
Durham E-Theses

Strategies for Optimising DRAM Repair

MILBOURN, JOSEPH,JOHN

How to cite:

MILBOURN, JOSEPH,JOHN (2010) Strategies for Optimising DRAM Repair, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/685/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Durham e-Theses

https://core.ac.uk/display/108039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.dur.ac.uk
http://etheses.dur.ac.uk/685/
 http://etheses.dur.ac.uk/685/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

 Verigy Confidential -- Verigy Confidential --

Strategies for Optimising DRAM
Repair

Joseph Milbourn

A Thesis presented for the degree of

Doctor of Philosophy

Centre For Electronic Systems

School of Engineering

Durham University

England

September 2010

 Verigy Confidential -- Verigy Confidential --

Strategies for Optimising DRAM Repair

Joseph Milbourn

Submitted for the degree of Doctor of Philosophy

September 2009

Abstract

Dynamic Random Access Memories (DRAM) are large complex devices, prone to

defects during manufacture. Yield is improved by the provision of redundant struc-

tures used to repair these defects. This redundancy is often implemented by the

provision of excess memory capacity and programmable address logic allowing the

replacement of faulty cells within the memory array.

As the memory capacity of DRAM devices has increased, so has the complexity of

their redundant structures, introducing increasingly complex restrictions and inter-

dependencies upon the use of this redundant capacity.

Currently redundancy analysis algorithms solving the problem of optimally allo-

cating this redundant capacity must be manually customised for each new device.

Compromises made to reduce the complexity, and human error, reduce the efficacy

of these algorithms.

This thesis develops a methodology for automating the customisation of these re-

dundancy analysis algorithms. Included are: a modelling language describing the

redundant structures (including the restrictions and interdependencies placed upon

their use), algorithms manipulating this model to generate redundancy analysis al-

gorithms, and methods for translating those algorithms into executable code.

Finally these concepts are used to develop a prototype software tool capable of

generating redundancy analysis algorithms customised for a specified device.

 Verigy Confidential -- Verigy Confidential --

Declaration

The work in this thesis is based on research carried out at the Centre for Electronic

Systems, the School of Engineering, the Durham University, England. No part of

this thesis has been submitted elsewhere for any other degree or qualification and it

is all my own work unless referenced to the contrary in the text.

Copyright c© 2010 by Joseph Milbourn.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

iii

 Verigy Confidential -- Verigy Confidential --

Acknowledgements

This work would not have been possible without the kind support of my supervisors,

Professor Alan Purvis and Dr Simon Johnson at Durham University.

I would also like to thank Dr Erik Volkerink, Verigy Chief Scientist; his colleagues

Tien Pham, Andy Niemic, and Scott West of the memory test division in Cupertino,

Justin Cui of the memory test division in Shanghai, and also Klaus Dieter Hilliges of

the SoC test division, Germany, and Jimmy Jin of the SoC test division, Shanghai.

Finally, I would acknowledge the Engineering and Physical Sciences Research Coun-

cil for funding this project, and Verigy for their sponsorship.

iv

 Verigy Confidential -- Verigy Confidential --

Contents

Abstract ii

Declaration iii

Acknowledgements iv

1 Introduction 1

1.1 Requirement for DRAM Redundancy 2

1.2 Redundancy Implementation . 2

1.3 Repair Process . 3

1.4 Redundancy Analysis Algorithms . 3

1.5 Industrial Background . 5

1.6 Problem . 6

1.7 Proposed Solution . 6

1.8 Sponsorship . 6

2 Background 8

2.1 Introduction to Repairable DRAM 8

2.2 Structure of Repairable RAM Devices 10

2.3 Causes of Complexity . 11

2.3.1 Hard Wired Fusebox Bits . 11

2.3.2 Shared Fusebox Bits . 12

2.3.3 Shared Redundant Elements 14

2.4 Modelling DRAM devices . 14

2.5 Repair Algorithms . 17

2.6 Proposed Solution . 18

2.7 Conclusions . 20

v

 Verigy Confidential -- Verigy Confidential --

CONTENTS vi

3 Modelling DRAM Failure Maps 23

3.1 Introduction . 23

3.2 The Statistical Model . 24

3.3 Implementation . 27

3.4 Conclusions . 30

4 DRAM Redundancy Analysis 32

4.1 DRAM Repair Background . 32

4.2 Introduction . 36

4.3 The Spare Allocation Problem . 37

4.4 Algorithms . 38

4.5 Analysis . 40

4.6 Repair in Hierarchical Devices . 44

4.7 Experiments . 46

4.7.1 Apparatus . 48

4.7.2 Results . 48

4.8 Conclusions . 50

5 A Redundancy Model for DRAM 52

5.1 Background . 52

5.2 Introduction . 55

5.3 Problem . 57

5.3.1 Model Concepts . 58

5.4 Mathematical Model . 58

5.4.1 Possible Placements . 61

5.4.2 Constraints . 62

5.4.3 Interaction Between Placements and Constraints 65

5.5 Functions of Model Elements . 66

5.5.1 Coverage . 66

5.5.2 Equality . 67

5.5.3 Compatibility . 68

5.6 Modelling Rules and Syntax . 69

5.6.1 Rules . 69

 Verigy Confidential -- Verigy Confidential --

CONTENTS vii

5.6.2 Syntax and Semantic Checking 70

5.7 Abstraction in the Graphical Model 70

5.7.1 Atomic Abstract Models . 72

5.8 Conclusions . 72

6 Textual Model Language 79

6.1 Introduction . 79

6.2 Language Requirements . 80

6.3 Grammar . 80

6.4 Expression Syntax . 82

6.5 Example Text Model . 84

6.6 Conclusions . 84

7 Automatic Code Generation 87

7.1 Introduction . 87

7.2 Background . 90

7.3 Algorithms . 92

7.3.1 Off-line Redundancy Analysis Algorithms 93

7.3.2 On-line Redundancy Analysis Algorithms 103

7.4 Approach . 103

7.5 Examples . 114

7.5.1 Region Identification . 114

7.5.2 Must Repair . 116

7.5.3 Branch and Bound Repair . 116

7.6 Conclusions . 117

8 DRAM Redundancy Analysis Modelling Tool 119

8.1 Introduction . 119

8.2 Users and Use Cases . 122

8.2.1 Modelling a New Device . 122

8.2.2 Syntax and Semantic Checking 124

8.2.3 Exporting a Model . 125

8.2.4 Importing a Model . 125

 Verigy Confidential -- Verigy Confidential --

CONTENTS viii

8.2.5 Generating Code . 126

8.2.6 Implementing a new Redundancy Analysis Algorithm 126

8.2.7 Requirements . 128

8.3 Implementation . 129

8.3.1 Architecture . 129

8.3.2 Interface components . 130

8.3.3 Text Model Import . 131

8.3.4 Model Objects . 132

8.3.5 Model Functions . 132

8.3.6 Code generation . 133

8.4 Releases . 133

8.5 Examples . 134

8.6 Conclusions . 135

8.7 Further work . 136

9 Experiments 145

9.1 Introduction . 145

9.2 Comparing Repair Algorithms . 146

9.3 Apparatus . 147

9.4 Results . 150

9.5 Conclusions . 153

10 Conclusions 157

10.1 Problem Review . 157

10.2 Objectives . 158

10.3 Achievements . 159

10.3.1 Concepts . 159

10.3.2 Implementation . 161

10.4 Results . 162

10.5 Further Work . 163

10.6 Closing Remarks . 165

A Template Application Programming Interface 166

 Verigy Confidential -- Verigy Confidential --

A.1 The Template Class . 166

A.2 The Algorithm Class . 171

B Supporting Source Code 173

B.1 File: bitmap.c . 173

B.2 File: bitmap.h . 175

B.3 File: bnb.c . 175

B.4 File: bnb.h . 179

B.5 File: model.c . 179

B.6 File: model.h . 180

B.7 File: must repair.c . 180

B.8 File: queue.c . 182

B.9 File: queue.h . 184

B.10 File: region generation.c . 184

B.11 File: region generation.h . 185

B.12 File: repair.c . 185

B.13 File: repair.h . 186

B.14 File: solution record.c . 186

B.15 File: solution record.h . 191

B.16 File: utils.c . 191

B.17 File: utils.h . 195

B.18 File: kaf.rml . 196

List of Figures

1.1 Redundancy Analysis in the context of DRAM manufacture. 4

1.2 The manual repair process . 5

1.3 Predicted DRAM Capacity . 5

1.4 Proposed System Overview . 7

ix

 Verigy Confidential -- Verigy Confidential --

LIST OF FIGURES x

2.1 Simple DRAM structure . 10

2.2 Effects of fixing least significant bits in the fusebox. 12

2.3 Effects of fixing most significant bits in the fusebox 12

2.4 Effects of a fusebox with shared bits. 13

2.5 Two redundant elements with a shared fusebox bit 13

2.6 Shared redundant row repairing in both of two memories 15

2.7 Shared redundant column repairing one of two memories. 16

2.8 Example Complex Device . 17

3.1 Experiments with Real and Modelled Failure Maps 25

3.2 Overlay of Generated Failure Maps 29

3.3 Calibration curve for the yield model 30

4.1 Most Repair Solution . 33

4.2 Must Repair Solution . 35

4.3 Yield Improvement after Simple Repair 37

4.4 Repair Solutions . 41

4.5 Device with hierarchical repair . 44

4.6 Yield results for three redundancy analysis algorithms. 49

4.7 Repair time for three redundancy analysis algorithms. 50

5.1 Model Abstraction in DRAM . 53

5.2 Block Diagram of a Simple DRAM 57

5.3 Placement and Model Parameters 60

5.4 Graphical Model Placements . 61

5.5 Possible Placements . 63

5.6 Tied Redundant Rows . 64

5.7 Placements Constrained to One Memory 64

5.8 Constrained Placements . 64

5.9 Sets of Placements . 66

5.10 Sets of Placements Visualised . 74

5.11 Total and Specific Coverage . 75

5.12 Compatible and orthogonal redundant blocks. 75

 Verigy Confidential -- Verigy Confidential --

LIST OF FIGURES xi

5.13 Associative Compatibility . 75

5.14 Modelling Rule Representation . 76

5.15 Modelling Rule Replication . 76

5.16 Modelling Rule Allocation . 76

5.17 Graphical Model Overlay . 77

5.18 Simplification using Abstract Models 77

5.19 Atomic Abstract Model . 78

6.1 Text Model Grammar . 81

6.2 Layout and graphical models of the example device. 85

6.3 Full Text Model . 85

6.4 Minimal Model . 86

7.1 Repair Decision Tree . 89

7.2 Repair Decision Tree . 93

7.3 Repair Decision Tree, limited by placements 93

7.4 Repair Decision Tree, limited by constraint 94

7.5 Repair Regions . 95

7.6 Independent Banks . 97

7.7 Example Filter Function and Effects 100

7.8 Connected Elements . 101

7.9 An Example Hierarchical Partitioning 102

7.10 Template architecture . 106

7.11 Class Responsibilities and Control Flow During Code Generation . . 108

7.12 Class Responsibilities and Control Flow (Complex Examples) 112

7.13 Example Device . 115

8.1 Advantest Memory Repair Analysis Tool [mra01]. 120

8.2 Graphical Model Editor . 122

8.3 High level tool architecture block diagram. 129

8.4 New Design Creation . 138

8.5 Create New Graphical Model . 138

8.6 Initial Graphical Model . 139

 Verigy Confidential -- Verigy Confidential --

8.7 Syntax Error Highlighting . 139

8.8 Graphical Model Editor . 140

8.9 Use of Abstract Models . 141

8.10 Contents of Abstract Model . 142

8.11 Layout Editor . 143

8.12 Text Model Editor . 143

8.13 Generated Configuration File . 144

9.1 Experimental Device and Failure Map 148

9.2 Experimental Results: Repairs . 150

9.3 Experimental Results: Consumption Diagrams 151

9.4 Experimental Results: Execution Flow Diagrams 155

List of Tables

3.1 Parameters for the statistical failure model 28

4.1 Redundancy analysis complexity comparison 44

4.2 Repair Algorithm Comparison . 49

5.1 Mathematical Model Elements . 59

5.2 Placement Representations . 62

5.3 Common placement examples . 63

6.1 Placement and Constraint Expression Variables 83

6.2 Placement and Constraint Expression Operators 83

7.1 Identified Regions . 96

7.2 Regions identified for the example device. 115

8.1 Tool Release Details . 134

xii

 Verigy Confidential -- Verigy Confidential --

LIST OF TABLES xiii

A.1 Basic Methods of the Template API. 167

A.2 Advanced Methods of the Template API. 168

A.3 Language Specific Methods of the Template API. 169

A.4 Language Specific Methods of the Template API (continued). 170

A.5 Variables of the Algorithm Class. 171

A.6 Methods of the Algorithm Class. 172

 Verigy Confidential -- Verigy Confidential --

Chapter 1

Introduction

The manufacture of dynamic random access memories (DRAM) is a low yield pro-

cess. Adding a small amount of redundant memory capacity allows the repair of

many devices which would otherwise be unusable. To maximise the memory density

limitations may be placed on the use of this redundant capacity and, as modern

devices become larger, these limitations become more complex.

As the equipment necessary to test and repair DRAM devices requires a very large

capital investment, and the value of each device tested and repaired is small, in

order to maximise the return of this high value equipment the time taken for test

and repair must be minimised, and the throughput maximised.

Redundancy analysis algorithms are responsible for solving the NP-Complete prob-

lem of optimally using this redundant capacity to repair faults in a failed device.

Currently these redundancy analysis algorithms are designed, and customised, man-

ually for each new device. This manual construction of repair algorithms is error

prone and handling the high level of complexity is difficult.

The development of a tool capable of automatically generating customised redun-

dancy analysis algorithms would automatically handle the high complexity inherent

in current DRAM devices, and the increased complexity of the next generation

devices. Automatic algorithm generation requires a formal description of the re-

dundancy structures in a DRAM device. Both this description, and the automatic

1

 Verigy Confidential -- Verigy Confidential --

1.1. Requirement for DRAM Redundancy 2

algorithm generation are implemented in a prototype tool presented here.

1.1 Requirement for DRAM Redundancy

As the memory density of DRAM devices increases the manufacturing process be-

comes more sensitive to defects reducing the overall yield, and as new devices often

operate at the limits of the manufacturing process the yield is further reduced. Many

devices fail due to defective cells in the memory array: these devices could be made

viable if redundant memory capacity were to be included in the device, along with

some means by which this redundant capacity could replace faulty cells in the mem-

ory array, thus improving the overall yield.

The provision of this extra memory capacity and the logic to allow its use requires

extra silicon area on the die, reducing the maximum capacity possible for a given

process and silicon area available.

1.2 Redundancy Implementation

The redundant capacity in DRAM devices is provided by memory arrays with in-

creased capacity; programmable address logic allows the remapping of addresses in

the memory array into this redundant capacity. This redundant capacity is often

modelled as a set of spare rows and spare columns repairing rows and columns in

the main array.

The programmable address logic is controlled by a set of fuses, laser cut or non

volatile memory, which can be set after manufacture to control the placement of

specific rows and columns of redundant capacity. These fuses, and the additional

wiring and logic required to implement the redundant capacity takes a considerable

area on the chip; in an attempt to reduce the silicon area required to implement

redundancy (and therefore to increase the amount of storage per device) compro-

mises are made in both the logic, and in the number of fuses. Reducing the number

 Verigy Confidential -- Verigy Confidential --

1.3. Repair Process 3

of fuses, or simplifying the remapping logic, introduces complexity into the repair

process: limiting the addresses at which some redundant rows and columns may

be placed, and constraining the addresses which redundant rows and columns may

repair dependant on the use of other redundant capacity.

1.3 Repair Process

Understanding the process by which memory is tested and repaired allows a greater

understanding of the limitations placed upon redundancy analysis algorithms by the

environment. After DRAM devices are manufactured they are tested before packag-

ing. Each die is tested, those shown by a heuristic test to be probably unrepairable

are discarded. A redundancy analysis algorithm calculates a repair solution for each

device, and the results written to the fuses, after which the devices are packaged.

The devices are tested once again, and those still faulty are discarded; figure 1.1

outlines this process.

As can be seen from figure 1.1, redundancy analysis must take place in the critical

path of DRAM manufacture. As a result, and due to the huge cost of the automatic

test equipment, there is a strong incentive to reduce the time taken by redundancy

analysis. Many redundancy analysis algorithms allow a trade-off between the time

taken for analysis (the throughput) and the performance: an algorithm taking less

time is likely to achieve a lower overall yield than an algorithm taking more time.

1.4 Redundancy Analysis Algorithms

Redundancy analysis algorithms are responsible for selecting from all the possible

combinations of uses of redundant elements one potential solution. Selecting the

optimum from all the potential solutions has been shown to be NP Complete for a

single memory array with a number of spare rows and columns with no limits on

their placements and no interdependencies. As memory size increases (both of mem-

ory array, and the number banks) the size of the repair problem also increases. The

 Verigy Confidential -- Verigy Confidential --

1.4. Redundancy Analysis Algorithms 4

Manufactured
Devices

Test on
ATE

Early
Abort?

Repair

Packaging

Test on
ATE

Passed?
Working
Devices

Discard Device

Discard Device

Pass

Pass

Fail

Fail

Figure 1.1: Redundancy Analysis in the context of DRAM manufacture.

introduction of limitations and interdependencies between redundant elements de-

creases the number of possible solutions but makes the selection of possible solutions

given a set of failures more complex.

The current generation of redundancy algorithms are designed, and customised to

each new device, manually; figure 1.2 illustrates this approach. The size and com-

plexity of devices, and the lack of a formal modelling methodology for redundancy

structures in DRAM, makes this manual approach either very time consuming or

compromises in the correct handling of the complex interdependencies found.

 Verigy Confidential -- Verigy Confidential --

1.5. Industrial Background 5

Manual Algo-
rithm Selection

Manual Al-
gorithm Im-
plementation

Device De-
scription Repair Code

Figure 1.2: The manual repair process: the memory design is interpreted by an
engineer, an algorithm selected, and the algorithm manually implemented.

1.5 Industrial Background

The International Technology Roadmap for Semiconductors (ITRS) [fS07] predicts

an increase in the memory density and the size of DRAM devices; figure 1.3, com-

piled from the ITRS data, shows this predicted increase in memory size. As the

memory size and density increases the size of the redundancy analysis problem be-

comes much larger, and the complexity of the limitations and constraints imposed

by area optimisations is also increased.

2,010 2,015 2,020

0

200

400

600

Date (Years)

P
re

d
ic

te
d

M
em

or
y

S
iz

e
(G

b
)

Figure 1.3: Capacity of DRAM devices as predicted by the ITRS. Compiled from
tables 1e and 1f of [fS07].

Despite the relatively low value of each DRAM device the massive number of devices

produced means that even small improvements in yield made by improved redun-

dancy analysis algorithms can be worth many millions, even billions, of dollars.

 Verigy Confidential -- Verigy Confidential --

1.6. Problem 6

1.6 Problem

Given the large memory capacity and complexity of the redundancy structures in

modern DRAM devices, both of which are expected to increase, the manual con-

struction and customisation of redundancy analysis algorithms is often unable to

correctly represent the device complexity, and may include manual errors, leading

to overall yield loss.

1.7 Proposed Solution

The creation of a tool to automatically generate and customise repair algorithms,

accounting for the high complexity in modern devices, could eliminate the errors

introduced by manual algorithm design and greatly reduce the engineering time

required. Automatic generation of redundancy analysis algorithms requires a formal

description of the redundancy structures in a device; this description, or model, must

be capable of representing not only memory and redundancy arrays but also all the

limitations and interdependences imposed upon the uses of that redundant capacity.

To use such a tool the user must first describe the device; two input methods are

proposed, a parser for a simple text based language describing the model, and a

graphical editor manipulating an intuitive graph based representation of the model.

From these inputs the tool can construct an internal representation of the device.

Techniques are proposed to use this model representation to customise repair algo-

rithms including optimisations based on the model structure. Figure 1.4 shows an

overview of such a system.

1.8 Sponsorship

This project has been sponsored by both the Engineering and Physical Sciences

Research Council (EPSRC) and Verigy under an EPSRC Industrial CASE. Verigy

 Verigy Confidential -- Verigy Confidential --

1.8. Sponsorship 7

Automated by Tool

Manual
Model

Creation

Model Ma-
nipulation

Code
Generation

Algorithm
Library

Manual
Algorithm
Selection

Device Description Repair Code

Figure 1.4: Proposed System Overview: The user must first describe the device
using the graphical editor and select the repair algorithm required. The tool then
manipulates the model and draws upon a library of repair algorithms to generate
repair code.

manufacture both logic and memory automatic test equipment (the 93000 and V6000

series respectively). Verigy was formed in 2006 from the parent company Agilent,

who in turn spun out from Hewlett-Packard in 1999.

The project has also included two internships at Verigy in Cupertino, CA during

the summer of 2007 and 2008.

 Verigy Confidential -- Verigy Confidential --

Chapter 2

Background

Before developing a solution to the problem proposed this chapter will give an

overview of the history of repairable DRAM devices, of the causes of complexity

in modern devices and a review of modelling techniques. An outline of of the redun-

dancy analysis problem will also be presented.

2.1 Introduction to Repairable DRAM

The first repairable memory devices were configured using discretionary wiring

[CDJ67], after manufacture extra metal layers were used to connect only good cells

forming a functioning memory array. Later [TA67] discretionary wiring was used to

connect only good rows, simplifying the metal layers required. In 1969 Chen [Che69]

extended the method to include both good rows and columns.

Much later, in 1978, Schuster et al [Sch78] introduced the reconfigurable device com-

mon today; using extended address logic and a bank of laser cut fuses [KGB+84] row

and column re-mapping could be controlled without discretionary wiring (some more

advanced devices use electrically reprogrammable fuses [KGB+84]). This system of

redundant capacity allocated by manipulations in the address logic and controlled

by a set of fuses, written to after manufacture, is still in common use today.

As devices became more complex the problem of optimally allocating spare rows

8

 Verigy Confidential -- Verigy Confidential --

2.1. Introduction to Repairable DRAM 9

and columns to repair the devices became more time intensive. In 1986 Kuo and

Fuchs showed that this spare allocation problem was NP Complete [KF86]. They

developed a branch and bound technique with a cost function dependent on the type

of element to quickly arrive at the optimum solution.

As any repair algorithm must be run between the testing and repair of each man-

ufactured device the time taken in redundancy analysis has a direct impact on the

throughput of the manufacturing process. In an attempt to reduce the running time,

and increase the throughput, heuristics are used to either discard the device if it

seems unrepairable, or to reduce the search space of the spare allocation problem

(SAP). Kuo and Fuchs use the Must Repair heuristic [Day85] to provide a seed

solution for their NP Complete SAP solver.

An alternative approach to solving the SAP (with shared spares) was proposed by

Kuo et al [LYCK04,YTH+05,LFMK06] where the problem is represented as a set

of boolean functions manipulated using a Binary Decision Diagram. The algorithm

developed is a perfect algorithm that like the branch and bound algorithm, will

always find the optimum solution. The later papers extend the modelling approach,

and map the SAP to the use the well known Boolean Satisfiability Problem; as

there are many application of boolean satisfiability problem solvers, there are many

available implementations.

Modern practical repair of DRAM devices relies on early abort heuristics [TBM84]

to prevent repair being attempted on unrepairable dies, followed by heuristic repair

algorithms the result of which is used to reduce the search space for an NP complete

solver. Very often must repair is used to generate an initial solution before the

application of an NP complete SAP solver [Bha99].

The International Technology Roadmap for Semiconductors [fS07] predicts an in-

crease in the complexity of redundancy structures in DRAM devices. This increase

in complexity increases the search space a repair algorithm must traverse making

efficient repair algorithms even more important, but also increases the complexity

an engineer must manage when creating a device description from which the repair

algorithm could be customised. Understanding the causes of this complexity allows

 Verigy Confidential -- Verigy Confidential --

2.2. Structure of Repairable RAM Devices 10

more efficient algorithms to be developed, but also allows modelling of the redun-

dancy analysis problem and therefore the development of algorithms to manipulate

the device model and create redundancy analysis algorithms.

2.2 Structure of Repairable RAM Devices

Analysis of the structure of repairable RAM devices allows the development of bet-

ter repair algorithms, but it also provides the necessary information to develop an

accurate model of the redundancy structures which in-turn allows the automatic

manipulation and exchange of repair algorithms.

The basic description of modern DRAM devices is still similar to that given by Schus-

ter [Sch78], with extra logic and a set of fuses controlling the use of redundant rows

and columns; though modern devices are considerably more complex. Redundant

rows and columns may be shared between one or more memory arrays, and these

sets of redundant elements and memory blocks may be arranged into many banks.

Fusebox

Redundant Cells

Memory ArrayAddress Logic
Row and
Column
Select

Address
Input

Figure 2.1: Simple DRAM structure, those blocks with additional blocks for repair
with redundant spare rows and columns.

Figure 2.1 represents the key elements in one such bank: incoming addresses are

translated by the address logic into addresses in the memory array, the bits in the

fusebox control that mapping. The design of DRAM devices is under constant

 Verigy Confidential -- Verigy Confidential --

2.3. Causes of Complexity 11

pressure to increase memory density, which is possible by reducing the area required

for redundancy structures. One such reduction is possible, by the sharing of fuses

within the fusebox [Vol98], further reductions are possible by the elimination of a

number of fuses to be replaced by either permanently open or permanently closed

circuits.

2.3 Causes of Complexity

These reductions made in the silicon area available for redundant memory add com-

plexity to the spare allocation problem: hard wired fuses impose restrictions on the

addresses at which redundant cells can be used, and the sharing of fusebox bits

introduces dependencies between sets of redundant cells where the use of one set

of redundant cells can impose restrictions on the use of one or more other sets of

redundant cells.

2.3.1 Hard Wired Fusebox Bits

The hard wiring of fuse box bits (i.e. their replacement by permanent connection or

disconnection) imposes restrictions upon the use of a single set of redundant cells.

The fixing of the least significant fusebox bit limits the placement of the relevant

set of redundant cells to addresses with a matching least significant bit: should the

fusebox least significant bit (LSB) be set to zero, then the address at which the set

of redundant cells is used must be even, as shown in 2.2a.

Fixing the two least significant bits in the fusebox to zero restricts the use of the set

of redundant cells to addresses at multiples of four, fixing the last three bits restricts

to addresses at multiples of eight, fixing more bits increases the address as expected,

as can be seen in figure 2.2b.

Fixing the most significant bit (MSB) in the fusebox similarly restricts the addresses

at which a set of redundant cells can be used. Setting the most significant bit in the

fuse box to one limits the placement of a redundant element to the top half of the

 Verigy Confidential -- Verigy Confidential --

2.3. Causes of Complexity 12

0 1 2 3 4 5 6 7

X X 0
Fusebox:

M R

(a) Fusebox with fixed LSB

0 1 2 3 4 5 6 7

X 0 0
Fusebox:

M R

(b) Fusebox with many fixed LBSs

Figure 2.2: The effects of fixing least significant bits in the fusebox. Given the
fusebox settings shown (X denotes don’t care bits) the redundant column R can be
placed only at the shaded columns in M.

memory 2.3a, that is only those addresses where the MSB is set. It is possible that

a combination of fusebox bits may be hardwired, in which case the limitations on

the use of a set of redundant cells becomes more strict: figure 2.3b shows the result

of a MSB set to one and a LSB set to zero.

0 1 2 3 4 5 6 7

1 X X
Fusebox:

M R

(a) Fusebox with fixed MSB

0 1 2 3 4 5 6 7

0 X 1
Fusebox:

M R

(b) Fusebox with fixed MSB and
LSB

Figure 2.3: The effects of fixing most significant bits in the fusebox, and of the
combination of setting the most and least significant bits in the same fusebox (X
denotes don’t care bits.)

2.3.2 Shared Fusebox Bits

An alternative technique for reducing the area required by redundant structures is

to share some bits in the fusebox between redundant elements, however when this

is done the use of one redundant element may be limited by the use of another.

For example, if two redundant elements share the least significant fusebox bit then

 Verigy Confidential -- Verigy Confidential --

2.3. Causes of Complexity 13

if one is placed on an odd address so must the other, and visa-versa: if the most

significant bit is shared then both redundant elements must be placed in the same

address range; figure 2.4a illustrates such a case.

0 1 2 3 4 5 6 7

Fusebox: X
X
X

X
XR2

R1

MR1 R2

(a) Effects of a fusebox with a shared MSB

0 1 2 3 4 5 6 7

Fusebox: 1
X
X

0
1R2

R1

MR1 R2

(b) Effects of fixed and shared fusebox bits

Figure 2.4: Effects of a fusebox with a single shared bit, and of combining shared and
fixed fusebox bits (again, X indicates not fixed, or don’t care bits in the fusebox).

Real devices have large fuseboxes, controlling the placement of many redundant

elements, therefore the possibility for sharing and fixing of fusebox bits is greatly

increased. Several types of exception arise from these area reducing compromises

made in the fusebox: bits shared in the middle of the fusebox force the redundant

elements to be placed at a region offset from the original placement, as shown in

figure 2.5.

0 1 2 3 4 5 6 7

Fusebox:
X
X

X
X
X

R2
R1

MR1 R2

Figure 2.5: The two redundant elements R1 and R2 share a single fusebox bit. If
R1 is placed at column 2, with the fusebox 010, then the fusebox for R2 must be
X1X (again, X denotes don’t care bits), limiting the placement of R2 to rows 2,3,6
and 7.

Given these large fuseboxes in realistic DRAM devices the possible limitations which

the use of one redundant element may place on another can become very complex.

 Verigy Confidential -- Verigy Confidential --

2.4. Modelling DRAM devices 14

By the sharing a number of the least significant fusebox bits two redundant ele-

ments must be placed at a multiple of a certain address apart: should the two least

significant fusebox bits be shared between two redundant elements then given the

placement of one redundant element the other must be placed at an offset of a

multiple of four bits from the original redundant element.

2.3.3 Shared Redundant Elements

An alternative technique for reducing the area required for redundant structures is

to share a whole fusebox between redundant elements which are placed in different

memories, thus if redundant rows R1 and R2 are placed into memory arrays M1 and

M2 respectively, and share a fusebox (figure 2.6c) then they must both be used at

the same row address (2.6b) and resemble a single larger row, spanning the width of

both memory arrays, and as a result are often represented as such in ad-hoc models

as shown in figure 2.6a)

In addition to sharing fuseboxes between redundant elements, redundant elements

with a single fusebox can be shared between memories [TK99]. Figure 2.7a shows

the commonly used representation of such a shared column, figures 2.7b and 2.7c

show the fusebox and logic configuration that cause this exception.

In a large complex device, such as [YHO97,JHCHKC+96,K+99], it is very probable

that not only will all these exceptions be seen, but also that many of the excep-

tions may be combined. This additional complexity introduces the size of the spare

allocation problem and the complexity of repair algorithms, increasing the cost of

repair calculation, with possible impact on the overall test and repair throughput

and therefore on the cost of the final product.

2.4 Modelling DRAM devices

One of the best ways to work with very complex problems is to create a model, from

a formal mathematical model to the implicit models created by the data structures

 Verigy Confidential -- Verigy Confidential --

2.4. Modelling DRAM devices 15

R

M1 M2

(a) Common Ad-hoc repre-
sentation of redundant rows
with shared fusebox.

M1 M2

R1 R2

0

1

2

3

0

1

2

3

Shared Fusebox: X X X

(b) Possible placements of two redundant
rows with a shared fusebox.

Fusebox

M2

M1

C
L

C
L

Address
Input

Address
Input

(c) Block diagram of a DRAM device, illus-
trating the sharing of one fusebox between two
address decoders (marked CL).

Figure 2.6: Representations of a redundant row shared between two memory blocks
such that a row repair in the first memory requires a row replacement at the same
address in the second memory.

within a computer program. Once a model has been developed it is possible to

manage the high level of complexity, including the implementation of abstraction

barriers to allow a user to concentrate on only those elements of the complex problem

of particular interest.

Often, ad-hoc models and sketches of DRAM redundancy structures are used (as

seen in the previous sections), for example 2.8 from [HD00] and [LTH+06], however

these models cannot easily represent the complexity of element locations and effects

of fusebox optimisation in even a small device.

A model of DRAM redundancy need only represent those structures in the device

relevant to redundancy analysis: the memory arrays, the redundant elements, their

use, and the exceptions placed upon them by the fusebox optimisations.

The common model used in [KF86] can be trivially extended to cover shared redun-

 Verigy Confidential -- Verigy Confidential --

2.4. Modelling DRAM devices 16

M1 R M2

(a) Ad-hoc representation.

0 1 2 3 0 1 2 3

M1 R M2

X X XMFusebox:

(b) Shared fusebox representation, X bits
in the fusebox denote don’t cares, the M
bit selects the memory array.

M1

M2Fusebox

C
L

Address
Input

(c) Cause of shared column.

Figure 2.7: The redundant column R can repair in either memory M1 or M2. The
extra bit it the fusebox, marked M, select the memory addition bits select the
address.

dant elements, for example [SVZ01] and [YHAA+], but representing the exceptions

found in real complex devices is often impossible (models do exist for simpler embed-

ded devices [SDM+05]), any new model must be developed capable of representing

all the complexity seen in modern, and future, devices.

The availability of accurate models allows the development of tools to manipu-

late complex problems, such as efficient use of grid computing resources [Hoh06a,

Hoh06b]; allows the exchange of data with known reliability, and most importantly

the development of algorithms to manipulate the model. Without a model, or with

an unsuitable model, many of these techniques become at best very difficult, and at

worst impossible.

To allow the creation of repair algorithms from a model of DRAM the model must

be capable of expressing all the possible combinations of the types of complexity

detailed above — in a large complex device [GSP91] many of the exceptions will be

combined. If the model and associated tools are to be continually useful then the

 Verigy Confidential -- Verigy Confidential --

2.5. Repair Algorithms 17

Figure 2.8: Example complex device from [HD00].

model must be capable of representing any combination of complexity.

2.5 Repair Algorithms

Kuo and Fuchs [KF86] have shown the spare allocation problem to be NP Complete.

That is any repair algorithm which attempts to arrive at a perfect solution is NP

Complete (a perfect solution is one that is known to be optimal for a given device

and a given set of failures). Another class of redundancy analysis algorithms trades

the guarantee of a perfect solution in order to reduce complexity and therefore the

time taken for repair.

Filtering out those devices which cannot be repaired before attempting the costly

repair process can increase overall thoughput. Often heuristic early abort filters

[TBM84] are used to sort devices into three types: faulty unrepairable devices,

faulty repairable devices, and correct devices, ideally eliminating the time spent

attempting to repair unrepairable devices but at the cost of a heuristic incorrectly

marking a repairable device at unrepairable.

Heuristic repair algorithms are also often used to reduce the search space for an

NP complete algorithm, by suggesting an initial set of repairs [HL88,BP93,LL96a,

 Verigy Confidential -- Verigy Confidential --

2.6. Proposed Solution 18

Blo96, LL96b, SF92] . The two most common heuristic algorithms are the Must

Repair [Day85,Bha99] and Most Repair or Greedy algorithm. The greedy repair al-

gorithm calculates the number of failed cells in each row and column in the memory

array, and repairs, in order, those with the most failed cells until no more redun-

dant resources are available; this is a common heuristic approach to NP complete

problems. The must repair algorithm again calculates the sum of failed cells in

each row and column in the memory array. Each row with more failed cells than

there are unused redundant columns is marked as a must repair, and one of the

redundant columns is marked as used. The same criteria are used to denote must

repair columns, and are re-applied recursively until either there are no redundant

resources available, or no further must repairs. The must repair algorithm is so

named as any row in the memory with more failed cells than there are available

redundant columns can only be repaired by a redundant row: if the device is to

operate correctly that row must be repaired. The must repair algorithm does not

produce a complete solution for the repair of a device; very often there will be a

number of failures not matching the must repair criteria. The solution generated by

the must repair algorithm is used to seed an NP Complete solver, again reducing

the size of the SAP, decreasing repair time, and increasing overall throughput.

Other methods have been used to try and solve the spare allocation problem in

reasonable time, without the use of heuristics: the expression of the SAP as a

boolean satisfiability problem [LYCK04,YTH+05,LFMK06] and genetic algorithms

and neural networks [CS96] to optimise repair algorithms, but these approaches are

uncommon in practice.

2.6 Proposed Solution

The implementation of the tool proposed in the introduction (section 1.7) as a

solution to the problem of generating customised DRAM redundancy analysis al-

gorithms and their implementation on a given platform will cover many areas of

previous scientific investigation.

 Verigy Confidential -- Verigy Confidential --

2.6. Proposed Solution 19

There is only one direct competitor for the tool proposed in this thesis: “MRA tool”

developed by Advantest [mra01]. MRA tool provides a graphical interface repre-

senting a much simplified model of a DRAM device and it is capable of customising

some repair algorithms.

As there are few comparable tools described in literature it is interesting to examine

a number of similar tools that are described; by recognising those areas which the

proposed tool must cover and understanding tools which cover one of those areas

valuable comparisons may be made.

Graphical tools are often used to model complex problems, a particular example in

this field is the DRAM BIST Tool described in by Su et al in [SHZL01]. This tool

provides a graphical editor for the patterns used to test DRAM devices, allowing

the user to design march patterns. The tool parses this pattern description and

generates test code implementing these patterns and circuit descriptions of the BIST

logic. The tool can generate test code for many different devices and many different

test algorithms.

CACTI is a mature modelling program [TAM+08] representing many memory based

products; for example commodity DRAM on a DIMM module, embedded SRAM in

a system on chip design, or cache memory in a processor. CACTI models several

physical properties of a memory system: particularly power consumption and read-

/write timings, allowing a designer to simulate the use of several competing memory

products in a particular application and select the device most suitable for their

specific needs.

Like CACTI, the development of DRAMsim [WGT+05] has been driven by the

growing disparity between CPU and DRAM core speeds. DRAMsim provides an

easily configurable model of the whole memory system, providing a large number

of configurable model parameters to accurately represent a particular device and

allow performance comparisons between different devices and technologies in a given

system and can provide estimates of manufacturing cost for each system.

A modelling framework closer to that proposed in this thesis is Raisin [HLYW07].

 Verigy Confidential -- Verigy Confidential --

2.7. Conclusions 20

Raisin is a framework for the evaluation of DRAM redundancy analysis algorithms,

and for the planning and optimisation of the redundancy strategies used during

the design of DRAM devices. To perform this evaluation Raisin provides a simple,

text based model of the structure of DRAM, a simulator generating memory failure

bitmaps and a framework in which to execute sample redundancy analysis algorithms

and record their running times and repair performance. Raisin can perform this

analysis for a range of different devices and with different model parameters allowing

comparisons between redundancy analysis algorithms in realistic situations.

Of these tools only MRAtool and Raisin deal directly with DRAM repair, but they

do demonstrate the need for tools to manipulate complex problems (DRAM BIST

tool’s graphical march test editor), and all show the power of simulation in the

design and optimisation of large systems.

Raisin might seem suitable for possible integration with the tool being developed

here however the model developed is not sufficiently flexible to represent the devices

on which the tool is expected to operate (section 5.2 for a further discussion of the

model used by Raisin).

The tool developed by Advantest, MRA tool, provides a graphical interface to the

internal model of DRAM but this interface cannot represent the complexities and

interdependencies found in modern DRAM devices (as described in sections 2.3 and

2.4). The tool proposed as a solution to the problem described in the introduction

requires a more sophisticated model of DRAM devices to properly represent the

complexity and generate redundancy algorithms with a high yield.

2.7 Conclusions

This chapter has surveyed the history of repairable dynamic access memories: from

individual good cells connected by discretionary wiring, good rows and later good

columns also connected by discretionary wiring ending finally with the controllable

address logic and fusebox used today. Pressure to reduce the silicon area devoted

to redundant structures forces compromise in the fusebox: the elimination of con-

 Verigy Confidential -- Verigy Confidential --

2.7. Conclusions 21

figurable bits in favour of hard-wired and the sharing of configurable bits between

one or more redundant elements.

The development of the tool proposed as a solution to the problem set out in the

previous chapter must cover many areas: the structure of DRAM, including the

complexities and interdependencies imposed upon the use of redundant resources by

the physical design of the device; the modelling of this structure and the provision

of a graphical tool to manipulate this model and subsequently generate customised

redundancy analysis code solving the spare allocation problem.

Analysis of the spare allocation problem has shown it to be NP Complete, and that

the execution time effects, directly, the overall throughput of the manufacturing

process. The increasing complexity of redundancy structures makes both modelling

the device and solving the spare allocation problem more challenging, so much so

that current algorithms often combine heuristic methods with an NP Complete solver

to reduce repair time. Commercial solutions have been known to ignore aspects of

this complexity with a measurable yield loss.

As devices become more complex, and the uses of redundant elements more inter-

dependent, previous ad-hoc methods of modelling redundant structures become a

limiting factor when exchanging designs and generating repair algorithms specific to

a device. A generic model of DRAM would allow the exchange of designs, the cre-

ation of tools to manipulate and translate the model, and the automated generation

of repair algorithms and code.

Evaluating DRAM repair algorithms requires a source of many failure bitmaps. Man-

ufacturers of DRAM devices regard this failure data as highly sensitive intellectual

property and are reluctant to release it to any external entity. If a statistical model

of failure bitmaps can be constructed then not only can this obstacle be avoided

but a wide range of devices can be simulated, over a range of manufacturing yields,

allowing a more thorough investigation of the algorithms than would be possible

with real failure data.

The following chapters will investigate repair algorithms for DRAM using a statis-

 Verigy Confidential -- Verigy Confidential --

2.7. Conclusions 22

tical yield model; the structure of DRAM will be examined, and mathematically

modelled including both an intuitive, user friendly, graphical model and a machine

friendly text model language. Functions will be defined to manipulate these models

and techniques developed to generate code for repair algorithms and ATE configu-

ration. Finally these modelling and code generation ideas will be integrated in a

prototype graphical tool.

 Verigy Confidential -- Verigy Confidential --

Chapter 3

Modelling DRAM Failure Maps

3.1 Introduction

Experimenting with DRAM redundancy repair algorithms requires a large number

of failure bitmaps, ideally showing a wide range of: bitmap size, overall yield, and

error clustering properties.

Many models of failure maps in DRAM are designed for the analysis and improve-

ment of memory test techniques, particularly the use of different march patterns; for

example the RAMSES fault simulator developed by Wu et al [WHCW02]. These

simulators are often used for development and characterisation of march test pat-

terns which depends upon the type of faults encountered: a simple test pattern

writing ones into each bit and expecting to read ones from each bit can only detect

“stuck at one” faults; and so the simulator must replicate as many fault types as

are expected in the memory device to be tested. Repair algorithms do not require

information about the type of failure, only the location of those cells that have failed.

Obtaining a statistically significant number of memory failure bitmaps, from a range

of devices can be difficult, making the comprehensive test of repair algorithms chal-

lenging. Though testing the large number of devices required would be time consum-

ing, it would not be impossible; however, obtaining such devices, or the test data

from such devices, can be difficult: memory manufacturers often see failure data as

23

 Verigy Confidential -- Verigy Confidential --

3.2. The Statistical Model 24

part of their key intellectual property, and keenly protect it.

Figure 3.1a illustrates a possible methodology for such experiments using real mem-

ory failure maps: after manufacture devices are tested, producing a number of failure

maps, on which experiments can be conducted.

Many frameworks for the analysis of algorithms manipulating memory failure bitmaps

simulate the failed bitmap with a simple probability for failure of each cell [HLYW07,

SVZ04]. However real devices show much more complex failure patterns. A common

failure patten is caused by a defect in the sense amplifiers or addressing logic forcing

cells in a particular row or column out of the limits of their tolerance.

Approaching the test of repair algorithms using real memory failure bitmaps as the

only input limits the points at which test data can be obtained. Data can only

be taken from real devices at the sizes and yields at which they occur. A model,

capable of producing memory failure bitmaps with many controllable parameters

would allow testing of repair techniques over a wide range of devices and processes.

A flexible model would also allow the simulation of the yield learning curve, where

the test results of previous batches of devices are used to improve the next.

Developing such a model requires access to failure data during the initial construc-

tion, but once constructed could generate many failure maps without further access

to real data. This model might take as parameters the size of the failure bitmap,

the required yield, and a number of parameters describing the nature of the failures.

Figure 3.1b illustrates the construction of such a model: analysis of memory failure

maps from real devices, followed by the establishment of a statistical model. The

model can be used to produce many failure maps, with controllable clustering and

yield parameters.

3.2 The Statistical Model

The faults common in DRAM devices have previously been categorised in many

academic and industrial models. van de Goor [vdGAA00, AAvdG01] presents a

 Verigy Confidential -- Verigy Confidential --

3.2. The Statistical Model 25

Manufacturing
Process

Test on ATE Experiments
Devices Failure Maps

(a)

Run Once

Manufacturing
Process

Test on ATE

Create
Statistical

Model

Simulate
Model

Experiments
Yield

Uniform error

Clustering parameters

Devices

Failure
Maps

Failure Maps

Model

(b)

Figure 3.1: Experiments with Real and Modelled Failure Maps.

formal representation of fault models: a fault model is a set of fault primitives; each

fault primitive represents a failure as a sensitising operation, and the observed and

expected values read from the device after the sensitising operation.

In general industrial models of DRAM failure models are less formal than the aca-

demic model presented by van de Goor [Cro00]. This model is designed for the

optimisation of test routines, particularly march patterns, and so must represent

the type of failure. Models used for the testing and development of redundancy

analysis algorithms need not represent the cause of failure, only the consequences.

Such models assume that any failure anywhere in the device will manifest as a fail-

ure in the memory array; for example a fault in the address decoding logic might

appear as a row of neighbour faults (where a cell, when read, returns the value of

one of it’s neighbours). Industrial models often limit the types of failure possible.

Common faults represented are failures in single cells in the memory array, failures

of complete rows or columns in the memory array, or failure of the complete memory

array [DBT90].

The redundancy analysis framework Raisin [HLYW07] uses four parameters to con-

trol its failure bitmap simulation; a number of defects per die, the percentage of

 Verigy Confidential -- Verigy Confidential --

3.2. The Statistical Model 26

faulty rows and faulty columns and clustered errors. In this scheme a fixed number

of defects are injected into each die, these defects are distributed amongst the four

fault types. (Probabilities are specified for the percentage faulty rows and columns

and clustered errors, the probability of a single cell failure is not listed but defects

not otherwise allocated form single cell errors.)

Ideally a model would be developed by analysis of many thousands of failure bitmaps

from real devices; however in industry this information of closely guarded as key

intellectual property which DRAM manufacturers are unwilling to release. Verigy

hold a number of statistics about a certain commercial device and it is this data

upon which the model described below is based.

A statistical model representing memory failure bitmaps must represent those fail-

ures which occur in real devices. There are two common causes of failures in DRAM

devices: random defects, spread independently over the whole bitmap, often as a

result of contamination during the manufacturing process and systematic defects,

perhaps due to mask miss-alignment during manufacture, or defects in the support-

ing circuits.

Modelling the first of these fault types can be simple, each cell is assigned a probabil-

ity that it will fail due to contamination, and each cell is considered independently.

Systematic defects affect sets of cells in the device; an imperfection in the sense

amplifier for a column could lead to cells on that column functioning improperly,

and failing, while other cells are unaffected. Both rows and columns have decoding

circuits, but only columns have sense amplifiers: as a result the probability of a

column failing may not be the same as that of a row failing. Should a part of the

circuit driving a row or column fail then some of the cells on that row (column) may

fail, while others continue to operate correctly.

The model described in this chapter is controlled by four parameters. The first

of these, “Failure Map Size” describes the dimension of the memory array to be

modelled; the units of each dimension are memory cells. As a result of die contami-

nation or imperfections small areas of the device may not function, often this results

 Verigy Confidential -- Verigy Confidential --

3.3. Implementation 27

in one or more cells in the array; the model parameter “uniform failure probabil-

ity” represents this chance of a cell failing. Should this contamination effect the

circuits supporting the memory array then a particular row or column may fail (if

for example the sense amplifier was rendered inoperable then none of the cells in

the column read by that amplifier would function correctly). The model represents

this probability of failure with the parameter “probability of row failure”. These

support circuits required for rows and columns differ: rows require only address de-

coders whereas columns require address decoders, sense amplifiers and connections

to the data bus. As a result of this difference in complexity the probability of failure

in support circuits for rows and columns differs, represented in the model by the

parameter “ratio of row to column failures”. It is possible that defects in the sup-

port circuits will not disable an entire row or column; for example a sense amplifier

operating near the design tolerance may successfully read values from some cells

on a column but not from others. To represent this limited operation the model

describes the independent probability of each cell on a failed row or column failing,

referred to as the “probability of cell failure on a failed row or column”.

The values of individual model parameters can be derived from a simple analysis

of failure bitmaps from a single device. Adjusting these parameters allows the

simulation of devices with different yield (from that of original device), allowing

experiments to be carried out at many points on the yield learning curve.

3.3 Implementation

The model described in the section above has been implemented using the Matlab

programming language. The algorithm first adds independent failures to the bitmap,

the uniform error probability determining the pass/fail state of each cell. The prob-

ability of a row having failed is considered to be the probability of a row or column

failure multiplied by the ratio of row to column failures. Should a row be determined

to have failed, each cell on that row has a higher probability of failure; Columns are

considered similarly. Pseudo code for this procedure is shown in algorithm 1.

 Verigy Confidential -- Verigy Confidential --

3.3. Implementation 28

Algorithm 1: Failure Bitmap Generation

Input: Model Parameters
Output: Memory Failure Bitmap, bitmap

bitmap = Array of Failure Bitmap Size square working cells
foreach Memory Cell in bitmap do

if Random (0. . . 100) ≤ Uniform Error Probability then
Memory Cell = Failed

foreach row in bitmap do
if Random (0. . . 100) ≤ Row Failure Probability then

foreach Memory Cell in row do
if Random (0. . . 100) ≤ Probability of Cell Failure on a Failed Row then

Memory Cell = Failed

foreach column in bitmap do
if Random (0. . . 100) ≤ Ratio of Row to Column Failures × Row Failure

Probability then
foreach Memory Cell in column do

if Random (0. . . 100) ≤ Probability of Cell Failure on a Failed Row then
Memory Cell = Failed

Parameter Value (%)

Uniform error probability 0.003
Row/Column failure ratio 0.8
Probability of a row or column failure 0.5
Probability of cell failure on a failed row or column 80

Table 3.1: Parameters for the statistical failure model. The data used in the con-
struction of this model is derived from data held by Verigy.

Matlab was chosen as the implementation environment as it allows rapid prototyping

of largely mathematical algorithms, which was considered to be more important than

the overall running time.

Though the model probabilities are derived from a single set of real failure data,

manipulation of the parameters controlling uniform errors and row and column

failures allows the simple simulation of a similar device at different points on the

yield learning curve.

The values of the model parameters used are defined in table 3.1 and were derived

from confidential failure data held by Verigy; an overlay of many generated failure

maps is shown in figure 3.2. From this figure it can be seen that column failures are

 Verigy Confidential -- Verigy Confidential --

3.3. Implementation 29

predominant, as expected given the model parameters. This overlay technique can

be used for quick visual comparison of model data with real failure maps, for the

assessment of model parameters.

0 64 128 192 255

Cell Position

0

64

128

192

255

Ce
ll

Po
si

tio
n

20

25

30

35

40

45

50

55

60

65

70

Nu
m

be
r o

f F
ai

lu
re

s
pe

r C
el

l

Figure 3.2: In this overlay of ten thousand failure maps the colour of each cell shows
the number of failures in that cell over all ten thousand bitmaps; the parameters
used for all bitmaps are those shown in table 3.1.

It is often useful to test repair algorithms at a range of yields. Without a statistical

model the only yields available would be those from real tested devices. With

a statistical model many yields can be simulated. Ideally the model parameters

would be calibrated at each of these yields using real failure data. In the absence

of such data it is possible to manipulate the uniform and clustered error probability

to create failure maps of the required yield. The calibration curve shown in figure

3.3 shows, for each yield requested, the average (over 10000 bitmaps) of the yield

generated. As can be seen from the curve, above approximately twenty percent

average yield the accuracy of the model is very poor, experiments in later chapters

will be restricted to yields of twenty percent or less.

 Verigy Confidential -- Verigy Confidential --

3.4. Conclusions 30

0 20 40 60 80 100

0

20

40

60

80

Requested Yield (%)

M
o
d
el

le
d

Y
ie

ld
(%

)

Generated Yield Expected Yield

Figure 3.3: Calibration curve for the yield model.

3.4 Conclusions

The yield model described in this chapter simulates realistic memory failure bitmaps,

allowing the off-line test and comparison of any process which takes failure maps as

an input (typically memory repair algorithms). Though realistic failure maps are

produced, no further failure data, e.g. the cause or type of the failure, is available,

or is modelled.

Due to the difficulty in accessing a large sample of memory failure maps the model

described in this chapter uses statistical information already available within Verigy.

The necessity of the use of this information limits the development of the model —

the model could be improved by detailed analysis of many thousands failure maps at

different points on the yield learning curve and ideally from many different devices.

This chapter has presented a novel implementation of the model described and also

shown a novel technique allowing the generation of memory failure bitmaps over a

range of per die yields, providing a means to test the performance of memory repair

algorithms at several points on the yield learning curve.

 Verigy Confidential -- Verigy Confidential --

3.4. Conclusions 31

Further work on this failure model should include parameter sets derived from one

device at different points on the yield learning curve thus calibrating the model fully.

With the collection of parameter sets for many different devices the model can more

accurately represent each device and therefore many types of device.

 Verigy Confidential -- Verigy Confidential --

Chapter 4

DRAM Redundancy Analysis

4.1 DRAM Repair Background

Before a detailed discussion of repair algorithms it is useful to review the need for

repair in DRAM devices, the methods by which these devices may be repaired, and

the algorithms used to calculate repair solutions.

The manufacture of memory devices is a low yield process due to errors in manufac-

turing (e.g. mask miss-alignment or contamination). To improve yield, redundant

capacity is included in the memory design and a repair step is introduced after

manufacture.

To allow this repair an amount of spare cells are included during the design of the

device. In most cases this spare capacity takes the form of extra cells in the memory

array, providing extra rows and columns in that memory array.

Modification to the logic used to translate memory addresses into row and column

addresses allows these redundant rows and columns to be used in place of rows or

columns with faulty memory cells.

Compromises made in the design of the device, often so as to improve the capacity

of that device, introduce constraints upon what this remapping logic can achieve;

these are further discussed in chapter 5.

32

 Verigy Confidential -- Verigy Confidential --

4.1. DRAM Repair Background 33

Each manufactured device has a particular set of failures and therefore a particular

set of row and column replacements that will best repair the device. In many cases

there will be many possible sets of row and column replacements that will leave no

un-repaired failures, but it is quite possible that there may be one unique solution,

or no solutions at all, capable of repairing the whole device.

One of the simplest strategies used for repair is to calculate the number of failed

cells in each row in the memory array and replace the row with the most failed cells.

The process is repeated while there are spare rows remaining and while there are

rows with failures to repair. The same process is applied to columns to complete the

repair of the device Figure 4.1 shows the repair of a small device of eight by eight

memory cells, thirteen failures, three redundant rows, and three redundant columns.

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

0

6

0

2

0

3

1

1

1 2 3 4 1 1 1 0

(A)

(B)

(C)

(D)

Figure 4.1: Most repair solution for a small device. The device is eight by eight cells
with three redundant rows and three redundant columns. Failures () are repaired
by these spare rows and columns (shown shaded). Per row and column failure sums
are shown, and during row first most repair the rows and columns are repaired in
the order labelled.

The repairs made in figure 4.1 are calculated using the most repair algorithm, first

replacing the row the row with the most failures, label (A), and repeating the process

until there are no redundant rows left, making the repairs labelled (B) and (C).

Finally the column with the most failures is repaired, (D), and as there are no

un-repaired failures remaining the algorithm terminates.

Though in this case a solution completely repairing the device was found very often

that is not the case, and the most repair heuristic will exhaust the redundant capacity

 Verigy Confidential -- Verigy Confidential --

4.1. DRAM Repair Background 34

without repairing the device.

The order in which the most repair algorithm addresses failures in rows and columns

can have an effect upon the repair solution made and therefore in the success of the

algorithm. A more sophisticated algorithm might attempt to generate solutions

independent of these factors; one such algorithm is the “Must Repair” algorithm.

The must repair algorithm operates by applying a simple selection criterion to choose

those rows and columns to be repaired. This criterion (from Bhavsar [Bha99]) de-

scribes a row must repair as “a repair solution forced by a failure pattern with more

defective cells in a single row than there are spare columns”. Alternatively, and

identically, it may be said that a row with more faults than can be repaired with

the available spare columns must be repaired with a spare row. (Both definitions

can be reversed to define must repair columns in terms of the available spare rows.)

During the first iteration of the must repair algorithm this criterion is applied to

each row and column, comparing the number of failed cells with the available spare

columns and rows. The result of this application to the example device of figure

4.1 is shown in figure 4.2a. These iterations continue repairing rows and columns

with more failures than there are spare rows and columns until either: there are no

must repairs, there are no failures, or there are no unused redundant elements. As

in the example of figure 4.2b it will often be the case that the must repair algorithm

terminates before all the failures are repaired, even if a complete repair is possible.

The must repair algorithm does however provide a guarantee that all of the redun-

dant elements used cannot be used in a better arrangement: the rows and columns

repaired were unrepairable by other means. Given this guarantee the must repair

algorithm is often used before other, more complex, repair algorithms to reduce their

running time.

Neither the most repair nor the must repair algorithms can provide a guarantee that

they will find a solution, even if one exists. Algorithms do exist that can guarantee

the best possible solution will be found, if there are many solutions then the solution

with fewer repairs will be chosen, if there are no complete solutions then the best

 Verigy Confidential -- Verigy Confidential --

4.1. DRAM Repair Background 35

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

(a) First Iteration

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

(b) Second Iteration

Figure 4.2: Must Repair Solution for a small device with three redundant rows and
three redundant columns. During the first iteration the must repair criterion states
that any row or column with more than three failed cells must be repaired, and two
such repairs are made (part (a)). As one redundant row and one redundant column
have now been used during the second iteration (part (b)) the criterion states that
any row or column with more than two failed cells must be repaired. As there are
no matching rows or columns the algorithm terminates.

attempt will be chosen, and if there is only one complete solution it is guaranteed to

to chosen. This class of algorithms are commonly called perfect repair algorithms.

These perfect repair algorithms have another important property: they are NP

Complete [KF86]. The execution time of NP complete algorithms is large, and

grows rapidly with increases in the input size making them expensive to compute.

The most repair algorithm presented previously is an implementation of the greedy

heuristic commonly used to “solve” NP complete problems.

A typical approach to simplify memory repair uses the must repair algorithm to

reduce the problem before application of an NP complete solver. There are many

possible algorithms available to solve the NP complete spare allocation problem

(SAP), Kuo and Fuchs propose a branch and bound algorithm which will be analysed

further in this chapter.

Current work on repair algorithms very often focuses upon one of these two areas:

upon heuristics to simplify the problem before a complex repair; and improved

perfect repair algorithms.

One such improved perfect repair algorithm represents the entire problem, the de-

vice layout, the possible use of redundant elements, and the failures, as a boolean

satisfiability problem [YTH+05]. The boolean satisfiability problem is a common

 Verigy Confidential -- Verigy Confidential --

4.2. Introduction 36

instance of NP complete algorithm finding application in electronic design automa-

tion and scheduling algorithms found in academia and industry. Due to the common

application of boolean satisfiability problems powerful solvers are readily available

and can now be applied to memory repair.

The repair techniques in this chapter focus on those algorithms executed upon ded-

icated test and repair hardware but much of the modern research is focused upon

algorithms operating as part of Built in Self Test (BIST) and Build in Self Repair

(BISR) [TLC06,BCDN+02,OBNH08]. These two operational environments impose

quite different requirements and constraints upon the algorithms chosen. Repair

algorithms operating on external test and repair hardware may have large amounts

of storage and many execution cycles to spend upon repair calculations; BISR al-

gorithms are restricted in complexity and in memory usage due to the hardware

limitations imposed by their packaging alongside the RAM device.

This chapter will give an overview of the algorithms used to repair DRAM devices.

By analysing in detail a number of common redundancy analysis algorithms com-

parison will be enabled between these algorithms and criteria for the selection of a

suitable algorithm for a given device or repair situation.

4.2 Introduction

Before attempting to automatically generate redundancy analysis algorithms for

specific devices it is important to survey the need for such algorithms, and the

current implementation of some common examples.

The manufacture of DRAM is a low yield process, indeed often dominating the yield

of system on chip devices, and driving the profits of semiconductor manufacturers.

Any improvement in the yield of a device can have a large impact on the success of

a manufacturer.

To attempt to control the yield of a manufactured device redundant capacity is

included in the design. Using these redundant elements faulty devices can often

 Verigy Confidential -- Verigy Confidential --

4.3. The Spare Allocation Problem 37

be repaired, improving the overall yield; figure 4.3 illustrates the application of a

simple redundancy analysis algorithm to faulty devices over a range of yields, and

the improvement in overall yield.

This chapter discusses problems involved in developing redundancy analysis algo-

rithms, and analyses some of the more common. Also developed are approaches to

adapt traditional solutions to more complex modern devices.

0 5 10 15 20 25

70

80

90

100

Manufactured Yield (%)

Y
ie

ld
af

te
r

R
ep

ai
r

(%
)

Figure 4.3: Yield improvement after simple repair. Using a greedy algorithm to
repair a device of 256 × 256 cells, with four redundant rows and four redundant
columns.

4.3 The Spare Allocation Problem

Kuo and Fuchs [KF86] have shown that the finding the optimal configuration of re-

dundant elements for a failed device is an NP complete problem. During production

the time taken to test and repair each device, or test throughput, is of paramount

importance and the time taken for optimal repair may be considered too high a cost.

Not all repair elements within a device are equivalent. They may have different

shapes (e.g. rows and columns) but also the use of the redundant element may

impact the performance of the repaired device. As a result designers often want to

add priorities to redundant elements such that the repair algorithm can attempt to

produce a repaired device with the least compromise in performance, and therefore

 Verigy Confidential -- Verigy Confidential --

4.4. Algorithms 38

a device that can be sold for the maximum price. A particular example might be a

preference to repair faults using redundant columns; as the use of a redundant row

(in this device) requires either extra logic, or increased wiring length, reducing the

maximum bandwidth and therefore the possible selling price of the memory.

Heuristic tests can be used to select only those devices where a complete repair

is probable, increasing the throughput of the repair process at the expense of a

possible small yield loss. Heuristics tests can also be used in the development of

repair algorithms, quickly reducing the search space before application of an NP

complete SAP solver.

A common heuristic used within complex, multi-array, problems is to prefer the use

of redundant elements capable of repairing in only one memory array, thus reserving

the more flexible redundant elements (capable of repairing in more that one array)

for those situations where that flexibility is required. Another often used heuristic

is a simplification of complex devices, removing the constraints between redundant

elements; previous experiments have shown the yield loss from this heuristic to be

up-to one percent, and a considerable financial penalty.

4.4 Algorithms

A commonly used heuristic repair algorithm is “Must Repair”, in [Bha99] Bhavsar

defines a row as being a must repair if there are sufficient failures that the row can

only be repaired using columns (assuming there are only rows and columns, and

that all rows and all columns are identical).

Modern devices are considerably more complex, having many types of redundant

elements rather than the two assumed in the conventional must repair definition;

any improved must repair definition must account for this increased complexity.

Definition The placement of a redundant element at a specific address in a memory

is a must repair if the failed cells so repaired cannot be repaired by any combination

of placements of any other redundant elements.

 Verigy Confidential -- Verigy Confidential --

4.4. Algorithms 39

The conventional must repair algorithm must be applied recursively until either

there are no redundant elements available to cover the remaining faults, no must

repairs remaining, or no failures remaining; as the must repair condition changes

as redundant elements are used to repair faults. This requirement for recursive

application is also present for the improved must repair definition.

The most repair algorithm [TBM84] is a greedy approach to solving the NP complete

spare allocation problem; a non-optimal solution repairing, in order, those rows and

columns with the most failures. Its implementation for a simple device with one

memory array, spare rows and spare columns calculates the sum of failures in each

row and column before iteratively replacing the rows and columns with the most

errors until there are either no further failures to repair, or no redundant elements

remaining.

Both the most and must repair algorithms are heuristic solutions to the NP complete

spare allocation problem, and as such, the solutions so generated are not guaranteed

to be optimum solutions, or are not guaranteed to be the best possible solution for

a given device and set of failures.

The most obvious perfect solution is to test every combination of placements of

every redundant element. For a simple device, a single memory of size N by N cells,

with SR spare rows and SC spare columns, the size of this search, as defined by the

unique possible placements of SR spare rows in N rows, are defined by the binomial

coefficient:

(

n

k

)

=
n!

k! (n − k)!
(4.1)

Then the possible placements of all spare rows and all spare columns is

Unique possible placements =

(

N

SR

)(

N

SC

)

(4.2)

For a typical memory of size two hundred and fifty six cells square, with eight each

 Verigy Confidential -- Verigy Confidential --

4.5. Analysis 40

spare rows and columns the total number of possible combinations is 1.7×1029 1. Of

course implementing such a search over a realistic device is not a feasible proposition,

given the time constraints placed upon redundancy analysis algorithms.

Several well known algorithms can be applied to the solution of such NP complete

problems, one of the best known is the branch and bound algorithm as described by

Kuo and Fuchs for repair in redundant RAMs [KF86]. Having defined a cost function

for the use of each type of redundancy the algorithm always selects the solution with

the lowest total cost; branching to repair each new fault, and bounding to a lower

cost solution if one is available.

Though this approach is, in almost all cases, quicker than a simple search the time

taken may still be to great; using the results of the must repair heuristic as a starting

point the search space of the algorithm can be greatly reduced. Often the time

available for repair is limited, but known before hand; adding a cut off time to the

branch and bound algorithm (and other complex redundancy analysis algorithms)

allows the generation of a solution as close to the optimum as the available time

allows.

Figure 4.4 illustrates the different solutions generated by the must repair, most

repair, and full search solutions for a small device with eight rows and columns and

two each redundant rows and columns; only the full search solution is capable of

calculating a solution repairing the device.

4.5 Analysis

Analysis of these repair algorithms allows a fuller understanding of both their oper-

ation and their complexity, which will be of use in later chapters. Understanding

the properties of these repair algorithms will allow the selection of the correct class

of algorithm for a particular problem, or the combination of algorithms best suited

to that problem.

1
(

256
8

)(

256
8

)

=
(

256
((256−8)!×8!)

)2

= 1.7×1029

 Verigy Confidential -- Verigy Confidential --

4.5. Analysis 41

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

(a) Most Repair Solution

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

(b) Must Repair Solution

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

(c) Perfect Solution

Figure 4.4: Solutions generated by most repair, must repair, and a perfect repair
algorithm. Each memory array has two each redundant rows and columns. Failures
in the device are shown by red crosses, and the repaired rows and columns by shaded
rows and columns.

This section will first present pseudo-code describing the must and most repair

heuristic repair algorithms, and both a branch and bound and exhaustive search

implementations of a perfect repair algorithm.

Assuming the number of spare rows and columns in a device is much lower than

the number of rows and columns in the main array then the complexity of the most

repair algorithm is dominated by the calculation of the sums of errors in each row

and column of the main array. This calculation must consider each cell in the device,

and therefore assuming the memory array is N by N cells the complexity of the most

repair algorithm is O(N2).

Function most repair(failure map, spare rows, spare columns)

row error sums = []
column error sums = []
foreach cell in failure map do

if cell is failed then
row error sums [cell.x]++
column error sums [cell.y]++

while available(spare rows) do
repair row(row with most failures)
mark row as repaired

while available(spare columns) do
repair column(column with most failures)
mark column as repaired

Like the most repair algorithm, the complexity of the must repair algorithm is

 Verigy Confidential -- Verigy Confidential --

4.5. Analysis 42

dominated by the calculation of row and column error sums, and the complexity

is O(N2). As written below the recursive must repair function would re-calculate

these sums on each invocation, but this can easily be avoided by maintaining a data

structure across recursion levels.

Function must repair(failure map, spare rows, spare columns)

row error sums = []
column error sums = []
foreach cell in failure map do

if cell is failed then
row error sums [cell.x]++
column error sums [cell.y]++

foreach row in row error sums do
if row error sums [row] > count(spare columns) then

repair row with spare rows

foreach column in column error sums do
if column error sums [column] > count(spare rows) then

repair column with spare columns

if failure map changed then
must repair(failure map, spare rows, spare columns)

A simplistic approach to finding a perfect solution is to compute all the possible

permutations of all the available redundant elements and test each of those solu-

tions, selecting the best. Iterating over all these combinations can be seen to have

a complexity of O(N !). Two modifications can be made to this algorithm, poten-

tially reducing the complexity: filtering the set of generated permutations to only

those where redundant elements repair faults, and where the must repair solution

is satisfied, can potentially reduce the complexity to only O(N2) if the must repair

solution is the only permutation remaining.

Function full search repair(failure map, spare rows, spare columns)

N = size (failure map)
foreach column repair combination in nchoosek(N.x, spare rows) do

foreach row repair combination in nchoosek(N.y, spare rows) do
Repair failure map according to row repair combination and column repair

combination

Score solution

Select solution with best score

 Verigy Confidential -- Verigy Confidential --

4.5. Analysis 43

The branch and bound implementation of the NP Complete solution to the spare

allocation problem has a complexity of less than O(N !), but is capable of finding

a perfect solution, should one exist. The algorithm requires the provision of a cost

function generating a value given the placement of a particular redundant element.

Should this cost function return the same value for any placement of any redundant

element then the solution using the fewest redundant elements would be selected,

but the use of a more flexible cost function allows more complex decisions to be

made.

Function branch and bound repair(failure map, spare rows, spare columns)

queue = must repair(failure map, spare rows, spare columns)

while queue not empty and faults remaining do
current solution = pop(queue)

fault = get next fault(failure map)

if count(spare rows) > 0 then
Repair fault.y with spare rows

Compute cost
Append new solution to queue

if count(spare columns) > 0 then
Repair fault.x with spare rows

Compute cost
Append new solution to queue

Sort queue by descending cost
Remove duplicates keeping solution with longest path

if queue is empty then
No Solution Found

else
Solution is head of queue

Table 4.1 summarises the performance of these repair techniques and shows, as

expected, that an algorithm capable of calculating a perfect solution to the spare

allocation problem has a much higher execution time than a heuristic solution. The

must repair heuristic finds rows and columns for which can be repaired by only one

type of redundant element. The perfect solution must therefore include these must

repairs. Using the must repair algorithm to pre-populate the solution of a algorithm

capable of perfect solutions reduces the search space that algorithm must consider,

in turn reducing the complexity. (A lower bound on this complexity is set when the

must repair solution is the only solution possible, covering all faults.)

 Verigy Confidential -- Verigy Confidential --

4.6. Repair in Hierarchical Devices 44

Algorithm Complexity Perfect Solution

Most Repair O(N2)
Must Repair O(N2)
Full Search O(N !) Yes

Branch and Bound O(N !) Yes

Table 4.1: Redundancy analysis complexity comparison

4.6 Repair in Hierarchical Devices

Modern DRAM devices are made from many sets of smaller memory arrays. These

sets of smaller memory arrays are often referred to as banks. Each bank may consist

of a number of memory arrays with redundant elements repairing in those arrays.

Banks may arranged hierarchically, where a bank can be composed of two or more

other banks, possibly with shared redundancy [HCL06,YHO97,Kir98]; these banks

are often each very similar, if not identical. Figure 4.5 shows an example device

with three hierarchical levels, and many identical banks.

M4

M3

M2

M1

R4

R3

R2

R1

R7

R6

R5

(a) Example device
with hierarchical re-
pair.

M4

M3

M2

M1

R7

Level 3

M4

M3

M2

M1

R6

R5

Level 2

M4

M3

M2

M1

R4

R3

R2

R1

Level 1

(b) Hierarchical levels for the given device. There are four banks at
level one, two at level two and one at level three.

Figure 4.5: Device with hierarchical repair. Redundant elements R1-4 can repair
only memories M1-4 respectively, R5 and R6 repair M1, M2 and M3, M4 respectively
and R7 can repair any memory.

The introduction of devices with more than one memory array requires the introduc-

tion of different types of redundant element: redundant elements may now be able

to repair cells in more than one memory array. These types can be thought of as

 Verigy Confidential -- Verigy Confidential --

4.6. Repair in Hierarchical Devices 45

local redundant elements, which repair in only this memory array, and shared redun-

dant elements which can repair in more than one memory array; shared redundant

elements can be further split into those which repair in either one memory array or

another, and those which repair in one memory array and another. These definitions

call also be applied hierarchically, such that a redundant element repairing in one

of two banks is considered local. (The causes of these shared redundant elements is

discussed in sections 2.3.3 and 2.3.2.)

Introducing devices with many hierarchical levels requires a different approach to

the development of repair algorithms if an optimum solution is to be found. The NP

complete full search technique, testing the placement of every redundant element at

every possible placement is still capable of producing a perfect solution, but the

search space is greatly increased. If this search space can be reduced, then the time

taken for repair can be greatly reduced.

Dividing a large problem into several smaller problems can reduce the search space.

Banks with no external dependencies (a bank has no external dependencies if all the

redundant elements in that bank only have placements in memory elements within

that bank) can be repaired without consideration of any other part of the device.

Solving these all independent sub-problems has a much smaller complexity than

attempting to solve the larger problem; if the repair platform supports it then these

independent sub-problems can be solved in parallel.

Simplifications can also be introduced for sub-problems which do have dependencies:

starting at the lowest hierarchical level (see figure 4.5) attempt to solve all the sub-

problems. If a sub-problem can be solved with only local redundancy, then no better

solution exists and that memory can be considered repaired for all hierarchical levels.

The results of this repair are propagated to the next level, where repair is again

attempted using redundant elements from both hierarchical levels; the results from

this repair are further propagated until the device is fully repaired or a solution is

unobtainable.

The traditional must repair definition cannot operate in a device where the redun-

dant elements are more sophisticated than simple local rows and columns. The

 Verigy Confidential -- Verigy Confidential --

4.7. Experiments 46

new definition given previously in this chapter does allow for any shaped redundant

element, with any particular placement, including the possibility of placement in

different memories. Even this modified definition becomes useless with the introduc-

tion of shared redundant elements: in the example device of figure 4.5 both R7 and

R5 could repair what would otherwise be a must repair column in M1. Applying

the must repair definition at each hierarchical level allows this heuristic to be used

in modern, complex, devices.

4.7 Experiments

To show that the modelling results are realistic it is useful to perform repair using

the algorithms described and compare the results with those expected. Performing

such tests upon real devices, especially over a range of yields, would be prohibitive

if real devices were used (due to the requirement for a large number of identical

failed devices over a range of yields); using the yield model developed in a previous

chapter (chapter 3) allows simulation over a range of devices and yields.

To compare the redundancy analysis algorithms with each other and with the the-

oretical results a number of metrics are required. There are two key metrics for

the comparison of redundancy analysis algorithms: the improvement in yield after

repair and the time taken to make that repair. The computational complexity of

each algorithm has previously been calculated and predicts order of magnitude of

the running time of each algorithm which should be expected in the experimen-

tal results. There is no direct predictor for the yield improvement calculated, but

perfect repair algorithms should have a higher yield after repair than an imperfect

algorithm. Measuring these metrics allows comparisons between the theoretical and

experimental results and also between each algorithm.

The measurement of these metrics can be made using a simple experimental frame-

work: the measurement of yield improvement can be made by repairing a number

of devices with a number of repair algorithms and recording both the yield before

and after repair.

 Verigy Confidential -- Verigy Confidential --

4.7. Experiments 47

The computational complexity values previously calculated for each algorithm can-

not be directly compared to the running time of those algorithms. Clearly imple-

mentation details will have a large effect as will the structure of the device repaired.

What the complexity figures do predict are the differences in running times between

algorithms that might be expected.

Measuring the running time of each algorithm will allow these comparisons to be

made, and the measurement can easily be implemented in the experimental appara-

tus.

To measure these parameters the experimental framework must be able to record

the running time of each algorithm, and the yield before and after repair over many

failure bitmaps. As the yield model is a stochastic process it is necessary to repair

many failure bitmaps with each repair algorithm for each input yield point, and each

time record the time taken and the yield after repair.

After each execution of a repair algorithm the result are to be stored; after all

algorithms have been tested at all yields the results can be manipulated to generate

average values for the time taken and yield after repair.

Having noted which parameters it is important to change during the experiments

it is also necessary to note which parameters must be kept the same. To allow

comparisons between the use of each redundant algorithm at at every yield point

the device repaired must be kept constant. Keeping the device constant requires

that the size of the memory array, and the number of available redundant rows and

columns be kept constant.

The results of the execution of each algorithm over the range of yields will be pre-

sented on two graphs: one showing input yield verses yield after repair, and the

second graph the input yield verses the time taken to make the repairs. Each point

on the either curve will represent the average of many measurements made at that

yield.

 Verigy Confidential -- Verigy Confidential --

4.7. Experiments 48

4.7.1 Apparatus

A framework for the testing of repair algorithms requires a source of failure data

at many different device yields, and instrumentation for measuring the run time of

several algorithms and the yield after repair. The source of failure data can easily

be provided by the DRAM failure model developed in chapter 3, bitmaps of various

sizes and at various yields can be easily generated.

Both redundancy analysis algorithms and the instrumentation framework have been

implemented using the Matlab programming language as it allows for rapid algo-

rithm development, provides easy instrumentation for timing algorithms, and inte-

grates with the failure model developed previously.

As the yield model is a stochastic process, it is necessary to repeat the test of every

algorithm at every yield point many times to obtain accurate values for the output

yield and timing parameters.

4.7.2 Results

Three repair algorithms have been implemented: a most repair algorithm, a full

search NP complete solution and an NP complete solution using the algorithm de-

scribed by Kuo and Fuchs, including the must repair heuristic. The results of the

application of these algorithms to a large number of simulated failure maps are pre-

sented here. The graphs in figures 4.7 and 4.6 show the yield after repair, and the

time taken for repair, for failure bitmaps showing a range of yields (before repair).

All these experiments were conducted on sixty four cell square memory arrays with

two each redundant rows and columns. Though these examples seem small, this

keeps the running time of the full search algorithm manageable. For each point on

the yield curve, each redundancy analysis algorithm has been tested thousands of

times, and the mean of both the yield after repair and the time taken.

Analysis of the curve showing repair results (figure 4.6) shows, as expected, that

the NP complete full search always manages to repair the failed bitmap, and that

 Verigy Confidential -- Verigy Confidential --

4.7. Experiments 49

0 5 10 15 20

92

94

96

98

100

Input Yield(%)

Y
ie

ld
A

ft
er

R
ep

ai
r

(%
)

Full Search Must Repair and Branch and Bound Most Repair

Figure 4.6: Yield results for three redundancy analysis algorithms.

Algorithm
Yield After Repair (%) Repair Time (s) Perfect

Algorithm
Relative
RuntimeLow High Low High

Most Repair 94 99 0.05 0.1 No 1
Branch &
Bound

99 100 5 4 Yes 101

Full Search 100 100 500 100 Yes 104

Table 4.2: Repair algorithm comparison table, summarising the graphs of figures
4.6 and 4.7. Values for the yield after repair and the time taken for repair are given
for bitmaps with low yield (0-5%) and high yield (20-25%); as are indications of the
expected performance. The relative runtime column compares the relative orders of
magnitude of running time using the most repair algorithm as a baseline.

the most repair algorithm repairs a very high percentage of memory failure bitmaps

with a distinct upward trend as the input yield increases.

The second graph, figure 4.7, showing the time taken for repair makes very clear the

cost of a more complete repair solution: even the branch and bound algorithm is

several orders of magnitude slower than the greedy repair.

These two graphs allow the selection of the type of redundancy analysis algorithm

required given requirements for input yield, required output yield, and the time

available to solve the spare allocation problem.

The table 4.2 summarises the results shown in figures 4.6 and 4.7, allowing compari-

son between the different algorithms, and the selection of an appropriate algorithm

 Verigy Confidential -- Verigy Confidential --

4.8. Conclusions 50

0 5 10 15 20

10−1

100

101

102

103

Input Yield(%)

T
im

e
to

C
al

cu
la

te
R

ep
ai

r
(s

)

Full Search Must Repair and Branch and Bound Most Repair

Figure 4.7: Repair time for three redundancy analysis algorithms.

for a given problem. If, for example, you were required to choose an algorithm

for a high throughput, low yield manufacturing process then clearly a most repair

algorithm will be ideal.

4.8 Conclusions

This chapter has introduced algorithms capable of solving the spare allocation prob-

lem in DRAM. The problem has also been investigated, particularly the NP Com-

plete nature of perfect repair algorithms which guarantee to find the best possible

solution given a device and set of failures. These algorithms have been analysed,

and the results of the analysis confirmed by experimentation.

Redundancy algorithms for modern, complex, devices have been investigated, with

particular reference to the hierarchical architecture of these devices. This architec-

ture introduces new types of redundant elements which many existing redundancy

analysis algorithms cannot properly, or optimally, manipulate. Techniques to cor-

rectly repair such devices have been discussed.

This chapter has provided in table 4.2 and in the graphs of figures 4.6 and 4.7 a

novel means by which a user may choose between a number of algorithms commonly

 Verigy Confidential -- Verigy Confidential --

4.8. Conclusions 51

used in industry to repair DRAM devices. More complex, and more capable, repair

algorithms do exist but as they are not commonly used an industrial context they

have not been covered in this chapter.

Having understood the need for redundancy analysis, and having inspected possible

implementations of several algorithms, this knowledge can be used to develop a

model of DRAM specifying everything necessary to automatically generate such

algorithms and nothing not necessary.

 Verigy Confidential -- Verigy Confidential --

Chapter 5

A Redundancy Model for DRAM

5.1 Background

Before a detailed discussion and development of a model for the redundancy struc-

tures in a DRAM device it is useful to discuss the necessity for such modelling. The

arguments for modelling these redundancy structures are the same as may be made

for the modelling of any complex system. As in any model of a physical device it

would be possible to derive all the required information directly from the device

but the process required to do so may be complex, and there will much information

that is not required to solve the problem at hand; for example it is not necessary to

know the number of metal layers used in the DRAM die to calculate the memory

capacity of that device. A model suited to a particular problem allows the repre-

sentation of only the information of interest when solving the problem: the model

allows abstraction.

In the particular example of a model representing redundancy capabilities and struc-

tures in a DRAM device the model allows the abstraction of these capabilities away

from the physical implementation of the device. This abstraction allows the simpli-

fication of a very complex physical device to a simple model, an example is given in

figure 5.1.

In the first abstraction, from figure 5.1a to figure 5.1b, only those elements of the

52

 Verigy Confidential -- Verigy Confidential --

5.1. Background 53

(a) Example DRAM Device Layout

N

N

Identical stacked
memory arrays
with redundant

rows and columns.

Address
Logic

Row, column,
and bank
selection.

Address
Input

(b) Repair Structure Abstraction

M

R

R R R R

4N

N

(c) Repair Capabilities Abstraction

Figure 5.1: Model Abstraction in DRAM devices. The device shown in part (a)
has many identical memory banks arranged around logic controlling power, access
and, repair functions. In part (b) an abstraction of the same device is presented:
omitting all those elements not required for repair and leaving only a representation
of the input address connections, logic translating those addresses into references to
particular memory cells, and the memory banks containing those cells. The final
part, part (c), shows a further level of abstraction, representing only the memory
cells in the device, represented as one large array, and those which can be re-mapped
to provide repair.

 Verigy Confidential -- Verigy Confidential --

5.1. Background 54

design effecting the repair capabilities have been retained. The device is now con-

siderably simplified, but there is no direct representation of the repair capabilities

of the device. Extending the abstraction, from figure 5.1b to figure 5.1c, simpli-

fies the device further to a single large memory array with a number of redundant

columns and one redundant row, the exact process by which this simplification is

made depends on specific details of the device.

This extended abstraction allows a simple model of a complex device in a way

specific to a particular problem; a formal specification of this model would allow the

mathematical manipulation of the data and the development of algorithms acting

upon the model.

Though formal, mathematical models are often the most academically useful there

are two other common classes of model: those informal intuitive models used in

discussion, often graphical; and the configuration files or source code describing a

particular problem as part of the software written in the course of a project. In

the development of a model from any of these classes it is important to select only

those properties of the modelled system that are relevant to the problem the model

attempts to solve.

A type of graphical intuitive model is often used to discuss redundancy structures

in DRAM, but the model is ad-hoc and not formally specified; an example of this

model is shown in figure 5.1c. These informal models are ideal for the explanation,

in person or in writing, of redundancy structures, and can easily be extended to

include failure data for a specific device; there are many common examples of this

model in literature [KF86,TLC06,Bha99,LYK06,KON+00,HLYW07,HDS91].

Tools and programs manipulating DRAM repair problems require a representation of

the DRAM repair problem - a model of DRAM redundancy - but the model is rarely

treated formally. For example there may be a header file describing the redundancy

structures in a device that must be compiled and linked against the repair executable.

These models are never graphical, and are unlikely to be intuitive, but are designed

to be easily machine readable, while also being human read and writeable. Typical

formats include: customised XML schema; source code (including header files) con-

 Verigy Confidential -- Verigy Confidential --

5.2. Introduction 55

taining specific data structures; and text based description languages. Each of these

formats attempts to encode the ad-hoc model described previously, but does not

attempt to formally model the problem. There are no doubt many informal tools

in use all of which will require some representation of the DRAM repair problem;

two published examples are the Raisin [HLYW07] and CRESTA [KON+00] repair

analysis tools both of which employ simple machine readable representations of the

DRAM repair problem.

In this chapter a formal model representing the DRAM repair problem will be devel-

oped. This model will provide a formal mathematical representation of the problem,

and additions to the model will allow an intuitive graphical representation of the

problem.

5.2 Introduction

Creating mathematical models of complex systems brings many benefits: using a

model users can exchange representations of complex systems, each confident that

the other possesses an identical representation even if the tools used to create the

model were different. In fact even the creation of tools to manipulate a representa-

tion of a complex system is impossible without a formal model.

A particular example of the effects of a formal model on a complex system can

be seen in An Overview of Deterministic Functional RAM Chip Testing [vdGV90],

where a function model of DRAM is developed, reduced, and extended to represent

the faults that can occur within that model. From this fault model van de Goor

derives a set of test patterns to detect the sets of faults defined along with a model

and notation to represent these test patterns.

Without this fault model deriving the set of test patterns could only have been es-

timated with experience and empirical data; by constructing a formal model frame-

work it was possible to show that the test patterns derived must detect the fault

types specified.

 Verigy Confidential -- Verigy Confidential --

5.2. Introduction 56

In general the creation of models for complex problems allows the development of

formal methods to manipulate the model, and the modelling of only those sub-

problems of particular interest. Once a model has been developed it is possible to

create tools that manipulate the model, implementing the algorithms developed by

analysis of the model.

The most common model of a DRAM device is never formally defined; a de facto

model is commonly used in literature [KF86] and represents memory devices as

sketches made up of labelled rectangles. The possible uses of the redundant elements

of the device are often denoted by local conventions and labelling. As this model

has no formal basis, expressing the extent of the DRAM repair problem is difficult

and the production of tools using this model is almost impossible. This model is

commonly employed when describing a device to another person, but is not suitable

for describing the device to a machine.

Other, better defined, models of DRAM devices do exist, such as that used by

RAISIN [HLYW07]. This model represents complex devices with both local and

global redundant elements, and with many identical banks. The model cannot

represent a device made of different types of bank, nor can it represent the complex

exceptions encountered in realistic devices. These models are often not formally

described as a model, but are used in the configuration files of other tools.

In order that a model may be used to generate redundancy analysis algorithms rather

than solutions for a particular failed device the model must be expressed without

reference to a specific device, and without reference to specific failures. The model

developed by Yu et al [LYCK04] and subsequently extended [YTH+05] models the

constraints placed on the use of redundant elements and the defects in a device using

a boolean algebra, reducing the problem to an instance of the well known boolean

satisfiability problem [Coo71,GJ79], but does not attempt to represent the physical

structure of the device.

In this chapter a mathematical model of the structures of a DRAM device relating

to redundancy analysis will be developed. Functions operating on this mathematical

model to derive information of use in redundancy analysis will be introduced and

 Verigy Confidential -- Verigy Confidential --

5.3. Problem 57

an intuitive graphical representation of the model, capable of reducing complexity

using abstraction barriers will be shown.

5.3 Problem

A model of DRAM to be used for redundancy analysis need only represent those

aspects of the device relevant to redundancy analysis: there is no need to represent

(for example) the type of package containing the silicon die, or the power supply

requirements.

A functional model of a DRAM device might include the following components: an

incoming memory address bus, combinational logic and a number of fuses represent-

ing the repairs made, and an array of memory cells (some of which can be used for

repair); figure 5.2 illustrates this model.

Fusebox

Redundant Cells

Memory ArrayAddress Logic
Row and
Column
Select

Address
Input

Figure 5.2: Block diagram of a simple DRAM device. Blocks required for repair are
shown shaded.

These memory cells can be grouped according to their use: contiguous regions of

memory cells which cannot be used for repair are referred to as memory blocks.

Cells which can be used for repair are grouped into the largest contiguous set of

cells within which all cells are allocated together; each set is a redundant block.

 Verigy Confidential -- Verigy Confidential --

5.4. Mathematical Model 58

Both the fusebox and combinational logic place limitations on the use of redundant

blocks which are referred to as exceptions. Exceptions can be split into two types:

those which are independent of all other repairs, and those which have a dependency

on one or more other repairs. Typical exceptions include placement only at odd or

even rows, or shared ranges of placements whereby if one redundant element is

placed in a range of addresses then another must be placed in the same range of

addresses.

5.3.1 Model Concepts

From this functional model of DRAM it is possible to construct a mathematical

model: each bit of storage is referred to as a “Memory Cell”, these cells have

either passed or failed memory test. A “Memory Block” is a set of memory cells,

representing a memory array. A “Redundant Block” is a memory block with the

capability to repair cells in another (possibly many other) memory blocks.

It is not the case that any redundant block can repair any part of any memory

block; exceptions are imposed on the use of a redundant block by the design of the

DRAM, limiting which parts of which memory can be repaired by a redundant block.

Exceptions can also be placed upon the use of a redundant block by the use of other

redundant blocks. This model represents the static, or independent, exceptions

with the concept of a “Placement”: a rule defining which cells can be repaired by

a redundant block. A similar rule or “Constraint” defines the exceptions placed

upon one redundant block by another.

5.4 Mathematical Model

From these model concepts it is now possible to derive a new mathematical model

of redundant structures in a DRAM device, starting with memory and redundant

cells. Representing the size, shape, and location, of memories within a device is often

based on a Cartesian coordinate system, with units of memory cells in both axes.

 Verigy Confidential -- Verigy Confidential --

5.4. Mathematical Model 59

Using this simple system it is possible to represent memory blocks (and redundant

memory blocks) by two pairs of coordinates, the first representing the position of

the origin of that memory in the whole device, and the second the size of the device:

its height in rows and width in columns. Such a system restricts the shape of any

memory modelled to that of a rectangular form.

Developing a model based on the concepts mentioned in the previous section, and

applying a memory cell based Cartesian coordinate system it is possible to define

memory cells and therefore memory and redundant blocks with size and shape at a

given position within a memory device; table 5.1 lists these three model elements

and their parameters.

Concept Property Description

Memory Cell Test Result Pass or Fail

Memory Block
Size Coordinate, (Width, Height)
Position Coordinate, (Origin Row, Origin Column)

Redundant Block
Size Coordinate, (Width, Height)
Position Coordinate, (Origin Row, Origin Column)
Placement Coordinate, (Memory, Row, Column)

Table 5.1: Mathematical Model Elements

In addition to size, shape and location, redundant blocks have the additional param-

eter of placement which describes the location at which that redundant block has

been used (not the locations at which it could be used, see possible placements in

section 5.4.1). A placement is specified with two parameters: the memory block in

which the repair is made, and the coordinate in that memory at which the origin of

the redundant block is placed.

In figure 5.3 the redundant column R1 is being used to repair column two in the

eight cell square memory block M1. By convention, the origin of any rectangle is

taken to be the top left hand corner. The placement, R1Placement, a parameter of the

redundant block shows the memory in which the placement is made, M1, and the

coordinates at which the redundant block is placed (the position of a block is with

reference to it’s origin).

Accessing a memory cell in the second column of M1 after repair using R1 would

 Verigy Confidential -- Verigy Confidential --

5.4. Mathematical Model 60

0 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

R1Placement

M1 R1

(a) Layout Diagram

M1Size = (8, 8)

M1Position = (0, 0)

R1Size = (1, 8)

R1Position = (8, 0)

R1Placement = (M1, 2, 0)

(b) Model Parameters

Figure 5.3: Placement and Model Parameters

access the replacement memory cell in the redundant block. For example, the orig-

inal cell at (2, 4) in M1 will be replaced by the cell (0, 4) in the redundant block

R1; equation 5.1 expresses this relation. This mapping equation represents the

reconfiguration of the address logic by the use of the fusebox.

For a placement of R1 at (M1, x, y) :

(M1, x + m, y + n) = (R1,m, n) ∀m ≤ R1Widthandn ≤ R1Height

(5.1)

Representing devices with the simple style used in figure 5.3 quickly becomes cum-

bersome for large designs. The most obvious problem with these simple diagrams

is scale: when representing large memory blocks close to much smaller redundant

blocks. A further issue is the representation of placements, both possible placements

and specific placements; attempting to combine the placement information with an

already large and complex diagram only serves to make it more difficult to interpret.

When modelling the redundant structures of memory neither the size, nor the loca-

tion of memory blocks, is relevant but placement information is vital. A graphical

representation of this placement information makes for a simple, intuitive graphical

model.

 Verigy Confidential -- Verigy Confidential --

5.4. Mathematical Model 61

In this graphical model memory and redundancy blocks are represented by nodes.

Neither the size, nor location of a node has meaning, but nodes are labelled with

the name of the represented model block. The placement of a redundant block in

a memory block is represented by an edge between their respective nodes, an arrow

on the edge denotes the direction of placement. Annotations on the edge define the

coordinates at which the placement is made. Figure 5.4 shows the graphical model

representation of the device from figure 5.3.

M1R1
x = 2

Figure 5.4: Showing the use of the graphical model to represent a specific placement
of R1 at column two of M1.

5.4.1 Possible Placements

A placement shows the use of a redundant block to repair a memory block; a

“possible placement” shows the capacity of a redundant block to repair a memory

block. If for example a redundant row R1 can repair any row in memory block M1

then there is a possible placement of R1 in M1 at any row. Many other possible

placements of R1 exist only one specific placement can be made.

Expressing the possible placements of a redundant block can, as a result of exceptions

imposed by the device design, be more complex than “R1 can repair any row in M1”.

A frequently seen example is “shared” redundancy — where a redundant block can

be used in any one of many memory blocks: this is expressed by multiple possible

placements from the redundant block to all of the memory blocks.

The more subtle details of a possible placement e.g., that it may only be possible to

place R1 on even numbered rows in M1, are represented by an equation, drawn as

an annotation to the possible placement edge.

The simplest representation of this equation is a look-up-table, or a list, of all the co-

ordinates in the target memory where this redundant element may be placed. These

tables can become very large, and often represent very simple equations. A lookup

 Verigy Confidential -- Verigy Confidential --

5.4. Mathematical Model 62

Exception Equation Look-up-table

Placement on any row (0, 0), (0, 1), (0, 2), (0, 3), · · · , (0, N)
Placement on even rows only y % 2 (0, 0), (0, 2), · · · , (0, N)
MSB1 set for row address y < N

2
(0, 0), (0, 1), (0, 2), · · · (0, N)

Table 5.2: Representations of placements for a single spare row in a memory of N

rows.

table representing a redundant block that can be placed anywhere in a memory

block where the most significant bit of the row address is one could for a realistic

memory have many hundreds, even thousands, of entries. Expressing this condition

as y < N
2

where y is the row coordinate of a possible placement and N the height,

in cells, of the memory block represents the same set of possible placements but is

a much more compact and easier to manipulate notation.

Possible placements are independent of the placements of all other redundant blocks,

so the only variables that it is possible to use when constructing these conditions

are the coordinates of the placement and the dimensions of the target memory. The

operators available are equality (=), less-than (<), greater-than (>), logical and

(&), and modulus or remainder (%)1. Table 5.2 shows common examples of both

look-up-tables and condition or equation based placements.

The graphical notation for possible placement is identical to that of a specific place-

ment, but with the annotation replaced by the placement expression figure 5.5 shows

a possible example, with both a layout view and a graphical representation, table

5.3 shows further examples.

5.4.2 Constraints

Possible placements express the ways a redundant block can be used without regard

to the usage of any other redundant block. In real devices this set of possible

placements is constrained by the placements of other redundant blocks; this concept

is represented by the “constraint” element.

1x % y = True if and only if x divides into y with no remainder.
2Most Significant Bit

 Verigy Confidential -- Verigy Confidential --

5.4. Mathematical Model 63

0

1

2

3

4

5

6

7

y % 2

R1

M1

(a) Logical Diagram

M1R1
y % 2

(b) Graphical Model

Figure 5.5: Logical and graphical views of the possible placement of R1 on any even
numbered row in M1.

Exception Expression Graphical Representation

Row Placement
M1R1

Limited Range of Row Placement y < N
2

M1R1
y < N

2

Even row placement only y % 2
M1R1

y % 2

Table 5.3: Common placement examples

A constraint is made between two redundant elements and can be modelled as a

function of those two redundant elements. This constraint function represents a

set of inequalities, all of which must be true for placement to be possible. When

evaluating the constraint function both redundant elements should have specific

placements, the constraint function will evaluate as true if this pair of placements

is possible.

Constraint functions may express many inequalities, these inequalities must all be

satisfied for a given pair of placements to be valid, as a result constraint functions

are expressed as the product of a set of boolean-valued functions3.

Like a placement, a constraint is represented by an edge between nodes. Unlike a

placement (or a possible placement) a constraint has no direction and as a result

3A boolean valued function takes parameters from within an arbitrary set and maps them into
a boolean domain, that is: f : X → B where X is an arbitrary set and B a boolean domain.

 Verigy Confidential -- Verigy Confidential --

5.4. Mathematical Model 64

the graphical notation omits the arrow drawn on a placement. As an additional

indicator, the edge may be dashed, or may be marked with a bar (a short line

perpendicular to the edge, and placed in the centre). The variables available to the

constraint expression include the placement (if any) of both redundant elements,

including the memory that each redundant element is placed in.

Figure 5.6 shows two spare rows R1 and R2, with possible placements into two

memories M1 and M2 respectively. R1 and R2 are constrained such that the x

coordinate of their placement must be equal. This situation is often called a global

spare row, or a tied row. Figures 5.7 and 5.8 show two more complex examples.

M1

R1 R2

M2

R1x = R2x

Figure 5.6: Redundant Rows R1 and R2 constrained to represent a tied redundant
row.

M1

R1 R2

M2

R1M = R2M

Figure 5.7: Redundant blocks R1 and R2 have possible placements into memory
blocks M1 and M2, however both must be placed into the same memory.

M1

R1 R2

((

R1y < N
2

) (

R2y < N
2

))

+
((

R1y ≥ N
2

) (

R2y ≥ N
2

))

Figure 5.8: Redundant blocks R1 and R2 can both repair M1, but the use of either
constrains the use of the other to the same half of M1 (this constraint is commonly
caused by sharing the most significant fusebox bit).

 Verigy Confidential -- Verigy Confidential --

5.4. Mathematical Model 65

5.4.3 Interaction Between Placements and Constraints

The method by which the use of a redundant block is first defined broadly and then

successively restricted, initially by possible placements and further by constraints,

can be extended to consider only those constrained placements which repair faulty

cells in a memory block. This set of placements would usually be generated by a

repair algorithm with which would go on to select a final placement. The Venn

diagram of figure 5.9 breaks up these sets of placements into five categories (for a

particular redundant block), namely:

Universe of Placements For a specific device the universe of placements is all

the placements within that device.

Set of all Possible Placements Not all the placements in the universe are possi-

ble for a given redundant block. The set of possible placements is a sub-set

of the universe defined by the possible placements of the redundant block.

Calculating this set requires only the device design information.

Set of Constrained Placements The possible placements of a redundant block

are limited by its constraints with other redundant blocks. The set of con-

strained placements a sub-set of possible placements, defined by the place-

ments of other redundant elements within the device.

Set of Repairs Only a small number of placements within the set of constrained

placements will be able to repair faults in a particular failed memory block;

however, these are the only placements worth making! Calculating these re-

quires failure data from a device, whereas all the super-sets can be calculated

using only the device design.

Selected Placement There may be many placements in the set of repairs, but only

one can be satisfied. A repair algorithm must select one of these placements.

An alternative view of the types of placement is presented in figure 5.10; by exam-

ining a section of a simple device the reduction in the placements available is very

apparent.

 Verigy Confidential -- Verigy Confidential --

5.5. Functions of Model Elements 66

Universe of Placements

Set of Possible Placements

Set of Constrained Placements
Set of Repairs

Set of Selected Placements

Specific Placement

Figure 5.9: Venn diagram showing the restrictions imposed upon the placement
of a redundant element, concluding with a selected placement which is both possi-
ble (given the specific placements of all other redundant blocks) and repairs faulty
memory cells.

5.5 Functions of Model Elements

Having defined a set of mathematical model elements it is now possible to define a

set of functions to manipulate the model. These functions can calculate the interac-

tions between model elements. Particularly useful are those which can be used to

indicate which model elements have no interactions as they can be used to reduce

the complexity of a repair algorithm.

5.5.1 Coverage

The coverage of a redundant block, written Cov (R), is the set of cells covered by

the redundant block R placed at it’s specific placement RPlacement.

The total coverage of a redundant block, CovT (R), is the set of cells covered by the

redundant block R for all possible placements. This is the set of cells which could

be repaired by the redundant block. Total coverage can be defined as the union of

all specific coverages of the redundant block R for all possible placements:

CovT (R) =

RPlacement
⋃

Possible Placements

Cov (R) (5.2)

 Verigy Confidential -- Verigy Confidential --

5.5. Functions of Model Elements 67

Figure 5.11 illustrates coverage concepts for a simple example.

A possible placement defines a set of cells in a memory repaired by a redundant

element. As a result it is possible to define total coverage for a possible placement

P, with a source redundant element R:

CovT (P) =

RPlacement
⋃

P

Cov (R) (5.3)

5.5.2 Equality

DRAM devices are often composed of many very similar parts repeated many times

and, as a result, many of the model elements will be identical (in size and, for

redundant blocks, have the same sets of possible placements). Identifying these

replicated elements requires some method of testing if two blocks are equal.

Two memory blocks are equal if, and only if, they have the same width and height.

The location of the two blocks is not compared – two blocks with the same size and

location would overlap and indicate a modelling error (of which more in section 5.6);

equation 5.4 expresses this condition.

M1 = M2 ⇔







M1width = M2width

M1height = M2height

(5.4)

A device may have many (often hundreds or even thousands) of redundant rows, all

of the same size, and all with placements into many identical memory blocks. Two

redundant elements which are equal should be able to be used interchangeably; but

redundant blocks able to be used interchangeably must be not only of the same size,

but must also be able to repair all of the same memory cells.

Not only must two identical redundant elements be able to repair all of the same cells,

they must also be able to repair all the same sets of cells; that is for each specific

coverage of one redundant element there must be an identical specific coverage for

the other.

 Verigy Confidential -- Verigy Confidential --

5.5. Functions of Model Elements 68

The total coverage of a redundant block expresses the set of cells which can be

repaired, but a redundant row and a redundant column with placements in the

same memory block often have identical total coverages; however two redundant

elements with the same size and the same total coverage must have matching sets of

specific coverages; equation 5.5 shows the conditions for equality of two redundant

rows.

R1 = R2 ⇔



















R1width = R2width

R1height = R2height

CovT (R1) = CovT (R2)

(5.5)

5.5.3 Compatibility

Calculating which redundant elements can repair a set of defective memory cells

requires a search through all redundant elements, selecting those with possible place-

ments at the locations required. Such a search can be a significant bottle neck in

repair algorithms. Computing, before repair takes place, a table of those sets of

redundant elements which can repair some of the same cells, and visa-versa those

which can repair non of the same cells, can simplify this search.

A redundant element is said to be “compatible” with another if they can repair

some of the same memory cells. Compatibility is defined in terms of the total

coverage of the redundant elements: for two redundant elements R1 and R2 the

compatibility region, Comp(R1, R2) is the intersection of their total coverages:

Comp(R1, R2) = CovT (R1) ∩ CovT (R2) (5.6)

Should two redundant blocks have an empty compatibility region then they are said

to be orthogonal, otherwise they are compatible. Figure 5.12 shows simple examples

of compatible and orthogonal redundant elements.

Compatibility is associative, that is the intersection of the compatibility region of

R1 and R2 with the total coverage of R3 is the same as the intersection of the com-

 Verigy Confidential -- Verigy Confidential --

5.6. Modelling Rules and Syntax 69

patibility region of R2 and R3 with the total coverage of R1. The venn diagram of

figure 5.13 illustrates how the intersections of the total coverage of three redundant

elements R1, R2 and R3 define their compatibility regions, and that the compati-

bility region Comp (R1, R2, R3) is simply the intersection of all total coverages, but

also the intersection of the three two argument compatibility functions.

5.6 Modelling Rules and Syntax

5.6.1 Rules

When using the graphical model to represent a device there are a small number of

rules which, if followed, ensure the model developed will be an accurate representa-

tion of the device. These rules are:

Representation: Every bit of storage in the device must be represented by a mem-

ory cell, and each memory cell must form part of a memory or redundant block.

Figure 5.14 shows a case where a memory cell has been missed during model

generation.

Replication: Each bit of storage must be represented by only one memory cell.

The figure 5.15 illustrates an obvious mistake, replicating a redundant element

which can be placed in either of two memory blocks.

Allocation: All memory cells belonging to a redundant block must be allocated

together, and all cells allocated together must form one redundant block. The

memory device in figure 5.16 shows a single memory block and a single redun-

dant column; however in 5.16a this column has been incorrectly represented

as two smaller elements which must be allocated together.

These modelling rules impose a strong relationship between the blocks as shown on

a conventional layout diagram of a device, and that device’s graphical model. As a

result, for any given graphical model it is possible to overlay that graphical model

on the layout diagram. That is by placing graphical model nodes over each block

 Verigy Confidential -- Verigy Confidential --

5.7. Abstraction in the Graphical Model 70

on the layout diagram, and connecting those nodes with possible placements and

constraints it is possible to create an accurate set of model elements. Figure 5.17

shows an example device with the graphical model drawn over the layout.

5.6.2 Syntax and Semantic Checking

Despite the modelling rules, the graphical modelling language allows the construc-

tion of impossible devices. For example a device where one memory block is used

to repair another. Though this ambiguity makes the model easier to use, any au-

tomated use of a model must include both syntax checking (to show that model

elements have been used correctly) and semantic checking to show that the model

is possible.

Typically, syntax errors are the result of clerical inaccuracies, perhaps a memory

block with a width of zero or a constraint connecting to a memory. Semantic errors

are errors in the meaning of the model for example a placement from a memory

block. Further examples of semantic errors include overlapping blocks or possible

placement equation forcing placement outside the target memory block.

5.7 Abstraction in the Graphical Model

Modern DRAM devices are large and complex and so, therefore, are detailed models

of those devices. If it is possible reduce the apparent complexity of the model whilst

loosing none of the detail then the usability of the model can be improved.

Abstraction is a common concept in electrical circuit design, in computer program-

ming, and in data management. Abstraction serves to hide information which is not

relevant to the task currently undertaken reducing the complexity of that task. A

common example of abstraction are function definitions in procedural programming

languages; where a small procedure is hidden behind the function name. A program-

mer may use that function without knowing the implementation details behind it.

The function also allows reuse of that procedure, without duplication: abstraction

 Verigy Confidential -- Verigy Confidential --

5.7. Abstraction in the Graphical Model 71

allows the reuse of components at very low cost. Abstraction is often hierarchical

in that a function may itself call other functions.

The typical DRAM device consists of many similar “banks”. Each bank is a collec-

tion of memory and redundant elements with few, or no, placements or constraints

outside that bank. These banks are often made up from several similar sets of blocks:

a memory block with redundant rows and columns for example. This hierarchical,

repetitive structure lends itself to abstraction.

A new model element, the “Abstract Model”, which can hide a single sub-graph

within one node allows such an abstraction. This node need not be represented in the

mathematical model, only in the graphical. An abstract model which can represent

only a sub-graph can have one connection (possible placement or constraint) with

the rest of the model; this limits the use of abstract models in many seemingly

obvious situations. Extending the definition of the abstract model to represent a

collection of nodes and edges, not necessarily a sub-graph, allows for a much more

practical model element. Obviously any tool implementing such a model must take

care that connections to and from the model elements within the abstract model are

handled correctly.

The figure 5.18 shows the use of abstract models (represented by nodes with a double

edged circle) to simplify the example from a previous section (figure 5.17). In this

example it is not necessary to allow for more than one edge to connect with an

abstract model. For more complex devices it is often the case that two abstract

models will have many edges between them which becomes difficult to represent

clearly within the graphical model. A notation similar to that used for buses in

electrical circuit diagrams is employed for this situation: the edges between two

abstract models are represented by one thicker line and the decorations on this edge

are a combination of those allowed for possible placements and constraints.

 Verigy Confidential -- Verigy Confidential --

5.8. Conclusions 72

5.7.1 Atomic Abstract Models

If a memory block can be repaired by many equal redundant elements (equality

is defined for redundant elements in section 5.5.2 as being not only of equal size,

but also having equal total coverages), such as a set of many identical redundant

rows then representing all these elements in the graphical model would become

cumbersome, especially as there may be hundreds of rows.

An extension to the model allows the representation of such an arrangement by

a single node, drawn as a redundant element, and labelled with the number of

elements represented. An edge between this element and itself represents a fully

interconnected mesh of edges (be they constraints or placements) between all the

contained elements — figure 5.19 illustrates the use of such an element.

This new element is a type of “atomic abstract model”, which like an abstract

model, represents a sub-graph but allows a tool implementing the model to prevent

the expansion of that node.

5.8 Conclusions

This chapter has developed a novel formal mathematical model of the DRAM re-

pair problem, representing all memory cells and grouping them into memory blocks

and redundancy blocks. The possible repairs made by these redundant blocks are

represented with the novel concept of a placement, the placements are limited by

expressions describing which sets of memory cells may be repaired. A further novel

model element is the constraint which imposes limits upon the use of one set of re-

dundant cells according to the placement of one or more other redundant elements.

From this mathematical model a number of novel concepts have been developed, cov-

erage, describing the cells repaired by a redundant element; compatibility, showing

interactions between sets of redundant elements; and equality allowing the compar-

ison of model elements.

Further developments of the mathematical model include a novel intuitive graphical

 Verigy Confidential -- Verigy Confidential --

5.8. Conclusions 73

model. This novel graphical model must allow ambiguity, but the underlying math-

ematical model from which it has been developed is unambiguous. To allow the user

to create graphical models that are correct a number of syntax rules are provided ,

which if adhered to guarantee that a graphical model will be unambiguous.

Using the graphical model to represent large realistic devices requires a method

of controlling complexity; the novel abstract model node developed provides an

abstraction barrier by containing a model sub-graph within a single node.

The development of this novel mathematical and graphical model has been necessary

to allow the construction of a tool which, given a description of a DRAM device (the

mathematical model) can generate or customise source code to repair that device.

The existing ad-hoc graphical and informal text models are not adequate to fully

describe the complexity of the DRAM repair problem and provide an intuitive inter-

face to the model and a machine readable representation, but the model developed

in this chapter satisfies both requirements.

The following chapters will develop code generation techniques for redundancy anal-

ysis algorithms based upon this model, and a tool implementing both the model and

code generation techniques.

 Verigy Confidential -- Verigy Confidential --

5.8. Conclusions 74

M1 M2R2

R1

(a) Device Layout: two memories, one spare row,
R1, and one spare column R2, both repair cells
in M2. M2 has three failed cells.

M1 M2R2

R1

(b) Universe of placements for R2

M1 M2R2

R1

(c) Possible placements of R2

M1 M2R2

R1

(d) Constrained placements of R2 (constraining
redundant blocks not shown).

M1 M2R2

R1

(e) Placements of R2 which cover failed cells in
M2.

M1 M2R2

R1

(f) Optimum placement of R2, given the place-
ment of R1

Figure 5.10: Visualising the sets of placements for a small part of a simple device.
Redundant row R1 and redundant column R2 both have possible placements in M2.
M2 has three faults, denoted by crosses. For each set of placements the affected cells
in M2 are shaded.

 Verigy Confidential -- Verigy Confidential --

5.8. Conclusions 75

R M

x = 4 Cov (R)

(a) Specific coverage of redundant
block R, at placement x = 4, in
memory block M

R M

CovT (R)

(b) Total coverage of redundant
block R in memory Block M

Figure 5.11: Total and Specific Coverage of redundant block R in memory block M.

R1 M R2

CovT (R1)

CovT (R2)

(a) Orthogonal Redundant Elements

R1 M

R2

CovT (R1)

CovT (R1)

Comp(R1, R2)

(b) Compatible Redundant Elements

Figure 5.12: Compatible and orthogonal redundant blocks.

CovT (R1)

CovT (R2) CovT (R3)

Comp (R1, R2, R3)

Figure 5.13: The intersection of the total coverages of redundant elements defines
their compatibility region;

 Verigy Confidential -- Verigy Confidential --

5.8. Conclusions 76

R1 M1

0

1

2

3

4

5

6

7

0 1 3 4 5 6 7 8 9

Figure 5.14: Modelling Rule Representation: the shaded memory cell at (0,7) has
been omitted from block R1 and from the model.

R1

M2

M1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 3 4 5 6 7 8

(a)

M1R1

R1 M2

(b)

M1

R1

M2

(c)

Figure 5.15: Modelling Rule Replication: the redundant block R1 can be placed in
either M1 or M2. In part 5.15b this block has been incorrectly represented twice;
the model of part 5.15c shows the correct representation.

R2

R1

M1

0

1

2

3

4

5

6

7

0 1 3 4 5 6 7 8 9

(a)

R1 M1

0

1

2

3

4

5

6

7

0 1 3 4 5 6 7 8 9

(b)

Figure 5.16: Modelling Rule Allocation: memory M1 has a single redundant column
at x = 0. Figure 5.16a incorrectly represents this as two redundant elements which
must be allocated together. The correct representation as one redundant element is
shown in 5.16b.

 Verigy Confidential -- Verigy Confidential --

5.8. Conclusions 77

M1 M2 M3R1 R2 R3

R4 R5 R6

R7

Figure 5.17: Overlay of graphical model elements on a simple layout diagram.

R7

A1 A2 A3

Figure 5.18: Simplification of the model from figure 5.17 using abstract models.
Each of the three banks (e.g. M1, R1, R4) has been replaced by an abstract model
node.

 Verigy Confidential -- Verigy Confidential --

5.8. Conclusions 78

M1

R1 — R4

(a) Layout Diagram

R4

M1

R1 R2 R3

(b) Conventional Graphical Model

M1 R1
4

(c) Graphical Model with
Atomic Abstract Model
Nodes

Figure 5.19: Use of an atomic abstract model to represent replicated redundant
rows.

 Verigy Confidential -- Verigy Confidential --

Chapter 6

Textual Model Language

6.1 Introduction

For any model to become useful in an industrial environment users must be able to

create models, to save and restore models, exchange them amongst each other, and

between different sets of tools.

A rigorous and complete model description which can be read and written by both

man and machine gives all the above advantages to the user, also allowing tools to

manipulate stored models, and to automatically exchange models.

Many description languages for generic graphs already exist, particularly the GraphViz

language developed by AT&T [GN99] and DAG [GNV88]. These languages were

not designed to represent graph based models, but to provide a method of drawing

graphs, thus the nodes and edges do not carry additional parameters (though they

do accept formatting parameters). Both GraphViz and DAG are plain text based

languages, and therefore difficult to extend. The GraphML language [EHHM02] is

an XML graph format designed with a mechanism that allows the user to define

extension modules for additional data.

Graph based models have been applied to other engineering problems, for exam-

ple Hoheisel’s grid computing tool [Hoh06a], develops an XML based language

79

 Verigy Confidential -- Verigy Confidential --

6.2. Language Requirements 80

“GJobGL” for describing grid computing jobs as petri nets [Mur89].

Alternative text representations of the redundancy structures in DRAM devices are

often developed without a formal model (as discussed in the previous chapter, with

the particular examples of RAISIN and CRESTA [HLYW07,KON+00] which require

a description of a device as input data). Without a formal basis these models cannot

be used for information interchange, and cannot represent the full complexity of the

DRAM repair problem in modern devices.

6.2 Language Requirements

Both nodes and edges, or Memory and Redundancy blocks and Placement and

Constraints, must be represented in the text model, as must all the properties defined

in the mathematical model. GraphViz and DAG do not provide a simple mechanism

for extending the language; however, the XML based GraphML explicitly allows for

application specific extensions. One of the stated uses for the text model is to allow

users to manually edit memory descriptions, XML formats are manually editable

but can be difficult to manage. Ideally, any syntax should look familiar to most

users, easing adoption of the new language.

A “C like” format, consisting of named block definitions, similar to structures, with

blocks defined by pairs of braces and statements separated by semi-colons should be

familiar to most users of the model, and remains easily machine readable.

The ambiguity of the text language requires that a tool allowing user input some form

of syntax and semantic checking (see section 5.6 for detailed syntax and semantic

rules).

6.3 Grammar

The grammar used to describe models of DRAM devices in a text form is shown in

figure 6.1 in an Extended Backus–Naur Form [14996]. Model elements are described

 Verigy Confidential -- Verigy Confidential --

6.3. Grammar 81

using named blocks of code containing parameters describing that model element.

The blocks are declared as a keyword describing the type of block, the name of the

block and a set of property definitions, separated by semicolons, within braces.

<AlNum> ::= ?a-zA-Z0-9<>%+-=*_?;

<Symb> ::= ?$()_\{}?;

<Name> ::= {AlNum};

<Value> ::= {<AlNum> | <Symb>};

<ws> ::= {(" " | " ")};

<Operator> ::= "==" | ">" | "<" | "%";

<Type> ::= "Constraint" | "Placement" | "Redundancy" | "Memory";

<ExpressionPart> ::= ["("]. <Value>, [<ws>], <Operator>, [<ws>], <Value>, [")"];

<Expression> ::= <ExpressionPart>, {[<ws>, ["+"], ["ws"], <ExpressionPart>};

<String> ::= "\"", [<ws>], {<Name> | <Value>, [<ws>]}, "\"";

<Variable> ::= [<ws>], <Name> | <Value> | <String> | <Expression>;

<Definition> ::= <ws>, <Name>, <ws>, ":", <ws>, <Variable>, <ws>, ";";

<Object> ::= <Type>, <ws>, <Name>, <ws>, "{", <ws>,

<ws>, {<Definition>, [<ws>]}, <ws>,

"}", <ws>, ";", <ws>;

<file> ::= [<ws>], {<Object>, <ws>};

Figure 6.1: EBNF grammar describing the text model language.

The types of block definition, and their properties are listed below:

Memory Description of one memory block. Memory blocks have the following

properties:

origin row, origin col The origin of the memory block, by convention the

top left. Coordinates are expressed in memory cells from the origin of

the device, also by convention the top left.

width The width of the memory block, in cells.

height The height of the memory block, in cells.

Redundancy Description of one or more redundant blocks. Redundant blocks

have all the properties of memory blocks, and additionally:

count The number of identical (see section 5.5.2) redundant elements repre-

sented by this block. Count assumes that the elements are arranged to

 Verigy Confidential -- Verigy Confidential --

6.4. Expression Syntax 82

be adjacent on their longest axes (i.e. a set of rows will be “stacked”

vertically).

placement The placement of this redundant element. No placement other

than “none” or “0” is possible for a redundant element block with a

count of more than one. (Note the distinction between placement and

possible placement - see section 5.4.1.)

Placement A placement block represents a possible placement 5.4.1 between one

redundant block and one memory block.

source The redundant block that has this as a possible placement.

target The memory block that the source redundant block could be placed

in.

expression An expression limiting the possible placement of the source redun-

dant block in the target memory block. Expression syntax is described

in section 6.4.

Constraint A constraint block represents a constraint (see section 5.4.2) between

two redundant blocks. Like a placement block it has a defined source and

target (though the constraint is bi-directional) and an expression. The set of

parameters available in a constraint expression is larger than that available to

a placement block, and is described in 6.4.

6.4 Expression Syntax

The symbols available to construct the expressions used to define limitations on

possible placements and constraints are detailed in the grammar of figure 6.1. Tables

6.1 and 6.2 define the meaning of the variables and operators which can be used to

construct expressions.

The expressions used in possible placements are a set of boolean valued functions

all of which must evaluate to true (for a given set of coordinates) if the placement is

 Verigy Confidential -- Verigy Confidential --

6.4. Expression Syntax 83

Availability
Variable Description Placements Constraints

RSx, RSy The x, y potential placement coordi-
nates of the source redundant element.

◦ •

RTx, RTy The x, y potential placement coordi-
nates of the target redundant element.

◦ •

x, y The x, y coordinates of a potential
placement.

• ◦

Mx, My The x, y dimensions of the target mem-
ory.

• •

In addition, constraint expressions may refer to the potential placement coordinates
of any named redundant element, and the dimensions of any named memory element.

Table 6.1: Listing the variables available in possible placement and constraint ex-
pressions.

Availability
Operator Description Placements Constraints

> Greater than operator. • •
< Less than operator. • •
% Remainder operator. • •
== Equality operation. • •
+, ., ⊕ Boolean operators for or, and, and ex-

clusive or.
◦ •

(. . .) Grouping for boolean expressions. ◦ •

Table 6.2: Listing the operators available for placement and constraint expressions.

allowed. Placement expressions may reference the dimensions of the target memory,

and the coordinates of the placement under consideration.

The expressions used in constraints are also sets of boolean valued functions which

must evaluate to true for possible placements of both the source and target re-

dundant elements. Constraint expressions are usually more complex than those of

possible placements and have access to the possible placement of any redundant ele-

ment and the dimensions of any memory. Additionally, constraint expressions have

extra operators allowing the construction groups of boolean valued functions.

The modelling framework developed allows placement and constraint expressions to

be written as lookup tables in addition to boolean functions however the text model

currently does not allow the expression of such tables.

 Verigy Confidential -- Verigy Confidential --

6.5. Example Text Model 84

6.5 Example Text Model

The simple DRAM device in figure 6.2a has a single memory block which can be

repaired by four redundant rows R1; each of which have possible placements any-

where in the memory block M1. These rows are constrained such that if any row

is placed on an even row address all rows must be placed on an even row address.

Figure 6.2 shows the text description of this device.

As all redundant blocks are identical, both the graphical and text models can be

reduced to those shown in figure 6.4 using the count property of the redundant

element (the rule of equality for redundant elements is described in section 5.5.2).

6.6 Conclusions

This chapter has developed and described a novel text description representing all

the properties of elements of the novel mathematical model of DRAM. The model

developed is both easily machine readable and user friendly. The syntax of this

model has been definitively described, both for uses of the model, and for the de-

velopment of new model parsers. Tools developed in later chapters are capable of

importing and exporting designs using this format.

 Verigy Confidential -- Verigy Confidential --

6.6. Conclusions 85

R4
R3
R2
R1

M1

(0,0) (256,0)

(256,320)

(256,324)

(a) Layout Model

R4

M1

R1 R2 R3

(RSy % 2)(RTy % 2)

(b) Graphical Model

Figure 6.2: Layout and graphical models of the example device.

Memory M1 {

origin_row: 0;

origin_col: 0;

width: 256;

height: 320;

};

Redundancy R1 {

origin_row: 320;

origin_col: 0;

width: 256;

height: 1;

placement: 0;

count: 1;

};

Redundancy R2 {

origin_row: 321;

origin_col: 0;

width: 256;

height: 1;

placement: 0;

count: 1;

};

Redundancy R3 {

origin_row: 322;

origin_col: 0;

width: 256;

height: 1;

placement: 0;

count: 1;

};

Redundancy R4 {

origin_row: 323;

origin_col: 0;

width: 256;

height: 1;

placement: 0;

count: 1;

};

Placement P1 {

source: R1;

target: M1;

expression: "";

};

Placement P2 {

source: R2;

target: M1;

expression: "";

};

Placement P3 {

source: R3;

target: M1;

expression: "";

};

Placement P4 {

source: R4;

target: M1;

expression: "";

};

Constraint C1 {

source: R1;

target: R2;

expression: "(RS_y % 2)(RT_y % 2)"

};

Constraint C2 {

source: R1;

target: R3;

expression: "(RS_y % 2)(RT_y % 2)"

};

Constraint C3 {

source: R1;

target: R4;

expression: "(RS_y % 2)(RT_y % 2)"

};

Constraint C4 {

source: R2;

target: R3;

expression: "(RS_y % 2)(RT_y % 2)"

};

Constraint C5 {

source: R2;

target: R4;

expression: "(RS_y % 2)(RT_y % 2)"

};

Constraint C6 {

source: R3;

target: R4;

expression: "(RS_y % 2)(RT_y % 2)"

};

Figure 6.3: Full text model of the example device in figure 6.2.

 Verigy Confidential -- Verigy Confidential --

6.6. Conclusions 86

Memory M1 {

origin_row: 0;

origin_col: 0;

width: 256;

height: 320;

};

Redundancy R1 {

origin_row: 320;

origin_col: 0;

width: 256;

height: 1;

placement: 0;

count: 4;

};

Redundancy R2 {

origin_row: 321;

origin_col: 0;

width: 256;

height: 1;

placement: 0;

count: 1;

};

Redundancy R3 {

origin_row: 322;

origin_col: 0;

width: 256;

height: 1;

placement: 0;

count: 1;

};

Redundancy R4 {

origin_row: 323;

origin_col: 0;

width: 256;

height: 1;

placement: 0;

count: 1;

};

Placement P1 {

source: R1;

target: M1;

expression: "";

};

Constraint C1 {

source: R1;

target: R1;

expression: "(RS_y % 2)(RT_y % 2)"

};

(a) Minimal Text Model

M1 R
4

(RSy % 2)(RTy % 2)

(b) Minimal Graphical Model

Figure 6.4: Minimal text and graphical models of the example device in figure 6.3.

 Verigy Confidential -- Verigy Confidential --

Chapter 7

Automatic Code Generation

7.1 Introduction

The automatic creation of source code to solve complex problems has long been

recognised as a method to reduce that complexity; it has been used to schedule op-

erations between a number of cooperating rovers [REC99], and Selic [Sel03] compares

the introduction of good code generation to the move from a low level programming

language to one of a much higher level.

The automatic generation of source code describing algorithms to repair modern

DRAM devices removes from the engineer not only the arduous task of customising

each redundancy analysis algorithm for each new device but a more sophisticated

code generation system would be able to optimise the generated code for increased

throughput, for increased yield, or for other parameters of interest.

A simple use of an automatic code generation tool would be the generation of a

description of the device in a form suitable for use by other tools. This use of

code generation is a simple translation from one model representation, the graphical

model described by the user, to another, that required by the external tool. The

introduction of a tool to which the user must first describe the device before that tool

again describes the device in another format may seem unnecessary but there may

be a difference in complexity between the two descriptions, and a number of output

87

 Verigy Confidential -- Verigy Confidential --

7.1. Introduction 88

descriptions may be required. This situation may be compared to a simple compiler,

translating an algorithm description from a high level language to a number of

possible lower level machine languages customised for a particular architecture.

Most compilers accept one or more input descriptions (programming languages)

and can generate output in many targeted machine languages. Rather then create

translators between each for each of the input and output language pairs the compiler

makes use of an internal representation of the problem, and provides translators

from each input language into the internal representation and from the internal

representation to each of the output language [GS04].

As all processed algorithm descriptions must be expressed in the same internal rep-

resentation, an optimisation algorithm [Nov04] operating upon the internal repre-

sentation can be used regardless of the input language or the target platform.

In the same way an internal language representing operations used in redundancy

analysis algorithms would allow the tool to, given a model description and a descrip-

tion of the algorithm, generate customised redundancy analysis code for any one of

a number of repair machines.

A common method by which the compiler translates its internal representation of an

algorithm to targeted machine code identifies common patterns (if statements, for

loops, etc) in the internal representation which are then represented in the output

code using code snippets in the target language taken from a library (for example,

a for loop snippet might contain addition, comparison, and branch instructions in

addition to the loop body). Repeated application of this technique can be used to

translate the whole program from the internal representation to code in the target

language.

This template based technique is often used in higher level code generation, for

example the “boiler plate” generated by many integrated development environments

(IDEs). In software engineering “design patterns” formalise commonly used code

snippets, making design patterns ideal candidates for automatic code generation by

application of templates. The design pattern becomes the template, and the manual

 Verigy Confidential -- Verigy Confidential --

7.1. Introduction 89

customisations usually required can be performed automatically [DMS03,BFVY96].

The same techniques used by compilers and IDEs to generate code can be adapted

to generate code solving the DRAM redundancy analysis problem. A specialised

internal representation consisting of low level operations used during repair, or a set

of templates describing higher level repair operations would allow the tool to generate

code describing complete repair algorithms customised for particular devices.

As the automatic code generator must process the device description there is an

opportunity to make optimisations to the device model as well as to the code gener-

ated. To illustrate the possible optimisations consider the very simple device shown

in figure 7.1a: there are four memory cells in a two by two cell array and two re-

dundant elements, one row and one column, and two of the memory cells are faulty.

Each node in the tree of figure 7.1b represents a possible set of repairs to this device

(clearly for large devices the tree has many more levels and each node many more

children).

R1

R2

M

(a) Layout Model

Placement of R1

Placement of R2

R

0

0 1

1

0 1

(b) Repair Decision Tree

Figure 7.1: Repair decision tree: the small device described in part ((a)) has a two
by two memory array with one redundant row and one redundant column. There
are two failures in the memory array marked with crosses (). Part ((b)) shows the
repair decision tree for this device. The highlighted path through the tree represents
the only possible solution repairing the device.

A redundancy analysis algorithm must navigate this tree and evaluate each node,

or solution, before selecting the optimum. The criteria defining the optimum solu-

tion may be varied according to the preferences of the user to, for example, select

solutions using the fewest redundant elements. As repair algorithms must navigate

the tree to select this optimum solution if the number of nodes and branches can

be reduced then the complexity of the search, and therefore the running time of the

 Verigy Confidential -- Verigy Confidential --

7.2. Background 90

algorithm can be reduced.

This chapter will investigate methods for automatic code generation and their appli-

cation to the generation and customisation of redundancy analysis algorithms. The

chapter will also investigate the optimisation strategies that become possible with

an accurate and flexible model of DRAM redundancy structures.

7.2 Background

Repair algorithms used commercially must be customised for each and every new

DRAM device. Usually this task is accomplished manually, despite its high complex-

ity. Without a formal model of the device it is impossible for the engineer to know

that they have handled the complexity correctly, or to prove the solution developed

is optimum. This manual fitting of repair algorithms to new devices is slow, expen-

sive and error prone. Given an accurate model of DRAM it is possible to develop

algorithms capable of customising repair algorithms to a particular modelled device.

These algorithms may have parameters detailing the type of solution required; for

example to prefer high throughput to high yield.

In combination with a simulation platform (for both algorithms and failure maps),

automatic code generation allows the unattended profiling of many algorithms, all

customised for the same device, and the eventual manual selection of the optimum.

In order to repair a new device two different types of code must be written: first

the device must be described in the format demanded by the automatic test and

repair equipment; secondly the repair algorithm must be customised for the device.

These two stages can be thought of as translation, where the model description is

translated into one which the equipment can use without significant manipulation,

and manipulation whereby elements of the model are manipulated, properties of the

model inferred, and the result used to customise repair algorithms.

Translation requires only an understanding of the required new model format, and

the subsequent transforming of one set of data structures (representing the mathe-

 Verigy Confidential -- Verigy Confidential --

7.2. Background 91

matical model) into an alternative set of data structures used by the test equipment.

As a result translation is a relatively simple process, and a good first step for auto-

matic code generation.

With proper understanding of the repair process it is possible by manipulation of

the model to make many optimisations. Representing the exhaustive search of an

optimum repair algorithm as a tree of placement decisions, the NP complete repair

algorithm can be seen to simply traverse the tree, backtracking when an impossible

or unfavourable condition occurs [HSL90]. An optimisation of the general repair

algorithm would be the pruning of this decision tree either before or during execution

of the algorithm.

The algorithms used to prune the repair tree before repair algorithm execution

cannot have access to the failure data available during execution, but are free from

many of the constraints imposed during execution. The repair algorithm runs in

the critical path of the manufacturing process and therefore the time taken must be

minimised, and the resources available may be limited. Algorithms operating before

failure data have few limits on execution time or available resources.

The process by which a compiler can produce many types of targeted machine code

from a single input is similar to both the translation and manipulation stages of

algorithm generation. A modular compiler, such as the GNU Compiler Collection

[GS04], maintains a set of frontend parsers translating input in many languages to

one internal representation: Register Transfer Language [JM91]. After manipulation

the program now described in optimised register transfer language is passed to one

of many targeted backends producing code for one of many platforms.

This modular architecture based upon a unified internal representation allows the

development of optimisation and manipulation algorithms independent from either

input language or target platform. In order that this approach can handle the wide

range of input languages and target platforms, the internal representation must be

capable of modelling all the possible algorithms that can be described by the input

languages.

 Verigy Confidential -- Verigy Confidential --

7.3. Algorithms 92

Though both compilers and code generators have very similar output — either ma-

chine code or higher level code — the inputs are very different. The compiler takes

as input a description of an algorithm whereas the code generator accepts a model

description: without additional description of repair algorithms it is not possible to

generate repair code.

A language capable of describing the primitive functions of a repair algorithm similar

to the compiler’s internal representation would allow a code generator to manipulate

these primitives and develop both new repair algorithms and implement existing

algorithms. This approach would also allow many possible repair platforms to be

targeted.

An alternative approach is the development of a set of templates describing repair

algorithms, and allowing the code generator to populate those templates when gen-

erating output. Though this approach limits the flexibility of the overall generation

process it considerably reduces the complexity as there is no need to develop an inter-

nal language describing repair structures. After analysis of the algorithms required

the templating system can be specified.

Having examined the possible means for generating code, algorithms can now be

developed for the simplification of the code that must be generated.

7.3 Algorithms

Repair algorithms can be divided into two types, those which require specific failure

data and those which do not. Those algorithms which operate without failure data

do not have many of the limits imposed by the online repair process: there are few

time constraints, and few limitations placed on the computational resources available

and they need only run once; whereas those operating with failure data operate in

the critical path of manufacture and must be executed many times. These repair

algorithms operating without failure data can only manipulate the model of the

device provided, and it is those algorithms which will be developed in this section.

 Verigy Confidential -- Verigy Confidential --

7.3. Algorithms 93

7.3.1 Off-line Redundancy Analysis Algorithms

Many manipulations which can improve the performance of subsequent algorithms

become possible by expressing the “spare allocation problem” as a tree representing

all the possible placements of all redundant elements in the device. The repair of

simple memory array with four rows, four columns, and one each redundant row

and column can be represented by the tree shown in figure 7.2, wherein each leaf

node represents a possible repair solution.

R1Placement :

R2Placement :

R

0

0 1 2 3

1

0 1 2 3

2

0 1 2 3

3

0 1 2 3

Figure 7.2: Repair Decision Tree representing a simple four by four memory array,
with one redundant row and one redundant column; each with possible placements
at any address.

If the possible placements of either redundant element is restricted then the size of

the tree is greatly reduced as those sub-trees not permitted by the restrictions may

be removed. With the inclusion of the placement expressions the size of the tree can

be greatly reduced, limiting R1 to only even addresses and R2 to only odd addresses

reduces the size of the example tree to only six nodes (excluding the root), as shown

in figure 7.3.

M1

R1

R2

R2y % 2 = 1

R1x % 2 = 0

(a) Example Device, with restricted
placements.

R1Placement :

R2Placement :

R

0

1 3

2

1 3

(b) Repair decision tree

Figure 7.3: Repair decision tree after the addition of placement expressions limiting
the placement of R1 to even addresses and R2 to odd addresses.

 Verigy Confidential -- Verigy Confidential --

7.3. Algorithms 94

The introduction of placement expressions has been seen to reduce the complexity

of the spare allocation problem, and the addition of a constraint can further reduce

this complexity. Figure 7.4a shows the addition of a single constraint to the repair

problem shown in the previous figures, reducing the size of the tree to only four

nodes.

M1

R1 R2

R1x&0x10 = R2y&0x10

R
2 y

%
2
=

1

R
1

x %
2
=

0

(a) Example device, including con-
straint.

R1Placement :

R2Placement :

R

0

1

2

3

(b) Repair decision tree

Figure 7.4: Repair decision tree after the inclusion of a constraint describing the
sharing of a fusebox bit between the two redundant elements.

This reduction in the size of the repair decision tree amounts to a significant reduc-

tion in the complexity of the repair problem; by pre-computing the set of repairs

which satisfy all the possible placements and constraints the search for a solution

must consider significantly fewer possible solutions.

These reductions in the size of the repair tree can all be made before failure data is

available, but further pruning of the tree requires failure data to select only those

branches which repair failed cells. Pre-computing a number of lookup tables based

on the functions described in chapter 5 can reduce the complexity of selecting a

redundant element to repair a set of faults.

Computing the total coverage for each redundant element is required to build the

repair decision tree. The total coverage is defined (in section 5.5.1) as the union

of all the cells covered by the possible placements of that redundant element. As

possible placement expressions are independent of all other placements in the device

this set of cells can be calculated by iteratively evaluating each cell in each memory

in which the redundant element can be placed and testing the coordinates of each

cell against the possible placement expression.

 Verigy Confidential -- Verigy Confidential --

7.3. Algorithms 95

Calculating sets of compatible and orthogonal redundant elements speeds the selec-

tion of redundant elements to cover a particular set of faults; once one redundant

element has been identified to cover the set of faults only those compatible with that

element need be considered for repair. (Likewise, once a given redundant element is

known to repair a set of faults redundant elements orthogonal to that redundant ele-

ment need not be considered.) These compatibility and orthogonality lookup tables

can be used to reduce the search space when solving the spare allocation problem.

Having calculated the total coverages of all redundant elements the compatibility

(and therefore orthogonality) of redundant elements is easily calculated as the inter-

section of total coverage sets.

The information contained in the compatibility tables simplifies the selection of

redundant elements capable of partially covering a set of faults but only given one

redundant element capable of the same and therefore a search through all redundant

elements is required to identify this initial redundant element.

Compiling a table of those redundant elements that can repair particular regions

of the device allows a simple coordinate lookup of those redundant elements which

can repair a failure without a costly search during repair algorithm execution. The

boundaries of these regions can be identified by analysis of the compatibility regions

already calculated, such that this analysis does not require failure data.

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

RR1

RR4

RR2

RR5

RR3

RR6

R1

R2

R3

R4

R5

Figure 7.5: Repair regions in a simple device. Repair regions, marked RRn, as
derived from the redundant elements, marked Rn.

 Verigy Confidential -- Verigy Confidential --

7.3. Algorithms 96

Repair Region Redundant Elements Coordinates

1 1, 3, 5 (0, 0) → (3, 3)
2 1, 2, 3, 5 (4, 0) → (5, 3)
3 2, 3, 5 (6, 0) → (7, 3)
4 1, 4, 5 (0, 4) → (3, 7)
5 1, 2, 4, 5 (4, 4) → (5, 7)
6 2, 4, 5 (6, 4) → (7, 7)

Table 7.1: Regions identified from figure 7.5.

A region is defined as each non-empty intersection of compatibility for each unique

permutation of all redundant elements. Identifying these regions can be accom-

plished by tagging each cell with the name of all redundant elements covering that

cell, and then computing regions with contigious tags:

1. Create a tag array the size of the target memory.

2. for each redundant element, R:

(a) Add R to tags for each cell in CovT (R).

3. Collect tags for contigious regions. The tags now define the redundant elements

covering that region.

Table 7.1 gives the coordinate bounds for each region calculated for the device in

figure 7.5. The fast region lookup function can be implemeted as an if-then-else tree,

a lookup table, or however is best suited to the target platform.

Partitioning The Mathematical Model

A final optimisation that is possible without failure data is the partitioning of the

repair problem into smaller independent problems. If a spare allocation problem of

complexity O(N !) can be split into two independent smaller problems of complexity

O(P !) and O(Q!) where P > Q then the complexity of the overall problem has

been reduced to O(P !). Within a large DRAM device there may be a number

of banks where none of the redundant elements place outside the bank, nor do

they have constraints with elements not included in the bank [K+99,JHCHKC+96];

these banks can be solved separately reducing the complexity of the spare allocation

 Verigy Confidential -- Verigy Confidential --

7.3. Algorithms 97

problem.

These independent banks can easily be identified as they form independent graphs

in the mathematical model; figure 7.6 gives a simple example.

M1 M2R1 R3

R2 R4

(a) Layout View

R4

R1

R2

R3

M1

M2

(b) Graphical Model,
showing independent
graphs.

Figure 7.6: A memory device with two independent banks, showing the independent
graphs in the mathematical model representation.

Having identified independent graphs in the mathematical model, these sub-problems

can be solved independently using any of the many common algorithms once failure

data becomes available; and, if the repair hardware supports it, in parallel.

A similar approach, that of dividing the mathematical model graph into smaller

graphs to be solved independently, can be applied using other criteria other than

independence to partition the graph. The sub-problems produced may not be inde-

pendent, breaking any guarantee of a perfect solution.

These partitioning schemes can be used to reduce the complexity of imperfect repair

algorithms where the non-independence of the problem graphs may not be impor-

tant.

A powerful method of partitioning the model is the application of a filter, or inclusion

predicate, function to select model elements to be included in a sub-problem. That

is the result of the application of this boolean valued function to each element in

the model controls the inclusion of that element in the sub-graph.

The boolean valued filter functions take as arguments the whole mathematical

 Verigy Confidential -- Verigy Confidential --

7.3. Algorithms 98

model, and the model element under consideration; and return only a boolean value.

Though the function may access the mathematical model it cannot make changes

to the model, and cannot maintain any state between invocations.

Filter functions are always to be implemented as a part of a larger tool, and are not

user controlled, so the functions themselves are constructed in the same language

as the surrounding tool. As the functions must be defined in the implementation

language no domain specific language is has been defined, and therefore there can

be no specific grammar; there are however a number of restrictions placed on the

operations these functions can perform.

Filter functions may access any property of any element in the model, including the

element under consideration. The functions may use any of the standard arithmetic

and logical operators; and also any features common to the implementation language

(both data types and functions from the standard library). A library of supporting

functions may also be provided, some of which will be detailed in this section.

A common partitioning problem is the so called local sub-graph. A local sub-graph

represents one memory block and those redundant elements repairing only that

memory. One method to separate a problem graph into many local graphs is to

remove redundant elements with placements in more than one memory, or more

than one placement. A filter function to create these local problems could simply

return false only for shared redundant elements and true otherwise.

The implementation of such a filter function can be split into two parts: checking

the type of the element considered, followed by the counting and thresholding of

the placements of that element. The identification of types is a feature specific to

the implementation language: (objectreference instanceof type) in Java, or

isinstance(object, type) in python both evaluate to a boolean value. There

may be other occasions when the implementation language affects the definition of

the filter function, all the examples given here will use the python code style and

standard library.

The prototype for this filter function, and for all filter functions, is f(model, element) →

 Verigy Confidential -- Verigy Confidential --

7.3. Algorithms 99

Boolean, meaning that the function must take as arguments the mathematical model,

and the considered element and return a boolean value. It was noted previously that

this filter function should return true for any element that is not a redundant element,

a filter function implementing this condition is shown below (the type Redundancy

is assumed to be already defined):

g(model, element) = not isinstance(element, Redundancy)

The second part of this filter function is more complex: a count must be made of

all the placements in the mathematical model having this element as their source,

if the result is greater than one then the element must be excluded. The obvious

implementation of such an algorithm would be to loop over all the model elements

incrementing a counter for each matching placement, an alternative implementa-

tion generating a list of matching placements and counting the length of that list

allows the abstraction of a function placements of(model, element) returning

those placements in model with element as the source which will be of use in later

filter expressions. Shown below is a filter expression returning true for only elements

having one or fewer placements:

h(model, element) = len(placements of(model, element)) <= 1

The final filter function must combine the two functions defined such that if either

would select an element for inclusion then it is included; a logical “or” operation with

the two function invocations as arguments satisfies this condition, and the resulting

filter function is shown below.

f(model, element) = not isinstance(element, Redundancy) or

len(placements of(model, element)) <= 1

Figure 7.7 shows the result of the application of this filter function to a small math-

ematical model. Obvious in part (b) are two placements included in the filtered

model but having no source element, these are so called “dangling placements”:

The dangling placements seen in 7.7b, represent an error in the construction of the

filter function. Extending the filter function to remove these dangling placements is

impossible without maintaining state between calls to the filter function. An alterna-

 Verigy Confidential -- Verigy Confidential --

7.3. Algorithms 100

R4

R5

R1

R2

R3

M1

M2

(a)

R5

R4

R1

R2

R3

M1

M2

(b)

R5

R4

R1

R2

R3

M1

M2

(c)

f(model, element) = not isinstance(element, Redundancy) or

len(placements of(model, element)) <= 1

(d)

Figure 7.7: The result of the application of the filter function (d) to the model
shown in part (a) gives the results shown in part (b). The application of a clean up
function removes the dangling placements and gives the model shown in the final
part (c).

tive approach is the application of a second filter function removing these dangling

placements, this approach is preferable as it does not require the maintenance of

state function calls, allowing parallelism of the filtering process.

The application of this (and possibly other) clean-up functions as a standard proce-

dure after every filter function keeps the construction of filter functions simple and

intuitive. A filter function to remove dangling placements can be developed along

the same lines as the previous function:

f(model, element) = not isinstance(element, Placement) or

element.source != None

A filter function that manipulated placements rather than memory or redundant

elements could easily leave such elements unconnected or “floating”. A clean-up

function to remove such floating elements is shown below:

f(model, element) = not isinstance(element, Block) or

len(placements of(model, element)) == 0

 Verigy Confidential -- Verigy Confidential --

7.3. Algorithms 101

The application of these filter functions to clean up the newly partitioned model

does introduce extra computational complexity thus increasing the running time of

these partitioning algorithms, however, as this partitioning may be done off-line a

small time penalty is unimportant.

It is often useful to create a filter function selecting only the elements of current

interest and then to collect those elements directly connected to those selected. The

definition of the term “connected to” is more complex than it appears: two elements

having a constraint between them are connected, and the source of a placement is

connected to the target of that placement, but the target is not considered connected

to the source. Figure 7.8 gives a simple example.

M1

R1 R2 R3

(a)

Element Connected Elements
R1 R2, M1
R2 R1, M1
R3 M

M

(b)

Figure 7.8: Showing how elements in a simple model (a) are connected; as shown
by the table (b).

Filter expressions can also be used to partition a graph into hierarchical levels,

creating a tree-like structure of problems with ascending complexity, as shown in

figure 7.9.

Using a problem tree of this style is a convenient method to represent a rule often

used to simplify complex repair problems with many shared elements. The rule

states that “If local redundant elements can be used to repair a failure, or set

of failures, then no better solution exists.” For the purpose of this rule a local

redundant element is one repairing on only one memory.

For larger memories the rule can be extended to state that if a failure or set of

failures can be repaired with N or more placements in other memories then a repair

made using a redundant element with N placements is the optimum.

Considering the problem tree, shown in 7.9b, it is easily seen how the algorithmic

 Verigy Confidential -- Verigy Confidential --

7.3. Algorithms 102

M1

M2

M3

M4

R1

R2

R3

R4

R5

R6

R7 R8

(a)

R1 M1 R2 M2 R3 M3 R4 M4

M1 M2

R5

M3 M4

R6

M1

M2

M3

M4

R7 R8

(b)

Figure 7.9: An example hierarchical partitioning of the model in part (a) is shown
in part (b). The partitioning method creates a tree, each level of which represents
problems containing the same number of memories.

 Verigy Confidential -- Verigy Confidential --

7.4. Approach 103

application of the new rule is simplified by this approach. Such an algorithm would

solve all leaf node problems (those comprised of redundant elements with placements

in only one memory) and remove them from the tree after propagating any repairs

made into the memories in the new leaf nodes, after which the process repeats.

When the algorithm reaches the root of the tree a solution has been reached. If the

problem is solved in this way the computational complexity is much reduced1.

7.3.2 On-line Redundancy Analysis Algorithms

Many of these optimisations reduce the size of the tree representing the repair deci-

sions, reducing the size of the spare allocation problem, and therefore reducing the

cost of the repair and increasing throughput of the repair process. Other optimisa-

tions pre-compute expensive operations that will be required during repair, again

reducing the overall time taken for repair.

Once failure maps are available the simplified spare allocation problem can be solved

using standard methods, often using the must repair heuristic followed by a branch

and bound repair algorithm to catch sparse errors. After manipulation and optimi-

sation of the repair problem the new simplified problem must be used to generate

customised repair code.

7.4 Approach

The architecture of an optimising compiler is similar to that required for code gen-

eration: the user’s source code is translated into an internal representation, which

may then be optimised, before being further translated into machine code for the

target platform. The GNU Compiler Collection has until recently [Mer03] used Reg-

ister Transfer Language (RTL) [JM91] an (almost) machine independent assembly

language.

1O(12!) for the original problem vs O(2!) + O(3!) + O(6!) for the reduced problem tree.

 Verigy Confidential -- Verigy Confidential --

7.4. Approach 104

As the compiler translates all input languages into register transfer language the op-

timisation routines need only manipulate RTL, and may therefore operate regardless

of the input language. RTL must be capable of representing all the possible input

algorithms, but this as the language is low level it requires relatively few primitive

operations.

This separated input, manipulation, and output approach allows the compiler to han-

dle new languages and new platforms with minimum alterations. A similar approach

could be applied to the generation of repair algorithms; a language describing prim-

itive repair operations complex repair algorithms could be described independently

from both the input device and the target repair platform.

The separation of repair algorithms and code output for the target platform would

also allow the automatic optimisation, or even generation, of repair algorithms. With

this repair language, device model, and a failure map simulator, the simulation of a

given algorithm on a given device could be used to test the fitness of that algorithm

as part of a genetic algorithm optimisation similar to that used in [CS96].

In its simplest form a compiler translates one representation of an algorithm, the

input source code, to another, the targeted machine code; whereas a code generator

takes as its input, a model of a device and must produce an algorithm, a task

considerably more complex than code translation. Using an internal language for

repair would require the expression of common repair algorithms in this internal

language before any repair were possible.

Designing a language capable of describing generic repair algorithms is a large and

difficult task, much of which must be accomplished before any code generation is

possible. An alternative approach relies on describing the repair algorithm using a

system of code templates and hand written code. Each algorithm must be described

with a template for each target language or platform, and a source code describing

the manipulation of model objects to satisfy the template parameters.

The use of templates to describe repair algorithms removes the need for a language

describing these algorithms since the templates are written directly in the target

 Verigy Confidential -- Verigy Confidential --

7.4. Approach 105

language. Parameters in the template can be replaced with data derived from the

model by the code generation tool. This data cannot be described by the template,

but is tied to a specific algorithm, and therefore to a specific template: the meaning

of the template parameters must be described in source code provided with the

template.

For a given algorithm, constructing targeted code from templates will be less com-

putationally complex than translating an internal representation of repair, and as

the algorithm may be described in a language with which the user is familiar, design

and development of new templates should not be an arduous task.

In this prototype code generation system a templating scheme has been used in

preference to a more sophisticated internal repair language as both the internal

implementation and the implementation of well known repair algorithms is expected

to be considerably simplified.

Code generated for the target platform will often require code segments inserted

verbatim into every generated program. These code snippets need no modification

and therefore need not be processed for parameter substitution. The simpler repair

algorithms and platform configuration files can be implemented as templates with

parameters derived from the model, e.g. the number of redundant rows and columns

available, or the size of a memory array. More complex repair algorithms require

more flexibility. These can be implemented as nested templates, where a parameter

in one template may be substituted with the output of another template.

The application of this templating scheme to the code generation problem follows

the scheme shown in figure 7.10: once the problem has been partitioned into sub-

problems the three types of templates may be applied to the each of these sub-

problems, parameters substituted and finally the generated code for each sub prob-

lem is combined.

The templates applied to the sub-problems must be selected according to the users

preference for yield, throughput, or any other parameter. If each template, or set of

templates, representing an algorithm were to be labelled with an expected indication

 Verigy Confidential -- Verigy Confidential --

7.4. Approach 106

...
...

Problem
Parti-

tioning

Fixed
Code

Templates

Generated
Tem-
plates

Param.
Subst.

Template
Inte-

gration

Generated
Code

Figure 7.10: Code generation scheme using templates. The model is partitioned
into sub-problems, and templates used to generate code for each. After parameter
substitution the sub-problem templates are recombined.

of the performance of that algorithm then a code generation tool could select an

appropriate algorithm to match the user’s choice. Alternatively, a tool including

a simulation framework for repair algorithms (such as Raisin [HLYW07]) could be

used to automatically benchmark algorithms for the specified device, and to present

the results to the user who could then choose the algorithm most suited for their

requirements. A final method of algorithm selection is to simply present the user

with a list of the algorithms which can be generated, and allow a selection based

upon the user’s pre-existing knowledge.

In the prototype tool developed in chapter 8 it is this latter approach which has been

adopted due to it’s simplicity — there is no need for a repair algorithm simulator,

nor for the development of meta-data describing each algorithm. Should either, or

both, other approaches be required then the adoption of this technique will not

hinder their implementation.

The following paragraphs and figures will describe the construction of a template

and algorithm for the generation of code performing region identification (see section

7.3.1). Two examples of code generation will be given: the construction of a single

if-clause used for region identification, a simple template; and the construction of

the whole region generation algorithm, using nested templates to build and if/else

tree.

 Verigy Confidential -- Verigy Confidential --

7.4. Approach 107

These two practical examples will show sufficient detail to explain most aspects of

the template system, though a complete API reference is provided in appendix A.

Code generation is controlled by a class of the base type “Algorithm” and each

sub-class must provide a method “evaluate” which must return the generated code.

The algorithm class constructor is to be called with the mathematical model as the

only argument, and will process that to derive all information required to populate

the template (or templates). An algorithm class is expected to instanciate at least

one “Template” class. This template class is responsible for the translation of model

data into code in the target langauge.

During instianciation the template class (a sub class of “Template”) is expected

to locate and parse the template string, creating a database of the named variables

contained in the template. The template base class provides a method “add variable

value”: allowing the caller to provide data (which must be in the target language)

that will be used to replace the named variable upon evaluation of the template.

The base class also provides a method “evaluate” to perform the substitution of the

named variables with data supplied via the “add variable value” method. Figure

7.11 shows these responsibilites, and the flow of control between the algorithm and

template classes.

The first example builds a single if clause from the region identification algorithm

described previously. Three code examples will be shown, the template class (includ-

ing the template text), the controlling algorithm class, and an example of generated

code.

The logical structure of such a clause is shown in algorithm 6, which identifies region

RR1 from figure 7.5.

Algorithm 6: An example region identification clause.

Input: coordinate
Output: results
if (0, 0) ≤ coordinate ≤ (3, 3) then

return R1, R3, R5;

The region lookup algorithm requires one such clause for each region in the device,

 Verigy Confidential -- Verigy Confidential --

7.4. Approach 108

Mathematical Model

Generated Code

Algorithm

Parse Model

Create Tem-
plate Instance

Manipulate Model

Populate Value

...

Populate Value

Evaluate Template

Return Gen-
erated Code

Constructor

Evaluate

Template

Load Template Text

Parse Variables

Store Value

Store Value

Populate Tem-
plate String with

stored values

Return Gen-
erated Code

Constructor

Add variable value

Add variable value

Evaluate

Figure 7.11: Class Responsibilities and Control Flow During Code Generation.
Classes are shown in named columns, methods within those classes are grouped
and labelled in Small Caps. Arrows mark the flow of execution between the two
classes.

 Verigy Confidential -- Verigy Confidential --

7.4. Approach 109

in devices with many memory blocks it will be necessary to test the memory in

which the cell at coordinate can be found, though such details will be ignored for

the purposes of this example.

The example in algorithm 6 is specific to one region in one memory block in one

device; to use this example to match another region three changes must be made:

the region bounds against which coordinate is tested must be updated for the new

region, as must the redundant elements returned. If only these three changes need

be made to control another region then only those variables need be accounted for

in the template. The specific if-clause may be converted to a generic template with

the addition of three variables (annotated with the symbol $). These variables are:

the coordinate of the region origin, the coordinate of the region limit, and the list of

redundant element identifiers. Such template for algorithm 6 is shown in algorithm

7, where template variables are underlined.

Algorithm 7: A region identification if clause template.

Input: Coordinate

Output: Redundant Elements

if $region origin ≤ coordinate ≤ $region limit then

return $redundant elements;

The algorithm class responsible for populating such a template would be called from

the class managing the region generation. This top-level class would provide a set

of cells (referenced by coordinate) defining the region this if-clause is to represent,

and the redundant elements capable of repairing faults in this region. The class

controlling the if-clause template will then manage the derivation and formatting

of the data required: the boundaries of the region and the construction of identifies

for each redundant element. Such a controlling class in shown in algorithms 8 and

9, making use of the functions: “generate identifier” responsible for the generation

of a unique identifier for a redundant element; and “bounds” returning the origin

and maximum coordinates of a set of cells. In a typical implementation such a small

controlling class would be merged either into the top-level controlling class (which

 Verigy Confidential -- Verigy Confidential --

7.4. Approach 110

would then manipulate the if-clause template directly); or into the template class.

Algorithm 8: Algorithm Class Constructor

Input: Set of cells, cells, defining this region.

Input: Set of redundant elements, redundant elements, repairing this region.

(origin, limit) = bounds(cells);

template = new ifclause template();

template.add variable value(“region origin”, origin);

template.add variable value(“region end”, limit);

identifiers = map(generate identifier, redundant elements);

template.add variable value(“redundant elements”, identifiers);

Algorithm 9: Algorithm Class Evaluate Method

Output: Generated Code

return template.evaluate();

These algorithm class methods make use of two methods from the template base

class: “add variable value” and “evaluate” the use of which has been explained

previously but also makes use of the if-clause template class constructor. This

constructor is reponsible for reading the template definition and building the internal

data structures used by “add variable value” and “evaluate”; the constructor for the

if-clause template is shown in algorithm 10. The constructor may also make use of

a number of methods in the template class, the purpose of these functions should

clear, but they are also defined in the template API (appendix A).

Algorithm 10: Template Class Constructor

template string = “

if $region origin ≤ coordinate ≤ $region limit then

return $redundant elements;

”;

this.add template from string(template string);

It is often impossible or impractical to express complex algorithms using just the

simple template system described above. Allowing the variables replaced in the

template to themselves be templates eases the implementation of complex repair

 Verigy Confidential -- Verigy Confidential --

7.4. Approach 111

algorithms, particularly those with many identical repeated sections.

A typical example is the template for code responsible for region identification: there

are a number of very similar if-clauses but the number and exact format of those if-

clauses varies between devices and cannot be known in advance. Using the if-clause

template shown previously a framework template defining the region identification

function, it’s initialisation and finalisation, can be defined; this template defines

a variable populated by a number of if-clause templates. On evaluation of the

framework template all the if-clause templates are evaluated in turn and their values

included in the final generated code. Figure 7.12 shows how an algorithm class might

construct and evaluate such a set of templates.

The template and algorithm classes used in this more complex system have all the

same requirements as the simpler examples shown previously: they must extend

the Algorthm and Template classes respectively and must each provide the methods

listed.

As seen in figure 7.12 the region idenfication problem can be broken in two templates,

a framework template representing the function definition and initialisation and a

number of if-clause templates. One algorithm class is responsible for the creation

and management of both templates, a call to the evaluate method of this algorithm

class is responsible for evaluating the framework template, it is then this template

that must evaluate, in the correct order, all the sub-templates.

The following algorithms (11, 12, 14) describe the contructors and evaluate methods

to implement code generation for region identification. The constructor for the if-

clause template is exactly as shown previously (in algorithm 10) and is not duplicated

here.

Algorithm 11: Region Identification Framework Template Constructor

template string = “ElementList region identification (coordinate) {$inner};”;

this.add template from string(template string);

The constructor for the framework template operates in the same way as the con-

structor for the if-clause template (algorithm 10): a template string is loaded and

 Verigy Confidential -- Verigy Confidential --

7.4. Approach 112

Algorithm
Framework

Template

If-clause

Template

Mathematical Model

Generated Code

Parse model

Calculate regions

Create frame-
work template

Create if-clause
templates

Populate region data

Populate frame-
work template
with if-clauses

Evaluate frame-
work template

Return code

N

N

N

N

N

N

Load template text

Parse values

Store sub-templates

Evaluate if-
clause templates

Populate tem-
plate with sub-
template values

Return code

Load template text

Parse values

Store values

Populate template
with stored values

Return code

Add Variable Value

Add Variable ValueConstructor

Evaluate

Constructor

Evaluate

Constructor

Evaluate

Figure 7.12: Class Responsibilities and Control Flow for a complex algorithm class
using multiple templates.

 Verigy Confidential -- Verigy Confidential --

7.4. Approach 113

parsed to extract the template variables.

The algorithm class constructor has three specific tasks: to parse the mathematical

model and derive region information, to create and populate if-clause templates, and

to create and populate the framework template. The region identification methods

and algorithms are covered elsewhere in this chapter and so will not be analysed here.

The process of nested template population is shown in algorithm 12. The associated

evaluate method simply calls the evaluate method of the framework template and

returns the result (algorithm 13).

Algorithm 12: Algorithm Class Constructor

Input: Mathematical Model

Identify Regions. . . ;

Framework Template = new framework template();

for Region in Regions do

If-clause Template = new ifclause template();

If-clause Template.add variable value(“region origin”, Region Origin);

If-clause Template.add variable value(“region end”, Region Limit);

identifiers = map(generate identifier, Region Redundant Elements);

If-clause Template.add variable value(“redundant elements”, identifiers);

If-clause Template List.append(If-clause Template);

Framework Template.add variable value(“inner”, If-clause Template List);

Algorithm 13: Region Identification Algorithm Class Evaluate Method

Output: Generated Code

return Framework Template.evaluate();

It is the evaluate method of the framework template that is responsible for the

evaluation of each nested template, and the construction of the complete function.

Algorithm 14 is typical of the evaluate method found in templates, allowing the

variables specified to be in many forms. If the variable provided for a given key is

a list then each element in the list is evaluated and the resulting generated code

concatenated. If the variable provided is a template then that template is evaluated

and the result stored. For any other type of variable the string representation of

 Verigy Confidential -- Verigy Confidential --

7.5. Examples 114

that variable is used.

Algorithm 14: Region Identification Framework Template Evaluate Method

Output: Generated Code

Generated Code = template string;

for key in Template.variables do

variable = Template.variables[key];

code = “”;

foreach element in variable do

if element instanceof Template then

code = element.evaluate();

else

code = element.toString();

Generated Code.replace(key, code);

return Generated Code;

This section has described the implementation of a simple templating scheme, using

a controlling algorithm class and a single template class; and has gone on to generate

more complex code using a number of nested templates and a more sophisticated

controlling algorithm class. Methods used on instances of the template class are

described in more detail in the template API, appendix A.

7.5 Examples

Having discussed the techniques used to generate code it is useful to analyse some

examples. Figure 7.13 shows both an ad-hoc model and a mathematical model of

a memory device with two memory banks, each with redundant rows and columns

local to that bank, and a redundant row shared between both banks.

7.5.1 Region Identification

Using the algorithm previously discussed for region identification it can be seen that

the device in figure 7.13 has three regions, defined by the two memory arrays and

 Verigy Confidential -- Verigy Confidential --

7.5. Examples 115

R1

R2

R3

R4

R5

M1 M2

0

16

16 0

16

160

16

0 16

0

16

8 16

0 32

(a) Layout Model

R4

R5

R1

R2

R3

M1

M2

(b) Mathematical
Model

Figure 7.13: Mathematical and Layout models of the example device.

the half sized R4; the regions and the redundant elements covering those regions

can be seen in table 7.2; the function get red by region() shows pseudo code for

region identification.

Region Redundant Elements Dimensions

1 R1, R2, R5 (M1, 0, 0) → (M1, 16, 16)
2 R3, R5 (M2, 0, 0) → (M2, 7, 7)
2 R3, R4, R5 (M2, 8, 8) → (M2, 16, 16)

Table 7.2: Regions identified for the example device, figure 7.13.

Function get red by region(memory, coordinate)

if memory = M1 then
return R1, R2, R5 ;

if memory = M2 and coordinate.x < 8 then
return R3, R5 ;

if memory = M2 and coordinate.x ≥ 8 then
return R3, R4, R5 ;

As can be seen from the pseudo code, templating the region identification can be

split into only two templates, a framework template providing function definition

and a template building the if clause and redundant element list for each region.

 Verigy Confidential -- Verigy Confidential --

7.5. Examples 116

7.5.2 Must Repair

After the spare allocation problem has been partitioned into independent sub-problems

“must repair” analysis can be performed. Using the function developed above, identi-

fying redundant elements capable of covering a set of faults, must repair for a single

independent problem can be expressed simply as a fixed code template; a generated

template can be used to package these must repair problems into one final repair

program.

The algorithm shown below (rc must repair) performs must repair on an indepen-

dent sub-problem using a slightly modified get red by region() returning sets of

redundant elements capable of completely repairing a set of faults.

Function rc must repair(independent graph)

foreach memory in independent graph do
repeat

must repair flag = 0;
foreach row or column in memory with failures do

redundant elements = get red by region(failures in row);
if length(redundant elements) = 1 then

repair row or column with redundant elements [0];
must repair flag = 1;

until must repair flag = 0 or no available redundant elements ;

7.5.3 Branch and Bound Repair

The algorithm described in function branch and bound repair takes the branch and

bound algorithm first developed for the spare allocation problem [KF86] and modi-

fies it to take advantage of the code generation framework developed here. Two new

functions are required: get red by region(coordinates) returning a list of redun-

dant elements capable of repairing a failure at the specified coordinates typically

implemented using region lookup tables; constraint allowed(solution) which

evaluates constraints in the current solution record returning true if all constraints

are satisfied. One further function, get next fault() returns the coordinates of

 Verigy Confidential -- Verigy Confidential --

7.6. Conclusions 117

the next faulty, un-repaired, cell in the device. With the addition these additional

functions even this complex algorithm can be implemented as fixed code.

Function branch and bound repair(model)

Queue = initial solution
while faults remaining and Queue not empty do

current solution = pop(Queue)
current fault = get next fault(current solution)

foreach redundant element in get red by region(current fault) do
if redundant element is available in current solution then

new solution = repair current fault with redundant element

if constraint allowed(new solution) then
Add new solution to Queue

if Queue contains duplicates then
retain duplicate with longest path length

Sort Queue by ascending cost

if Queue is empty then
Device is unrepairable

else
Solution is head of Queue

A simple implementation of the constraint allowed() function iterates over all

constraints in the independent graph, or model, checking the constraint expression

for only those constraints for which both source and target redundant elements have

been placed. The function evaluate constraint() has not been defined here, but

evaluates a constraint expression with the placement of both it’s source and target

redundant elements.

Function constraint allowed(independent graph)

result = True
foreach constraint in independent graph do

if constraint.source is placed and constraint.target is placed then
result &= evaluate constraint(constraint)

return result

7.6 Conclusions

The code generation scheme developed in this chapter uses templates to generate

code as opposed to a compiler styled internal representation to arrive at a first so-

 Verigy Confidential -- Verigy Confidential --

7.6. Conclusions 118

lution in an expedient manor. Using this novel templating scheme it is possible to

generate must repair code, and an NP Complete, perfect, algorithm. These algo-

rithms have been demonstrated. Novel optimisations made using the mathematical

model of memory have been developed, and used in the implementation of well

known repair algorithms.

The ideas, and algorithms, developed here will be used in subsequent chapters to au-

tomatically manipulate a model of memory and automatically generate redundancy

analysis code customised for the particular device modelled. The next chapter will

present a tool implementing these ideas.

 Verigy Confidential -- Verigy Confidential --

Chapter 8

DRAM Redundancy Analysis

Modelling Tool

8.1 Introduction

Creating graphical tools for the manipulation of complex models in an intuitive and

user friendly environment is a common technique for allowing a user to quickly and

accurately create and manipulate models; from the dawn of the computer [Bab26]

to the word processing and spreadsheet programs common today.

Software tools are often used to reduce the complexity of engineering problems by

allowing the user to manipulate a model of the problem in an intuitive and user-

friendly environment. This method of “model-driven engineering” [Sch06], often

used for computer aided software engineering, requires a model with an excellent

mapping to the problem domain; a particular example of a tool developed to optimise

the use of DRAM in System-On-Chip devices is presented by Harling [Har01].

The introduction of a graphical interface allowing the manipulation of the problem,

via the model representation, can further reduce the apparent complexity of the prob-

lem and allow use by those who are not domain experts [SMZ+01]; this technique

is used in Hoheisel’s graph-based interface to grid-computing workflows [Hoh06b].

Savoiu et al during description of their visual analysis tool for system-on-chip explo-

119

 Verigy Confidential -- Verigy Confidential --

8.1. Introduction 120

ration [SHG+01] suggest that such graphical tools must provide sufficient feedback

to allow a user interacting with the model quickly and accurately construct the

model.

The current state of the art in graphical tools for the manipulation of DRAM devices

is shown in figure 8.1. This tool provides a graphical view of a DRAM device,

allowing the user to edit various properties and manipulate repair structures. As

can be seen from the figure the graphical representation of the device shows only

memory blocks with local redundant rows and columns; placement and constraint

information is absent, as is size and position.

Figure 8.1: Advantest Memory Repair Analysis Tool [mra01].

The tool developed here attempts to improve on the existing tools used for designing

DRAM redundancy analysis solutions. This tool builds upon the ideas proposed in

the previous chapters: it allows graphical modelling of DRAM devices, the import

and export of models, and the generation of repair code and tester configuration

specific to those devices.

This chapter describes the design of a tool implementing ideas from the previous

chapters. An intuitive interface will be provided allowing a user to describe a device

 Verigy Confidential -- Verigy Confidential --

8.1. Introduction 121

in the graphical modelling language of chapter 5, and to import and export that

model using the text model description of chapter 6. The syntax and semantic

checks described previously will be used to provide feedback to the user during

creation of the model. The tool must then process the model described by the user,

forming an internal representation after which optimisation and code generation can

be performed as described in chapter 7.

The design of the tool must be performed with reference to the possible users of

the tool, as Simpson et al suggest these users may not be domain experts. A

well designed interface will allow these users to create DRAM redundancy analysis

solutions for simpler devices and allow more expert users to develop solutions for

more complex devices. The development of any complex software tool should include

a study of the interactions between the potential users of the tool and its various

interfaces. This chapter will present a number of “use cases” describing in detail

how a user would interact with the tool.

This chapter will also describe in detail a number of requirements that the tool

must satisfy, and discuss the architecture and implementation of the tool. The

graphical tool developed includes prototype implementations of both abstraction

levels and both syntax and semantic checking. The tool can create two types of

tester configuration file and simple repair code targeting Verigy testers. Figure 8.2

shows the prototype tool editing a graphical model.

The Eclipse [Fou] plug-in environment provides a rich set of libraries for creating

GUI tools, and in particular the Graphical Editing Framework provides a powerful

interface for the creation of graphical editors. The tool described in this chapter has

been developed in eclipse partly to take advantage of this rich cross platform envi-

ronment, but also to allow future interoperability with other Verigy tools developed

in the same environment.

 Verigy Confidential -- Verigy Confidential --

8.2. Users and Use Cases 122

Figure 8.2: The Graphical Model Editor showing a small device with four banks
each containing one memory and one redundant element, and one shared redundant
element.

8.2 Users and Use Cases

When designing any large software tool it is important to consider how that tool

will be used. The information gained from this analysis can be used to drive the

development of the tool, defining both the set of features and the interface. The

first step in developing use cases is to consider the potential users of the tool being

developed; the set of potential users for a tool modelling redundancy structures in

DRAM is small: engineers tasked with developing the redundancy analysis code,

with a smaller number of other engineers interested in related areas.

8.2.1 Modelling a New Device

Device models can be created using the tool in one of three ways: using the graphical

model, the layout model, or as a text description. The use cases for creating a device

 Verigy Confidential -- Verigy Confidential --

8.2. Users and Use Cases 123

using the two graphical methods are similar: the user draws regions of the device

in a graphical editor, and then replicates them using the editors copy and paste.

Creating a design using the text model is a simple process: the user either writes

the model by hand in an editor, or generates the model using another tool; the

model is then imported into the graphical tool via a file selection dialogue.

Use Model: Creating an new design graphically

This use case, and others, assume a basic familiarity with the eclipse environment

and terminology. It is also assumed that the user has created a new project in a

suitable eclipse workspace and is now ready to start developing the design. The

following lists the steps the user might take to create a design, and the actions the

tool will perform. The use case for creating a design using the graphical model

editor is identical to that for creating a design using the layout editor:

1. User creates new file in project, tool prompts for file type.

2. User selects graphical memory editor, tool prompts for file name.

3. User inputs file name, tool creates file in workspace, and passes focus to the

editor.

4. User creates the initial model blocks, tool presents configuration options.

5. User populates configuration options for the newly created options, tool checks

syntax and highlights errors.

6. User adds initial placements and constraints between model blocks, tool presents

configuration options.

7. User populates configuration options, tools checks syntax and highlights errors.

8. User investigates syntax errors, making corrections; see section 8.2.2.

9. User builds device by duplicating the initial model elements, tool presents

configuration options partially configured from initial elements configuration

(or wizard page allowing automatic replication of elements e.g. at specific

 Verigy Confidential -- Verigy Confidential --

8.2. Users and Use Cases 124

positions).

10. User completes configuration of new elements.

11. User adds placements and constraints between the new elements, tool checks

syntax and highlights errors.

12. User makes final syntax corrections if required.

8.2.2 Syntax and Semantic Checking

As the graphical modelling language is ambiguous, see chapter 5, the tool must

implement syntax and semantic checking to alert the user to possible errors in the

design. It is anticipated that the user will spend a considerable amount of time

using the syntax checking functions, and the process is worth further examination.

Use Model: Syntax Checking a Graphical Design

This use model assumes that the user has a running instance of the tool, with a

graphical model in the current editor.

1. User requests syntax checking, tool highlights model elements with syntax or

semantic errors.

2. For each model element with syntax errors:

(a) User selects model element to examine, tool presents list of syntax errors

for that element, tool also presents configuration options for that element.

(b) User modifies configuration options, tool re-checks syntax for that element

and presents list of syntax errors for that element.

(c) User makes further configuration changes for the selected element, until

satisfied.

 Verigy Confidential -- Verigy Confidential --

8.2. Users and Use Cases 125

8.2.3 Exporting a Model

The eclipse graphical editor framework provides the interface for saving and restoring

files, however the file format used is not suited to manual editing nor to the simple

construction of external tools, both of which are desirable features. A method by

which the tool can export a design using the text modelling language described in

chapter 6 provides a means by which the user may interact with the model in as yet

unanticipated ways.

The text model of a given device is exactly equivalent to the layout or graphical

models; the tool should allow the user to switch between these different model

views.

Use Model: Exporting a Text Model

This use model assumes that the user has a running instance of the tool, with either

a graphical or layout model loaded, and syntax checked.

1. User selects model to export by selecting the appropriate editor window.

2. User selects export from file menu, tool presents a “save-as” dialogue box.

3. User completes save location, naming file, tool writes text representation to

the specified file.

8.2.4 Importing a Model

The previous section (8.2.3) allows the model to be exported for external editing

(either by the user, or by another tool) and therefore the tool must be able to

import a model.

Use Model: Importing a Text Model

1. User requests text model import, tool presents file choice dialogue.

 Verigy Confidential -- Verigy Confidential --

8.2. Users and Use Cases 126

2. User selects text model file to import, tool parses text model and creates

internal representation, and updates current editor window.

3. User inspects imported model.

8.2.5 Generating Code

Once the user has developed a model, either using a graphical editor or by importing

a text model, the model is then used to create redundancy analysis code or the

configuration files needed during redundancy analysis.

Use Model: Generating Code

1. User selects editor containing model to be exported.

2. User requests code generation, tool presents a dialogue containing a list of the

types of code generation possible.

3. User selects type of code generation, tool presents list of possible target plat-

forms for that type.

4. User selects target platform, tool presents supplementary questions for that

platform.

5. User answers supplementary questions, tool requests a location to store the

generated code.

6. User provides filename and initiates code generation, tool generates code and

saves at required location.

8.2.6 Implementing a new Redundancy Analysis Algorithm

Any tool cannot hope to provide repair algorithms ideal for all devices, and particu-

larly new devices; therefore the tool must provide a means for the user to add new

 Verigy Confidential -- Verigy Confidential --

8.2. Users and Use Cases 127

redundancy analysis algorithms. The new algorithms could be created by the user,

or distributed in the same manor as the tool.

Use Model: Importing a new algorithm

The simplest channel for the distribution of new redundancy analysis algorithms is

the provision of a package to be imported into the tool. This package should provide

all the necessary information for the tool to generate new redundancy algorithms.

1. User selects import new algorithm from menus, tool presents file chooser dia-

gram.

2. User selects provided algorithm package, imports package and updates avail-

able redundancy analysis algorithms..

Use Model: Creating a new algorithm

If the end user can create repair algorithms without the involvement of the tool

provider then there is no need for the user to share any intellectual property with

the tool provider.

The following use case assumes that the user is familiar with the device to be repaired,

and that they have a model of the device available.

1. User selects create new code option from menus, tool presents new project

dialogue.

2. User names new project, tool creates project in workspace.

3. User creates template for repair algorithm, saves in workspace.

4. User creates code describing redundancy analysis algorithm, using API pro-

vided by tool.

5. Tool provides wizard to aid creation of distributable package.

 Verigy Confidential -- Verigy Confidential --

8.2. Users and Use Cases 128

8.2.7 Requirements

The use models developed and the pre-existing environmental constraints are com-

bined to for a set of requirements that the developed tool must satisfy; these require-

ments are:

Eclipse Integration The tool developed should integrate with both the Verigy

eclipse environment, and the eclipse framework in general. Particularly, the

tool should make use of the standard eclipse components for interaction with

the user - menus, file location and save as dialogues. The eclipse framework also

provides a set of file types and a project infrastructure; new file types defined

by the tool must be integrated with the file creation and project menus.

Graphical Editors The tool should provide editors for all three model represen-

tations, text models, layout models and graphical models. The layout model

editor and the graphical model editor should provide an adjustable magnifica-

tion function (or “zoom”) and an editor component to set all properties for

each element not represented in the graphical view.

The graphical model editor should implement all parts of the graphical mod-

elling language, particularly the abstract models used to control the complexity

present in large designs.

Model Import and Export To allow interaction between this tool and others

there must be a defined format and a mechanism for the tool to import and

export models.

Extensible As memory devices develop, and new redundancy analysis algorithms

are developed the tool must adapt to stay relevant. This adaptation can be by

the distribution of pre-packaged redundancy analysis algorithms or by allowing

the user to create their own redundancy analysis algorithms.

Syntax and Semantic Checking As the graphical modelling language has ambi-

guities the tool must provide syntax and semantic checking. The tool should

provide graphical feedback to the user, both in the graphical view and in the

 Verigy Confidential -- Verigy Confidential --

8.3. Implementation 129

element properties.

8.3 Implementation

A prototype tool has been developed implementing many of the requirements de-

tailed in the previous section. The prototype is distributed as a plug-in for the

eclipse environment and allows a user to create graphical models, import and export

those models, and generate redundancy analysis algorithms and tester configuration

files.

This section will describe the architecture of the tool and detail interesting points

from the implementation, explaining the techniques used and suggesting improve-

ments.

8.3.1 Architecture

The components of the tool can be split into several logical groups: those that

interact with the user: the graphical and layout editors for example, those which

manipulate the internal model of a DRAM device, and those which create output

from the internal model: code generation and model export, as shown in figure 8.3.

Controller

Layout
Editor

Code
Editor

Graphical
Model
Editor

Library
Block
Editor

Text
Model
Editor

Bitmap
Gener-
ation

Text
Model
Export

Partition
Algo-
rithms

Code
Gener-
ation

Algorithm
Gener-
ation

Simulator
Plugin
Frame-
work

Editor Components

Figure 8.3: High level tool architecture block diagram.

 Verigy Confidential -- Verigy Confidential --

8.3. Implementation 130

8.3.2 Interface components

The graphical editor framework (GEF) provides libraries to create graphical editors

and several examples. The graphical model editor and the layout model editor

have been developed from the example editors provided wit the GEF. The editor

manipulates a set of objects representing those drawn on screen; these objects are

later translated into objects representing mathematical model elements. A set of

hooks are provided to allow the syntax and semantic checker to graphically highlight

model elements for which there are syntax or semantic errors, showing the cause of

the error or errors in the element’s tooltip.

As in the GEF examples the graphical editors present the user with several windows

which should be familiar from other graphical editors: the main editor window, a

palette of available model elements, a browser displaying all elements in the current

model and a properties window for the selected element. The editor implements

abstract model nodes (section 5.7) as a graphical model node having a filename

property, on selection of the this node the editor opens a new window editing that

file. When building the mathematical model graph, the editor simply imports nodes

from that file.

Editors for both generated code and the text model representation are simple text

editors and may take advantage of the built in eclipse text editor component.

The eclipse architecture allows plug-ins to ask the current eclipse workbench to

present a dialogue to the user. The tool developed uses the save and load file

dialogues (provided by the workbench) to interact with the user and the current

project.

When the user chooses to add a new file to an eclipse project they are presented

with a dialogue to select the file type and a plug-in may contribute to this list: the

tool adds file types for graphical and layout models of memory devices. Selecting

one of these new options behaves as do all other file creation options: presenting

the user first with a dialogue to select the file location and finally presenting the

appropriate (empty) editor window.

 Verigy Confidential -- Verigy Confidential --

8.3. Implementation 131

Eclipse plug-ins may add additional functions to the workspace tool-bar: the tool

developed adds buttons for the import and export of the text model language to the

current editor and also for the initiation of syntax and semantic checking and code

generation.

When the user requests code generation the tool requires a number of items of sup-

plementary information. Initially the tool presents a list of supported architectures

from which the user may select any combination. The tool then presents a list of

algorithms which it can generate for all selected target architectures, again the user

may select any combination.

For each algorithm and for each architecture the tool prompts for a file location,

suggesting sensible defaults in the current project. After the input of all supplemen-

tary information the tool generates the requested code, storing the output in the

files specified by the user, and presents the generated code in new editor windows.

8.3.3 Text Model Import

Importing a set of model objects from a file in the text model format requires that

the tool parse the file and create objects matching the description given. This

process is common to many computing tools, e.g. the front end of any compiler

must parse the input files and create an abstract syntax tree. As parsing and object

tree creation is such a common problem many techniques and libraries exist. One

such is runcc1 which, given a grammar describing the input format, can create both

parser and lexer for the language described.

Many other parser generators exist for the Java programming language: JavaCC

and ANTLR are possibly the best known, but runcc was chosen due to it’s small

size and good documentation.

The grammar used for parser generation is exactly that shown in the text modelling

language chapter (figure 6.1).

1http://runcc.sourceforge.net/

http://runcc.sourceforge.net/

 Verigy Confidential -- Verigy Confidential --

8.3. Implementation 132

8.3.4 Model Objects

The objects generated by the graphical editors and the text model parser are split

into types: those that represent memory cells (“block” objects) and those that

represent the uses (and restrictions) of memory cells (“connection” objects). Object

inheritance is used to create a simple hierarchical representation of the mathematical

model.

Abstract models created in the graphical model editor are not represented in the

internal mathematical model, the sub-graphs represented by the abstract model

node are expanded and the objects are added to the mathematical model.

Each model object has a method to create the text model representation: the text

model can be created by iterating over all model objects and concatenating the text

model strings.

8.3.5 Model Functions

Having defined an object representation of the mathematical model it is now possible

to implement many of the functions in the mathematical modelling chapter (5).

Identification of independent graphs within the model allows improvements to be

made during code generation. Identification of independent graphs is implemented

as an iterative process, considering each node, collecting nodes with common edges

(placements or constraints). Independent trees are stored as a list of the names of

the nodes (memory or redundancy blocks) in the tree.

Calculating the coverage of a placement requires that the expression of that place-

ment be interpreted. In the current implementation the tool lazily evaluates place-

ment expressions to a set of allowed placement coordinates. An alternative approach

whereby a placement is tested against the possible placement expression seems more

efficient, but pre-calculating placement coordinates allows very fast set operations

on possible placements, and therefore reduces the complexity of coverage calcula-

tion. The total coverage of a redundant element is then simply the union of the sets

 Verigy Confidential -- Verigy Confidential --

8.4. Releases 133

of coordinates generated. Further, the compatibility region of two or more redun-

dant elements can be defined as the intersection of the sets of their coverage, again

implemented as a fast set operation.

8.3.6 Code generation

Each algorithm may require a number of templates, and dedicated code describing

the template parameters as described in chapter 7. To provide a consistent interface

between algorithms the base class Algorithm is provided, which each implemented

algorithm must extend; the constructor for each class is provided with a list of

the mathematical model objects and a set of pre-written methods operating on the

model are available, for example the region optimisation described in 7.3.1.

One algorithm may use many templates each of which must be described by code

extending the Template class. This template class provides a number of methods

responsible for building an internal representation of the template (which may be

supplied from a file or from a string), for populating the template parameters and

for combining those parameters with the stored template.

A final class Builder is used to translate the language and algorithm selections

made by the user into the correct algorithm class. The Builder class also provides

methods to execute the specified algorithm, and to collect the generated code.

8.4 Releases

Two versions of the tool have been produced, an initial or alpha release as a simple

proof of concept, and second or beta release with many working features. The table

below (8.1) lists the architecture components from detailed previously and comments

upon their state in each of the two releases.

 Verigy Confidential -- Verigy Confidential --

8.5. Examples 134

Component
Release

Notes
Alpha Beta

Library Block Editor ◦ • Uses the eclipse text editor
Code Editor ◦ • Uses the eclipse text editor
GML Editor • •

Plug-in Framework ◦ •
Text Model Import/Export ◦ •

Syntax and Semantic Checking • • Partial support in alpha.
Partitioning Algorithms • • Partial support in alpha.
Algorithm Generation • • Partial support in alpha and beta.

Code Generation • • Partial support in alpha.
Simulator ◦ ◦

Bitmap Generator • • Implemented separately, see chap-
ter 3

Table 8.1: Tool release details, showing the components implemented in both alpha
and beta releases.

8.5 Examples

This section will illustrate the modelling of a new device, from creating the model

to an exporting the text model and generating code. The figures are screenshots

taken from a running tool and are presented in narrative order.

As with any eclipse tool the user must first create a project within the workspace

— named “Example” in these figures. Having created the project the user may

choose the type of a new file to be added to the project: figure 8.4 illustrates the

relevant choices. Having selected the relevant file type the user is prompted for the

file location; see figure 8.5.

The graphical model editor is automatically invoked, and the user adds nodes rep-

resenting memory and redundancy in the device and edges representing the uses of

those nodes. Selecting a node or edge presents an editable list of the properties of

that object; node names are generated automatically (but may be changed) and the

user must manually edit other relevant values. Figure 8.6 shows the graphical model

editor during model creation, with the properties window open below.

During model creation it is highly likely that the user will make mistakes, many

of these mistakes can be corrected with the aid of syntax and semantic checking.

 Verigy Confidential -- Verigy Confidential --

8.6. Conclusions 135

Figure 8.7 shows the graphical model editor highlighting two nodes with errors and

with a tooltip containing the error message.

Figure 8.8 shows the graphical model editor modelling a more complex device. Rep-

resenting a realistically large device would require either a very large editor window,

or loss of detail (through scrolling or zoom).

Abstract model nodes represent sub-graphs in the graphical model, and act as an

hierarchical abstraction barrier; figure 8.9 shows the complex graphical graphical

model from the previous figure reduced by the use of abstract models. In figure 8.10

the user is editing of an abstract model in another graphical model editor tab; the

node marked “L” represents the link into the abstract model.

The graphical model does not represent the physical properties of the device — nei-

ther location nor size of memory or redundancy elements. The layout representation

of the model developed in the previous figures can be seen in figure 8.11. Alterna-

tively the user may wish to edit, or export, the text model: figure 8.12 shows the

eclipse text editor open on the text model generated from the previous graphical

model.

Once satisfied with the model the user may generate code or configuration files. The

tool will prompt the user to select the target platform, and then the type of code

generation required. Figure 8.13 shows a typical tester configuration file generated

from the model.

8.6 Conclusions

This chapter has illustrated the development of a tool implementing ideas from the

previous chapters: providing graphical, editable, models of DRAM and capable of

generating repair code and configuration for a specific device from that model.

The pre-existing requirements for the tool, and the use models developed, have been

analysed to create a set of requirements that the tool should implement. The proto-

type implements many of these requirements: eclipse integration, graphical DRAM

 Verigy Confidential -- Verigy Confidential --

8.7. Further work 136

model editing, model import and export, and syntax and semantic checking; as

well as the core requirements of model and code generation. The tool has imple-

mented the novel ideas and algorithms described in the previous chapters; the novel

graphical and textual models are supported as is the novel code generation scheme.

The tool developed here compares well to the state of the art graphical tools used

in other fields — a flexible graphical interface is provided with feedback generated

as the user interacts with the model. This graphical model is used to generate

redundancy analysis code (additional input from the user is required to select the

algorithms to be generated). The tool is more flexible than those currently used in

the generation of DRAM repair code.

The editor used to create the graphical model provides syntax and semantic checking

of the model. The tool also allows import and export of the text modelling language

described previously, and presents an alternative view of the model based on it’s

physical layout.

8.7 Further work

The tool developed here is only a prototype. The features implemented are the

minimum set required to show a proof of concept. A commercially viable tool would

require support for many more repair algorithms and much work on the interface.

There is potential for a tool such as this to become a complete DRAM redundancy

analysis workbench; using the yield model developed in chapter 3 and a simulator for

repair algorithms [HLYW07] the tool could, given a model, create a design, profile

that design over a range of yields, and select the optimum repair algorithm.

A further improvement would be the addition of automated model generation from

DRAM designs: parsing a Verilog design and evaluating the possible values of each

fusebox and the effects of each combination of values on the placement of redundant

elements would allow the tool to create an accurate mathematical representation

of the device, and therefore allow the generation of a redundancy analysis solution

 Verigy Confidential -- Verigy Confidential --

8.7. Further work 137

almost without input from the user.

 Verigy Confidential -- Verigy Confidential --

8.7. Further work 138

Figure 8.4: Selecting the type of a new model.

Figure 8.5: Creating a new Graphical Model in the current project.

 Verigy Confidential -- Verigy Confidential --

8.7. Further work 139

Figure 8.6: The Graphical Model Editor showing the beginning of a graphical model.

Figure 8.7: The Graphical Model Editor highlighting a node with a syntax error.

 Verigy Confidential -- Verigy Confidential --

8.7. Further work 140

Figure 8.8: The Graphical Model Editor showing a small device with four banks,
and one shared redundant element.

 Verigy Confidential -- Verigy Confidential --

8.7. Further work 141

Figure 8.9: The graphical model editor showing the reduction of a design by the use
of abstract models. The model shown is that of figure 8.8.

 Verigy Confidential -- Verigy Confidential --

8.7. Further work 142

Figure 8.10: The graphical model editor showing the contents of one abstract model
node in figure 8.9.

 Verigy Confidential -- Verigy Confidential --

8.7. Further work 143

Figure 8.11: The Layout Editor displaying the model from figure 8.8.

Figure 8.12: The Text Model Editor displaying the model from figure 8.8.

 Verigy Confidential -- Verigy Confidential --

8.7. Further work 144

Figure 8.13: The Eclipse text editor showing the configuration file generated from
the model of figure 8.8.

 Verigy Confidential -- Verigy Confidential --

Chapter 9

Experiments

9.1 Introduction

To show the efficacy of the tool developed in the previous chapters it is necessary

to model a device and to generate suitable code to repair that device. Having

generated code to repair a device it is necessary to show that the code generated

is correct, and performs as expected. To know the expected performance of the

generated code there must a definitive implementation of the algorithms considered,

or detailed analysis of the steps taken by an algorithm to arrive at a solution for a

particular set of failures.

Many approaches exist for the comparison of different repair algorithms; e.g. anal-

ysis of their computational complexity, empirical analysis of their results, or the

consumption diagrams used in [SVZ01], but techniques for the comparison of two

implementations of a single algorithm (or set of algorithms) are less common.

A possible technique to compare two repair algorithm implementations would com-

pare the repairs made by each to a known failure bitmap of a known device. Identical

implementations should, assuming the algorithm is deterministic, give an identical

set of repairs. Under these conditions two different perfect repair algorithms are

likely to give the same set of repairs, as each must select the optimum solution. So

to show that two implementations are in fact the same algorithm the details of how

145

 Verigy Confidential -- Verigy Confidential --

9.2. Comparing Repair Algorithms 146

each implementation arrives at the solution must be examined.

To compare the code generated by the tool with a known implementation of a

common repair algorithm an example may be selected from the literature. This

example should provide not only the algorithm, but also an example device, with

failure data, and the results given by the repair algorithm when applied to that

failure data. The example given by Kuo and Fuchs [KF86], in figure 8 “Final

analysis example.” meets all these criteria, and the accompanying text provides

details of the algorithm’s execution.

This chapter will first examine potential methods for the comparison of repair algo-

rithm implementations, and then briefly describe the process required to model an

example device taken from literature and to generate a repair algorithm implemen-

tation from that device. The code generated will then be executed and the results

(and execution details) compared against a known example.

9.2 Comparing Repair Algorithms

As discussed above there are many methods to compare different repair algorithms;

most common are the time taken and redundant elements used to repair certain

failure bitmaps [HR89], though neither metric can show that two implementations

are of the same algorithm. A comparison of the computational complexity is an

often used technique, but clearly unable to differentiate between implementations

of the same algorithm.

Shoukourian et al [SVZ01] make an analysis of the order in which redundant ele-

ments are used during the execution of a repair algorithm in order to compare two

or more algorithms, but their approach using consumption diagrams can be applied

to implementations of a specific algorithm. If two algorithms are deterministic and

identical then the order in which they allocate redundant elements to cover a given

failure map should also be identical.

These methods of analysis obviously depend upon the device and the pattern of

 Verigy Confidential -- Verigy Confidential --

9.3. Apparatus 147

failures being identical, but less obviously upon the order in which those faults are

read from the bitmap. If, for example, a perfect repair algorithm is used to repair a

device twice, once with the fault serialisation made in row-major order, and once in

column-major order, the final set of repairs will be identical (as is guaranteed for a

perfect algorithm) but the choices made to arrive at this result may differ.

If comparison of the execution path is to be used to compare implementations of

individual algorithms then all variables must be controlled, and not only must the

device and failures be identical, but the method in which they are accessed must

also be identical.

9.3 Apparatus

In order to test the generated code an example must be selected from the literature

against which to test. The example given in figure eight of Kuo and Fuchs [KF86]

has been chosen because the repair functions employed, must repair followed by

branch and bound repair, are typical and because the detailed description of the

execution allow accurate comparison to other implementations.

To compare the execution of the generated code with this detailed description there

must be some mechanism to examine the execution path of the generated algorithm.

The addition of instrumentation to the generated algorithm can record the decisions

made during execution, the values of key data structures, and the flow data within

the algorithm.

The data provided by Kuo and Fuchs shows the repairs made after must repair, and

each further solution record generated during the execution of the branch and bound

algorithm. The score of each record, and the parent of each record are shown in

figure eight of Kuo and Fuchs, and the path taken through the generated solutions

records described in the accompanying text.

To record the same information about the execution of the generated code it is nec-

essary to add some instrumentation. Each solution record (apart from the initial

 Verigy Confidential -- Verigy Confidential --

9.3. Apparatus 148

empty record) is created by modification of another solution record; if each solu-

tion record is assigned a unique identifier then simply recording that identifier, the

identifier of the parent record, and the repairs encoded by that solution record it

is possible to recover all the information Kuo and Fuchs provide to describe their

implementation. This instrumentation has been added to the generated code man-

ually.

To allow comparisons between the published implementation and the generated code

the device upon which the generated code performs repairs must be identical to that

used in the literature. The device shown in figure 9.1 replicates exactly, in both

layout and failure locations, that used by Kuo and Fuchs and will be used as the

input for the generated repair code.

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

M1 R2
3

R1
3

(a) Layout Diagram, showing failures.

M1

R1

R2

(b) Graphical Model

Figure 9.1: Example device and failure map taken from Kuo and Fuchs [KF86] in
figure 8a. The layout and failures are shown in part (a) and the graphical model of
the device in part (b).

The order in which failed cells are accessed from the failure bitmap will not effect

the result given by the perfect algorithm developed in Kuo and Fuchs, but will effect

the process by which the algorithm arrives at that solution. As the process is of

particular interest when comparing implementations of the algorithm it is important

that the failures are read in the same order during execution of both algorithms. Kuo

and Fuchs describe the process by which their algorithm operates and it is clear that

the failures are read in a row-major order therefore the framework for testing the

 Verigy Confidential -- Verigy Confidential --

9.3. Apparatus 149

generated implementation also takes failures in row-major order.

The branch and bound algorithm requires a scoring function to provide a metric upon

which solutions can be compared. The precise algorithm of the scoring function is

not a part of the repair algorithm definition but clearly will affect the final solution.

The generated code uses an identical scoring function to that of Kuo and Fuchs’

example, and is shown in equation 9.1 where NR represents the number of rows

used in the solution and NC the number of columns.

Score = 8 × NR + 15 × NC (9.1)

To allow a comparison between implementations the techniques described in the

previous section will be employed. The first method will simply compare the final

solution generated by each implementation; if the final solutions are identical then

the algorithms will be considered identical by that method. The second method will

use consumption diagrams to compare the order in which redundant elements are

used to build the final solution, again if the two consumption diagrams are identical

the implementations will also be considered identical by this method.

The final method of comparison will be the creation of a diagram describing the

solution records generated, their scores, and the choices made to arrive at those

solutions (i.e. which solution record was at the head of the queue during the repair

of each new fault). Though results given by the first and second methods are also

shown by the third they are included here as they provide both a rapid assessment

technique for failing implementations and are an aid to understanding the more

complex third tecnique.

The techniques and processes used to generate code from a device description have

previously been described in chapter 8, but in outline the keys steps are: to describe

the device to the tool using the text or graphical models, to instruct the tool to

generate code selecting the options for target (“ATE”), and the required algorithms

(including “model” and “region generation”). The generated files containing code

in the C language can be combined with those from the framework provided by the

 Verigy Confidential -- Verigy Confidential --

9.4. Results 150

tool and an executable be built.

9.4 Results

The text model description of the device from figure 9.1 as generated by the tool

is shown in appendix B, section B.18. Appendix B also contains the generated

programmatic representation of the device in section B.5, the generated region based

redundancy lookup function in section B.10 and all the supporting code for the

execution and analysis of the must repair and branch and bound algorithms.

Figure 9.2 shows the repairs made by Kuo and Fuchs’ algorithm (9.2a) and those

made by the generated code (9.2b) to the device shown in figure 9.1.

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(a) Repairs made by Kuo and Fuchs’
implementation.

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(b) Repairs made by generated
code.

Figure 9.2: Repairs made by the two implementations to the example of figure 9.1;
rows and columns repaired are shown shaded.

Clearly both implementations make the same repairs and are considered identical

by this method. The second method requires the comparison of consumption dia-

grams representing the use of redundant elements by each implementation. Figure

9.3 shows consumption diagrams for both Kuo and Fuchs’ implementation and the

generated code.

In these consumption diagrams the each node represents a set of possible solutions,

the number pairs are the amounts of redundant elements remaining (R1, R2). Edges

are added as the algorithm moves between solution records recording the decisions

 Verigy Confidential -- Verigy Confidential --

9.4. Results 151

3, 3

3, 2 2, 3

3, 1 2, 2 1, 3

3, 0 2, 1 1, 2 0, 3

2, 0 1, 1 0, 2

1, 0 0, 1

0, 0

3, 3

1, 2

2, 2

2, 1

0, 2

(a) Consumption diagram for Kuo and Fuchs’ im-
plementation.

3, 3

3, 2 2, 3

3, 1 2, 2 1, 3

3, 0 2, 1 1, 2 0, 3

2, 0 1, 1 0, 2

1, 0 0, 1

0, 0

3, 3

1, 2

2, 2

2, 1

0, 2

(b) Consumption diagram for generated imple-
mentation.

Figure 9.3: Consumption diagrams representing the allocation of redundant ele-
ments in each implementation. The numbered nodes represent the number of spare
elements remaining for R1 and R2 respectively, nodes in black were visited in the
order shown by the black arrows, nodes in grey were possible but not visited.

 Verigy Confidential -- Verigy Confidential --

9.4. Results 152

made. (Note that one node can represent many possible solutions.)

The consumption diagrams in figure 9.3 follow a similar pattern, the edge from node

3, 3 to 2, 2 indicating the use of one spare row and one space column represents

the initial must repair calculation; the second edge in both diagrams represents the

allocation of another spare row. The third edge shows a transition between between

two solution records both using the same number, and same type of redundant

elements. The remaining nodes and edges can be read in the same fashion.

The final edge in figure 9.3a (Kuo and Fuchs’ implementation) from node 0, 2 to 0, 2,

does not feature in the diagram representing the generated code (figure 9.3b). As

this edge doesn’t require a change in solution record (it returns to the source node)

it is possible that there will be no effect upon the final solution but the consumption

diagram can neither prove or disprove the hypothesis that the solutions are the

same.

All the information contained in the repair maps (figure 9.2) and in the consumption

diagrams (figure 9.3) is also contained in the execution flow diagrams presented in

figure 9.4. These diagrams show, for each solution record, the placements of the

redundant elements used, the score of that solution, and the parent solution record

from which this solution was derived.

At first examination there are obvious differences between the execution graphs of

figure 9.4: there are clearly fewer nodes in the graph of the generated implementation

(figure 9.4b). This reduction in the number of solution records recorded has two

causes: when considering a new fault the generated code checks that fault against

the coverage of the current solution, and if it is covered no action is taken (that

is the queue is left untouched and the next fault considered). In such a case the

execution diagram will show the solution record being visited but no children will

be expanded, as can be seen in figure 9.4b with the two nodes of score 31.

In the execution flow of Kuo and Fuchs’ implementation (figure 9.4a) a node of score

39 is expanded to an identical node of score 39, the final solution, and a node of

score 54. The generated code does not expand this node as it recognises that the

 Verigy Confidential -- Verigy Confidential --

9.5. Conclusions 153

original solution of score 39 covers all faults, and that the queue of faults is empty,

and terminates the search.

Allowing for the differences just explained it can be seen that both implementations

generate the same solution records, and make the same choices; that is they visit

the same solution records in the same order to repair the same faults.

9.5 Conclusions

The aim of the experiments in this chapter is to show that the repair code generated

by the tool discussed in previous chapters is functionally identical to a reference

implementation. The reference implementation was chosen to be that presented by

Kuo and Fuchs [KF86] as the algorithms used are well known, and the process of

the algorithm well documented.

To compare implementations of repair algorithms it is not sufficient to simply ex-

amine the code generated. By examining instead the of the execution of two imple-

mentations upon a known device, with known failure data, the process by which the

implementations arrive at their final solutions can be compared.

Three methods of comparison have been proposed: an examination of the final so-

lutions generated for a known bitmap; examination, by means of the consumption

diagrams discussed in Shoukourian et al [SVZ01], of the allocation of redundant

elements during execution of the algorithm; and finally the examination of all so-

lution records computed, and the order in which they are considered by the two

implementations.

To make use of the extensive execution descriptions provided by Kuo and Fuchs the

device used for these experiments is identical to the one presented in their paper, a

single memory bock of ten by ten cells with three each redundant rows and columns;

the positions of the failures are also identical. Consumption and execution flow

diagrams has been constructed for the reference implementation by analysis of the

information provided by Kuo and Fuchs; those for the generated implementation

 Verigy Confidential -- Verigy Confidential --

9.5. Conclusions 154

were constructed from information provided by instrumentation of the generated

code.

Using the comparison tools developed it has been shown that, although there are

minor differences, the generated implementation performs identically to the refer-

ence.

 Verigy Confidential -- Verigy Confidential --

9.5. Conclusions 155

R 3 1 7

C 7 6
Score: 54

R 3

C 8 1 6
Score: 53

R 3 1 7

C 8
Score: 39

R 3 1

C 8 3
Score: 46

R 3 1

C 8 1
Score: 46

R

C
Score: 0

R 3

C 8
Score: 23

R 3 1

C 8
Score: 31

R 3

C 8 1
Score: 38

R 3 1

C 8
Score: 31

R 3 1

C 8 6
Score: 46

R 3 1 7

C 8
Score: 39

(a) Execution diagram for Kuo and Fuchs’ implementation.

Figure 9.4: Diagrams representing the execution flow within each repair algorithm
implementation. Each node represents a solution record generated by the algorithm,
the table shows the placements made in that solution records. Black arrows denote
the parent of each solution record and red arrows the order in which solution records
are chosen by the algorithm.

 Verigy Confidential -- Verigy Confidential --

9.5. Conclusions 156

R 3

C 8 1 6
Score: 53

R 3 1

C 8 1
Score: 46

R1

R2
Score: 0

R1 3

R2 8
Score: 23

R1 3

R2 8 1
Score: 38

R1 3 1

R2 8
Score: 31

R1 3 1

R2 8
Score: 31

R1 3 1

R2 8 3
Score: 46

R1 1 3 7

R2 8
Score: 39

(b) Execution diagram for the generated implementation.

 Verigy Confidential -- Verigy Confidential --

Chapter 10

Conclusions

10.1 Problem Review

The memory capacity, and memory density, of DRAM devices is increasing expo-

nentially, as seen in the International Technology Roadmap for Semiconductors (see

figure 1.3). This increase in density puts increasing pressure on the area available

for the fusebox and the extra logic used to provide redundancy. As a result of the

compromises made under this pressure the logic controlling repair is reduced. The

possible placements of redundant elements may be reduced by the elimination of bits

in the fusebox; dependencies between the placement of redundant elements may be

introduced by the sharing of fusebox bits.

Algorithms which attempt to solve the spare allocation problem must account for all

these limitations to avoid possible yield loss. Currently, these redundancy analysis

algorithms are manually customised for each new device, this manual customisation

is time consuming and prone to error. Many manual solutions omit some or all

of the more complex limitations upon repair and this, combined with the possible

errors made, reduces the overall yield, in turn reducing profit.

An efficient methodology to customise redundancy analysis algorithms to new DRAM

devices would both reduce the man hours required to customise redundancy algo-

rithms for new devices and by correctly representing the complexity and removing

157

 Verigy Confidential -- Verigy Confidential --

10.2. Objectives 158

a source of human error increase the yield after repair.

10.2 Objectives

The development of a tool capable of automatically generating redundancy analysis

code customised for specific devices would remove from the engineer the task of

manually customising these algorithms, and providing the tool properly handles the

complexity of the spare allocation problem, increase the overall yield.

From this single objective, a tool to automatically generate customised redundancy

analysis, several other objectives can be derived. To generate customised repair

algorithms the tool must be able to accurately describe the redundancy structures

within that device; and the user must be able to describe the device to the tool. The

development of a mathematical model of DRAM allows the tool to manipulate the

device and divide the spare allocation problem firstly into independent problems,

and secondly to manage the complexity in hierarchical devices.

A method must be provided for the user to describe the model to the tool, this

input may be from the user directly, but allowing the input from other tools is

equally important. A text representation of the mathematical model allows data

exchange between tools and possible, but non-intuitive and cumbersome manual

model description. The provision of a graphical language describing the redundancy

structures allows the development of a graphical editor for these models, and simple

intuitive user input.

Having parsed and manipulated the model the tool must then customise redun-

dancy analysis algorithms using that model description. These redundancy analysis

algorithms may be modified to simplify these customisations. These customised

redundancy analysis algorithms must then be used to generate repair code for a

specific device that when compiled may be executed.

A tool able to generate customised repair code for specific DRAM devices required a

mathematical representation of DRAM redundancy and a means for the user to de-

 Verigy Confidential -- Verigy Confidential --

10.3. Achievements 159

scribe that model; given this model, and customised redundancy analysis algorithms,

the tool must generate repair code.

10.3 Achievements

Having detailed specific objectives that must be met to develop a tool capable of

generating customised repair code for DRAM devices this section will describe the

progress made towards those objectives. The progress made will be described in two

sections, the novel theoretical concepts developed and the practical implementation

used to test those ideas, in each section comparisons will be drawn between this

work and the state of the art discussed in previous sections.

10.3.1 Concepts

A key component in any computer aided design system is the model representing

the problem [Sch06], unlike other models of DRAM previously reviewed [TAM+08,

WGT+05] the model developed here need only represent the possible uses and in-

terdependencies of redundancy structures in a device. The model developed here

includes memory elements, sets of memory cells, and redundant elements, sets of

memory cells capable of repair. The model element possible placement describes

the possible use of a redundant element to repair a memory element, including

an boolean valued expression restricting the addresses at which repairs may be

made. The constraint element represents the dependencies between two redundant

elements, placement is only possible if the boolean valued constraint expression

evaluates to true. The development of the model has been driven by analysis of

the fundamental design of DRAM devices and the translation of these fundamental

concepts into the high level model elements.

As the model is build after analysis of the low level address remapping structures

in a device and attempts to represent all the possible uses of and interdependences

between redundant resources the model is much more flexible than those commonly

 Verigy Confidential -- Verigy Confidential --

10.3. Achievements 160

found, for example that used in the DRAM Bist tool [SHZL01], MRA tool [mra01],

and particularly that of Raisin [HLYW07] which represents only a limited number

of shared redundant elements repairing in a small number of memories.

Based upon the mathematical model a graphical, and graph based, model can easily

be developed. Memory and redundant elements are represented as nodes in the

graph, constraints and placements form edges between the nodes arrowheads denote

the direction of placements, and either a crossbar or a dashed line shows a place-

ment. Annotations provide extra detail: nodes are marked according to their type,

constraint and placement expressions are written on the edges.

A further node, the abstract model, has no representation in the mathematical model

and simply allows the encapsulation of sub-models introducing abstraction barriers

and allowing the user to better handle the large hierarchical devices common today.

Having developed the model of redundancy structures a number of functions can be

defined using these model elements. The coverage of a redundant element computes

the set of memory cells repaired by that redundant element; redundant elements are

said to be compatible if their coverages intersect, and orthogonal if not.

The graph nature of the model allows easy identification of spare allocation problems

which may be solved independently (and therefore in parallel): two sets of nodes

having no constraints or placements between them have no interdependences, and

may be solved separately. Methods for partitioning hierarchical repair problems

have also been developed.

Standard redundancy analysis algorithms can be modified to ease their customisa-

tion using the redundancy model developed. The addition of a customised function

providing, given a coordinate in a memory, the redundant elements having coverage

of that coordinate (or range of coordinates). The lookup table for this function can

be compiled before execution of the repair algorithm, removing the need for a time

consuming search during redundancy analysis. A similar per-device function can be

developed to test the satisfaction of all constraint expressions for a given solution

quickly.

 Verigy Confidential -- Verigy Confidential --

10.3. Achievements 161

Having developed techniques to customise standard redundancy analysis algorithms

these algorithms must then be translated into repair code. The templating scheme

developed allows the simple customisation of repair algorithms using information

derived from the model.

10.3.2 Implementation

The previous section gave an overview of the concepts developed to automatically

generate customised redundancy analysis code for specific DRAM devices, this sec-

tion will give an overview of the implementation of those ideas in the prototype

tool.

The tool provides three model input methods: import from the text based model

representation, and two graphical editors accepting a layout based model and the

graphical model described previously. As suggested by Savoiu et al [SHG+01] feed-

back is provided to user during interactive model construction highlighting syntax

and semantic errors in the graphical model and providing error messages.

From either of these graphical editors the user may check the model syntax, import

and export models (in the text language) to interface with other tools and initiate

code generation. On selection of code generation the tool will present the user

with an algorithm selection dialogue, and request a location at which to save the

generated code.

Once the model has been described the tool can begin the manipulations required

to simplfy the spare allocation problem. The prototype implementation identifies

independent problems and treats each separately.

Having identified the smallest problems it is now possible to start the customisa-

tion of redundancy analysis algorithms for those problems. The tool builds the

get red by region function, providing a lookup for the redundant elements capa-

ble of repair at a given coordinate, in a specified memory.

Code generation by population of templates has been implemented in the prototype

 Verigy Confidential -- Verigy Confidential --

10.4. Results 162

tool; all types of template, including generated templates, are used in the generation

of customised repair code.

The current implementation of the prototype tool provides sufficient functionality to

generate most repair, must repair and a branch and bound based technique for many

devices; and editors to providing the full power of the mathematical and graphical

modelling languages developed.

10.4 Results

To allow the analysis and understanding of redundancy analysis algorithms required

by later chapters chapter 3 has described a novel implementation of a variable yield

model developed within Verigy. Using this model chapter 4 shows a detailed com-

parison of several common redundancy analysis algorithms providing the potential

user with a means to select an algorithm suitable for their particular problem.

Representing the complexities and interdependencies constraining the redundant

resources in modern DRAM devices has been made possible by the novel model

developed in chapter 5 which is based upon the limitations imposed on the use

of redundant elements by the programmable fusebox and address remapping logic.

Based on this model a set of novel model functions have been developed, allowing

the high level expression of compatibility between redundant elements. A novel text

based representation of the model has been developed and formally described with

an EBNF grammar.

To aid the user in the construction of models for particular devices a novel graphical

representation of the model has been developed. This model allows quick intu-

itive model construction and manipulation and provides a novel abstraction barrier

to simplify the representation of complex devices. To further aid the user in the

description of DRAM devices a novel set of semantic and syntax rules have been

developed.

Using the model previously developed a novel code generation scheme for redundancy

 Verigy Confidential -- Verigy Confidential --

10.5. Further Work 163

analysis algorithms has been developed. The code generation scheme uses a system

of templates representing algorithms or fragments of code customised with the use

of the mathematical model.

The novel ideas listed above have been brought together in the tool described in

chapter 8. This prototype tool provides a editor for DRAM redundancy structures

using the novel graphical model, and a similar editor using the text model, creating

from either an internal mathematical model of the device. Using this model and the

novel model concepts developed the model can be simplified and partitioned before

being used to customise the redundancy analysis algorithm selected by the user.

Techniques have been developed for modelling the redundant structures in modern

DRAM devices, including their inherent complexity; for manipulating that model

to derive information about the possible use of that redundancy; and for using

that information to customise redundancy analysis algorithms; and finally for the

generation of repair code using a templating scheme.

The prototype, implementing these techniques, meets the requirements for auto-

mated repair code generation: an editor is provided for the graphical model language,

using this model the tool can customise repair algorithms and generate repair code

from those algorithms. The tool developed is only a prototype, many improvements

are required before the tool is capable of use in a commercial setting.

10.5 Further Work

Having described the what has been achieved during the project some avenues for

further work are obvious, particularly the implementation of many more repair al-

gorithms, and better heuristics for dealing with hierarchical devices.

The addition of redundancy analysis algorithm simulation would allow the tool to

automatically select the algorithm best matching the users requirements for a given

device and process parameters (yield after manufacture, required yield and times

available for repair).

 Verigy Confidential -- Verigy Confidential --

10.5. Further Work 164

Such a system would require the simulation of repair algorithms, and their execution

on many example devices. The failure model described previously can be used to

generate sample data at many yields, allowing the user to select the algorithm most

suitable to the current manufacturing problems of their device.

If a language were developed to describe redundancy analysis algorithms then a

more powerful closed loop algorithm generation scheme can be imagined: an initial

algorithm can be tested against a specific device and the results recorded. By use

of a genetic algorithm, or similar technique, the repair algorithm can be iteratively

modified, and improved, yielding a highly customised solution for the specific device

considered.

As the optimum repair algorithm for a specific device can be automatically generated,

then the only user interaction required to begin repair on a new device is to describe

that device using the graphical modelling language.

If the redundancy model could be automatically generated from an existing descrip-

tion of the memory device then even this manual step could be eliminated. During

design and manufacture the device must be described by the designers; if it were

possible to derive the redundancy model from this description then the generation

of the repair code could be completely automated.

A potential method for the extraction of redundancy information from, for example,

a Verilog description of memory would require the recognition, extraction, and sim-

ulation of the addressing logic and fusebox portion of the circuit. For each unique

combination of fusebox bits those bits are set in the fusebox and each input address

written and the coordinates of the addressed cell noted.

Analysis of this mapping, showing the effects of all permutations of fusebox bits, al-

lows the effect of individual bits to be deduced; and therefore the redundant elements

and set of placements and constraints can be derived to create the mathematical

model.

 Verigy Confidential -- Verigy Confidential --

10.6. Closing Remarks 165

10.6 Closing Remarks

This project set out to develop a methodology capable of replacing manual expertise

in customising redundancy analysis algorithms for large complex DRAM devices. To

be successful the methodology must successfully generate code for the repair of such

devices, but unlike manual solutions must correctly represent the complexity in these

devices, and will be less prone to error than these manual solutions.

The methodology developed requires the modelling of the DRAM device in a novel

modelling language. Techniques are proposed for the customisation of common re-

dundancy analysis algorithms using this model, and finally a scheme for translating

this representation into executable code. A prototype graphical tool has been devel-

oped, implementing these ideas.

Improvements to the methodology have been suggested to eliminate completely the

manual interaction currently required when selecting the optimum redundancy anal-

ysis algorithms, and for the automatic generation of the redundancy model.

 Verigy Confidential -- Verigy Confidential --

Appendix A

Template Application

Programming Interface

This appendix describes the public API methods for the template and algorithm

base classes described in chapter 7.

A.1 The Template Class

Each new template created is expected to extend (or sub-class) the “Template” class.

Often the only method the sub-class must implement is the constructor in which it

is expected that the template string will be populated. The API reference is divided

into three tables, basic methods (table A.1), advanced methods (table A.2), and a

final table of alternative methods allowing the use of one template to represent code

in more than one language (tables A.3 and A.4).

166

 Verigy Confidential -- Verigy Confidential --

A.1. The Template Class 167

T
y
p
e

M
e
th

o
d

N
a
m

e
A

rg
u
m

e
n
ts

D
e
sc

ri
p
ti

o
n

T
y
p
e

N
a
m

e
D

e
sc

ri
p
ti

o
n

vo
id

ad
d

va
ri

ab
le

va
lu

e
S
tr

in
g

n
am

e
T

h
e

ke
y

u
n
d
er

w
h
ic

h
th

e

su
p
p
li
ed

va
lu

e
is

st
or

ed
.

A
d
d

a
n
am

ed
va

lu
e

to
th

e

te
m

p
la

te
.

O
b
je

ct
va

lu
e

T
h
e

ob
je

ct
to

b
e

st
or

ed
.

S
tr

in
g

ev
al

u
at

e
N

on
e

R
et

u
rn

th
e

p
op

u
la

te
d

te
m

-

p
la

te
.

vo
id

ad
d

te
m

p
la

te
fr

om
st

ri
n
g

S
tr

in
g

te
x
t

T
h
e

te
x
t

to
u
se

as
a

te
m

-

p
la

te
.

A
d
d

te
m

p
la

te
te

x
t

fr
om

a

st
ri

n
g.

V
ar

ia
b
le

s
ar

e
au

to
-

m
at

ic
al

ly
p
ar

se
d

fr
om

th
e

st
ri

n
g.

T
ab

le
A

.1
:

B
as

ic
M

et
h
o
d
s

of
th

e
T
em

p
la

te
A

P
I.

 Verigy Confidential -- Verigy Confidential --

A.1. The Template Class 168

T
y
p
e

M
e
th

o
d

N
a
m

e
A

rg
u
m

e
n
ts

D
e
sc

ri
p
ti

o
n

T
y
p
e

N
a
m

e
D

e
sc

ri
p
ti

o
n

vo
id

ad
d

te
m

p
la

te
S
tr

in
g

te
x
t

T
h
e

te
x
t
to

b
e

u
se

d
as

a
te

m
-

p
la

te
.

A
d
d

te
m

p
la

te
te

x
t

fr
om

a

st
ri

n
g,

va
ri

ab
le

s
ar

e
n
ot

p
ar

se
d
,
an

d
m

u
st

b
e

su
p
p
li
ed

.

L
is

t
of

S
tr

in
gs

va
ri

ab
le

n
am

es
T

h
e

va
ri

ab
le

s
u
se

d
in

th
e

te
m

p
la

te
st

ri
n
g.

vo
id

ad
d

te
m

p
la

te
fr

om
fi
le

S
tr

in
g

fi
le

n
am

e
S
p
ec

if
y

a
fi
le

b
y

n
am

e.
L
oa

d
te

m
p
la

te
st

ri
n
g

fr
om

a

fi
le

.
V

ar
ia

b
le

s
ar

e
au

to
m

at
i-

ca
ll
y

p
ar

se
d

fr
om

th
e

st
ri

n
g.

vo
id

ad
d

te
m

p
la

te
fr

om
re

so
u
rc

e
S
tr

in
g

re
so

u
rc

e
S
p
ec

if
y

a
re

so
u
rc

e
b
y

n
am

e.
L
oa

d
a

te
m

p
la

te
st

ri
n
g

fr
om

an
ec

li
p
se

re
so

u
rc

e.

V
ar

ia
b
le

s
ar

e
au

to
m

at
ic

al
ly

p
ar

se
d

fr
om

th
e

st
ri

n
g.

T
ab

le
A

.2
:

A
d
va

n
ce

d
M

et
h
o
d
s

of
th

e
T
em

p
la

te
A

P
I.

 Verigy Confidential -- Verigy Confidential --

A.1. The Template Class 169

T
y
p
e

M
e
th

o
d

N
a
m

e
A

rg
u
m

e
n
ts

D
e
sc

ri
p
ti

o
n

T
y
p
e

N
a
m

e
D

e
sc

ri
p
ti

o
n

vo
id

ad
d

va
ri

ab
le

va
lu

e

S
tr

in
g

L
an

gu
ag

e
S
p
ec

if
y

th
e

la
n
gu

ag
e

u
se

d
.

A
d
d

a
n
am

ed
va

lu
e

to
th

e

te
m

p
la

te
.

O
b
je

ct
va

lu
e

T
h
e

ob
je

ct
to

b
e

st
or

ed
.

S
tr

in
g

n
am

e
T

h
e

ke
y

u
n
d
er

w
h
ic

h
th

e

su
p
p
li
ed

va
lu

e
is

st
or

ed
.

S
tr

in
g

ev
al

u
at

e
S
tr

in
g

L
an

gu
ag

e
S
p
ec

if
y

th
e

la
n
gu

ag
e

of
th

e

ge
n
er

at
ed

co
d
e.

R
et

u
rn

th
e

p
op

u
la

te
d

te
m

-

p
la

te
.

vo
id

ad
d

te
m

p
la

te
fr

om
st

ri
n
g

S
tr

in
g

L
an

gu
ag

e
S
p
ec

if
y

th
e

la
n
gu

ag
e

of
th

is

te
m

p
la

te
st

ri
n
g.

A
d
d

te
m

p
la

te
te

x
t

fr
om

a

st
ri

n
g.

V
ar

ia
b
le

s
ar

e

au
to

m
at

ic
al

ly
p
ar

se
d

fr
om

th
e

st
ri

n
g.

S
tr

in
g

te
x
t

T
h
e

te
x
t

to
u
se

as
a

te
m

-

p
la

te
.

T
ab

le
A

.3
:

L
an

gu
ag

e
S
p
ec

ifi
c

M
et

h
o
d
s

of
th

e
T
em

p
la

te
A

P
I.

 Verigy Confidential -- Verigy Confidential --

A.1. The Template Class 170

T
y
p
e

M
e
th

o
d

N
a
m

e
A

rg
u
m

e
n
ts

D
e
sc

ri
p
ti

o
n

T
y
p
e

N
a
m

e
D

e
sc

ri
p
ti

o
n

vo
id

ad
d

te
m

p
la

te
fr

om
re

so
u
rc

e
S
tr

in
g

L
an

gu
ag

e
S
p
ec

if
y

th
e

la
n
gu

ag
e

of
th

is

te
m

p
la

te
st

ri
n
g.

L
oa

d
te

m
p
la

te
te

x
t

an
d

va
ri

ab
le

s
fr

om
an

ec
li
p
se

re
so

u
rc

e.
S
tr

in
g

re
so

u
rc

e
S
p
ec

if
y

a
re

so
u
rc

e
b
y

n
am

e.

vo
id

ad
d

te
m

p
la

te
fr

om
fi
le

S
tr

in
g

L
an

gu
ag

e
S
p
ec

if
y

th
e

la
n
gu

ag
e

of
th

is

te
m

p
la

te
st

ri
n
g.

L
oa

d
te

m
p
la

te
te

x
t

an
d

va
ri

ab
le

s
fr

om
a

fi
le

.

S
tr

in
g

fi
le

n
am

e
S
p
ec

if
y

a
fi
le

n
am

e.

T
ab

le
A

.4
:

L
an

gu
ag

e
S
p
ec

ifi
c

M
et

h
o
d
s

of
th

e
T
em

p
la

te
A

P
I

(c
on

ti
n
u
ed

).

 Verigy Confidential -- Verigy Confidential --

A.2. The Algorithm Class 171

A.2 The Algorithm Class

The algorithm class is designed to be extended by each implementation of each

algorithm. The implementation is expected to manipulate several data structures:

the private class variables “Languages” and “output”, and is expected to use the

constructor to parse the model and perform any necessary computation.

Table A.6 details the two public methods of the algorithm class, and table A.5 the

private class variables.

Name Type Description

Languages List of Strings A list of languages for which this

algorithm can generate code.

Variables Hash Table (keys and values are

strings)

For each language supported the

class must populate this hash ta-

ble with the generated code.

Table A.5: Variables of the Algorithm Class.

 Verigy Confidential -- Verigy Confidential --

A.2. The Algorithm Class 172

T
y
p
e

M
e
th

o
d

N
a
m

e
A

rg
u
m

e
n
ts

D
e
sc

ri
p
ti

o
n

T
y
p
e

N
a
m

e
D

e
sc

ri
p
ti

o
n

L
is

t
of

S
tr

in
gs

ge
t

la
n
gu

ag
es

N
on

e
R

et
u
rn

a
li
st

of
la

n
gu

ag
es

su
p
p
or

te
d

b
y

th
is

al
go

-

ri
th

m
.

S
tr

in
g

ev
al

u
at

e
S
tr

in
g

L
an

gu
ag

e
S
p
ec

if
y

th
e

la
n
gu

ag
e

of
th

e

re
tu

rn
ed

co
d
e.

R
et

u
rn

co
d
e

ge
n
er

at
ed

b
y

th
is

al
go

ri
th

m
.

T
ab

le
A

.6
:

M
et

h
o
d
s

of
th

e
A

lg
or

it
h
m

C
la

ss
.

 Verigy Confidential -- Verigy Confidential --

Appendix B

Supporting Source Code

B.1 File: bitmap.c

/∗ vim : s e t expandtab ∗/
#include <pam. h>
#include <s t d l i b . h>
#include <s t r i n g . h>
#include <a s s e r t . h>
#include ” s t r u c t u r e s . h”
#include ”model . h”
#include ” u t i l s . h”

#define CELL FAILED(x) (x [0] == 0 && x [1] == 0 && x [2] == 0)

/∗ Read a pgm f i l e a t f i l ename and f o r any p i x e l matching
∗ CELL FAILED add i t to the l i s t f a u l t s .
∗
∗ L i s t f a u l t s i s expec ted to be an unused po in t e r and w i l l
∗ be a l l o c a t e d at the co r r e c t s i z e by t h i s f unc t i on . The
∗ number o f e lements in the l i s t i s the re turn va lue o f the
∗ f unc t i on .
∗
∗ The c a l l e r i s r e qu i r ed to f r e e the l i s t f a u l t s .
∗/

int l o ad f au l t s f r om b i tmap (char ∗ f i l ename ,
Coordinate ∗ f a u l t s [])

{
tup l e ∗ tuplerow ;
struct pam bitmappam ;
FILE ∗bitmapfp ;
unsigned int row , column ;
int f a u l t c t r = 0 ;
Coordinate ∗ new fau l t s ;

(∗ f a u l t s) = NULL;

bitmapfp = fopen (f i l ename , ” r ”) ;
a s s e r t (bitmapfp != NULL) ;

173

 Verigy Confidential -- Verigy Confidential --

B.1. File: bitmap.c 174

pnm readpaminit (bitmapfp , &bitmappam ,
s izeof (bitmappam . tup l e type)) ;

pm in i t (FILE , 0) ;

tuplerow = pnm allocpamrow(&bitmappam) ;

for (row = 0 ; row < bitmappam . he ight ; row++) {
pnm readpamrow(&bitmappam , tuplerow) ;
for (column = 0 ; column < bitmappam . width ; ++column) {

i f (CELL FAILED(tuplerow [column])) {
f a u l t c t r += 1 ;
new fau l t s = (Coordinate ∗)

r e a l l o c (∗ f a u l t s ,
f a u l t c t r ∗ s izeof (Coordinate)) ;

i f (new fau l t s != NULL) {
∗ f a u l t s = new fau l t s ;

}
(∗ f a u l t s) [f a u l t c t r − 1] . x = column ;
(∗ f a u l t s) [f a u l t c t r − 1] . y = row ;

}
}

}
pnm freepamrow (tuplerow) ;
f c l o s e (bitmapfp) ;

return f a u l t c t r ;
}

/∗ Load f a u l t s f o r a g iven memory , t h i s f unc t i on i s very
∗ s im p l i s t i c the f i l e name i s cons t ruc t ed by t a k ing the
∗ lower case Memory−>name , appending ” .pnm” and at tempt ing
∗ to load the f i l e wi th l o a d f a u l t s f r om b i tmap .
∗
∗ The c a l l e r i s r e qu i r ed to f r e e f a u l t s .
∗/

int l o a d f a u l t s (ModelElementp Memory , Coordinate ∗ f a u l t s [])
{

char ∗ f i l ename ;
int i , j ;
char ∗ s u f f i x = ” .pnm” ;
f i l ename = mal loc (s t r l e n (Memory−>name) + s t r l e n (s u f f i x) + 1) ;
a s s e r t (f i l ename != NULL) ;
s t r cpy (f i l ename , Memory−>name) ;
s t r cpy (f i l ename + s t r l e n (Memory−>name) , s u f f i x) ;

for (i = 0 ; i <= s t r l e n (f i l ename) ; i++) {
f i l ename [i] = to lower (f i l ename [i]) ;

}
DEBUG(”Generated f i l ename %s .\n” , f i l ename) ;

i = l oad f au l t s f r om b i tmap (f i l ename , f a u l t s) ;
f r e e (f i l ename) ;

for (j = 0 ; j < i ; j++) {
(∗ f a u l t s) [j] . main = Memory−>id ;

}

 Verigy Confidential -- Verigy Confidential --

B.2. File: bitmap.h 175

return i ;
}

B.2 File: bitmap.h

int l o ad f au l t s f r om b i tmap (char ∗ f i l ename ,
Coordinate ∗ f a u l t s []) ;

int l o a d f a u l t s (ModelElementp Memory , Coordinate ∗ f a u l t s []) ;

B.3 File: bnb.c

#include <s t d l i b . h>
#include <s t d i o . h>
#include <s t d l i b . h>
#include <s t r i n g . h>
#include <a s s e r t . h>
#include ” s t r u c t u r e s . h”
#include ”model . h”
#include ” s o l u t i o n r e c o r d . h”
#include ” u t i l s . h”
#include ” r e g i on g en e r a t i on . h”
#include ”bitmap . h”
#include ”queue . h”

#include ” t e s t s . h”

#define MID(m) ge t e l ementp by id (mdl model , m)−>name
#define FNAME(f a u l t) MID(f a u l t . main)

int t e s t c ov e r ed by (Coordinate ∗ f a u l t s , int num faults ,
So lut ionRecord ∗ s r e c)

{
int ∗ r e s u l t s = (int) c a l l o c (num faults , s izeof (int)) ;
PlacementList ∗ pl = srec−>placements ;
int i ;
int r e s u l t = 0 ;

for (i = 0 ; i < num faults ; i++) {
pl = srec−>placements ;
r e s u l t s [i] = 0 ;
while (p l != NULL) {

r e s u l t s [i] +=
covered by placement (f a u l t s [i] , pl−>placement) ;

p l = pl−>next ;
}

i f (r e s u l t s [i] == 0) {
DEBUG(”Fault (%s ,%d,%d) NOT covered by %p .\n” ,

FNAME(f a u l t s [i]) , f a u l t s [i] . x , f a u l t s [i] . y ,
s r e c) ;

p l = srec−>placements ;
while (p l != NULL) {

pl = pl−>next ;

 Verigy Confidential -- Verigy Confidential --

B.3. File: bnb.c 176

}
}

}

for (i = 0 ; i < num faults ; i++) {
i f (r e s u l t s [i] >= 1) {

r e s u l t += 1 ;
}

}
f r e e (r e s u l t s) ;

return r e s u l t ;
}

/∗∗∗∗ MAIN REPAIR FUNCTION ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

int bnb(ModelElement ∗ model , ModelElementpList ∗ memories ,
So lut ionRecord ∗∗ s t a r t)

{
/∗ Perform branch and bound repa i r on the s p e c i f i e d model ∗/
Queue ∗q ;
Solut ionRecord ∗ cur rent ;
So lut ionRecord ∗new ;
Placement ∗p ;
Coordinate f a u l t ;
Coordinate ∗ f a u l t s = NULL;
Coordinate ∗ tmp fau l t s = NULL;
int num faults = 0 ;
int t num fau l t s ;
int f a u l t p t r = 0 ;
ModelElementp ∗ r e s u l t s ;
ModelElementp memory ;
int num resu l t s ;
int i , j ;
FILE ∗debugfp = fopen (”debug . l og ” , ”w”) ;
int l a s t node ;

f p r i n t f (debugfp , ” digraph G {\n”) ;
f p r i n t f (debugfp , ”n%d [l a b e l=\”%d:%d \ ”] ; \ n” , (∗ s t a r t)−>q ct r ,

(∗ s t a r t)−>q ct r , (∗ s t a r t)−>s c o r e) ;
DEBUG(”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ n%d ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n” ,

(∗ s t a r t)−>q c t r) ;
// p r i n t s h o r t s r e c (∗ s t a r t) ;

for (i = 0 ; i < memories−>s i z e ; i++) {
t num fau l t s =

l o a d f a u l t s (memories−>e lements [i] , &tmp fau l t s) ;
f a u l t s =

(Coordinate ∗) r e a l l o c (f au l t s ,
(num faults +

t num fau l t s) ∗
s izeof (Coordinate)) ;

memcpy(f a u l t s + num faults , tmp fau l t s ,
s izeof (Coordinate) ∗ t num fau l t s) ;

num faults += t num fau l t s ;

 Verigy Confidential -- Verigy Confidential --

B.3. File: bnb.c 177

f r e e (tmp fau l t s) ;
}

/∗ Clean up the l i s t o f f a u l t s to remove anyth ing repa i r ed
by the i n i t a l

∗ so ln . ∗/
t num fau l t s = num faults ;
num faults =

num faults − t e s t c ov e r ed by (f au l t s , num faults ,
(∗ s t a r t)) ;

tmp fau l t s = f a u l t s ;

f a u l t s = c a l l o c (num faults , s izeof (Coordinate)) ;
f a u l t p t r = 0 ;
for (i = 0 ; i < t num fau l t s ; i++) {

i f (c ov e r ed by so l u t i on (tmp fau l t s [i] , (∗ s t a r t)) == 0) {
memcpy(f a u l t s + f au l t p t r , tmp fau l t s + i ,

s izeof (Coordinate)) ;
f a u l t p t r++;

}
}
a s s e r t (f a u l t p t r == num faults) ;
f a u l t p t r = 0 ;
DEBUG(”%d f a u l t s remain a f t e r must r e pa i r .\n” , num faults) ;

q = i n s e r t (NULL, ∗ s t a r t) ;
l a s t node = (∗ s t a r t)−>q c t r ; /∗ DEBUG ∗/

while (q != NULL) {
/∗ Queue ’ s a l r eady sor ted , j u s t pop the next one o f f the top

. ∗/
DEBUG(”%d items on queue .\n” , q len (q)) ;
cur r ent = pop(&q) ;

f p r i n t f (debugfp ,
”n%d −> n%d [c o l o r=red , c on s t r a i n t=f a l s e] ; \ n” ,
l a s t node , current−>q c t r) ;

l a s t node = current−>q c t r ; /∗DEBUG ∗/

i f (t e s t c ov e r ed by (f au l t s , f a u l t p t r , cur r ent) !=
f a u l t p t r) {
DEBUG(” Discard ing incomplete s o l u t i o n .\n” , 0) ;
f r e e (cur rent) ;
continue ;

}
/∗ Get the next f a u l t or break out o f the loop ∗/
i f (f a u l t p t r + 1 == num faults) {

/∗ push t h i s s o l u t i o n back on the queue ∗/
q = i n s e r t (q , cur r ent) ;
DEBUG(”Repaired Al l f a u l t s .\n” , 0) ;
break ;

} else {
/∗ ge t f a u l t ∗/
f a u l t = f a u l t s [f a u l t p t r] ;
f a u l t p t r++;

 Verigy Confidential -- Verigy Confidential --

B.3. File: bnb.c 178

}

/∗ Check i f t h i s f a u l t i s a l r eady covered by the current
∗ s o l u t i o n . ∗/

i f (c ov e r ed by so l u t i on (f au l t , cur r ent) == 1) {

/∗ t h i s next b l o c k (TO CONTINUE) j u s t adds debug ∗/
new = copy so l u t i on r e c o rd (cur rent) ;
f p r i n t f (debugfp , ”n%d [l a b e l=\”%d:%d \ ”] ; \ n” ,

new−>q ct r , new−>q ct r , new−>s c o r e) ;
f p r i n t f (debugfp ,

”n%d −> n%d [l a b e l=\”(%s ,%d,%d) \ ”] ; \ n” ,
new−>created from , new−>q ct r , FNAME(f a u l t) ,
f a u l t . x , f a u l t . y) ;

f r e e (cur rent) ;
q = i n s e r t (q , new) ;
continue ;

}

/∗ b u i l d s o l u t i o n records f o r each g e t r e d b y r e g i o n (f a u l t)
∗/

memory = get e l ementp by id (model , f a u l t . main) ;
num resu l t s =

ge t r ed by r e g i on (model , memory , f au l t , &r e s u l t s) ;
DEBUG(”Got %d r e s u l t s f o r f a u l t (%s ,%d,%d) \n” ,

num results , FNAME(f a u l t) , f a u l t . x , f a u l t . y) ;
/∗ For each red cover ing the reg ion o f f a u l t . . . ∗/
for (i = 0 ; i < num resu l t s ; i++) {

/∗ I f t h i s red i s unused (p o s s i b l y check aga in s t count
here . ∗/

new = NULL;
i f (r e d a v a i l a b l e (current , r e s u l t s [i]) <

r e s u l t s [i]−>count) {
/∗ c r ea t e copy o f s o l u t i o n record ∗/
new = copy so l u t i on r e c o rd (cur rent) ;
/∗ update s o l u t i o n record wi th r e s u l t s [i] a t

c a l c u a l t e d
∗ placement ∗/

p = p l a c e t o c o v e r (r e s u l t s [i] , memory , f a u l t) ;

new = add placement (new , p) ;
DEBUG

(”Placed %s at (%s ,%d,%d) to cover (%s ,%d,%d) (%p) .\n”
,

r e s u l t s [i]−>name , MID(p−>main id) , p−>co l ,
p−>row , FNAME(f a u l t) , f a u l t . x , f a u l t . y ,
new) ;

q = i n s e r t (q , new) ; /∗ i n s e r t i o n so r t ed . ∗/

f p r i n t f (debugfp , ”n%d [l a b e l=\”%d:%d \ ”] ; \ n” ,
new−>q ct r , new−>q ct r , new−>s c o r e) ;

f p r i n t f (debugfp ,
”n%d −> n%d [l a b e l=\”(%s ,%d,%d) \ ”] ; \ n” ,
new−>created from , new−>q ct r ,
FNAME(f a u l t) , f a u l t . x , f a u l t . y) ;

 Verigy Confidential -- Verigy Confidential --

B.4. File: bnb.h 179

i f (t e s t c ov e r ed by (f au l t s , f a u l t p t r , new) !=
f a u l t p t r) {
DEBUG

(”Current s o l u t i o n cover s f i r s t %d f a u l t s ? == %d .\n”
,

f a u l t p t r , t e s t c ov e r ed by (f au l t s ,
f a u l t p t r ,
new)) ;

}
} else {

DEBUG(”No more %s to p lace .\n” ,
MID(r e s u l t s [i]−> id)) ;

}
}
i f (num resu l t s == 0) {

DEBUG
(”No elements a v a i l a b l e to r e pa i r (%s ,%d,%d) .\n” ,
FNAME(f a u l t) , f a u l t . x , f a u l t . y) ;

}
f r e e s r e c (cur rent) ;
f r e e (r e s u l t s) ;

}

/∗ re turn top o f queue or f a i l u r e . ∗/
∗ s t a r t = pop(&q) ;
f p r i n t f (debugfp ,

”n%d −> n%d [c o l o r=red , c on s t r a i n t=f a l s e] ; \ n” ,
l a s t node , (∗ s t a r t)−>q c t r) ;

DEBUG(” Fina l s o ln %p covered a l l %d f a u l t s ? = %d\n” ,
(∗ s t a r t) , num faults , t e s t c ov e r ed by (f au l t s ,

num faults ,
(∗ s t a r t))) ;

f r e e q (q) ;
f r e e (f a u l t s) ;
f p r i n t f (debugfp , ”n%d [l a b e l=\”%d:%d\” , c o l o r=red] ; \ n” ,

(∗ s t a r t)−>q ct r , (∗ s t a r t)−>q ct r , (∗ s t a r t)−>s c o r e) ;
f p r i n t f (debugfp , ”}\n”) ;
f c l o s e (debugfp) ;
return 0 ;

}

B.4 File: bnb.h

int t e s t c ov e r ed by (Coordinate ∗ f a u l t s , int num faults ,
So lut ionRecord ∗ s r e c) ;

int bnb(ModelElement ∗ model , ModelElementpList memories ,
So lut ionRecord ∗∗ s t a r t) ;

B.5 File: model.c

/∗ START Model Template ∗/
#include <s t d l i b . h>
#include ”model . h”

 Verigy Confidential -- Verigy Confidential --

B.6. File: model.h 180

extern int mdl model length = 5 ;
ModelElement mdl model [] = {

{”Memory” , ”M1” , 30633847 , 10 , 10 , 0 , 0 , −1, −1, −1, −1,
NULL} ,
{”Redundancy” , ”R1” , 18450791 , 1 , 10 , 0 , 10 , 0 , 3 , −1, −1,
NULL} ,
{”Redundancy” , ”R2” , 26865561 , 10 , 1 , 10 , 0 , 0 , 3 , −1, −1,
NULL} ,
{”Placement” , ”P2” , 22733057 , −1, −1, −1, −1, −1, −1,
26865561 ,
30633847 , NULL /∗FIXME∗/ } ,

{”Placement” , ”P1” , 10115656 , −1, −1, −1, −1, −1, −1,
18450791 ,
30633847 , NULL /∗FIXME∗/ } ,

} ;

/∗ END Model Template ∗/

B.6 File: model.h

#ifndef MODELTEMPLATE
#define MODELTEMPLATE
typedef struct {

char ∗ type ;
char ∗name ;
int id ;
int width ;
int he ight ;
int o r i g i n r ow ;
int o r i g i n c o l ;
int placement ;
int count ;
int source ;
int t a r g e t ;
char ∗ exp r e s s i on ;

} ModelElement ;
typedef ModelElement ∗ModelElementp ;
extern int mdl model length ;
extern ModelElement mdl model [] ;
#endif

B.7 File: must repair.c

/∗ vim : s e t expandtab ∗/
#include <a s s e r t . h>
#include <s t d i o . h>
#include <s t d l i b . h>
#include ” s t r u c t u r e s . h”
#include ”model . h”
#include ”bitmap . h”
#include ” s o l u t i o n r e c o r d . h”
#include ” r e g i on s . h”
#include ” u t i l s . h”

/∗ Must Repair a l gor i thm ∗/

 Verigy Confidential -- Verigy Confidential --

B.7. File: must repair.c 181

int must repa i r (ModelElementp model , ModelElementp memory ,
Solut ionRecord ∗∗ s t a r t)

{
Coordinate ∗ f a u l t s ;
int num faults = 0 ;
int ∗ row tags ;
int ∗ column tags ;
int i , j ;
int ava i l ab l e r ows , ava i l ab l e co lumns ;
int nr , nc ;
Placement ∗p ;
ModelElementp ∗rows , ∗columns ;

/∗ ge t the rows and columns from the model and c o l l e c t counts .
∗/

j = 0 ;
nr = ge t r ow s f o r (model , memory , &rows) ;
for (i = 0 ; i < nr ; i++) {

j += rows [i]−>count ;
DEBUG(”Added row %s to r epa i r %s \n” , rows [i]−>name ,

memory−>name) ;
}
ava i l ab l e r ows = j ;

j = 0 ;
nc = ge t co lumns f o r (model , memory , &columns) ;
for (i = 0 ; i < nc ; i++) {

j += columns [i]−>count ;
DEBUG(”Added column %s to r epa i r %s \n” , columns [i]−>name ,

memory−>name) ;
}
ava i l ab l e co lumns = j ;

DEBUG(”Have %d rows and %d columns a v a i l a b l e f o r r e pa i r .\n” ,
ava i l ab l e r ows , ava i l ab l e co lumns) ;

/∗ Load f a u l t s ∗/
num faults = l o a d f a u l t s (memory , &f a u l t s) ;

/∗ Prepare row and column error sums ∗/
row tags = c a l l o c (memory−>height , s izeof (int)) ;
column tags = c a l l o c (memory−>width , s izeof (int)) ;
a s s e r t (row tags != NULL) ;
a s s e r t (column tags != NULL) ;

for (i = 0 ; i < num faults ; i++) {
row tags [f a u l t s [i] . y]++;
column tags [f a u l t s [i] . x]++;

}

for (i = 0 ; i < memory−>he ight ; i++) {
i f (row tags [i] > ava i l ab l e co lumns) {

DEBUG(”%d f a u l t s on row %d (>%d) \n” , row tags [i] , i ,
ava i l ab l e co lumns) ;

/∗ Row must r epa i r ! ∗/
for (j = 0 ; j < nr ; j++) {

 Verigy Confidential -- Verigy Confidential --

B.8. File: queue.c 182

DEBUG(”Checking %s to r epa i r row %d .\n” ,
rows [j]−>name , i) ;

i f (r e d a v a i l a b l e (∗ s ta r t , rows [j]) <
rows [j]−>count) {
/∗ add a placement ∗/
DEBUG(”Repair ing row %d with %s .\n” , i ,

rows [j]−>name) ;
p = c a l l o c (1 , s izeof (Placement)) ;
p−>r ed i d = rows [j]−> id ;
p−>main id = memory−>id ;
p−>row = i ;
p−>c o l = 0 ;
add placement (∗ s ta r t , p) ;
break ;

}
}

}
}

for (i = 0 ; i < memory−>he ight ; i++) {
i f (column tags [i] > ava i l ab l e r ows) {

/∗ Column must r epa i r ! ∗/
for (j = 0 ; j < nr ; j++) {

i f (r e d a v a i l a b l e (∗ s ta r t , columns [j]) <
columns [j]−>count) {
/∗ add a placement ∗/
DEBUG(”Repair ing column %d with %s .\n” , i ,

columns [j]−>name) ;
p = c a l l o c (1 , s izeof (Placement)) ;
p−>r ed i d = columns [j]−> id ;
p−>main id = memory−>id ;
p−>row = 0 ;
p−>c o l = i ;
add placement (∗ s ta r t , p) ;
break ;

}
}

}
}

f r e e (columns) ;
f r e e (rows) ;
f r e e (row tags) ;
f r e e (column tags) ;
f r e e (f a u l t s) ;
return 0 ;

}

B.8 File: queue.c

#include <s t d l i b . h>
#include <s t d i o . h>
#include <s t r i n g . h>
#include <a s s e r t . h>
#include ” s t r u c t u r e s . h”

 Verigy Confidential -- Verigy Confidential --

B.8. File: queue.c 183

#include ”model . h”
#include ” s o l u t i o n r e c o r d . h”
#include ” u t i l s . h”
#include ” r e g i on g en e r a t i on . h”
#include ”bitmap . h”
#include ” r epa i r . h”

Solut ionRecord ∗pop (Queue ∗∗ q)
{

Solut ionRecord ∗ r ;
Queue ∗ t = ∗q ;

i f (t == NULL) {
return (Solut ionRecord ∗) NULL;

} else i f (t−>next == NULL) {
r = t−>cur rent ;
∗q = NULL;
f r e e (t) ;
return r ;

} else {
r = t−>cur rent ;
∗q = t−>next ;
f r e e (t) ;
return r ;

}
}

Queue ∗ i n s e r t (Queue ∗ q , Solut ionRecord ∗ data)
{

Queue ∗new ;
Queue ∗p ;

i f (q == NULL) {
q = c a l l o c (1 , s izeof (Queue)) ;
q−>cur rent = data ;
return q ;

}

/∗ c r ea t e a new node ∗/
new = c a l l o c (1 , s izeof (Queue)) ;
new−>cur rent = data ;

i f (new−>current−>s c o r e < q−>current−>s c o r e) {
new−>next = q ;
return new ;

} else {
p = q ;
while ((p−>next != NULL)) {

i f (p−>next−>current−>s c o r e > new−>current−>s c o r e) {
break ;

}
p = p−>next ;

}
new−>next = p−>next ;
p−>next = new ;
return q ;

}
}

 Verigy Confidential -- Verigy Confidential --

B.9. File: queue.h 184

int qlen (Queue ∗ q)
{

int num ele = 0 ;
while (q != NULL) {

num ele++;
q = q−>next ;

}
return num ele ;

}

void f r e e q (Queue ∗ q)
{

i f (q−>next != NULL) {
f r e e q (q−>next) ;

}
f r e e s r e c (q−>cur rent) ;
f r e e (q) ;

}

void pr in tq (Queue ∗ q)
{

Solut ionRecord ∗ cur rent ;
while (q != NULL) {

cur rent = q−>cur rent ;
q = q−>next ;
p r i n t s o l u t i o n r e c o r d (cur rent) ;

}
}

void pr in t sq (Queue ∗ q)
{

Solut ionRecord ∗ cur rent ;
while (q != NULL) {

cur rent = q−>cur rent ;
p r i n t f (”%d:%d ” , current−>q ct r , current−>s c o r e) ;
q = q−>next ;

}
p r i n t f (”\n”) ;

}

B.9 File: queue.h

/∗ queue . c ∗/
Solut ionRecord ∗pop (Queue ∗∗ q) ;
Queue ∗ i n s e r t (Queue ∗ q , Solut ionRecord ∗ data) ;
int qlen (Queue ∗ q) ;
void f r e e q (Queue ∗ q) ;
void pr in tq (Queue ∗ q) ;
void pr in t sq (Queue ∗ q) ;

B.10 File: region generation.c

#include <s t d l i b . h>
#include <s t r i n g . h>

 Verigy Confidential -- Verigy Confidential --

B.11. File: region generation.h 185

#include ”model . h”
#include ” u t i l s . h”
#include ” s t r u c t u r e s . h”

int g e t r ed by r e g i on (ModelElement model [] , ModelElementp memory
,

Coordinate f au l t ,
ModelElementp ∗ r e s u l t s [])

{
i f (((strcmp (memory−>name , ”M1”) == 0) && (f a u l t . x >= 0)

&& (f a u l t . x <= 9) && (f a u l t . y >= 0)
&& (f a u l t . y <= 9))) {
∗ r e s u l t s =

(ModelElementp ∗) c a l l o c (2 , s izeof (ModelElementp)) ;
(∗ r e s u l t s) [0] = get elementp by name (model , ”R1”) ;
(∗ r e s u l t s) [1] = get elementp by name (model , ”R2”) ;

return 2 ;
}

return 0 ;
}

B.11 File: region generation.h

/∗ r e g i on gene ra t i on . c ∗/
int g e t r ed by r e g i on (ModelElement model [] , ModelElementp memory

,
Coordinate f au l t ,
ModelElementp ∗ r e s u l t s []) ;

B.12 File: repair.c

#include <s t d l i b . h>
#include <s t d i o . h>
#include <s t r i n g . h>
#include ” s t r u c t u r e s . h”
#include ”model . h”
#include ” s o l u t i o n r e c o r d . h”
#include ” u t i l s . h”
#include ” r e g i on g en e r a t i on . h”
#include ”bitmap . h”
#include ” r epa i r . h”

/∗ Complete r epa i r s o l u t i o n .
∗
∗ Must r epa i r ana l y s i s i s performed and the r e s u l t s used to
∗ seed a branch and bound repa i r .
∗/

int main (void)
{

ModelElementpList memories ;

So lut ionRecord ∗ s t a r t ;
int i ;

 Verigy Confidential -- Verigy Confidential --

B.13. File: repair.h 186

memories . s i z e = 0 ;
memories . e lements = NULL;

// Co l l e c t po in t e r s to memory e lements in the model .
// Only t h e s e e lements w i l l be r epa i r ed .
for (i = 0 ; i < mdl model length ; i++) {

i f (strcmp (”Memory” , mdl model [i] . type) == 0) {
memories . s i z e++;
memories . e lements =

r e a l l o c (memories . e lements ,
s izeof (ModelElementp) ∗ memories . s i z e) ;

memories . e lements [memories . s i z e − 1] =
ge t e l ementp by id (mdl model , mdl model [i] . id) ;

}
}

// Create a b lank s o l u t i o n record con ta in ing no r epa i r s .
s t a r t = c r e a t e s o l u t i o n r e c o r d () ;

// For each memory perform must r epa i r us ing the
// e lements a v a i l a b l e in mdl model updat ing the s o l u t i o n
// record s t a r t a f t e r any r epa i r .
for (i = 0 ; i < memories . s i z e ; i++) {

must repa i r (mdl model , memories . e lements [i] , &s t a r t) ;
}

// Perform branch and bound repa i r us ing e lements from
// mdl model on each memory in &memories updat ing the
// s o l u t i o n record s t a r t a f t e r any r epa i r .
bnb(mdl model , &memories , &s t a r t) ;

// Print the f i n a l s o l u t i o n a f t e r r epa i r .
p r i n t f (” Fina l So lu t i on :\n”) ;
p r i n t s o l u t i o n r e c o r d (s t a r t) ;
f r e e (s t a r t) ;
f r e e (memories . e lements) ;

}

B.13 File: repair.h

int must repa i r (ModelElementp model , ModelElementp memory ,
Solut ionRecord ∗∗ s t a r t) ;

int bnb(ModelElement ∗ model , ModelElementp memory ,
Solut ionRecord ∗∗ s t a r t) ;

B.14 File: solution record.c

#include <s t d i o . h>
#include <s t d l i b . h>
#include <s t r i n g . h>
#include <a s s e r t . h>
#include ” s t r u c t u r e s . h”
#include ”model . h”
#include ” u t i l s . h”
#include ” s o l u t i o n r e c o r d . h”

 Verigy Confidential -- Verigy Confidential --

B.14. File: solution record.c 187

int q c t r = 0 ;
Solut ionRecord ∗ c r e a t e s o l u t i o n r e c o r d ()
{

Solut ionRecord ∗ s r = c a l l o c (1 , s izeof (Solut ionRecord)) ;
sr−>q c t r = q c t r++;
sr−>c reated f rom = 0 ;
sr−>s c o r e = 0 ;
sr−>placements = NULL;
return s r ;

}

void f r e e s r e c (Solut ionRecord ∗ s r e c)
{

f r e e p l a c emen t l i s t (s rec−>placements) ;
f r e e (s r e c) ;

}

int placementin (PlacementList ∗ pl , Placement ∗ p)
{

while (p l != NULL) {
i f (placementcmp (pl−>placement , p) == 0) {

return 0 ;
}
pl = pl−>next ;

}
return 1 ;

}

int placementcmp (Placement ∗ p1 , Placement ∗ p2)
{

i f ((p1−>r ed i d == p2−>r ed i d)
&& (p1−>main id == p2−>main id) && (p1−>row == p2−>row)
&& (p1−>c o l == p2−>c o l)) {
return 0 ;

} else {
return −1;

}
}

int s c o r e s r e c (Solut ionRecord ∗ s r)
{

int numr = 0 ;
int numc = 0 ;
PlacementList ∗ pl = sr−>placements ;
ModelElement ∗ red ;

while (p l) {
red =

get e l ementp by id (mdl model , pl−>placement−>r ed i d) ;
i f (red−>he ight > red−>width) {

numc++;
} else {

numr++;
}
pl = pl−>next ;

}

 Verigy Confidential -- Verigy Confidential --

B.14. File: solution record.c 188

return 8 ∗ numr + 15 ∗ numc ;
}

Solut ionRecord ∗add placement (Solut ionRecord ∗ r ,
Placement ∗ placement)

{
PlacementList ∗p ;
i f (r−>placements == NULL) {

r−>placements = c a l l o c (1 , s izeof (PlacementList)) ;
r−>placements−>placement = placement ;
r−>placements−>next = NULL;
r−>s c o r e = s c o r e s r e c (r) ;

} else {
i f (placementin (r−>placements , placement) != 0) {

p = r−>placements ;
while (p−>next != NULL) {

p = p−>next ; //Fast forward to the end o f the placement
l i s t .

}
p−>next = c a l l o c (1 , s izeof (PlacementList)) ;
p = p−>next ;
p−>next = NULL;
p−>placement = placement ;
r−>s c o r e = s c o r e s r e c (r) ;

} else {
DEBUG(”Not adding dup . placement o f %s in %s .\n” ,

ge t e l ementp by id (mdl model ,
placement−>r ed i d)−>name ,

ge t e l ementp by id (mdl model ,
placement−>main id)−>name) ;

}
}

return r ;
}

void f r e e p l a c emen t l i s t (PlacementList ∗ pl)
{

i f (p l != NULL) {
i f (pl−>next != NULL) {

f r e e p l a c emen t l i s t (pl−>next) ;
}
f r e e (pl−>placement) ;

}
f r e e (p l) ;

}

Solut ionRecord ∗ c opy so l u t i on r e c o rd (Solut ionRecord ∗ old)
{

/∗ Copy s o l u t i o n record old , and re turn a re f e r ence .
∗ must a l s o walk p lacements copying those too . ∗/

Solut ionRecord ∗new = c r e a t e s o l u t i o n r e c o r d () ;
PlacementList ∗ pl = old−>placements ;
Placement ∗p ;

new−>c reated f rom = old−>q c t r ;

 Verigy Confidential -- Verigy Confidential --

B.14. File: solution record.c 189

while (p l) {
p = c a l l o c (1 , s izeof (Placement)) ;
memcpy(p , pl−>placement , s izeof (Placement)) ;
new = add placement (new , p) ;
p l = pl−>next ;

}

return new ;
}

void p r i n t s o l u t i o n r e c o r d (Solut ionRecord ∗ s r)
{

PlacementList ∗ pl = sr−>placements ;
Placement ∗p ;

p r i n t f (” Solut ionRecord %d <%p>:\n” , sr−>q ct r , s r) ;
p r i n t f (” s co r e : %d\n” , sr−>s c o r e) ;
p r i n t f (” Created from %d\n” , sr−>c reated f rom) ;
p r i n t f (” Placements :\n”) ;
while (p l) {

p = pl−>placement ;
p l = pl−>next ;
p r i n t f (” %s @ (%s ,%d,%d) \n” ,

ge t e l ementp by id (mdl model , p−>r ed i d)−>name ,
ge t e l ementp by id (mdl model , p−>main id)−>name ,
p−>co l , p−>row) ;

}
}

int r e d a v a i l a b l e (Solut ionRecord ∗ sr , ModelElementp red)
{

/∗ Get the number o f t imes redundant e lement red has been used
in t h i s

∗ s o l u t i on , i f t h a t ’ s l e s s than the count o f t h i s red then i t
i s a v a i l a b l e .

∗
∗ Return the number o f reds o f t h i s type a v a i l a b l e .
∗/

int r e t v a l = 0 ;
PlacementList ∗ pl = sr−>placements ;

while (p l && pl−>placement != NULL) {
i f (red−>id == pl−>placement−>r ed i d) {

r e t v a l++;
}
pl = pl−>next ;

}

return r e t v a l ;
}

int covered by placement (Coordinate f au l t , Placement ∗ p)
{

Coordinate a b s f a u l t ;
Coordinate c o v o r i g i n ;
ModelElementp R = get e l ementp by id (mdl model , p−>r ed i d) ;

 Verigy Confidential -- Verigy Confidential --

B.14. File: solution record.c 190

c o v o r i g i n . main = p−>main id ;
c o v o r i g i n . x = p−>c o l ;
c o v o r i g i n . y = p−>row ;

ab s o l u t e c oo rd i na t e (&abs f au l t , &f a u l t) ;
ab s o l u t e c oo rd i na t e (&cov o r i g i n , &cov o r i g i n) ;

i f ((a b s f a u l t . x >= cov o r i g i n . x)
&& (ab s f a u l t . x < (c o v o r i g i n . x + R−>width))
&& (ab s f a u l t . y >= cov o r i g i n . y)
&& (ab s f a u l t . y < (c o v o r i g i n . y + R−>he ight))) {
return 1 ;

} else {
return 0 ;

}
}

int c ov e r ed by so l u t i on (Coordinate f au l t , So lut ionRecord ∗ s r)
{

/∗ I s t h i s f a u l t covered by any placement in sr ? 1 == yes , 0
== no ∗/

PlacementList ∗ pl = sr−>placements ;

while (p l != NULL) {
i f (covered by placement (f au l t , pl−>placement) == 1) {

return 1 ;
}
pl = pl−>next ;

}
return 0 ;

}

Placement ∗ p l a c e t o c o v e r (ModelElement ∗ red ,
ModelElement ∗ main , Coordinate f a u l t)

{
/∗ Simple placement c a l c u l a t i o n :
∗ i f red . width > red . h e i g h t
∗ then i t ’ s a column and p lace i t in the column
∗ o f f a u l t .
∗ e l i f red . h e i g h t > red . width
∗ then i t ’ s a row and p lace i t in the row o f f a u l t .
∗ e l s e
∗ we r e a l l y shouldn ’ t be here !
∗/

Placement ∗p ;
p = c a l l o c (1 , s izeof (Placement)) ;
p−>r ed i d = red−>id ;
p−>main id = main−>id ;

i f (red−>width > red−>he ight) {
/∗ I t ’ s a row ! ∗/
p−>row = f a u l t . y ;
p−>c o l = 0 ;

} else i f (red−>he ight > red−>width) {
/∗ i t ’ s a column ∗/
p−>row = 0 ;
p−>c o l = f a u l t . x ;

 Verigy Confidential -- Verigy Confidential --

B.15. File: solution record.h 191

} else {
/∗ Oh dear ! ∗/
p = −1;

}
return p ;

}

B.15 File: solution record.h

/∗ s o l u t i o n r e c o r d . c ∗/
Solut ionRecord ∗ c r e a t e s o l u t i o n r e c o r d (void) ;
void f r e e s r e c (Solut ionRecord ∗ s r e c) ;
int placementin (PlacementList ∗ pl , Placement ∗ p) ;
int placementcmp (Placement ∗ p1 , Placement ∗ p2) ;
int s c o r e s r e c (Solut ionRecord ∗ s r) ;
So lut ionRecord ∗add placement (Solut ionRecord ∗ r ,

Placement ∗ placement) ;
void f r e e p l a c emen t l i s t (PlacementList ∗ pl) ;
So lut ionRecord ∗ c opy so l u t i on r e c o rd (Solut ionRecord ∗ old) ;
void p r i n t s o l u t i o n r e c o r d (Solut ionRecord ∗ s r) ;
void debug p r i n t do t s r e c (Solut ionRecord ∗ s r) ;
void p r i n t s h o r t s r e c (Solut ionRecord ∗ s r) ;
int r e d a v a i l a b l e (Solut ionRecord ∗ sr , ModelElementp red) ;
int covered by placement (Coordinate f au l t , Placement ∗ p) ;
int c ov e r ed by so l u t i on (Coordinate f au l t , So lut ionRecord ∗ s r) ;
Placement ∗ p l a c e t o c o v e r (ModelElement ∗ red ,

ModelElement ∗ main , Coordinate f a u l t) ;

B.16 File: utils.c

#include <s t d l i b . h>
#include <s t d i o . h>
#include <s t r i n g . h>
#include <a s s e r t . h>
#include ”model . h”
#include ” s t r u c t u r e s . h”
#include ” t e s t s . h”

int ge t e l ement by id (ModelElement model [] , int id ,
ModelElement ∗∗ r e s u l t)

{
/∗ re turn a po in t e r to the f i r s t e lement matching id , or −1 ∗/
int i ;
for (i = 0 ; i < mdl model length ; i++) {

i f (model [i] . id == id) {
∗ r e s u l t = &model [i] ;
return 0 ;

}
}
return −1;

}

int get e lement by name (ModelElement model [] , char ∗name ,
ModelElement ∗∗ r e s u l t)

{

 Verigy Confidential -- Verigy Confidential --

B.16. File: utils.c 192

/∗ re turn a po in t e r to the f i r s t e lement matching name , or −1
∗/

int i ;
for (i = 0 ; i < mdl model length ; i++) {

i f (strcmp (name , model [i] . name) == 0) {
∗ r e s u l t = &model [i] ;
return 0 ;

}
}
return −1;

}

ModelElementp get elementp by name (ModelElement model [] ,
char ∗name)

{
/∗ re turn a po in t e r to the f i r s t e lement matching name , or −1

∗/
int i ;
for (i = 0 ; i < mdl model length ; i++) {

i f (strcmp (name , model [i] . name) == 0) {
return &model [i] ;

}
}
return (ModelElementp) NULL;

}

ModelElementp ge t e l ementp by id (ModelElement model [] , int id)
{

/∗ re turn a po in t e r to the f i r s t e lement matching name , or −1
∗/

int i ;
for (i = 0 ; i < mdl model length ; i++) {

i f (model [i] . id == id) {
return &model [i] ;

}
}
return (ModelElementp) NULL;

}

int get rows (ModelElementp model , ModelElementp ∗ r e s u l t s [])
{

/∗ s e t r e s u l t s to a l i s t o f row redundant e lements found in
model .

∗ re turn the l en g t h o f t h i s l i s t .
∗/

int i = 0 ;
int row ctr = 0 ;
∗ r e s u l t s = NULL;
ModelElementp ∗ tmp resu l t = NULL;

for (i = 0 ; i < mdl model length ; i++) {
i f ((strcmp (”Redundancy” , model [i] . type) == 0)

&& (model [i] . he ight < model [i] . width)) {
tmp resu l t =

r e a l l o c ((∗ r e s u l t s) ,

 Verigy Confidential -- Verigy Confidential --

B.16. File: utils.c 193

s izeof (ModelElementp) ∗ (row ctr + 1)) ;
a s s e r t (tmp resu l t != NULL) ;
tmp resu l t [row ctr] =

ge t e l ementp by id (model , model [i] . id) ;
(∗ r e s u l t s) = tmp resu l t ;
row ctr += model [i] . count ;

}
}

return row ctr ;
}

int get co lumns (ModelElementp model , ModelElementp ∗ r e s u l t s [])
{

/∗ s e t r e s u l t s to a l i s t o f column redundant e lements found in
model .

∗ re turn the l en g t h o f t h i s l i s t .
∗/

int i = 0 ;
int co lumn ctr = 0 ;
∗ r e s u l t s = NULL;
ModelElementp ∗ tmp resu l t = NULL;

for (i = 0 ; i < mdl model length ; i++) {
i f ((strcmp (”Redundancy” , model [i] . type) == 0)

&& (model [i] . he ight > model [i] . width)) {
tmp resu l t =

r e a l l o c ((∗ r e s u l t s) ,
s izeof (ModelElementp) ∗ (co lumn ctr +

1)) ;
a s s e r t (tmp resu l t != NULL) ;
tmp resu l t [co lumn ctr] =

ge t e l ementp by id (model , model [i] . id) ;
(∗ r e s u l t s) = tmp resu l t ;
co lumn ctr += model [i] . count ;

}
}

return co lumn ctr ;
}

int c an p l a c e i n (ModelElementp model , ModelElementp M,
ModelElementp R)

{
/∗ Can R be p laced in M (g iven the p lacements in model) .
∗ 1 == yes , 0 == no
∗/

int i ;

for (i = 0 ; i < mdl model length ; i++) {
i f ((strcmp (”Placement” , model [i] . type) == 0)

&& (model [i] . source == R−>id)
&& (model [i] . t a r g e t == M−>id)) {
return 1 ;

}
}

 Verigy Confidential -- Verigy Confidential --

B.16. File: utils.c 194

return 0 ;
}

int g e t r ow s f o r (ModelElementp model , ModelElementp M,
ModelElementp ∗ r e s u l t s [])

{
int i = 0 ;
int row ctr = 0 ;
∗ r e s u l t s = NULL;
ModelElementp ∗ tmp resu l t = NULL;

for (i = 0 ; i < mdl model length ; i++) {
i f ((model [i] . he ight < model [i] . width)

&& (can p l a c e i n (model , M, &model [i]))) {
tmp resu l t =

r e a l l o c ((∗ r e s u l t s) ,
s izeof (ModelElementp) ∗ (row ctr + 1)) ;

a s s e r t (tmp resu l t != NULL) ;
tmp resu l t [row ctr] =

ge t e l ementp by id (model , model [i] . id) ;
(∗ r e s u l t s) = tmp resu l t ;
row ctr++;

}
}

return row ctr ;
}

int ge t co lumns f o r (ModelElementp model , ModelElementp M,
ModelElementp ∗ r e s u l t s [])

{
int i = 0 ;
int co lumn ctr = 0 ;
∗ r e s u l t s = NULL;
ModelElementp ∗ tmp resu l t = NULL;

for (i = 0 ; i < mdl model length ; i++) {
i f ((model [i] . he ight > model [i] . width)

&& (can p l a c e i n (model , M, &model [i]))) {
tmp resu l t =

r e a l l o c ((∗ r e s u l t s) ,
s izeof (ModelElementp) ∗ (co lumn ctr +

1)) ;
a s s e r t (tmp resu l t != NULL) ;
tmp resu l t [co lumn ctr] =

ge t e l ementp by id (model , model [i] . id) ;
(∗ r e s u l t s) = tmp resu l t ;
co lumn ctr++;

}
}

return co lumn ctr ;
}

int ab so l u t e c oo rd i na t e (Coordinate ∗ abs , Coordinate ∗ c)
{

/∗ Convert a coord ina te r e l a t i v e to a s p e c i f i c redundant

 Verigy Confidential -- Verigy Confidential --

B.17. File: utils.h 195

element , e . g . (M1,
∗ 3 , 6) to one r e l a t i v e to the whole dev ice , e . g . (5 ,8) i f

the o r i g i n o f
∗ M1 i s (2 ,2) . The f i e l d main w i l l a lways be s e t to −1 in an

a b s o l u t e
∗ coord ina te .
∗
∗ I f c a l l e d on an ab s o l u t e coord ina te ∗ abs w i l l e qua l ∗c and

the func t i on
∗ w i l l re turn 0 . Otherwise ∗ abs w i l l e qua l the a b s o l u t e

coord ina te
∗ de s c r i b ed by c and the func t i on w i l l r e turn 1 .
∗/

Coordinate new ;
ModelElementp M;
int r e t = 0 ;

i f (c−>main != −1) {
/∗ Check t h i s i sn ’ t a l r eady an abs . coord . ∗/
M = get e l ementp by id (mdl model , c−>main) ;

new . main = −1;
new . x = M−>o r i g i n c o l + c−>x ;
new . y = M−>o r i g i n r ow + c−>y ;
(∗ abs) = new ;
r e t = 1 ;

} else {
(∗ abs) = (∗ c) ;

}

return r e t ;
}

B.17 File: utils.h

#include ” s t r u c t u r e s . h”

#define MAGENTA ” \033 [1 ; 35m”
#define NORMAL ” \033 [1 ; 00m”
#define YELLOW ” \033 [0 ; 33m”
#define CYAN ” \033 [0 ; 36m”
#define RED ” \033 [1 ; 31m”
#define BLUE ” \033 [1 ; 34m”
#define GREEN ” \033 [1 ; 32m”

#ifde f SHOWDEBUG
#define DEBUGP(. . .) f p r i n t f (s tde r r , VA ARGS)
#else
#define DEBUGP(. . .) i f (0) { f p r i n t f (s tde r r , VA ARGS) ;}
#endif

#define DEBUG(fmt , . . .) DEBUGP(”%s%s%s :%s% 4d%s : %sDEBUG%s : ”
fmt ,\

YELLOW, FILE , NORMAL,\
CYAN, LINE , NORMAL,\
BLUE, NORMAL,\

 Verigy Confidential -- Verigy Confidential --

B.18. File: kaf.rml 196

VA ARGS)

/∗ u t i l s . c ∗/
int ge t e l ement by id (ModelElement model [] , int id ,

ModelElement ∗∗ r e s u l t) ;
int get e lement by name (ModelElement model [] , char ∗name ,

ModelElement ∗∗ r e s u l t) ;
ModelElementp get elementp by name (ModelElement model [] ,

char ∗name) ;
ModelElementp ge t e l ementp by id (ModelElement model [] , int id) ;
int get rows (ModelElementp model , ModelElementp ∗ r e s u l t s []) ;
int get co lumns (ModelElementp model , ModelElementp ∗ r e s u l t s []) ;
int c an p l a c e i n (ModelElementp model , ModelElementp M,

ModelElementp R) ;
int g e t r ow s f o r (ModelElementp model , ModelElementp M,

ModelElementp ∗ r e s u l t s []) ;
int ge t co lumns f o r (ModelElementp model , ModelElementp M,

ModelElementp ∗ r e s u l t s []) ;
int ab so l u t e c oo rd i na t e (Coordinate ∗ abs , Coordinate ∗ c) ;

B.18 File: kaf.rml

Memory M1 {
width : 10 ;
he ight : 10 ;
o r i g i n r ow : 0 ;
o r i g i n c o l : 0 ;

} ;
Redundancy R1 {

width : 1 ;
he ight : 10 ;
placement : 0 ;
count : 3 ;
o r i g i n r ow : 0 ;
o r i g i n c o l : 10 ;

} ;
Redundancy R2 {

width : 10 ;
he ight : 1 ;
placement : 0 ;
count : 3 ;
o r i g i n r ow : 10 ;
o r i g i n c o l : 0 ;

} ;
Placement P2 {

source : R2 ;
t a r g e t : M1;
exp r e s s i on : ”” ;

} ;
Placement P1 {

source : R1 ;
t a r g e t : M1;
exp r e s s i on : ”” ;

} ;

 Verigy Confidential -- Verigy Confidential --

Bibliography

[14996] ISO/IEC 14977:1996. Information technology – Syntactic metalan-

guage – Extended BNF. ISO, Geneva, Switzerland, 1996.

[AAvdG01] Z. Al-Ars and A.J. van de Goor. Static and dynamic behavior of

memory cell array opens and shorts in embedded DRAMs. In date,

page 0496. Published by the IEEE Computer Society, 2001.

[Bab26] C. Babbage. On a method of expressing by signs the action of ma-

chinery. Philosophical Transactions of the Royal Society of London,

116:250–265, 1826.

[BCDN+02] A. Benso, S. Chiusano, G. Di Natale, P. Prinetto, and D.A. e Inf. An

on-line BIST RAM architecture with self-repair capabilities. IEEE

Transactions on Reliability, 51(1):123–128, 2002.

[BFVY96] F.J. Budinsky, M.A. Finnie, J.M. Vlissides, and P.S. Yu. Auto-

matic code generation from design patterns. IBM Systems Journal,

35(2):151–171, 1996.

[Bha99] D. Bhavsar. An algorithm for row-column self-repair of rams and its

implementation in the alpha 21264. In ITC ’99: Proceedings of the

1999 IEEE International Test Conference, page 311, Washington,

DC, USA, 1999. IEEE Computer Society.

[Blo96] D.M. Blough. Performance evaluation of a reconfiguration-algorithm

for memoryarrays containing clustered faults. IEEE Transactions on

Reliability, 45(2):274–284, 1996.

197

 Verigy Confidential -- Verigy Confidential --

Bibliography 198

[BP93] D.M. Blough and A. Pelc. A clustered failure model for the memory

array reconfigurationproblem. IEEE Transactions on Computers,

42(5):518–528, 1993.

[CDJ67] M. Canning, R.S. Dunn, and G. Jeansonne. Active memory calls for

discretion. Electronics, 40:143–154, 1967.

[Che69] A. Chen. Redundancy in LSI memory array. IEEE Journal of Solid-

State Circuits, 4(5):291–293, 1969.

[Coo71] S.A. Cook. The complexity of theorem-proving procedures. In Pro-

ceedings of the third annual ACM symposium on Theory of comput-

ing, pages 151–158. ACM New York, NY, USA, 1971.

[Cro00] J.A. Croswell. A model for analysis of the effects of redundancy and

error correction on DRAM memory yield and reliability. PhD thesis,

Massachusetts Institute of Technology, 2000.

[CS96] D. W. Coit and A. E. Smith. Solving the redundancy allocation prob-

lem using a combined neural network/genetic algorithm approach.

Comput. Oper. Res., 23(6):515–526, 1996.

[Day85] J. Day. A fault-driven, comprehensive redundancy algorithm. IEEE

Des. Test, 2(3):35–44, 1985.

[DBT90] R. Dekker, F. Beenker, and L. Thijssen. A realistic fault model and

test algorithms for static random access memories. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems,

9(6):567–572, 1990.

[DMS03] R. Damasevicius, G. Majauskas, and V. Stuikys. Application of

design patterns for hardware design. 2003.

[EHHM02] M. Eiglsperger, I. Herman, M. Himsolt, and M.S. Marshall. Graphml

progress report: Structural layer proposal. Proc. 9th Intl. Symp.

Graph Drawing (GD ’01), pages 501–512, 2002.

 Verigy Confidential -- Verigy Confidential --

Bibliography 199

[Fou] E. Foundation. Eclipse. Online at http://www. eclipse. org (last

visited: September 2009).

[fS07] The International Technology Roadmap for Semiconductors. Itrs

2007 edition. Technical report, 2007.

[GJ79] M.R. Garey and D.S. Johnson. Computers and intractability (a

guide to the theory of NP-completeness), 1979.

[GN99] E. R. Gansner and S. C. North. An open graph visualization system

and its applications to software engineering. Software - Practice and

Experience, 30:1203–1233, 1999.

[GNV88] E.R. Gansner, S.C. North, and K.P. Vo. DAG-a program that draws

directed graphs. Software: Practice and Experience, 18(11):1047–

1062, 1988.

[GS04] B. J. Gough and R. M. Stallman. An Introduction to GCC. Network

Theory Ltd., 2004.

[GSP91] K.N. Ganapathy, A.D. Singh, and D.K. Pradhan. Yield optimization

in large RAM’s with hierarchical redundancy. IEEE Journal of Solid-

State Circuits, 26(9):1259–1264, 1991.

[Har01] G. Harling. A DRAM compiler for fully optimized memory instances.

mtdt, page 0003, 2001.

[HCL06] Y.J. Huang, D.M. Chang, and J.F. Li. A Built-In Redundancy-

Analysis Scheme for Self-Repairable RAMs with Two-Level Redun-

dancy. In 21st IEEE International Symposium on Defect and Fault

Tolerance in VLSI Systems, 2006. DFT’06, pages 362–370, 2006.

[HD00] S.M. Hwang and C.H. Do. Row redundancy circuit using a fuse

box independent of banks, December 21 2000. US Patent App.

09/741,738.

 Verigy Confidential -- Verigy Confidential --

Bibliography 200

[HDS91] R.W. Haddad, A.T. Dahbura, and A.B. Sharma. Increased through-

put for the testing and repair of RAM’s with redundancy. IEEE

Transactions on Computers, 40(2), 1991.

[HL88] N. Hasan and C.L. Liu. Minimum fault coverage in reconfigurable

arrays. In Fault-Tolerant Computing, 1988. FTCS-18, Digest of Pa-

pers., Eighteenth International Symposium on, pages 348–353, 1988.

[HLYW07] R-F. Huang, J-F. Li, J-C. Yeh, and C-W. Wu. Raisin: Redundancy

analysis algorithm simulation. IEEE Des. Test, 24(4):386–396, 2007.

[Hoh06a] A. Hoheisel. User tools and languages for graph-based grid work-

flows. Concurrency and Computation: Practice and Experience,

18(10):1101–1113, 2006.

[Hoh06b] A. Hoheisel. User tools and languages for graph-based grid work-

flows: Research articles. Concurr. Comput. : Pract. Exper.,

18(10):1101–1113, 2006.

[HR89] V. G. Hemmady and S. M. Reddy. On the repair of redundant rams.

In DAC ’89: Proceedings of the 26th ACM/IEEE Design Automation

Conference, pages 710–713, New York, NY, USA, 1989. ACM.

[HSL90] W.K. Huang, Y-N. Shen, and F. Lombardi. New approaches for the

repairs of memories with redundancy by row/column deletion for

yield enhancement. Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on, 9:323 – 328, Mar 1990.

[JHCHKC+96] Yoo J-H., Kim C-H., Lee K-C., Kyung K-H., et al. A 32-bank 1

gb self-strobing synchronous dram with 1 gbyte/sbandwidth. Solid-

State Circuits, IEEE Journal of, 31:1635–1644, Nov 1996.

[JM91] R. E. Johnson and C. Mcconnell. The rtl system: A framework

for code optimization. In Code Generation—Concepts, Tools, Tech-

niques. Proceedings of the International Workshop on Code Genera-

tion, pages 255–274. Springer-Verlag, 1991.

 Verigy Confidential -- Verigy Confidential --

Bibliography 201

[K+99] T. Kirihata et al. A 390-mm2, 16-bank, 1-gb ddr sdram with hy-

brid bitline architecture. Solid-State Circuits, IEEE Journal of,

34(11):1580–1588, Nov 1999.

[KF86] S-Y. Kuo and W. Fuchs. Efficient spare allocation in reconfigurable

arrays. In DAC ’86: Proceedings of the 23rd ACM/IEEE conference

on Design automation, pages 385–390, Piscataway, NJ, USA, 1986.

IEEE Press.

[KGB+84] D. Kantz, J.R Goetz, R. Bender, M. Bahring, J. Wawersig,

W. Meyer, and W. Muller. A 256K DRAM with descrambled re-

dundancy test capability. IEEE Journal of Solid-State Circuits,

19(5):596–602, 1984.

[Kir98] T. Kirihata. Hierarchical column select line architecture for multi-

bank DRAMs, October 13 1998. US Patent 5,822,268.

[KON+00] T. Kawagoe, J. Ohtani, M. Niiro, T. Ooishi, M. Hamada, and

H. Hidaka. A built-in self-repair analyzer (CRESTA) for embed-

ded DRAMs. In Proceedings of the 2000 IEEE International Test

Conference, page 567. IEEE Computer Society, 2000.

[LFMK06] H-Y. Lin, Y. Fu-Min, and S-Y. Kuo. An efficient algorithm for spare

allocation problems. Reliability, IEEE Transactions on, 55(2):369–

378, June 2006.

[LL96a] C.P. Low and H.W. Leong. A new class of efficient algorithms for

reconfiguration of memoryarrays. IEEE Transactions on Computers,

45(5):614–618, 1996.

[LL96b] C.P. Low and H.W. Leong. Regular Issue Papers. Minimum Fault

Coverage in Memory Arrays: A Fast Algorithm and Probabilistic

Analysis. IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, 15(6), 1996.

 Verigy Confidential -- Verigy Confidential --

Bibliography 202

[LTH+06] S.K. Lu, Y.C. Tsai, C.H. Hsu, K.H. Wang, and C.W. Wu. Effi-

cient built-in redundancy analysis for embedded memories with 2-D

redundancy. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 14(1):34–42, 2006.

[LYCK04] H-Y. Lin, F-M. Yeh, I-Y. Chen, and S-Y. Kuo. An efficient algorithm

for reconfiguring shared spare rram. In ICCD ’04: Proceedings of the

IEEE International Conference on Computer Design, pages 544–546,

Washington, DC, USA, 2004. IEEE Computer Society.

[LYK06] H.Y. Lin, F.M. Yeh, and S.Y. Kuo. An efficient algorithm for spare

allocation problems. IEEE Transactions on Reliability, 55(2):369–

378, 2006.

[Mer03] J Merrill. Generic and gimple: A new tree representation for entire

functions. In Proceedings of the 2003 GCC Summit, May 2003.

[mra01] Software solutions for memory test devices.

http://www.advantest.co.jp/products/ate/pdf/software-1e.pdf,

June 2001.

[Mur89] T. Murata. Petri nets: Properties, analysis and applications. Pro-

ceedings of the IEEE, 77(4):541–580, 1989.

[Nov04] D. Novillo. Design and implementation of Tree SSA. In GCC De-

velopers’ Summit. Citeseer, 2004.

[OBNH08] P. Ohler, A. Bosio, G. Natale, and S. Hellebrand. A Modular Mem-

ory BIST for Optimized Memory Repair. In 14th IEEE International

On-Line Testing Symposium, 2008. IOLTS’08, pages 171–172, 2008.

[REC99] G. Rabideau, T. Estlin, and S. Chien. Working together: Automatic

generation of command sequences for multiple cooperating rovers.

In Proceedings of the 1999 IEEE Aerospace Conference, Aspen, CO,

1999.

http://www.advantest.co.jp/products/ate/pdf/software-1e.pdf

 Verigy Confidential -- Verigy Confidential --

Bibliography 203

[Sch78] S.E. Schuster. Multiple word/bit line redundancy for semiconduc-

tor memories. IEEE Journal of Solid-State Circuits, 13(5):698–703,

1978.

[Sch06] D.C. Schmidt. Model-driven engineering. IEEE computer, 39(2):25–

31, 2006.

[SDM+05] A. Sehgal, A. Dubey, E.J Marinissen, C. Wouters, H. Vranken, and

K. Chakrabarty. Redundancy modelling and array yield analysis

for repairable embedded memories. IEE Proceedings-Computers and

Digital Techniques, 152(1):97–106, 2005.

[Sel03] B. Selic. The pragmatics of model-driven development. IEEE soft-

ware, 20(5):19–25, 2003.

[SF92] W. Shi and W.K. Fuchs. Probabilistic analysis and algorithms for

reconfiguration of memory arrays. IEEE Trans. Computer-Aided

Design, 11(9), 1992.

[SHG+01] A.K.A.H.N. Savoiu, A. Halambi, P. Grun, N. Dutt, and A. Nicolau.

V–SAT: A Visual Specification and Analysis Tool for System-On-

Chip Exploration. Journal of systems architecture, 47(3-4), 2001.

[SHZL01] C. Su, S.C. Hsiao, H.Z. Zhau, and C.L. Lee. A computer aided

engineering system for memory BIST. In Proceedings of the 2001

Asia and South Pacific Design Automation Conference, pages 492–

495. ACM, 2001.

[SMZ+01] R.M. Simpson, T.L. McCluskey, W. Zhao, R.S. Aylett, and C. Do-

niat. An integrated graphical tool to support knowledge engineering

in ai planning. In Proceedings, 2001 European Conference on Plan-

ning, Toledo, Spain. Citeseer, 2001.

[SVZ01] S. Shoukourian, V. Vardanian, and Y. Zorian. An approach for

evaluation of redundancy analysis algorithms. pages 51–55, 2001.

 Verigy Confidential -- Verigy Confidential --

Bibliography 204

[SVZ04] S. Shoukourian, V. A. Vardanian, and Y. Zorian. A methodology for

design and evaluation of redundancy allocation algorithms. In VTS

’04: Proceedings of the 22nd IEEE VLSI Test Symposium, page 249,

Washington, DC, USA, 2004. IEEE Computer Society.

[TA67] E. Tammaru and J.B. Angell. Redundancy for LSI yield enhance-

ment. IEEE Journal of Solid-State Circuits, 2(4):172–182, 1967.

[TAM+08] S. Thoziyoor, J.H. Ahn, M. Monchiero, J.B. Brockman, and N.P.

Jouppi. A comprehensive memory modeling tool and its application

to the design and analysis of future memory hierarchies. In Proceed-

ings of the 35th International Symposium on Computer Architecture,

pages 51–62. IEEE Computer Society, 2008.

[TBM84] M. Tarr, D. Boudreau, and R. Murphy. Defect analysis system

speeds test and repair of redundant memories. Electronics, January

1984.

[TK99] S. Takase and N. Kushiyama. A 1.6-GByte/s DRAM with flexible

mapping redundancy technique andadditional refresh scheme. IEEE

Journal of Solid-State Circuits, 34(11):1600–1606, 1999.

[TLC06] T.W. Tseng, J.F. Li, and D.M. Chang. A built-in redundancy-

analysis scheme for RAMs with 2D redundancy using 1D local

bitmap. In Proceedings of the conference on Design, automation

and test in Europe: Proceedings, page 58. European Design and Au-

tomation Association, 2006.

[vdGAA00] A. J. van de Goor and Z. Al-Ars. Functional memory faults: A

formal notation and a taxonomy. In VTS ’00: Proceedings of the

18th IEEE VLSI Test Symposium, page 281, Washington, DC, USA,

2000. IEEE Computer Society.

[vdGV90] A. J. van de Goor and C. A. Verruijt. An overview of deterministic

functional ram chip testing. ACM Comput. Surv., 22(1):5–33, 1990.

 Verigy Confidential -- Verigy Confidential --

Bibliography 205

[Vol98] J. Vollrath. Techniques for reducing redundant element fuses in a

dynamic random access memory array, November 3 1998. US Patent

5,831,917.

[WGT+05] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and

B. Jacob. DRAMsim: a memory system simulator. ACM SIGARCH

Computer Architecture News, 33(4):107, 2005.

[WHCW02] C.F. Wu, C.T. Huang, K.L. Cheng, and C.W. Wu. Fault simulation

and test algorithm generation for random access memories. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 21(4), 2002.

[YHAA+] K. Yamasaki, S. Hamdioui, Z. Al-Ars, A. van Genderen, and G.N.

Gaydadjiev. High Quality Simulation Tool for Memory Redundancy

Algorithms.

[YHO97] T. Yamauchi, L. Hammond, and K. Olukotun. The hierarchical

multi-bank DRAM: A high-performance architecture for memory

integrated with processors. In at 17th Conference on Advanced Re-

search in VLSI, Ann Arbor, MI, 1997.

[YTH+05] F. Yu, C.H. Tsai, Y.W. Huang, D. T. Lee, H.Y. Lin, and S-Y. Kuo.

Efficient exact spare allocation via boolean satisfiability. In DFT ’05:

Proceedings of the 20th IEEE International Symposium on Defect

and Fault Tolerance in VLSI Systems, pages 361–370, Washington,

DC, USA, 2005. IEEE Computer Society.

