices as
sketches made up of labelled rectangles. The possible uses of the redundant elements
of the device are often denoted by local conventions and labelling. As this model
has no formal basis, expressing the extent of the DRAM repair problem is difficult
and the production of tools using this model is almost impossible. This model is
commonly employed when describing a device to another person, but is not suitable

for describing the device to a machine.

Other, better defined, models of DRAM devices do exist, such as that used by
RAISIN [HLYWO07]. This model represents complex devices with both local and
global redundant elements, and with many identical banks. The model cannot
represent a device made of different types of bank, nor can it represent the complex
exceptions encountered in realistic devices. These models are often not formally

described as a model, but are used in the configuration files of other tools.

In order that a model may be used to generate redundancy analysis algorithms rather
than solutions for a particular failed device the model must be expressed without
reference to a specific device, and without reference to specific failures. The model
developed by Yu et al [LYCKO04] and subsequently extended [YTH'05] models the
constraints placed on the use of redundant elements and the defects in a device using
a boolean algebra, reducing the problem to an instance of the well known boolean
satisfiability problem [Coo71,GJ79], but does not attempt to represent the physical

structure of the device.

In this chapter a mathematical model of the structures of a DRAM device relating
to redundancy analysis will be developed. Functions operating on this mathematical

model to derive information of use in redundancy analysis will be introduced and

5.3. Problem 57

an intuitive graphical representation of the model, capable of reducing complexity

using abstraction barriers will be shown.

5.3 Problem

A model of DRAM to be used for redundancy analysis need only represent those
aspects of the device relevant to redundancy analysis: there is no need to represent
(for example) the type of package containing the silicon die, or the power supply

requirements.

A functional model of a DRAM device might include the following components: an
incoming memory address bus, combinational logic and a number of fuses represent-
ing the repairs made, and an array of memory cells (some of which can be used for

repair); figure (5.2 illustrates this model.

Fusebox
Redundant Cells
N
Address Logic » Memory Array
Address Row and
Input Column
Select

Figure 5.2: Block diagram of a simple DRAM device. Blocks required for repair are
shown shaded.

These memory cells can be grouped according to their use: contiguous regions of
memory cells which cannot be used for repair are referred to as memory blocks.
Cells which can be used for repair are grouped into the largest contiguous set of

cells within which all cells are allocated together; each set is a redundant block.

5.4. Mathematical Model 58

Both the fusebox and combinational logic place limitations on the use of redundant
blocks which are referred to as exceptions. Exceptions can be split into two types:
those which are independent of all other repairs, and those which have a dependency
on one or more other repairs. Typical exceptions include placement only at odd or
even rows, or shared ranges of placements whereby if one redundant element is
placed in a range of addresses then another must be placed in the same range of

addresses.

5.3.1 Model Concepts

From this functional model of DRAM it is possible to construct a mathematical
model: each bit of storage is referred to as a “Memory Cell”, these cells have
either passed or failed memory test. A “Memory Block” is a set of memory cells,
representing a memory array. A “Redundant Block” is a memory block with the

capability to repair cells in another (possibly many other) memory blocks.

It is not the case that any redundant block can repair any part of any memory
block; exceptions are imposed on the use of a redundant block by the design of the
DRAM, limiting which parts of which memory can be repaired by a redundant block.
Exceptions can also be placed upon the use of a redundant block by the use of other
redundant blocks. This model represents the static, or independent, exceptions
with the concept of a “Placement”: a rule defining which cells can be repaired by
a redundant block. A similar rule or “Constraint” defines the exceptions placed

upon one redundant block by another.

5.4 Mathematical Model

From these model concepts it is now possible to derive a new mathematical model
of redundant structures in a DRAM device, starting with memory and redundant
cells. Representing the size, shape, and location, of memories within a device is often

based on a Cartesian coordinate system, with units of memory cells in both axes.

5.4. Mathematical Model 59

Using this simple system it is possible to represent memory blocks (and redundant
memory blocks) by two pairs of coordinates, the first representing the position of
the origin of that memory in the whole device, and the second the size of the device:
its height in rows and width in columns. Such a system restricts the shape of any

memory modelled to that of a rectangular form.

Developing a model based on the concepts mentioned in the previous section, and
applying a memory cell based Cartesian coordinate system it is possible to define
memory cells and therefore memory and redundant blocks with size and shape at a
given position within a memory device; table [5.1] lists these three model elements

and their parameters.

Concept Property Description

Memory Cell Test Result Pass or Fail
Size Coordinate, (Width, Height)

Memory Block Position Coordinate, (Origin Row, Origin Column)
Size Coordinate, (Width, Height)

Redundant Block Position Coordinate, (Origin Row, Origin Column)

Placement Coordinate, (Memory, Row, Column)

Table 5.1: Mathematical Model Elements

In addition to size, shape and location, redundant blocks have the additional param-
eter of placement which describes the location at which that redundant block has
been used (not the locations at which it could be used, see possible placements in
section [5.4.1). A placement is specified with two parameters: the memory block in
which the repair is made, and the coordinate in that memory at which the origin of

the redundant block is placed.

In figure (5.3 the redundant column R1 is being used to repair column two in the
eight cell square memory block M1. By convention, the origin of any rectangle is
taken to be the top left hand corner. The placement, Rlpjacement, @ parameter of the
redundant block shows the memory in which the placement is made, M1, and the
coordinates at which the redundant block is placed (the position of a block is with

reference to it’s origin).

Accessing a memory cell in the second column of M1 after repair using R1 would

5.4. Mathematical Model 60

R]-Placement

0 1,23 ,4,5,6,7]8
o] Mg = (8,8)
75737737737773773774**3****’ MlPosition = (070)
w R Rlawe — (19
774:77377:L74177377T77377777 R']-F’osition - (870)
o0 b Rlplacement = (M1,2,0)
| (;1) I‘Jay‘out‘Di‘agr‘am (b) Model Parameters

Figure 5.3: Placement and Model Parameters

access the replacement memory cell in the redundant block. For example, the orig-
inal cell at (2,4) in M1 will be replaced by the cell (0,4) in the redundant block
R1; equation 5.1 expresses this relation. This mapping equation represents the

reconfiguration of the address logic by the use of the fusebox.

For a placement of R1 at (M1, z,y) :
(M1, 2z +m,y +n) = (R1,m,n) Vm < Rlwigmandn < Rlgeignt
(5.1)

Representing devices with the simple style used in figure (5.3 quickly becomes cum-
bersome for large designs. The most obvious problem with these simple diagrams
is scale: when representing large memory blocks close to much smaller redundant
blocks. A further issue is the representation of placements, both possible placements
and specific placements; attempting to combine the placement information with an

already large and complex diagram only serves to make it more difficult to interpret.

When modelling the redundant structures of memory neither the size, nor the loca-
tion of memory blocks, is relevant but placement information is vital. A graphical
representation of this placement information makes for a simple, intuitive graphical

model.

5.4. Mathematical Model 61

In this graphical model memory and redundancy blocks are represented by nodes.
Neither the size, nor location of a node has meaning, but nodes are labelled with
the name of the represented model block. The placement of a redundant block in
a memory block is represented by an edge between their respective nodes, an arrow
on the edge denotes the direction of placement. Annotations on the edge define the
coordinates at which the placement is made. Figure|5.4 shows the graphical model

representation of the device from figure

(=)

Figure 5.4: Showing the use of the graphical model to represent a specific placement
of R1 at column two of M1.

5.4.1 Possible Placements

A placement shows the use of a redundant block to repair a memory block; a

7

“possible placement” shows the capacity of a redundant block to repair a memory
block. If for example a redundant row R1 can repair any row in memory block M1
then there is a possible placement of R1 in M1 at any row. Many other possible

placements of R1 exist only one specific placement can be made.

Expressing the possible placements of a redundant block can, as a result of exceptions
imposed by the device design, be more complex than “R1 can repair any row in M1”.
A frequently seen example is “shared” redundancy — where a redundant block can
be used in any one of many memory blocks: this is expressed by multiple possible

placements from the redundant block to all of the memory blocks.

The more subtle details of a possible placement e.g., that it may only be possible to
place R1 on even numbered rows in M1, are represented by an equation, drawn as

an annotation to the possible placement edge.

The simplest representation of this equation is a look-up-table, or a list, of all the co-
ordinates in the target memory where this redundant element may be placed. These

tables can become very large, and often represent very simple equations. A lookup

5.4. Mathematical Model 62

Exception Equation Look-up-table
Placement on any row (0,0),(0,1),(0,2),(0,3),---,(0,N)
Placement on even rows only y % 2 (0,0),(0,2),---,(0,

,)
MSB! set for row address y <2 (0,0),(0,1),(0,2),---(0, N)

Table 5.2: Representations of placements for a single spare row in a memory of N
TOWS.

table representing a redundant block that can be placed anywhere in a memory
block where the most significant bit of the row address is one could for a realistic
memory have many hundreds, even thousands, of entries. Expressing this condition
as y < % where y is the row coordinate of a possible placement and N the height,
in cells, of the memory block represents the same set of possible placements but is

a much more compact and easier to manipulate notation.

Possible placements are independent of the placements of all other redundant blocks,
so the only variables that it is possible to use when constructing these conditions
are the coordinates of the placement and the dimensions of the target memory. The
operators available are equality (=), less-than (<), greater-than (>), logical and
(&), and modulus or remainder (%. Table [5.2 shows common examples of both

look-up-tables and condition or equation based placements.

The graphical notation for possible placement is identical to that of a specific place-
ment, but with the annotation replaced by the placement expression figure[5.5 shows
a possible example, with both a layout view and a graphical representation, table

5.3 shows further examples.

5.4.2 Constraints

Possible placements express the ways a redundant block can be used without regard
to the usage of any other redundant block. In real devices this set of possible
placements is constrained by the placements of other redundant blocks; this concept

is represented by the “constraint” element.

'z % y = True if and only if = divides into y with no remainder.
2Most Significant Bit

5.4. Mathematical Model 63

M1 y % 2

7 y%Q
— ()

(a) Logical Diagram (b) Graphical Model

Figure 5.5: Logical and graphical views of the possible placement of R1 on any even
numbered row in M1.

Exception Expression Graphical Representation

Row Placement . @

y<3
Limited Range of Row Placement y < %
(m))
Even row placement only y %2

Table 5.3: Common placement examples

A constraint is made between two redundant elements and can be modelled as a
function of those two redundant elements. This constraint function represents a
set of inequalities, all of which must be true for placement to be possible. When
evaluating the constraint function both redundant elements should have specific
placements, the constraint function will evaluate as true if this pair of placements

is possible.

Constraint functions may express many inequalities, these inequalities must all be
satisfied for a given pair of placements to be valid, as a result constraint functions

are expressed as the product of a set of boolean-valued functions?.

Like a placement, a constraint is represented by an edge between nodes. Unlike a

placement (or a possible placement) a constraint has no direction and as a result

3A boolean valued function takes parameters from within an arbitrary set and maps them into
a boolean domain, that is: f: X — B where X is an arbitrary set and B a boolean domain.

5.4. Mathematical Model 64

the graphical notation omits the arrow drawn on a placement. As an additional
indicator, the edge may be dashed, or may be marked with a bar (a short line
perpendicular to the edge, and placed in the centre). The variables available to the
constraint expression include the placement (if any) of both redundant elements,

including the memory that each redundant element is placed in.

Figure (5.6 shows two spare rows R1 and R2, with possible placements into two
memories M1 and M2 respectively. R1 and R2 are constrained such that the x
coordinate of their placement must be equal. This situation is often called a global

spare row, or a tied row. Figures[5.7/and 5.8 show two more complex examples.

R1, = R2,
R1 R2

OO

Figure 5.6: Redundant Rows R1 and R2 constrained to represent a tied redundant
TOW.

Rly = R2y

Gl Gy

Figure 5.7: Redundant blocks R1 and R2 have possible placements into memory
blocks M1 and M2, however both must be placed into the same memory.

R, < 3) (R2, < 3)) +((R1, >

N

) (B2, > 3))

R1

Figure 5.8: Redundant blocks R1 and R2 can both repair M1, but the use of either
constrains the use of the other to the same half of M1 (this constraint is commonly
caused by sharing the most significant fusebox bit).

5.4. Mathematical Model 65

5.4.3 Interaction Between Placements and Constraints

The method by which the use of a redundant block is first defined broadly and then
successively restricted, initially by possible placements and further by constraints,
can be extended to consider only those constrained placements which repair faulty
cells in a memory block. This set of placements would usually be generated by a
repair algorithm with which would go on to select a final placement. The Venn
diagram of figure [5.9 breaks up these sets of placements into five categories (for a

particular redundant block), namely:

Universe of Placements For a specific device the universe of placements is all

the placements within that device.

Set of all Possible Placements Not all the placements in the universe are possi-
ble for a given redundant block. The set of possible placements is a sub-set
of the universe defined by the possible placements of the redundant block.

Calculating this set requires only the device design information.

Set of Constrained Placements The possible placements of a redundant block
are limited by its constraints with other redundant blocks. The set of con-
strained placements a sub-set of possible placements, defined by the place-

ments of other redundant elements within the device.

Set of Repairs Only a small number of placements within the set of constrained
placements will be able to repair faults in a particular failed memory block;
however, these are the only placements worth making! Calculating these re-
quires failure data from a device, whereas all the super-sets can be calculated

using only the device design.

Selected Placement There may be many placements in the set of repairs, but only

one can be satisfied. A repair algorithm must select one of these placements.

An alternative view of the types of placement is presented in figure [5.10; by exam-
ining a section of a simple device the reduction in the placements available is very

apparent.

5.5. Functions of Model Elements 66

Universe of Placements
/ Set of Possible Placements \
f Set of Constrained Placements \
Set of Repairs
Set of Selected Placements

C Specific Placement >

N /
- v

Figure 5.9: Venn diagram showing the restrictions imposed upon the placement
of a redundant element, concluding with a selected placement which is both possi-
ble (given the specific placements of all other redundant blocks) and repairs faulty
memory cells.

5.5 Functions of Model Elements

Having defined a set of mathematical model elements it is now possible to define a
set of functions to manipulate the model. These functions can calculate the interac-
tions between model elements. Particularly useful are those which can be used to
indicate which model elements have no interactions as they can be used to reduce

the complexity of a repair algorithm.

5.5.1 Coverage

The coverage of a redundant block, written Cov (R), is the set of cells covered by

the redundant block R placed at it’s specific placement Rpjacement -

The total coverage of a redundant block, Covy (R), is the set of cells covered by the
redundant block R for all possible placements. This is the set of cells which could
be repaired by the redundant block. Total coverage can be defined as the union of

all specific coverages of the redundant block R for all possible placements:

RPlacement
Covr (R) = U Cov (R) (5.2)

Possible Placements

5.5. Functions of Model Elements 67

Figure 5.11 illustrates coverage concepts for a simple example.

A possible placement defines a set of cells in a memory repaired by a redundant
element. As a result it is possible to define total coverage for a possible placement

P, with a source redundant element R:

RPlacement

Covr(P)= | Cov(R) (5.3)

5.5.2 Equality

DRAM devices are often composed of many very similar parts repeated many times
and, as a result, many of the model elements will be identical (in size and, for
redundant blocks, have the same sets of possible placements). Identifying these

replicated elements requires some method of testing if two blocks are equal.

Two memory blocks are equal if, and only if, they have the same width and height.
The location of the two blocks is not compared — two blocks with the same size and
location would overlap and indicate a modelling error (of which more in section5.6);

equation (5.4 expresses this condition.

M1 = M2
M1 = M2 & ah a (5.4)
Mlhcight = M2hcight
A device may have many (often hundreds or even thousands) of redundant rows, all
of the same size, and all with placements into many identical memory blocks. Two
redundant elements which are equal should be able to be used interchangeably; but

redundant blocks able to be used interchangeably must be not only of the same size,

but must also be able to repair all of the same memory cells.

Not only must two identical redundant elements be able to repair all of the same cells,
they must also be able to repair all the same sets of cells; that is for each specific
coverage of one redundant element there must be an identical specific coverage for

the other.

5.5. Functions of Model Elements 68

The total coverage of a redundant block expresses the set of cells which can be
repaired, but a redundant row and a redundant column with placements in the
same memory block often have identical total coverages; however two redundant
elements with the same size and the same total coverage must have matching sets of
specific coverages; equation 5.5 shows the conditions for equality of two redundant

TOWS.

leidth - R2width
R1=R2 < theight = R2height (55)
Covr (R1) = Covr (R2)

5.5.3 Compatibility

Calculating which redundant elements can repair a set of defective memory cells
requires a search through all redundant elements, selecting those with possible place-
ments at the locations required. Such a search can be a significant bottle neck in
repair algorithms. Computing, before repair takes place, a table of those sets of
redundant elements which can repair some of the same cells, and visa-versa those

which can repair non of the same cells, can simplify this search.

A redundant element is said to be “compatible” with another if they can repair
some of the same memory cells. Compatibility is defined in terms of the total
coverage of the redundant elements: for two redundant elements R1 and R2 the

compatibility region, Comp(R1,R2) is the intersection of their total coverages:

Comp(R1,R2) = Covr (R1) N Covr (R2) (5.6)

Should two redundant blocks have an empty compatibility region then they are said
to be orthogonal, otherwise they are compatible. Figure|5.12 shows simple examples

of compatible and orthogonal redundant elements.

Compatibility is associative, that is the intersection of the compatibility region of

R1 and R2 with the total coverage of R3 is the same as the intersection of the com-

5.6. Modelling Rules and Syntax 69

patibility region of R2 and R3 with the total coverage of R1. The venn diagram of
figure 5.13 illustrates how the intersections of the total coverage of three redundant
elements R1, R2 and R3 define their compatibility regions, and that the compati-
bility region Comp (R1, R2,R3) is simply the intersection of all total coverages, but

also the intersection of the three two argument compatibility functions.

5.6 Modelling Rules and Syntax

5.6.1 Rules

When using the graphical model to represent a device there are a small number of
rules which, if followed, ensure the model developed will be an accurate representa-

tion of the device. These rules are:

Representation: Every bit of storage in the device must be represented by a mem-
ory cell, and each memory cell must form part of a memory or redundant block.
Figure shows a case where a memory cell has been missed during model

generation.

Replication: Each bit of storage must be represented by only one memory cell.
The figure illustrates an obvious mistake, replicating a redundant element

which can be placed in either of two memory blocks.

Allocation: All memory cells belonging to a redundant block must be allocated
together, and all cells allocated together must form one redundant block. The
memory device in figure 5.16/ shows a single memory block and a single redun-
dant column; however in [5.16al this column has been incorrectly represented

as two smaller elements which must be allocated together.

These modelling rules impose a strong relationship between the blocks as shown on
a conventional layout diagram of a device, and that device’s graphical model. As a
result, for any given graphical model it is possible to overlay that graphical model

on the layout diagram. That is by placing graphical model nodes over each block

5.7. Abstraction in the Graphical Model 70

on the layout diagram, and connecting those nodes with possible placements and
constraints it is possible to create an accurate set of model elements. Figure [5.17

shows an example device with the graphical model drawn over the layout.

5.6.2 Syntax and Semantic Checking

Despite the modelling rules, the graphical modelling language allows the construc-
tion of impossible devices. For example a device where one memory block is used
to repair another. Though this ambiguity makes the model easier to use, any au-
tomated use of a model must include both syntax checking (to show that model
elements have been used correctly) and semantic checking to show that the model

is possible.

Typically, syntax errors are the result of clerical inaccuracies, perhaps a memory
block with a width of zero or a constraint connecting to a memory. Semantic errors
are errors in the meaning of the model for example a placement from a memory
block. Further examples of semantic errors include overlapping blocks or possible

placement equation forcing placement outside the target memory block.

5.7 Abstraction in the Graphical Model

Modern DRAM devices are large and complex and so, therefore, are detailed models
of those devices. If it is possible reduce the apparent complexity of the model whilst

loosing none of the detail then the usability of the model can be improved.

Abstraction is a common concept in electrical circuit design, in computer program-
ming, and in data management. Abstraction serves to hide information which is not
relevant to the task currently undertaken reducing the complexity of that task. A
common example of abstraction are function definitions in procedural programming
languages; where a small procedure is hidden behind the function name. A program-
mer may use that function without knowing the implementation details behind it.

The function also allows reuse of that procedure, without duplication: abstraction

5.7. Abstraction in the Graphical Model 71

allows the reuse of components at very low cost. Abstraction is often hierarchical

in that a function may itself call other functions.

The typical DRAM device consists of many similar “banks”. Each bank is a collec-
tion of memory and redundant elements with few, or no, placements or constraints
outside that bank. These banks are often made up from several similar sets of blocks:
a memory block with redundant rows and columns for example. This hierarchical,

repetitive structure lends itself to abstraction.

A new model element, the “Abstract Model”, which can hide a single sub-graph
within one node allows such an abstraction. This node need not be represented in the
mathematical model, only in the graphical. An abstract model which can represent
only a sub-graph can have one connection (possible placement or constraint) with
the rest of the model; this limits the use of abstract models in many seemingly
obvious situations. Extending the definition of the abstract model to represent a
collection of nodes and edges, not necessarily a sub-graph, allows for a much more
practical model element. Obviously any tool implementing such a model must take
care that connections to and from the model elements within the abstract model are

handled correctly.

The figure/5.18 shows the use of abstract models (represented by nodes with a double
edged circle) to simplify the example from a previous section (figure [5.17). In this
example it is not necessary to allow for more than one edge to connect with an
abstract model. For more complex devices it is often the case that two abstract
models will have many edges between them which becomes difficult to represent
clearly within the graphical model. A notation similar to that used for buses in
electrical circuit diagrams is employed for this situation: the edges between two
abstract models are represented by one thicker line and the decorations on this edge

are a combination of those allowed for possible placements and constraints.

5.8. Conclusions 72

5.7.1 Atomic Abstract Models

If a memory block can be repaired by many equal redundant elements (equality
is defined for redundant elements in section [5.5.2 as being not only of equal size,
but also having equal total coverages), such as a set of many identical redundant
rows then representing all these elements in the graphical model would become

cumbersome, especially as there may be hundreds of rows.

An extension to the model allows the representation of such an arrangement by
a single node, drawn as a redundant element, and labelled with the number of
elements represented. An edge between this element and itself represents a fully
interconnected mesh of edges (be they constraints or placements) between all the

contained elements — figure [5.19 illustrates the use of such an element.

This new element is a type of “atomic abstract model”, which like an abstract
model, represents a sub-graph but allows a tool implementing the model to prevent

the expansion of that node.

5.8 Conclusions

This chapter has developed a novel formal mathematical model of the DRAM re-
pair problem, representing all memory cells and grouping them into memory blocks
and redundancy blocks. The possible repairs made by these redundant blocks are
represented with the novel concept of a placement, the placements are limited by
expressions describing which sets of memory cells may be repaired. A further novel
model element is the constraint which imposes limits upon the use of one set of re-

dundant cells according to the placement of one or more other redundant elements.

From this mathematical model a number of novel concepts have been developed, cov-
erage, describing the cells repaired by a redundant element; compatibility, showing
interactions between sets of redundant elements; and equality allowing the compar-

ison of model elements.

Further developments of the mathematical model include a novel intuitive graphical

5.8. Conclusions 73

model. This novel graphical model must allow ambiguity, but the underlying math-
ematical model from which it has been developed is unambiguous. To allow the user
to create graphical models that are correct a number of syntax rules are provided

which if adhered to guarantee that a graphical model will be unambiguous.

Using the graphical model to represent large realistic devices requires a method
of controlling complexity; the novel abstract model node developed provides an

abstraction barrier by containing a model sub-graph within a single node.

The development of this novel mathematical and graphical model has been necessary
to allow the construction of a tool which, given a description of a DRAM device (the
mathematical model) can generate or customise source code to repair that device.
The existing ad-hoc graphical and informal text models are not adequate to fully
describe the complexity of the DRAM repair problem and provide an intuitive inter-
face to the model and a machine readable representation, but the model developed

in this chapter satisfies both requirements.

The following chapters will develop code generation techniques for redundancy anal-
ysis algorithms based upon this model, and a tool implementing both the model and

code generation techniques.

5.8. Conclusions

74

X

M1 X M2 X

g

| R1 |

(a) Device Layout: two memories, one spare row,
R1, and one spare column R2, both repair cells
in M2. M2 has three failed cells.

X
X M2

M1

<

| R1 |

(b) Universe of placements for R2

X
X M2 %

M1

8

. RL
(c) Possible placements of R2

X
X M2

M1

8

R1 |
(d) Constrained placements of R2 (constraining
redundant blocks not shown).

X

g

M1 X M2 X
Y |
(e) Placements of R2 which cover failed cells in
M2.
M1 R2 X M2 X
. m1 |
(f) Optimum placement of R2, given the place-
ment of R1

Figure 5.10: Visualising the sets of placements for a small part of a simple device.
Redundant row R1 and redundant column R2 both have possible placements in M2.
M2 has three faults, denoted by crosses. For each set of placements the affected cells

in M2 are shaded.

5.8. Conclusions 75

(b) Total coverage of redundant
block R in memory Block M

(a) Specific coverage of redundant
block R, at placement z = 4, in
memory block M

Figure 5.11: Total and Specific Coverage of redundant block R in memory block M.

A COVTE{z) Covr (R1) Comp(R1, R2)

R1 COVT (R].)

) —

)

E <
Covr (R1) o R2
(a) Orthogonal Redundant Elements (b) Compatible Redundant Elements

|

Figure 5.12: Compatible and orthogonal redundant blocks.

Comp (R1,R2,R3)
VY

Figure 5.13: The intersection of the total coverages of redundant elements defines

their compatibility region;

76

5.8. Conclusions

0 a5
< =8
- ¢ 2
S =
- o g
< - 2 2 , —
= < s g []
] © o | | | | | | |
N © 9 P
: @ = e R
—_— T -
5 4T Sl gl
E < & A
© 9 . i s B Bl et Bt B N
Im = m =) < | | | | | |
o | | | | | | | 1% m.l m \\”\\Lﬂ\\”\\,rwp,\\”\\,r\\
e - I B R R SR
I | | | | | | w0 o O S .
® | | | | | | = O g | | | | | | |
s E R s Bl R iy m.l = L2 Q0 , T
= | | | | | | te GS% ONI”_”:R4”7”(”T
b — ok — 4 — = —] 1% -
cL =i | g g 2 5= &
| | | M | | | @) ~ — X M
| | | | | | 5 QO QO o
i s B Bl et Bt B N < = S o
<+ | | | | | | o ¥ S = &)
(A R o m wb H
,»” ” ” ” ” ” ” % @) an m m o | | h | | h h
B N R mfﬂ m...hl., o dl_ i _i_a_ 1]
= | | I | | | o, m. Laub w ! | | | | I I
o< nlege e o] B 2 em = |]
I I I I I _ 4 fas] Rl wn b~ | | | | | |
<z s BT]
e S R L]
=] eEE =
DS | T S - B O
= 5 T e HHH [T O T
— o | | | | | | | | | | | | | | = =\ | | | | | | |
) m S 1 0 B Y A AN O (O S SO N SN AR SR] R R R R B S R
=} | | | | | | | | | | | | = ~N | [I i i | i
] m ‘\\,\\,\\,\1\,\, | — | ,\\,\2 ,\\,\\,\\\aj OM wnm = | | | | | |
R N I =R = =S B B
..d T 1 | o T B R = I R I I R I
~H Labp “ ! | | | | | | | | | | | | | o © O
— 2 O I — -3
o I R T R o 0 S
o O S et At At e Al el i Rt s i inteull i ol bl o o @]
= = N E R S S S S Sl I N e e W.Mm
28 AR
O ~ o+

)

b

(

)

a

(

Figure 5.16: Modelling Rule Allocation: memory M1 has a single redundant column

at x = 0. Figure5.16a incorrectly represents this as two redundant elements which
must be allocated together. The correct representation as one redundant element is

shown in|5.16b.

5.8. Conclusions

77

—
=)
BN |
N—T1

N

B
T/

R2

N—T1

)

—

Figure 5.17: Overlay of graphical model elements on a simple layout diagram.

(1) (r5) (ko)

(r7)

/

Figure 5.18: Simplification of the model from figure [5.17 using abstract models.
Each of the three banks (e.g. M1, R1, R4) has been replaced by an abstract model

node.

5.8. Conclusions

78

o | (e

— R1 — R4 —] @

(a) Layout Diagram) Conventional Graphical Model

@

c¢) Graphical Model with
Atomlc Abstract Model
Nodes

Figure 5.19: Use of an atomic abstract model to represent replicated redundant

TOWS.

Chapter 6

Textual Model Language

6.1 Introduction

For any model to become useful in an industrial environment users must be able to
create models, to save and restore models, exchange them amongst each other, and

between different sets of tools.

A rigorous and complete model description which can be read and written by both
man and machine gives all the above advantages to the user, also allowing tools to

manipulate stored models, and to automatically exchange models.

Many description languages for generic graphs already exist, particularly the GraphViz
language developed by AT&T [GN99] and DAG [GNVS8S8]|. These languages were
not designed to represent graph based models, but to provide a method of drawing
graphs, thus the nodes and edges do not carry additional parameters (though they
do accept formatting parameters). Both GraphViz and DAG are plain text based
languages, and therefore difficult to extend. The GraphML language [EHHMO02] is
an XML graph format designed with a mechanism that allows the user to define

extension modules for additional data.

Graph based models have been applied to other engineering problems, for exam-

ple Hoheisel’s grid computing tool [Hoh06a|, develops an XML based language

79

6.2. Language Requirements 80

“GJobGL” for describing grid computing jobs as petri nets [Mur89).

Alternative text representations of the redundancy structures in DRAM devices are
often developed without a formal model (as discussed in the previous chapter, with
the particular examples of RAISIN and CRESTA [HLYW07,KON*00] which require
a description of a device as input data). Without a formal basis these models cannot
be used for information interchange, and cannot represent the full complexity of the

DRAM repair problem in modern devices.

6.2 Language Requirements

Both nodes and edges, or Memory and Redundancy blocks and Placement and
Constraints, must be represented in the text model, as must all the properties defined
in the mathematical model. GraphViz and DAG do not provide a simple mechanism
for extending the language; however, the XML based GraphML explicitly allows for
application specific extensions. One of the stated uses for the text model is to allow
users to manually edit memory descriptions, XML formats are manually editable
but can be difficult to manage. Ideally, any syntax should look familiar to most

users, easing adoption of the new language.

A “C like” format, consisting of named block definitions, similar to structures, with
blocks defined by pairs of braces and statements separated by semi-colons should be

familiar to most users of the model, and remains easily machine readable.

The ambiguity of the text language requires that a tool allowing user input some form
of syntax and semantic checking (see section [5.6 for detailed syntax and semantic

rules).

6.3 Grammar

The grammar used to describe models of DRAM devices in a text form is shown in

figure[6.1 in an Extended Backus—Naur Form [14996]. Model elements are described

6.3. Grammar 81

using named blocks of code containing parameters describing that model element.
The blocks are declared as a keyword describing the type of block, the name of the

block and a set of property definitions, separated by semicolons, within braces.

<A1Num> ::= 7a-zA-Z0-9<>Y%+-=*_7;
<Symb> ::= 7§ _\{}7;
<Name> ::= {AlNum};
<Value> ::= {<AlNum> | <Symb>};
<Ws> ::= {(n " | n n)};
<Operator> sz M==n I s I ngn | u%n;
<Type> ::= "Constraint" | "Placement" | "Redundancy" | "Memory";
<ExpressionPart> ::= ["("]. <Value>, [<ws>], <Operator>, [<ws>], <Value>, [")"];
<Expression> ::= <ExpressionPart>, {[<ws>, ["+"], ["ws"], <ExpressionPart>};
<String> ::= "\"", [<ws>], {<Name> | <Value>, [<ws>]}, "\"";
<Variable> ::= [<ws>], <Name> | <Value> | <String> | <Expression>;
<Definition> ::= <ws>, <Name>, <ws>, ":", <ws>, <Variable>, <ws>, ";";
<Object> ::= <Type>, <us>, <Name>, <ws>, "{", <ws>,

<ws>, {<Definition>, [<ws>]}, <ws>,

u}n’ <WS>, n;u’ <WS>;
<file> ::= [<ws>], {<Object>, <ws>};

Figure 6.1: EBNF grammar describing the text model language.

The types of block definition, and their properties are listed below:

Memory Description of one memory block. Memory blocks have the following

properties:

origin_row, origin_col The origin of the memory block, by convention the
top left. Coordinates are expressed in memory cells from the origin of

the device, also by convention the top left.
width The width of the memory block, in cells.
height The height of the memory block, in cells.

Redundancy Description of one or more redundant blocks. Redundant blocks

have all the properties of memory blocks, and additionally:

count The number of identical (see section [5.5.2) redundant elements repre-

sented by this block. Count assumes that the elements are arranged to

6.4. Expression Syntax 82

be adjacent on their longest axes (i.e. a set of rows will be “stacked”

vertically).

placement The placement of this redundant element. No placement other
than “none” or “0” is possible for a redundant element block with a
count of more than one. (Note the distinction between placement and

possible placement - see section 5.4.1.)

Placement A placement block represents a possible placement [5.4.1 between one

redundant block and one memory block.
source The redundant block that has this as a possible placement.

target The memory block that the source redundant block could be placed
in.
expression An expression limiting the possible placement of the source redun-

dant block in the target memory block. Expression syntax is described

in section [6.4.

Constraint A constraint block represents a constraint (see section [5.4.2) between
two redundant blocks. Like a placement block it has a defined source and
target (though the constraint is bi-directional) and an expression. The set of
parameters available in a constraint expression is larger than that available to

a placement block, and is described in 6.4.

6.4 Expression Syntax

The symbols available to construct the expressions used to define limitations on
possible placements and constraints are detailed in the grammar of figure/6.1. Tables
6.1 and 6.2 define the meaning of the variables and operators which can be used to

construct expressions.

The expressions used in possible placements are a set of boolean valued functions

all of which must evaluate to true (for a given set of coordinates) if the placement is

6.4. Expression Syntax 83

Availability
Variable Description Placements Constraints
RS;, RS, The z, y potential placement coordi- o °
nates of the source redundant element.
RT,, RT, The z, y potential placement coordi- o)
nates of the target redundant element.
T,y The =z, y coordinates of a potential ° o
placement.
M., M, The x, y dimensions of the target mem- . °
ory.

In addition, constraint expressions may refer to the potential placement coordinates
of any named redundant element, and the dimensions of any named memory element.

Table 6.1: Listing the variables available in possible placement and constraint ex-
pressions.

Availability

Operator Description Placements Constraints
> Greater than operator. ° °

< Less than operator. °

% Remainder operator. ° .

== Equality operation. ° °

+, ., D Boolean operators for or, and, and ex-) °

clusive or.
(..)) Grouping for boolean expressions. o °

Table 6.2: Listing the operators available for placement and constraint expressions.

allowed. Placement expressions may reference the dimensions of the target memory,

and the coordinates of the placement under consideration.

The expressions used in constraints are also sets of boolean valued functions which
must evaluate to true for possible placements of both the source and target re-
dundant elements. Constraint expressions are usually more complex than those of
possible placements and have access to the possible placement of any redundant ele-
ment and the dimensions of any memory. Additionally, constraint expressions have

extra operators allowing the construction groups of boolean valued functions.

The modelling framework developed allows placement and constraint expressions to
be written as lookup tables in addition to boolean functions however the text model

currently does not allow the expression of such tables.

6.5. Example Text Model 84

6.5 Example Text Model

The simple DRAM device in figure [6.2a has a single memory block which can be
repaired by four redundant rows R1; each of which have possible placements any-
where in the memory block M1. These rows are constrained such that if any row
is placed on an even row address all rows must be placed on an even row address.

Figure shows the text description of this device.

As all redundant blocks are identical, both the graphical and text models can be
reduced to those shown in figure [6.4 using the count property of the redundant

element (the rule of equality for redundant elements is described in section 5.5.2).

6.6 Conclusions

This chapter has developed and described a novel text description representing all
the properties of elements of the novel mathematical model of DRAM. The model
developed is both easily machine readable and user friendly. The syntax of this
model has been definitively described, both for uses of the model, and for the de-
velopment of new model parsers. Tools developed in later chapters are capable of

importing and exporting designs using this format.

6.6. Conclusions

85

M1

(256,320)

R1

R2

R3

R4

Figure 6.2: Layout and graphical models of the example device.

Memory M1 {
origin_row: 0;
origin_col: 0;
width: 256;
height: 320;

};

Redundancy R1 {
origin_row: 320;
origin_col: 0;
width: 256;
height: 1;
placement: 0;
count: 1;

};

Redundancy R2 {
origin_row: 321;
origin_col: 0;
width: 256;
height: 1;
placement: 0;
count: 1;

};

Redundancy R3 {
origin_row: 322;
origin_col: 0;
width: 256;
height: 1;
placement: 0;
count: 1;

};

Redundancy R4 {
origin_row: 323;
origin_col: 0;
width: 256;
height: 1;
placement: 0;
count: 1;

}

Placement P1 {
source: R1;
target: Mi1;

expression: "";

Placement P2 {

Figure 6.3:

(256,324)

(a) Layout Model

(RS, % 2)(RT, % 2)

e

(b) Graphical Model

source: R2;

target: Mi;
expression:

};

Placement P3 {
source: R3;
target: Mi;
expression:

};

Placement P4 {
source: R4;
target: Mi;
expression:

};

Constraint C1 {
source: R1;
target: R2;
expression:

};

Constraint C2 {
source: R1;
target: R3;
expression:

};

Constraint C3 {
source: R1;
target: R4;
expression:

};

Constraint C4 {
source: R2;
target: R3;
expression:

};

Constraint C5 {
source: R2;

target: R4;
expression:

};

Constraint C6 {
source: R3;
target: R4;
expression:

};

wn
H

.
H

.
H

"(RS_y %

"(RS_y %

"(RS_y %

"(RS_y %

"(RS_y %

"(RS_y %

2) (RT_y

2) (RT_y

2) (RT_y

2) (RT_y

2) (RT_y

2) (RT_y

%

%

%

A

%

%

2"

2)"

2)n

2

2)"

2)n

Full text model of the example device in figure [6.2.

6.6. Conclusions

86

Figure 6.4: Minimal text and graphical models of the example

Memory M1 {
origin_row: 0;
origin_col: 0;
width: 256;
height: 320;

Redundancy R1 {
origin_row: 320;
origin_col: 0;
width: 256;
height: 1;
placement: 0;
count: 4;

}

Redundancy R2 {
origin_row: 321;
origin_col: 0;
width: 256;
height: 1;
placement: 0;
count: 1;

};

Redundancy R3 {
origin_row: 322;
origin_col: 0;
width: 256;
height: 1;
placement: 0;
count: 1;

}

Redundancy R4 {
origin_row: 323;
origin_col: 0;
width: 256;
height: 1;
placement: 0;
count: 1;

};

Placement P1 {
source: R1;
target: Mi;
expression: "";

};

Constraint C1 {
source: R1;

target: R1;
expression: "(RS_y % 2)(RT_y % 20"

}

) Minimal Text Model

@. (RS, % 2)(RT, % 2)

) Minimal Graphical Model

device in figure

Chapter 7

Automatic Code Generation

7.1 Introduction

The automatic creation of source code to solve complex problems has long been
recognised as a method to reduce that complexity; it has been used to schedule op-
erations between a number of cooperating rovers [REC99], and Selic [Sel03] compares
the introduction of good code generation to the move from a low level programming

language to one of a much higher level.

The automatic generation of source code describing algorithms to repair modern
DRAM devices removes from the engineer not only the arduous task of customising
each redundancy analysis algorithm for each new device but a more sophisticated
code generation system would be able to optimise the generated code for increased

throughput, for increased yield, or for other parameters of interest.

A simple use of an automatic code generation tool would be the generation of a
description of the device in a form suitable for use by other tools. This use of
code generation is a simple translation from one model representation, the graphical
model described by the user, to another, that required by the external tool. The
introduction of a tool to which the user must first describe the device before that tool
again describes the device in another format may seem unnecessary but there may

be a difference in complexity between the two descriptions, and a number of output

87

7.1. Introduction 88

descriptions may be required. This situation may be compared to a simple compiler,
translating an algorithm description from a high level language to a number of

possible lower level machine languages customised for a particular architecture.

Most compilers accept one or more input descriptions (programming languages)
and can generate output in many targeted machine languages. Rather then create
translators between each for each of the input and output language pairs the compiler
makes use of an internal representation of the problem, and provides translators
from each input language into the internal representation and from the internal

representation to each of the output language [GS04].

As all processed algorithm descriptions must be expressed in the same internal rep-
resentation, an optimisation algorithm [Nov04] operating upon the internal repre-

sentation can be used regardless of the input language or the target platform.

In the same way an internal language representing operations used in redundancy
analysis algorithms would allow the tool to, given a model description and a descrip-
tion of the algorithm, generate customised redundancy analysis code for any one of

a number of repair machines.

A common method by which the compiler translates its internal representation of an
algorithm to targeted machine code identifies common patterns (if statements, for
loops, etc) in the internal representation which are then represented in the output
code using code snippets in the target language taken from a library (for example,
a for loop snippet might contain addition, comparison, and branch instructions in
addition to the loop body). Repeated application of this technique can be used to
translate the whole program from the internal representation to code in the target

language.

This template based technique is often used in higher level code generation, for
example the “boiler plate” generated by many integrated development environments
(IDEs). In software engineering “design patterns” formalise commonly used code
snippets, making design patterns ideal candidates for automatic code generation by

application of templates. The design pattern becomes the template, and the manual

7.1. Introduction 89

customisations usually required can be performed automatically [DMS03,BFVY96].

The same techniques used by compilers and IDEs to generate code can be adapted
to generate code solving the DRAM redundancy analysis problem. A specialised
internal representation consisting of low level operations used during repair, or a set
of templates describing higher level repair operations would allow the tool to generate

code describing complete repair algorithms customised for particular devices.

As the automatic code generator must process the device description there is an
opportunity to make optimisations to the device model as well as to the code gener-
ated. To illustrate the possible optimisations consider the very simple device shown
in figure [7.1a: there are four memory cells in a two by two cell array and two re-
dundant elements, one row and one column, and two of the memory cells are faulty.
Each node in the tree of figure|7.1b/represents a possible set of repairs to this device

(clearly for large devices the tree has many more levels and each node many more

children).
X (%,

-~ M---{ | Rl

X Placement of R1 a c
R2 Placement of R2 00 @

(a) Layout Model (b) Repair Decision Tree

Figure 7.1: Repair decision tree: the small device described in part has a two
by two memory array with one redundant row and one redundant column. There
are two failures in the memory array marked with crosses (X). Part ((b)) shows the
repair decision tree for this device. The highlighted path through the tree represents
the only possible solution repairing the device.

A redundancy analysis algorithm must navigate this tree and evaluate each node,
or solution, before selecting the optimum. The criteria defining the optimum solu-
tion may be varied according to the preferences of the user to, for example, select
solutions using the fewest redundant elements. As repair algorithms must navigate
the tree to select this optimum solution if the number of nodes and branches can

be reduced then the complexity of the search, and therefore the running time of the

7.2. Background 90

algorithm can be reduced.

This chapter will investigate methods for automatic code generation and their appli-
cation to the generation and customisation of redundancy analysis algorithms. The
chapter will also investigate the optimisation strategies that become possible with

an accurate and flexible model of DRAM redundancy structures.

7.2 Background

Repair algorithms used commercially must be customised for each and every new
DRAM device. Usually this task is accomplished manually, despite its high complex-
ity. Without a formal model of the device it is impossible for the engineer to know
that they have handled the complexity correctly, or to prove the solution developed
is optimum. This manual fitting of repair algorithms to new devices is slow, expen-
sive and error prone. Given an accurate model of DRAM it is possible to develop
algorithms capable of customising repair algorithms to a particular modelled device.
These algorithms may have parameters detailing the type of solution required; for

example to prefer high throughput to high yield.

In combination with a simulation platform (for both algorithms and failure maps),
automatic code generation allows the unattended profiling of many algorithms, all

customised for the same device, and the eventual manual selection of the optimum.

In order to repair a new device two different types of code must be written: first
the device must be described in the format demanded by the automatic test and
repair equipment; secondly the repair algorithm must be customised for the device.
These two stages can be thought of as translation, where the model description is
translated into one which the equipment can use without significant manipulation,
and manipulation whereby elements of the model are manipulated, properties of the

model inferred, and the result used to customise repair algorithms.

Translation requires only an understanding of the required new model format, and

the subsequent transforming of one set of data structures (representing the mathe-

7.2. Background 91

matical model) into an alternative set of data structures used by the test equipment.
As a result translation is a relatively simple process, and a good first step for auto-

matic code generation.

With proper understanding of the repair process it is possible by manipulation of
the model to make many optimisations. Representing the exhaustive search of an
optimum repair algorithm as a tree of placement decisions, the NP complete repair
algorithm can be seen to simply traverse the tree, backtracking when an impossible
or unfavourable condition occurs [HSLI0]. An optimisation of the general repair
algorithm would be the pruning of this decision tree either before or during execution

of the algorithm.

The algorithms used to prune the repair tree before repair algorithm execution
cannot have access to the failure data available during execution, but are free from
many of the constraints imposed during execution. The repair algorithm runs in
the critical path of the manufacturing process and therefore the time taken must be
minimised, and the resources available may be limited. Algorithms operating before

failure data have few limits on execution time or available resources.

The process by which a compiler can produce many types of targeted machine code
from a single input is similar to both the translation and manipulation stages of
algorithm generation. A modular compiler, such as the GNU Compiler Collection
[GS04], maintains a set of frontend parsers translating input in many languages to
one internal representation: Register Transfer Language [JM91]. After manipulation
the program now described in optimised register transfer language is passed to one

of many targeted backends producing code for one of many platforms.

This modular architecture based upon a unified internal representation allows the
development of optimisation and manipulation algorithms independent from either
input language or target platform. In order that this approach can handle the wide
range of input languages and target platforms, the internal representation must be
capable of modelling all the possible algorithms that can be described by the input

languages.

7.3. Algorithms 92

Though both compilers and code generators have very similar output — either ma-
chine code or higher level code — the inputs are very different. The compiler takes
as input a description of an algorithm whereas the code generator accepts a model
description: without additional description of repair algorithms it is not possible to

generate repair code.

A language capable of describing the primitive functions of a repair algorithm similar
to the compiler’s internal representation would allow a code generator to manipulate
these primitives and develop both new repair algorithms and implement existing
algorithms. This approach would also allow many possible repair platforms to be

targeted.

An alternative approach is the development of a set of templates describing repair
algorithms, and allowing the code generator to populate those templates when gen-
erating output. Though this approach limits the flexibility of the overall generation
process it considerably reduces the complexity as there is no need to develop an inter-
nal language describing repair structures. After analysis of the algorithms required

the templating system can be specified.

Having examined the possible means for generating code, algorithms can now be

developed for the simplification of the code that must be generated.

7.3 Algorithms

Repair algorithms can be divided into two types, those which require specific failure
data and those which do not. Those algorithms which operate without failure data
do not have many of the limits imposed by the online repair process: there are few
time constraints, and few limitations placed on the computational resources available
and they need only run once; whereas those operating with failure data operate in
the critical path of manufacture and must be executed many times. These repair
algorithms operating without failure data can only manipulate the model of the

device provided, and it is those algorithms which will be developed in this section.

7.3. Algorithms 93

7.3.1 Off-line Redundancy Analysis Algorithms

Many manipulations which can improve the performance of subsequent algorithms
become possible by expressing the “spare allocation problem” as a tree representing
all the possible placements of all redundant elements in the device. The repair of
simple memory array with four rows, four columns, and one each redundant row
and column can be represented by the tree shown in figure wherein each leaf

node represents a possible repair solution.

R1 Placement -

R2Placement :

Figure 7.2: Repair Decision Tree representing a simple four by four memory array,
with one redundant row and one redundant column; each with possible placements
at any address.

If the possible placements of either redundant element is restricted then the size of
the tree is greatly reduced as those sub-trees not permitted by the restrictions may
be removed. With the inclusion of the placement expressions the size of the tree can
be greatly reduced, limiting R1 to only even addresses and R2 to only odd addresses

reduces the size of the example tree to only six nodes (excluding the root), as shown

]'[| igure|:]-3-
@ tll‘ 9(2 0 R |Pa ement 0 E

R2y T2~ !
Romenen - (1)(3) (1)(3)

(a) Example Device, with restricted (b) Repair decision tree
placements.

Figure 7.3: Repair decision tree after the addition of placement expressions limiting
the placement of R1 to even addresses and R2 to odd addresses.

7.3. Algorithms 94

The introduction of placement expressions has been seen to reduce the complexity
of the spare allocation problem, and the addition of a constraint can further reduce
this complexity. Figure |7.4a shows the addition of a single constraint to the repair
problem shown in the previous figures, reducing the size of the tree to only four

nodes.

R1,&0210 = R2,&0210

é\b
f RlPlacement . a a
R2Placement : 0 e

(a) Example device, including con- b) Repair decision tree
straint.

Figure 7.4: Repair decision tree after the inclusion of a constraint describing the
sharing of a fusebox bit between the two redundant elements.

This reduction in the size of the repair decision tree amounts to a significant reduc-
tion in the complexity of the repair problem; by pre-computing the set of repairs
which satisfy all the possible placements and constraints the search for a solution

must consider significantly fewer possible solutions.

These reductions in the size of the repair tree can all be made before failure data is
available, but further pruning of the tree requires failure data to select only those
branches which repair failed cells. Pre-computing a number of lookup tables based
on the functions described in chapter 5 can reduce the complexity of selecting a

redundant element to repair a set of faults.

Computing the total coverage for each redundant element is required to build the
repair decision tree. The total coverage is defined (in section [5.5.1) as the union
of all the cells covered by the possible placements of that redundant element. As
possible placement expressions are independent of all other placements in the device
this set of cells can be calculated by iteratively evaluating each cell in each memory
in which the redundant element can be placed and testing the coordinates of each

cell against the possible placement expression.

7.3. Algorithms 95

Calculating sets of compatible and orthogonal redundant elements speeds the selec-
tion of redundant elements to cover a particular set of faults; once one redundant
element has been identified to cover the set of faults only those compatible with that
element need be considered for repair. (Likewise, once a given redundant element is
known to repair a set of faults redundant elements orthogonal to that redundant ele-
ment need not be considered.) These compatibility and orthogonality lookup tables

can be used to reduce the search space when solving the spare allocation problem.

Having calculated the total coverages of all redundant elements the compatibility
(and therefore orthogonality) of redundant elements is easily calculated as the inter-

section of total coverage sets.

The information contained in the compatibility tables simplifies the selection of
redundant elements capable of partially covering a set of faults but only given one
redundant element capable of the same and therefore a search through all redundant

elements is required to identify this initial redundant element.

Compiling a table of those redundant elements that can repair particular regions
of the device allows a simple coordinate lookup of those redundant elements which
can repair a failure without a costly search during repair algorithm execution. The
boundaries of these regions can be identified by analysis of the compatibility regions

already calculated, such that this analysis does not require failure data.

[RL |
| RRI RR2 RR3

Figure 7.5: Repair regions in a simple device. Repair regions, marked RRn, as
derived from the redundant elements, marked Rn.

7.3. Algorithms 96

Repair Region Redundant Elements Coordinates

1 1,35 0,0) — (3,3)
2 1,2, 3,5 (4,0) — (5.3)
3 2,3,5 (6,0) — (7,3)
4 1,4,5 (0,4) — (3,7)
5 1,2, 4,5 (4,4) — (5,7)
6 2,4,5 (6,4) — (7,7)

Table 7.1: Regions identified from figure [7.5!

A region is defined as each non-empty intersection of compatibility for each unique
permutation of all redundant elements. Identifying these regions can be accom-
plished by tagging each cell with the name of all redundant elements covering that

cell, and then computing regions with contigious tags:
1. Create a tag array the size of the target memory.
2. for each redundant element, R:
(a) Add R to tags for each cell in Covr (R).

3. Collect tags for contigious regions. The tags now define the redundant elements

covering that region.

Table gives the coordinate bounds for each region calculated for the device in
figure(7.5. The fast region lookup function can be implemeted as an if-then-else tree,

a lookup table, or however is best suited to the target platform.

Partitioning The Mathematical Model

A final optimisation that is possible without failure data is the partitioning of the
repair problem into smaller independent problems. If a spare allocation problem of
complexity O(N!) can be split into two independent smaller problems of complexity
O(P!) and O(Q!) where P > @ then the complexity of the overall problem has
been reduced to O(P!). Within a large DRAM device there may be a number
of banks where none of the redundant elements place outside the bank, nor do
they have constraints with elements not included in the bank [K*99, JHCHKC'96];

these banks can be solved separately reducing the complexity of the spare allocation

7.3. Algorithms 97

problem.

These independent banks can easily be identified as they form independent graphs

in the mathematical model; figure 7.6 gives a simple example.

M1 <—{R1 M2 <

A A

| R2 | |_R4 |
(a) Layout View (b) Graphical Model,
showing independent
graphs.

Figure 7.6: A memory device with two independent banks, showing the independent
graphs in the mathematical model representation.

Having identified independent graphs in the mathematical model, these sub-problems
can be solved independently using any of the many common algorithms once failure

data becomes available; and, if the repair hardware supports it, in parallel.

A similar approach, that of dividing the mathematical model graph into smaller
graphs to be solved independently, can be applied using other criteria other than
independence to partition the graph. The sub-problems produced may not be inde-

pendent, breaking any guarantee of a perfect solution.

These partitioning schemes can be used to reduce the complexity of imperfect repair
algorithms where the non-independence of the problem graphs may not be impor-

tant.

A powerful method of partitioning the model is the application of a filter, or inclusion
predicate, function to select model elements to be included in a sub-problem. That
is the result of the application of this boolean valued function to each element in

the model controls the inclusion of that element in the sub-graph.

The boolean valued filter functions take as arguments the whole mathematical

7.3. Algorithms 98

model, and the model element under consideration; and return only a boolean value.
Though the function may access the mathematical model it cannot make changes

to the model, and cannot maintain any state between invocations.

Filter functions are always to be implemented as a part of a larger tool, and are not
user controlled, so the functions themselves are constructed in the same language
as the surrounding tool. As the functions must be defined in the implementation
language no domain specific language is has been defined, and therefore there can
be no specific grammar; there are however a number of restrictions placed on the

operations these functions can perform.

Filter functions may access any property of any element in the model, including the
element under consideration. The functions may use any of the standard arithmetic
and logical operators; and also any features common to the implementation language
(both data types and functions from the standard library). A library of supporting

functions may also be provided, some of which will be detailed in this section.

A common partitioning problem is the so called local sub-graph. A local sub-graph
represents one memory block and those redundant elements repairing only that
memory. One method to separate a problem graph into many local graphs is to
remove redundant elements with placements in more than one memory, or more
than one placement. A filter function to create these local problems could simply

return false only for shared redundant elements and true otherwise.

The implementation of such a filter function can be split into two parts: checking
the type of the element considered, followed by the counting and thresholding of
the placements of that element. The identification of types is a feature specific to
the implementation language: (objectreference instanceof type) in Java, or
isinstance(object, type) in python both evaluate to a boolean value. There
may be other occasions when the implementation language affects the definition of
the filter function, all the examples given here will use the python code style and

standard library.

The prototype for this filter function, and for all filter functions, is f(model, element) —

7.3. Algorithms 99

Boolean, meaning that the function must take as arguments the mathematical model,
and the considered element and return a boolean value. It was noted previously that
this filter function should return true for any element that is not a redundant element,
a filter function implementing this condition is shown below (the type Redundancy

is assumed to be already defined):
g(model, element) = not isinstance(element, Redundancy)

The second part of this filter function is more complex: a count must be made of
all the placements in the mathematical model having this element as their source,
if the result is greater than one then the element must be excluded. The obvious
implementation of such an algorithm would be to loop over all the model elements
incrementing a counter for each matching placement, an alternative implementa-
tion generating a list of matching placements and counting the length of that list
allows the abstraction of a function placements_of (model, element) returning
those placements in model with element as the source which will be of use in later
filter expressions. Shown below is a filter expression returning true for only elements

having one or fewer placements:
h(model, element) = len(placements of (model, element)) <= 1

The final filter function must combine the two functions defined such that if either
would select an element for inclusion then it is included; a logical “or” operation with
the two function invocations as arguments satisfies this condition, and the resulting

filter function is shown below.

f (model, element) = not isinstance(element, Redundancy) or

len(placements of (model, element)) <= 1

Figure|7.7/shows the result of the application of this filter function to a small math-
ematical model. Obvious in part @ are two placements included in the filtered

model but having no source element, these are so called “dangling placements”:

The dangling placements seen in [7.7b, represent an error in the construction of the
filter function. Extending the filter function to remove these dangling placements is

impossible without maintaining state between calls to the filter function. An alterna-

7.3. Algorithms 100

P

(o)
()

\%

X

R
/
prg

(b) ()

f(model, element) = not isinstance(element, Redundancy) or
len(placements_of (model, element)) <= 1

(d)

Figure 7.7: The result of the application of the filter function @ to the model
shown in part m gives the results shown in part m The application of a clean up
function removes the dangling placements and gives the model shown in the final

part @

—~

tive approach is the application of a second filter function removing these dangling
placements, this approach is preferable as it does not require the maintenance of

state function calls, allowing parallelism of the filtering process.

The application of this (and possibly other) clean-up functions as a standard proce-
dure after every filter function keeps the construction of filter functions simple and
intuitive. A filter function to remove dangling placements can be developed along

the same lines as the previous function:

f(model, element) = not isinstance(element, Placement) or

element.source != None

A filter function that manipulated placements rather than memory or redundant
elements could easily leave such elements unconnected or “floating”. A clean-up

function to remove such floating elements is shown below:

f(model, element) = not isinstance(element, Block) or

len(placements_of (model, element)) ==

7.3. Algorithms 101

The application of these filter functions to clean up the newly partitioned model
does introduce extra computational complexity thus increasing the running time of
these partitioning algorithms, however, as this partitioning may be done off-line a

small time penalty is unimportant.

It is often useful to create a filter function selecting only the elements of current
interest and then to collect those elements directly connected to those selected. The
definition of the term “connected to” is more complex than it appears: two elements
having a constraint between them are connected, and the source of a placement is
connected to the target of that placement, but the target is not considered connected

to the source. Figure 7.8/ gives a simple example.
Element Connected Elements
R1 R2, M1

R2 Rl1, M1
W B
M

(@) (b)

Figure 7.8: Showing how elements in a simple model @ are connected; as shown

by the table (b).

Filter expressions can also be used to partition a graph into hierarchical levels,

creating a tree-like structure of problems with ascending complexity, as shown in

figure

Using a problem tree of this style is a convenient method to represent a rule often
used to simplify complex repair problems with many shared elements. The rule
states that “If local redundant elements can be used to repair a failure, or set
of failures, then no better solution exists.” For the purpose of this rule a local

redundant element is one repairing on only one memory.

For larger memories the rule can be extended to state that if a failure or set of
failures can be repaired with N or more placements in other memories then a repair

made using a redundant element with N placements is the optimum.

Considering the problem tree, shown in [7.9b] it is easily seen how the algorithmic

7.3. Algorithms 102

Figure 7.9: An example hierarchical partitioning of the model in part (a) is shown
in part @L The partitioning method creates a tree, each level of which represents
problems containing the same number of memories.

7.4. Approach 103

application of the new rule is simplified by this approach. Such an algorithm would
solve all leaf node problems (those comprised of redundant elements with placements
in only one memory) and remove them from the tree after propagating any repairs
made into the memories in the new leaf nodes, after which the process repeats.
When the algorithm reaches the root of the tree a solution has been reached. If the

problem is solved in this way the computational complexity is much reduced®.

7.3.2 On-line Redundancy Analysis Algorithms

Many of these optimisations reduce the size of the tree representing the repair deci-
sions, reducing the size of the spare allocation problem, and therefore reducing the
cost of the repair and increasing throughput of the repair process. Other optimisa-
tions pre-compute expensive operations that will be required during repair, again

reducing the overall time taken for repair.

Once failure maps are available the simplified spare allocation problem can be solved
using standard methods, often using the must repair heuristic followed by a branch
and bound repair algorithm to catch sparse errors. After manipulation and optimi-
sation of the repair problem the new simplified problem must be used to generate

customised repair code.

7.4 Approach

The architecture of an optimising compiler is similar to that required for code gen-
eration: the user’s source code is translated into an internal representation, which
may then be optimised, before being further translated into machine code for the
target platform. The GNU Compiler Collection has until recently [Mer03] used Reg-
ister Transfer Language (RTL) [JM91] an (almost) machine independent assembly

language.

1O(12!) for the original problem vs O(2!) + O(3!) + O(6!) for the reduced problem tree.

7.4. Approach 104

As the compiler translates all input languages into register transfer language the op-
timisation routines need only manipulate RTL, and may therefore operate regardless
of the input language. RTL must be capable of representing all the possible input
algorithms, but this as the language is low level it requires relatively few primitive

operations.

This separated input, manipulation, and output approach allows the compiler to han-
dle new languages and new platforms with minimum alterations. A similar approach
could be applied to the generation of repair algorithms; a language describing prim-
itive repair operations complex repair algorithms could be described independently

from both the input device and the target repair platform.

The separation of repair algorithms and code output for the target platform would
also allow the automatic optimisation, or even generation, of repair algorithms. With
this repair language, device model, and a failure map simulator, the simulation of a
given algorithm on a given device could be used to test the fitness of that algorithm

as part of a genetic algorithm optimisation similar to that used in [CS96].

In its simplest form a compiler translates one representation of an algorithm, the
input source code, to another, the targeted machine code; whereas a code generator
takes as its input, a model of a device and must produce an algorithm, a task
considerably more complex than code translation. Using an internal language for
repair would require the expression of common repair algorithms in this internal

language before any repair were possible.

Designing a language capable of describing generic repair algorithms is a large and
difficult task, much of which must be accomplished before any code generation is
possible. An alternative approach relies on describing the repair algorithm using a
system of code templates and hand written code. Each algorithm must be described
with a template for each target language or platform, and a source code describing

the manipulation of model objects to satisfy the template parameters.

The use of templates to describe repair algorithms removes the need for a language

describing these algorithms since the templates are written directly in the target

7.4. Approach 105

language. Parameters in the template can be replaced with data derived from the
model by the code generation tool. This data cannot be described by the template,
but is tied to a specific algorithm, and therefore to a specific template: the meaning
of the template parameters must be described in source code provided with the

template.

For a given algorithm, constructing targeted code from templates will be less com-
putationally complex than translating an internal representation of repair, and as
the algorithm may be described in a language with which the user is familiar, design

and development of new templates should not be an arduous task.

In this prototype code generation system a templating scheme has been used in
preference to a more sophisticated internal repair language as both the internal
implementation and the implementation of well known repair algorithms is expected

to be considerably simplified.

Code generated for the target platform will often require code segments inserted
verbatim into every generated program. These code snippets need no modification
and therefore need not be processed for parameter substitution. The simpler repair
algorithms and platform configuration files can be implemented as templates with
parameters derived from the model, e.g. the number of redundant rows and columns
available, or the size of a memory array. More complex repair algorithms require
more flexibility. These can be implemented as nested templates, where a parameter

in one template may be substituted with the output of another template.

The application of this templating scheme to the code generation problem follows
the scheme shown in figure once the problem has been partitioned into sub-
problems the three types of templates may be applied to the each of these sub-
problems, parameters substituted and finally the generated code for each sub prob-

lem is combined.

The templates applied to the sub-problems must be selected according to the users
preference for yield, throughput, or any other parameter. If each template, or set of

templates, representing an algorithm were to be labelled with an expected indication

7.4. Approach 106

Fixed
= Code
Templates
Param|
Generated
Subst.
> Tem- ,
Problem plates Template
> Parti Generated
arti- Inte- +—
.. . . Code
tioning : gration
? /QO
OO/ Cg J

Figure 7.10: Code generation scheme using templates. The model is partitioned
into sub-problems, and templates used to generate code for each. After parameter
substitution the sub-problem templates are recombined.

of the performance of that algorithm then a code generation tool could select an
appropriate algorithm to match the user’s choice. Alternatively, a tool including
a simulation framework for repair algorithms (such as Raisin [HLYWO07]) could be
used to automatically benchmark algorithms for the specified device, and to present
the results to the user who could then choose the algorithm most suited for their
requirements. A final method of algorithm selection is to simply present the user
with a list of the algorithms which can be generated, and allow a selection based

upon the user’s pre-existing knowledge.

In the prototype tool developed in chapter|(8]it is this latter approach which has been
adopted due to it’s simplicity — there is no need for a repair algorithm simulator,
nor for the development of meta-data describing each algorithm. Should either, or
both, other approaches be required then the adoption of this technique will not

hinder their implementation.

The following paragraphs and figures will describe the construction of a template
and algorithm for the generation of code performing region identification (see section
7.3.1). Two examples of code generation will be given: the construction of a single
if-clause used for region identification, a simple template; and the construction of
the whole region generation algorithm, using nested templates to build and if/else

tree.

7.4. Approach 107

These two practical examples will show sufficient detail to explain most aspects of

the template system, though a complete API reference is provided in appendix[A.

Code generation is controlled by a class of the base type “Algorithm” and each
sub-class must provide a method “evaluate” which must return the generated code.
The algorithm class constructor is to be called with the mathematical model as the
only argument, and will process that to derive all information required to populate
the template (or templates). An algorithm class is expected to instanciate at least
one “Template” class. This template class is responsible for the translation of model

data into code in the target langauge.

During instianciation the template class (a sub class of “Template”) is expected
to locate and parse the template string, creating a database of the named variables
contained in the template. The template base class provides a method “add variable
value”: allowing the caller to provide data (which must be in the target language)
that will be used to replace the named variable upon evaluation of the template.
The base class also provides a method “evaluate” to perform the substitution of the
named variables with data supplied via the “add variable value” method. Figure
7.11 shows these responsibilites, and the flow of control between the algorithm and

template classes.

The first example builds a single if clause from the region identification algorithm
described previously. Three code examples will be shown, the template class (includ-
ing the template text), the controlling algorithm class, and an example of generated

code.

The logical structure of such a clause is shown in algorithm 6, which identifies region

RR1 from figure [7.5.

Algorithm 6: An example region identification clause.

Input: coordinate

Output: results

if (0,0) < coordinate < (3,3) then
| return R1, R3, R5;

The region lookup algorithm requires one such clause for each region in the device,

7.4. Approach 108

ALGORITHM TEMPLATE

Mathematical Model—> Parse Model

4 N\

te Tem-
Create Tem »L.oad Template Text

plate Instance

< Parse Variables

Manipulate Model CONSTRUCTOR

Populate Value

A
y

> Store Value

ADD VARIABLE VALUE

Store Value

A
A

Populate Value

CONSTRUCTOR ADD VARIABLE VALUE

(. /| o J/

4 N\

Evaluate Template—r# Populate Tem-

plate String with
stored values

Generated Code <—— Return Gen- Return Gen-
erated Code erated Code
EVALUATE EVALUATE

Figure 7.11: Class Responsibilities and Control Flow During Code Generation.
Classes are shown in named columns, methods within those classes are grouped
and labelled in SMALL CAPs. Arrows mark the flow of execution between the two
classes.

7.4. Approach 109

in devices with many memory blocks it will be necessary to test the memory in
which the cell at coordinate can be found, though such details will be ignored for

the purposes of this example.

The example in algorithm 6 is specific to one region in one memory block in one
device; to use this example to match another region three changes must be made:
the region bounds against which coordinate is tested must be updated for the new
region, as must the redundant elements returned. If only these three changes need
be made to control another region then only those variables need be accounted for
in the template. The specific if-clause may be converted to a generic template with
the addition of three variables (annotated with the symbol $). These variables are:
the coordinate of the region origin, the coordinate of the region limit, and the list of
redundant element identifiers. Such template for algorithm 6/is shown in algorithm

where template variables are underlined.

Algorithm 7: A region identification if clause template.
Input: Coordinate

Output: Redundant Elements

if $region origin < coordinate < $region limit then
| return $redundant elements;

The algorithm class responsible for populating such a template would be called from
the class managing the region generation. This top-level class would provide a set
of cells (referenced by coordinate) defining the region this if-clause is to represent,
and the redundant elements capable of repairing faults in this region. The class
controlling the if-clause template will then manage the derivation and formatting
of the data required: the boundaries of the region and the construction of identifies
for each redundant element. Such a controlling class in shown in algorithms |8 and
9, making use of the functions: “generate_identifier” responsible for the generation
of a unique identifier for a redundant element; and “bounds” returning the origin
and maximum coordinates of a set of cells. In a typical implementation such a small

controlling class would be merged either into the top-level controlling class (which

7.4. Approach 110

would then manipulate the if-clause template directly); or into the template class.

Algorithm 8: Algorithm Class Constructor
Input: Set of cells, cells, defining this region.

Input: Set of redundant elements, redundant elements, repairing this region.
(origin, limit) = bounds(cells);

template = new ifclause_template();

template.add_variable_value(“region origin”, origin);
template.add_variable_value(“region end”, limit);

identifiers = map(generate_identifier, redundant elements);

template.add_variable_value(“redundant elements”, identifiers);

Algorithm 9: Algorithm Class Evaluate Method
Output: Generated Code

return template. evaluate();

These algorithm class methods make use of two methods from the template base
class: “add_variable_value” and “evaluate” the use of which has been explained
previously but also makes use of the if-clause template class constructor. This
constructor is reponsible for reading the template definition and building the internal
data structures used by “add_variable_value” and “evaluate”; the constructor for the
if-clause template is shown in algorithm 10. The constructor may also make use of
a number of methods in the template class, the purpose of these functions should

clear, but they are also defined in the template API (appendix Al).

Algorithm 10: Template Class Constructor
template string = “

if $region origin < coordinate < $region limit then

| return $redundant elements;

.
)

this.add_template_from_string(template string);

It is often impossible or impractical to express complex algorithms using just the
simple template system described above. Allowing the variables replaced in the

template to themselves be templates eases the implementation of complex repair

7.4. Approach 111

algorithms, particularly those with many identical repeated sections.

A typical example is the template for code responsible for region identification: there
are a number of very similar if-clauses but the number and exact format of those if-
clauses varies between devices and cannot be known in advance. Using the if-clause
template shown previously a framework template defining the region identification
function, it’s initialisation and finalisation, can be defined; this template defines
a variable populated by a number of if-clause templates. On evaluation of the
framework template all the if-clause templates are evaluated in turn and their values
included in the final generated code. Figure!7.12/shows how an algorithm class might

construct and evaluate such a set of templates.

The template and algorithm classes used in this more complex system have all the
same requirements as the simpler examples shown previously: they must extend
the Algorthm and Template classes respectively and must each provide the methods

listed.

As seen in figure[7.12/the region idenfication problem can be broken in two templates,
a framework template representing the function definition and initialisation and a
number of if-clause templates. One algorithm class is responsible for the creation
and management of both templates, a call to the evaluate method of this algorithm
class is responsible for evaluating the framework template, it is then this template

that must evaluate, in the correct order, all the sub-templates.

The following algorithms (11],[12,[14) describe the contructors and evaluate methods
to implement code generation for region identification. The constructor for the if-
clause template is exactly as shown previously (in algorithm 10) and is not duplicated

here.

Algorithm 11: Region Identification Framework Template Constructor

template string = “ElementList region_identification (coordinate) {$inner};”;

this.add_template_from_string(template string);

The constructor for the framework template operates in the same way as the con-

structor for the if-clause template (algorithm 10)): a template string is loaded and

7.4. Approach 112

Mathematical Model

FRAMEWORK IF-CLAUSE

ALGORITHM
TEMPLATE TEMPLATE

Parse model

Calculate regions

~

Create frame-
work template

Load template text

Parse values

A

CONSTRUCTOR

Create if-cl ()
reate 1-clause Load template text
templates N
< Parse values
N
CONSTRUCTOR
Populate region data ~ > Store values
Populate frame- (
work template <—Store Sub—templates ADD_VARIABLE_VALUE
with if-clauses h g
CONSTRUCTOR ADD_VARIABLE_-VALUE
(— Evaluafe frame- |~ Evaluafe iI-)" Populate template)
work template " clause templates m with stored values

47\# Return code
Populate tem- {
EVALUATE

plate with sub-
template values

A

Return code

Ve Return code EVALUATE

EVALUATE

Generated Code

Figure 7.12: Class Responsibilities and Control Flow for a complex algorithm class
using multiple templates.

7.4. Approach 113

parsed to extract the template variables.

The algorithm class constructor has three specific tasks: to parse the mathematical
model and derive region information, to create and populate if-clause templates, and
to create and populate the framework template. The region identification methods
and algorithms are covered elsewhere in this chapter and so will not be analysed here.
The process of nested template population is shown in algorithm|[12. The associated
evaluate method simply calls the evaluate method of the framework template and

returns the result (algorithm [13).

Algorithm 12: Algorithm Class Constructor
Input: Mathematical Model

Identify Regions. . .;
Framework Template = new framework_template();

for Region in Regions do
If-clause Template = new ifclause_template();

If-clause Template.add _variable_value(“region origin”, Region Origin);
If-clause Template.add_variable_value(“region end”, Region Limit);
identifiers = map(generate_identifier, Region Redundant Elements);

If-clause Template.add _variable_value(“redundant elements”, identifiers);

If-clause Template List.append(If-clause Template);

Framework Template.add_variable_value(“inner”, If-clause Template List);

Algorithm 13: Region Identification Algorithm Class Evaluate Method
Output: Generated Code

return Framework Template.evaluate();

It is the evaluate method of the framework template that is responsible for the
evaluation of each nested template, and the construction of the complete function.
Algorithm [14] is typical of the evaluate method found in templates, allowing the
variables specified to be in many forms. If the variable provided for a given key is
a list then each element in the list is evaluated and the resulting generated code
concatenated. If the variable provided is a template then that template is evaluated

and the result stored. For any other type of variable the string representation of

7.5. Examples 114

that variable is used.

Algorithm 14: Region Identification Framework Template Evaluate Method
Output: Generated Code

Generated Code = template string;

for key in Template.variables do
variable = Template.variables[key |;

W,
code = “7;
foreach element in variable do

if element instanceof Template then
| code = element.evaluate();

else
| code = element.toString();

| Generated Code.replace(key, code);
return Generated Code;

This section has described the implementation of a simple templating scheme, using
a controlling algorithm class and a single template class; and has gone on to generate
more complex code using a number of nested templates and a more sophisticated
controlling algorithm