Flows of Mellin transforms with periodic integrator

Titus Hilberdink

Department of Mathematics, University of Reading, Whiteknights, PO Box 220, Reading RG6 6AX, UK; t.w.hilberdink@reading.ac.uk

Abstract

We study Mellin transforms $\hat{N}(s) = \int_{1-}^{\infty} x^{-s} dN(x)$ for which N(x) - x is periodic with period 1 in order to investigate 'flows' of such functions to Riemann's $\zeta(s)$ and the possibility of proving the Riemann Hypothesis with such an approach. We show that, excepting the trivial case where N(x) = x, the supremum of the real parts of the zeros of any such function is at least $\frac{1}{2}$.

We investigate a particular flow of such functions $\{\hat{N_{\lambda}}\}_{\lambda \geq 1}$ which converges locally uniformly to $\zeta(s)$ as $\lambda \to 1$, and show that they exhibit features similar to $\zeta(s)$. For example, $\hat{N_{\lambda}}(s)$ has roughly $\frac{T}{2\pi}\log\frac{T}{2\pi}-\frac{T}{2\pi}$ zeros in the critical strip up to height T and an infinite number of negative zeros, roughly at the points $\lambda - 1 - 2n$ $(n \in \mathbb{N})$.

2010 AMS Mathematics Subject Classification: 11M41, 30C15. Keywords and phrases: Zeros of Mellin transforms, Lindelöf function.

Introduction

One idea of approaching the Riemann Hypothesis (RH) is to construct a sequence or a flow of holomorphic functions converging to $\zeta(s)$, uniformly on compact subsets of $\mathbb{C} \setminus \{1\}$ in such a way that all the functions in the sequence have no zeros in $H_{\frac{1}{2}}$. Then by Hurwitz's Theorem on the zeros of the limit function, RH would follow. Less stringently, we would only require that there are no zeros in half-planes converging to $H_{\frac{1}{2}}$. To make it worthwhile, it should be easier to locate the zeros of the sequence than of $\zeta(s)$ itself.

The problem with such an approach is of course how to choose your sequence or flow (if indeed this is possible). We shall restrict ourselves to Mellin transforms; i.e.

$$\hat{N}_{\lambda}(s) = \int_{0}^{\infty} x^{-s} \, dN_{\lambda}(x),$$

where λ ranges over some interval, say $\lambda \in [0,1]$ with $N_{\lambda}(x) \to [x]$ as $\lambda \to 1$. Thus $\hat{N}_{\lambda}(s) \to \zeta(s)$.

For instance, one can imagine starting from very 'smooth' generalised primes and integers and 'flowing' to the actual primes and integers as time progresses. For example, we could start from $N_0(x) = x$ ($x \ge 1$) and zero otherwise and 'flow' to the function $N_1(x) = [x]$. Then $\hat{N}_0(s) = \frac{s}{s-1}$ 'flows' to $\hat{N}_1(s) = \zeta(s)$.

There are many 'natural' properties that a typical integrator N(x) (or its Mellin transform) in such a flow could be assumed to have, by analogy with [x] and its Mellin transform $\zeta(s)$. One property we shall assume at the outset is that N(x)=0 for x<1 and N(1)=1. Thus N has a jump at 1 and so $\hat{N}(s)=1+\int_1^\infty x^{-s}dN(x)$, ensuring that $\hat{N}(s)$ is bounded away from zero in half-planes far enough to the right. In this paper we shall further assume that for $x\geq 1$, N(x)-x is periodic with period 1. (This is true for the cases N(x)=x and N(x)=[x]

¹For $\theta \in \mathbb{R}$, we denote by H_{θ} the half plane $\{s \in \mathbb{C} : \Re s > \theta\}$.

mentioned above). A further property that could be considered is that N(x) forms part of a generalised prime system; i.e. $N(x) = \exp_* \Pi(x)$ for some increasing function $\Pi(x)$, or in terms of Mellin transforms; $\log \hat{N}(s) = \hat{\Pi}(s)$. However, we shall not assume this here.

On the above assumptions $\hat{N}(s)$ has an analytic continuation to $H_0 \setminus \{1\}$ with a simple pole at s=1. In fact, using the Fourier development of N(x)-x, we shall show (Theorem 1) that there is an analytic continuation to the rest of the complex plane as well, and furthermore $\hat{N}(s)$ satisfies a 'functional relationship' akin to the functional equation for $\zeta(s)$. As a corollary (Corollary 2) it follows that the associated Lindelöf function (see below for the definition) is at least $\frac{1}{2} - \sigma$ for $\sigma < \frac{1}{2}$, except in the case when N(x) = x. Denoting by Θ the supremum of the real parts of the zeros of \hat{N} , this further implies that $\Theta \geq \frac{1}{2}$.

In particular, this shows it is impossible to have a flow of such Mellin transforms from $\frac{s}{s-1}$ to $\zeta(s)$ in which the zeros gradually move to the right (unless RH is false).

In the final section, we discuss the zeros of a particular flow of such Mellin transforms $\{\hat{N}_{\lambda}\}_{{\lambda}>1}$ whose integrator N_{λ} has Fourier coefficients proportional to $n^{-\lambda}$.

1. Some preliminaries and notation

Let S denote the space of functions $f : \mathbb{R} \to \mathbb{C}$ which are zero on $(-\infty, 1)$, right-continuous, and of local bounded variation. (See e.g. [2], pp.50-70.) For $\alpha \in \mathbb{R}$, let $S_{\alpha} = \{f \in S : f(1) = \alpha\}$.

Let $f \in S$. If $f(x) = O(x^A)$ for some A, then we define the Mellin transform by

$$\hat{f}(s) = \int_{1-}^{\infty} x^{-s} \, df(x).$$

This is well-defined for $\sigma = \Re s > \alpha$, where α is the infimum of A for which $f(x) = O(x^A)$. Indeed, in this half-plane, \hat{f} is holomorphic. Integrating by parts gives

$$\hat{f}(s) = s \int_{1}^{\infty} \frac{f(x)}{x^{s+1}} dx.$$

A function F holomorphic in a vertical strip (except possibly at a finite number of isolated singularities) is said to be of *finite order* if

$$F(\sigma + it) = O(|t|^A) \qquad (|t| \ge t_0, \text{ some } t_0),$$

for each σ in the interval of the strip. As such, we may define the *Lindelöf* function $\mu(\sigma)$ to be the infimum of those A for which the above holds. It is well-known that μ is a convex function. In our case (with $F = \hat{N}$ and $N \in S_1$), μ will be decreasing and eventually zero since

$$|\hat{N}(s) - 1| \le \int_{1}^{\infty} x^{-\sigma} d|N|(x) \to 0$$

as $\sigma \to \infty$.

Knowledge of the positivity of μ can be used for locating zeros because of the following result: if f is of finite order in H_{β} and has at most finitely many zeros here and $\mu(\sigma)=0$ for σ sufficiently large, then $\mu(\sigma)=0$ for $\sigma>\beta$. (This was shown to hold for Beurling zeta functions in [4], but actually the proof readily extends to general functions.) Thus, for example, if $\mu(\sigma)>0$ for $\sigma<\frac{1}{2}$, then f(s) has infinitely many zeros in each half-plane $H_{\frac{1}{\alpha}-\delta}$ for every $\delta>0$.

2. Main results and proofs

Suppose $N \in S_1$ and N(x) = x - R(x) where R(x) has period 1. Extend R to the whole real line

by periodicity. Thus R is right continuous, locally of bounded variation, and R(1) = 0. Since R is of bounded variation, it possesses a Fourier series

$$a_0 + \sum_{n=1}^{\infty} b_n \cos 2\pi nx + \sum_{n=1}^{\infty} c_n \sin 2\pi nx$$

which converges to $\frac{1}{2}(R(x+0)+R(x-0))$, and the series is boundedly convergent (see [5], p.408). Also $b_n, c_n = O(\frac{1}{n})$.

Theorem 1

Suppose that $N(x) = x - R(x) \in S_1$ where R is periodic with period 1. Then $\hat{N}(s)$ has an analytic continuation to $\mathbb{C} \setminus \{1\}$ with a simple pole at s = 1 with residue 1. Furthermore $\hat{N}(s)$ is of finite order and for $\sigma < 0$ satisfies the relation

$$\hat{N}(s) = \frac{s}{s-1} + \int_0^1 x^{-s} dR(x) + (2\pi)^s \Gamma(1-s) \left(\cos\frac{\pi s}{2} \sum_{n=1}^\infty b_n n^s - \sin\frac{\pi s}{2} \sum_{n=1}^\infty c_n n^s\right). \tag{2.1}$$

The proof of Theorem 1 shows that the Lindelöf function of \hat{N} satisfies $\mu(\sigma) \leq \frac{1}{2} - \sigma$ for $\sigma \leq 0$, while of course $\mu(\sigma) = 0$ for $\sigma \geq 1$. By convexity one obtains upper bounds for all σ . We can get equality if we know that b_n and c_n are not identically zero. (Equivalently, since R is right-continuous, if R is not constant; i.e. non-zero.)

Corollary 2

Under the assumptions of Theorem 1, if $R \not\equiv 0$ then $\mu(\sigma) = \frac{1}{2} - \sigma$ for $\sigma \leq 0$ and $\mu(\sigma) \geq \mu_0(\sigma)$ for all σ , where

$$\mu_0(\sigma) = \begin{cases} 0 & \text{if } \sigma \ge \frac{1}{2} \\ \frac{1}{2} - \sigma & \text{if } \sigma < \frac{1}{2} \end{cases}.$$

It follows that \hat{N} has infinitely many zeros in $H_{\frac{1}{2}-\delta}$ for any $\delta > 0$.

In particular, if we let Θ denote the supremum of the real parts of the zeros of \hat{N} , then $\Theta \geq \frac{1}{2}$.

Proof of Theorem 1. We have for $\sigma > 1$,

$$\hat{N}(s) = 1 + s \int_{1}^{\infty} \frac{N(x)}{x^{s+1}} dx = \frac{s}{s-1} - s \int_{1}^{\infty} \frac{R(x)}{x^{s+1}} dx.$$

The integral on the right converges for $\sigma > 0$, and so $\hat{N}(s)$ has an analytic continuation to H_0 except for a simple pole at s = 1 with residue 1. We can extend further to the left by noting that $a_0 = \int_0^1 R(x) dx$ so that $\int_0^X (R(x) - a_0) dx = O(1)$. Hence for $\sigma > 0$,

$$\hat{N}(s) = \frac{s}{s-1} - s \int_{1}^{\infty} \frac{a_0}{x^{s+1}} dx - s \int_{1}^{\infty} \frac{R(x) - a_0}{x^{s+1}} dx = \frac{s}{s-1} - a_0 - s \int_{1}^{\infty} \frac{R(x) - a_0}{x^{s+1}} dx.$$

The final integral converges and is holomorphic for $\sigma > -1$ and so this extends $\hat{N}(s)$ holomorphically to H_{-1} . Thus $\hat{N}(0) = -a_0$. Note that $\hat{N}(s)$ has finite order for $\sigma > -1$ since in this range, writing $V(x) = \int_1^x (R(y) - a_0) dy = O(1)$, we have

$$s \int_{1}^{\infty} \frac{R(x) - a_0}{x^{s+1}} dx = s(s+1) \int_{1}^{\infty} \frac{V(x)}{x^{s+2}} dx = O(|t|^2).$$

Also $s \int_0^1 \frac{R(x) - a_0}{x^{s+1}} dx$ converges for $\sigma < 0$ and equals $s \int_0^1 \frac{R(x)}{x^{s+1}} dx + a_0 = \int_0^1 x^{-s} dR(x) + a_0$. Thus,

$$\hat{N}(s) = \frac{s}{s-1} + \int_0^1 x^{-s} dR(x) - s \int_0^\infty \frac{R(x) - a_0}{x^{s+1}} dx \qquad \text{for } -1 < \sigma < 0.$$
 (2.2)

Now we insert the Fourier series for $R(x) - a_0$. If we ignore all problems of convergence for the moment, the final integral of (2.2) becomes

$$s \int_{0}^{\infty} \frac{R(x) - a_{0}}{x^{s+1}} dx = s \int_{0}^{\infty} \frac{1}{x^{s+1}} \left(\sum_{n=1}^{\infty} b_{n} \cos 2\pi n x + \sum_{n=1}^{\infty} c_{n} \sin 2\pi n x \right) dx$$

$$= s \sum_{n=1}^{\infty} \left(b_{n} \int_{0}^{\infty} \frac{\cos 2\pi n x}{x^{s+1}} dx + c_{n} \int_{0}^{\infty} \frac{\sin 2\pi n x}{x^{s+1}} \right) dx$$

$$= s \sum_{n=1}^{\infty} (2\pi n)^{s} \left(b_{n} \Gamma(-s) \cos \frac{\pi s}{2} - c_{n} \Gamma(-s) \sin \frac{\pi s}{2} \right)$$

$$= -\Gamma(1-s)(2\pi)^{s} \left(\cos \frac{\pi s}{2} \sum_{n=1}^{\infty} b_{n} n^{s} - \sin \frac{\pi s}{2} \sum_{n=1}^{\infty} c_{n} n^{s} \right), \qquad (2.3)$$

and the result follows formally. However, the term-by-term integration is permissible since the Fourier series is boundedly convergent and b_n and c_n are both O(1/n) (the argument is identical to the special case $c_n = \frac{1}{n}$ as in [6], p.15).

Thus (2.3) holds for $-1 < \sigma < 0$. But the RHS of (2.3) is holomorphic for $\sigma < 0$. Hence this provides the analytic continuation of $\hat{N}(s)$ to $\mathbb{C} \setminus \{1\}$ and (2.3) holds for $\sigma \leq -1$ also.

That $\hat{N}(s)$ is of finite order follows directly from (2.3). For $|\Gamma(1-s)(2\pi)^s \cos \frac{\pi s}{2}| = O(|t|^{1/2-\sigma})$ and similarly for the term involving sin, while $|\sum b_n n^s| \leq \sum |b_n| n^{\sigma} = O(1)$ for $\sigma < 0$ and also for $\sum c_n n^s$. Since $|\int_0^1 x^{-s} dR(x)| \leq \int_0^1 1 d|R|(x) = O(1)$, (2.3) gives, for $\sigma < 0$,

$$|\hat{N}(\sigma + it)| = O(1) + O(|t|^{1/2-\sigma}).$$

Proof of Corollary 2. Consider the final term in (2.1) which can be written

$$\Gamma(1-s)(2\pi)^s \cos \frac{\pi s}{2} \sum_{n=1}^{\infty} n^s \left(b_n - c_n \tan \frac{\pi s}{2} \right)$$
 (2.4)

and use the asymptotic bounds

$$\begin{split} |\Gamma(1-s)| &= |\Gamma(1-\sigma-it)| \sim \sqrt{2\pi}|t|^{1/2-\sigma}e^{-\frac{\pi}{2}|t|}, \\ \left|\cos\frac{\pi s}{2}\right| \sim \frac{1}{2}e^{\frac{\pi}{2}|t|}, \quad \text{ and } \quad \tan\frac{\pi s}{2} &= \tan\left(\frac{\pi\sigma}{2} + i\frac{\pi t}{2}\right) = \operatorname{sgn}(t)i + O(e^{-\pi|t|}). \end{split}$$

Thus the term in (2.4) is, in modulus, asymptotic to

$$\sqrt{\frac{\pi}{2}} |t|^{1/2-\sigma} \left(\left| \sum_{n=1}^{\infty} (b_n \pm ic_n) n^s \right| + O(e^{-\pi|t|}) \right).$$

4

Since the coefficients b_n and c_n are not identically zero and, furthermore, are real, there is a least integer n_0 for which $b_{n_0} \pm ic_{n_0} \neq 0$. It follows that for σ sufficiently large and negative,

$$\left| \sum_{n=1}^{\infty} (b_n \pm ic_n) n^s \right| \ge \frac{1}{2} n_0^{\sigma} |b_{n_0} + ic_{n_0}|.$$

This implies that $\mu(\sigma) = \frac{1}{2} - \sigma$ for σ sufficiently large and negative. By convexity, $\mu(\sigma) \ge \mu_0(\sigma)$ for all σ . But for $\sigma \le 0$, we already know that $\mu(\sigma) \le \frac{1}{2} - \sigma$, so we have equality here.

Remarks

- (a) Theorem 1 and Corollary 2 extend immediately to the case where N(x) cx is periodic for some constant c.
- (b) Similar results can be obtained more generally if R(x) = N(x) x is almost-periodic under some extra assumptions. For example, suppose that

$$R(x) = a_0 + \sum_{n=1}^{\infty} b_n \cos 2\pi \lambda_n x + \sum_{n=1}^{\infty} c_n \sin 2\pi \lambda_n x,$$

and that the series is boundedly convergent with b_n and c_n both O(1/n). Here suppose $\lambda_n > 0$ increases strictly and without bound. If we assume that $\sum \frac{\lambda_n^{\sigma}}{n}$ converges for every $\sigma < 0$, then the same method as in Theorem 1 shows that \hat{N} has an analytic continuation to $\mathbb{C} \setminus \{1\}$, is of finite order and satisfies

$$\hat{N}(s) = \frac{s}{s-1} + \int_0^1 x^{-s} dR(x) + (2\pi)^s \Gamma(1-s) \left(\cos \frac{\pi s}{2} \sum_{n=1}^\infty b_n \lambda_n^s - \sin \frac{\pi s}{2} \sum_{n=1}^\infty c_n \lambda_n^s \right),$$

for $\sigma < 0$. Corollary 2 also holds in this case if the b_n and c_n are not identically zero (i.e. R(x) not constant).

(c) The inequality $\mu \ge \mu_0$ seems quite robust. It holds for the Beurling zeta function associated to discrete g-prime systems (see [3]) but also for those Mellin transforms contained in (a) and (b) above. What is a natural setting for which this inequality is true?

3. A particular flow of Mellin transforms to $\zeta(s)$

As Corollary 2 shows, it is impossible to construct a flow of Mellin transforms with 'periodic' integrator converging to $\zeta(s)$ such that the supremum of the real parts of the zeros converges to $\frac{1}{2}$ from below. Nevertheless, it might still be of interest to investigate a particular flow of such systems with N(x)-x periodic.

Here we consider a particular flow of Mellin transforms $\{\hat{N}_{\lambda}(s)\}_{\lambda \geq 1}$ converging uniformly to $\zeta(s)$ as $\lambda \to 1$, and for which $N_{\lambda}(x) - x$ has period 1 with Fourier coefficients proportional to $\frac{1}{n^{\lambda}}$. We shall see that for $\lambda > 1$, $\hat{N}_{\lambda}(s)$ shares a number of characteristics of $\hat{N}_{1}(s) = \zeta(s)$. Thus $\hat{N}_{\lambda}(s)$ has roughly $\frac{T}{2\pi}\log\frac{T}{2\pi} - \frac{T}{2\pi}$ zeros in H_{0} up to height T and an infinite number of negative zeros, roughly at the points $\lambda - 1 - 2n$ $(n \in \mathbb{N})$.

The Hurwitz zeta function $\zeta(s,a)$, defined for $\Re s > 1$ and $0 < a \le 1$ by the series $\sum_{n=0}^{\infty} (n+a)^{-s}$ has (as a function of s) an analytic continuation to $\mathbb{C} \setminus \{1\}$ and a simple pole at s=1

with residue 1 (see for example [1], Chapter 12). Its analytic continuation is given by $\zeta(s, a) = \Gamma(1-s)I(s,a)$, where I(s,a) is the entire function

$$I(s,a) = \frac{1}{2\pi i} \int_C \frac{z^{s-1}e^{az}}{1 - e^z} dz,$$

where C is the contour which starts at $-\infty$, goes along the negative real axis (on the lower side) to -c where $0 < c < 2\pi$, encircles the origin back to -c and returns to $-\infty$ on the upper side of the negative real axis. Note that $\zeta(s,1) = \zeta(s)$. The definition actually makes sense whenever $\Re a > 0$ (any s). As a function of s (for any given s), s, s is holomorphic for $\Re a > 0$.

Definition: Let $N_{\lambda}(x) = x - R_{\lambda}(x)$ for $x \ge 1$ and zero otherwise and $\lambda \ge 1$, where $R_{\lambda}(x)$ is periodic with period 1 and be defined for $0 \le x < 1$ by

$$R_{\lambda}(x) = \rho_{\lambda}(\zeta(1-\lambda, 1-x) - \zeta(1-\lambda)) = \frac{\rho_{\lambda}\Gamma(\lambda)}{2\pi i} \int_{C} \frac{z^{-\lambda}(e^{-xz} - 1)}{e^{-z} - 1} dz.$$
 (3.1)

Here ρ_{λ} is a continuous function of λ (to be determined) and we set $\rho_1 = 1$ so that $R_1(x) = \{x\}$.

Some properties

(a) For $\lambda = m \in \mathbb{N}$, R_m is a polynomial in [0,1) since $\zeta(-n,a) = -\frac{B_{n+1}(a)}{n+1}$ where $B_n(\cdot)$ is the n^{th} Bernoulli polynomial; i.e.

$$R_m(x) = \frac{\rho_m}{m} (B_m(1) - B_m(1 - x)) = \frac{(-1)^{m-1} \rho_m}{m} (B_m(x) - B_m(0)). \qquad (0 \le x < 1)$$

(b) For $\lambda > 1$ R_{λ} is continuous, while R_1 is right continuous but has jump continuities at the integers. On the interval [0,1), R_{λ} is holomorphic since the function

$$R_{\lambda}^{*}(z) = \rho_{\lambda}(\zeta(1-\lambda, 1-z) - \zeta(1-\lambda)),$$

which agrees with R_{λ} on [0,1), is holomorphic for $\Re z < 1$. Hence we have an expansion

$$R_{\lambda}(x) = \sum_{n=1}^{\infty} a_n(\lambda) x^n \qquad (0 \le x < 1)$$

for some coefficients $a_n(\lambda)$. Expanding the integrand in (3.1) gives a formula for the coefficients.

$$R_{\lambda}(x) = \frac{\rho_{\lambda}\Gamma(\lambda)}{2\pi i} \int_{C} \frac{z^{-\lambda}}{e^{-z} - 1} \sum_{n=1}^{\infty} (-1)^{n} \frac{x^{n} z^{n}}{n!} dz = \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} \left(\frac{\rho_{\lambda}\Gamma(\lambda)}{2\pi i} \int_{C} \frac{z^{n-\lambda}}{e^{-z} - 1} dz\right) x^{n}$$
$$= \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} \frac{\rho_{\lambda}\Gamma(\lambda)\zeta(n - \lambda + 1)}{\Gamma(\lambda - n)} x^{n}.$$

Hence

$$a_n(\lambda) = (-1)^n \rho_{\lambda} {\lambda - 1 \choose n} \zeta(n + 1 - \lambda).$$
 (3.2)

For $\lambda > 1$ the expansion is also valid for x = 1, since $a_n(\lambda) = O(n^{-\lambda})$. For $\lambda = m \in \mathbb{N}$ and n = m, (3.2) should be interpreted as $\lim_{\lambda \to m} a_m(\lambda) = (-1)^{m-1} \rho_m/m$. Of course in this case the expansion is finite and is a polynomial of degree m.

(c) Fourier expansion: We have

$$R_{\lambda}(x) = -\frac{2\rho_{\lambda}\Gamma(\lambda)}{(2\pi)^{\lambda}} \left(\cos\frac{\pi\lambda}{2} \sum_{n=1}^{\infty} \frac{1 - \cos 2\pi nx}{n^{\lambda}} + \sin\frac{\pi\lambda}{2} \sum_{n=1}^{\infty} \frac{\sin 2\pi nx}{n^{\lambda}}\right)$$

which holds for all $x \in \mathbb{R}$ if $\lambda > 1$ and for $x \in \mathbb{R} \setminus \mathbb{Z}$ if $\lambda = 1$ ([1], p.257).

By Theorem 1, \hat{N}_{λ} extends analytically to the complex plane except for a simple pole at 1 and (after some calculation)

$$\hat{N}_{\lambda}(s) = \frac{s}{s-1} + \int_0^1 x^{-s} dR_{\lambda}(x) + 2\rho_{\lambda}(2\pi)^{s-\lambda} \Gamma(\lambda) \Gamma(1-s) \cos \frac{\pi(s-\lambda)}{2} \zeta(\lambda-s). \tag{3.3}$$

Using the functional equation for $\zeta(\lambda - s)$ this becomes

$$\hat{N}_{\lambda}(s) = \frac{s}{s-1} + \int_0^1 x^{-s} dR_{\lambda}(x) + \rho_{\lambda} \frac{\Gamma(\lambda)\Gamma(1-s)}{\Gamma(\lambda-s)} \zeta(s-\lambda+1). \tag{3.4}$$

For $\lambda > 1$ we have for $\sigma < 1$,

$$\int_0^1 x^{-s} dR_{\lambda}(x) = \int_0^1 x^{-s} R_{\lambda}'(x) dx = \int_0^1 \sum_{n=1}^{\infty} n a_n(\lambda) x^{n-s-1} dx = \sum_{n=1}^{\infty} \frac{n a_n(\lambda)}{n-s}.$$
 (3.5)

This series converges for all $s \notin \mathbb{N}$ and provides the meromorphic continuation of the LHS to \mathbb{C} with (at most) simple poles at the positive integers. Thus (3.3)-(3.5) hold for all s.

Theorem 3

With N_{λ} as defined above, we have $\hat{N}_{\lambda}(s) \to \zeta(s)$ as $\lambda \to 1$ uniformly on compact subsets of $\mathbb{C} \setminus \{1\}$.

Proof. This basically follows from the fact that $R_{\lambda} \to R_1$ uniformly on [0, a] for every a < 1, but we need to be a little careful near 1 since R_1 is not continuous here. First consider $\sigma > 0$. Let K be a compact subset of $H_0 \setminus \{1\}$. We have for $s \in K$

$$|\hat{N}_{\lambda}(s) - \hat{N}_{1}(s)| = \left| s \int_{1}^{\infty} \frac{R_{\lambda}(x) - R_{1}(x)}{x^{s+1}} dx \right| \le A \int_{1}^{\infty} \frac{|R_{\lambda}(x) - R_{1}(x)|}{x^{\sigma_{0}+1}} dx$$

for some constants $A, \sigma_0 > 0$. Let $\eta > 0$. Then for all $\varepsilon > 0$, there exists λ_0 such that for $1 < \lambda < \lambda_0$, $|R_1(x) - R_{\lambda}(x)| < \varepsilon$ for $n \le x \le n + 1 - \eta$ (any $n \in \mathbb{Z}$). Hence

$$|\hat{N}_{\lambda}(s) - \hat{N}_{1}(s)| \le A\varepsilon \int_{1}^{\infty} \frac{1}{x^{\sigma_{0}+1}} dx + A \sum_{n=1}^{\infty} \int_{n+1-\eta}^{n+1} \frac{C}{x^{\sigma_{0}+1}} dx \le A_{1}\varepsilon + AC\eta \sum_{n=1}^{\infty} \frac{1}{n^{\sigma_{0}+1}},$$

which can be made as small as we please. Hence $\hat{N}_{\lambda}(s) \to \hat{N}_{1}(s)$ uniformly on compact subsets of $H_0 \setminus \{1\}$.

In fact the same argument works for compact subsets of $H_{-1} \setminus \{1\}$ if we use the expression

$$\hat{N}_{\lambda}(s) = \frac{s}{s-1} - a_0 + s(s+1) \int_1^{\infty} \frac{V_{\lambda}(x)}{x^{s+2}} dx,$$

where $V_{\lambda}(x) = \int_{1}^{x} (R_{\lambda}(\cdot) - a_0)$, and noting that $V_{\lambda} \to V_1$ uniformly.

For $\sigma < 0$ we can use (3.4). The final term tends locally uniformly to $\zeta(s)$, while

$$\int_0^1 x^{-s} dR_{\lambda}(x) = s \int_0^1 \frac{R_{\lambda}(x)}{x^{s+1}} dx \to s \int_0^1 \frac{R_1(x)}{x^{s+1}} dx = -\frac{s}{s-1},$$

the convergence again being uniform. The result now follows.

Zeros

Since $\hat{N}_{\lambda}(s) \to \zeta(s)$ locally uniformly, the Riemann Hypothesis will follow if we can show that for all λ close to 1 (with some particular choice of ρ_{λ}), $\hat{N}_{\lambda}(s)$ has no zeros with $\sigma > \frac{1}{2}$. Slightly less restrictively, RH is true if the following conjecture is true:

Conjecture: Given $\theta > \frac{1}{2}$, there exists $\lambda_{\theta} > 1$ such that for $1 < \lambda < \lambda_{\theta}$ and some suitable choice of ρ_{λ} , \hat{N}_{λ} has no zeros in H_{θ} .

It may even be the case that this conjecture is equivalent to RH. The hope is of course that it is easier to show that for $\lambda > 1$, \hat{N}_{λ} has no zeros in H_{θ} than it is for $\lambda = 1$.

Now we show that for $\lambda>\frac{3}{2}$, \hat{N}_{λ} has only finitely many zeros in $H_{\frac{1}{2}+\delta}$ (any $\delta>0$). As λ gets closer to 1 however, we can only be certain of having finitely many zeros in half-planes further to the right, since we do not have the strong bounds on ζ in vertical strips. If we assume the Lindelöf Hypothesis (LH), then \hat{N}_{λ} has only finitely many zeros in $H_{\frac{1}{2}+\delta}$ for every $\lambda>1$.

Theorem 4

- (i) Let $\lambda \geq \frac{3}{2}$. Then for every $\delta > 0$, $\hat{N}_{\lambda}(s)$ has at most finitely many zeros in $H_{\frac{1}{2}+\delta}$ and in every strip where $\sigma \in [-A, \frac{1}{2} \delta]$ (any A).
- (ii) Let $1 < \lambda < \frac{3}{2}$. Then for every $\delta > 0$, $\hat{N}_{\lambda}(s)$ has at most finitely many zeros in $H_{2-\lambda+\delta}$ ($H_{\frac{1}{2}+\delta}$ on LH) and in every strip where $\sigma \in [-A, \lambda 1 \delta]$ ($\sigma \in [-A, \frac{1}{2} \delta]$ on RH).

Proof. For $\lambda > 1$, $\int_0^1 x^{-s} dR_{\lambda}(x) = \sum_{n=1}^{\infty} \frac{na_n(\lambda)}{n-s} \to 0$ as $|t| \to \infty$ for every σ . Hence from (3.4),

$$\hat{N}_{\lambda}(\sigma + it) = 1 + o(1) + \rho_{\lambda} \frac{\Gamma(\lambda)\Gamma(1 - \sigma - it)}{\Gamma(\lambda - \sigma - it)} \zeta(\sigma - \lambda + 1 + it).$$

The term on the right is, in modulus, asymptotic to

$$|\rho_{\lambda}|\Gamma(\lambda)\frac{|\zeta(\sigma-\lambda+1+it)|}{|t|^{\lambda-1}} = O(|t|^{\mu(\sigma-\lambda+1)-\lambda+1+\varepsilon}), \tag{3.6}$$

for every $\varepsilon > 0$, where $\mu(\cdot)$ is the Lindelöf function for ζ . Note that the implied constant is independent of σ for $a \le \sigma \le b$, any a, b.

Let $\lambda > \frac{3}{2}$. Consider $\sigma \le \lambda - 1$ and $\sigma > \lambda - 1$ separately. If $\sigma \le \lambda - 1$, then $\mu(\sigma - \lambda + 1) = \lambda - \sigma - \frac{1}{2}$, and the exponent of |t| in (3.6) is $\frac{1}{2} - \sigma + \varepsilon$. This is negative (for sufficiently small ε) if $\sigma > \frac{1}{2}$. If $\sigma > \lambda - 1$, $\mu(\sigma - \lambda + 1) < \frac{1}{2}$, so the exponent is also negative for ε small enough. Since the bound is uniform in σ , and there are no zeros in H_A for A sufficiently large, this implies that for $\lambda \ge \frac{3}{2}$, \hat{N}_{λ} has only finitely many zeros in $H_{\frac{1}{2} + \delta}$ for each $\delta > 0$.

If $\sigma < \frac{1}{2}$, then $\sigma < \lambda - 1$ and the expression in (3.6) is at least²

$$c|t|^{\frac{1}{2}-\sigma},$$

²Assuming $\rho_{\lambda} \neq 0$. If $\rho_{\lambda} = 0$, the result is trivially true.

for some c > 0, depending continuously on λ and σ . Hence for $-A \le \sigma \le \frac{1}{2} - \delta$, this is at least $c_1|t|^{\delta}$ (some constant $c_1 > 0$) which tends to infinity. Thus there are no zeros with |t| sufficiently large in such a strip, proving assertion (i).

Now consider $1 < \lambda < \frac{3}{2}$. If $\sigma \ge \lambda$, then $\mu(\sigma - \lambda + 1) = 0$ and the exponent in (3.6) is negative. For $\lambda - 1 \le \sigma < \lambda$, $\mu(\sigma - \lambda + 1) \le \frac{\lambda - \sigma}{2}$ (using $\mu(\alpha) \le \frac{1 - \alpha}{2}$ for $0 \le \alpha \le 1$) and the exponent in (3.6) is $1 - \frac{\lambda + \sigma}{2} + \varepsilon$. This is negative for $\sigma > 2 - \lambda$, and the result follows.

If L.H. holds, then $\mu(\sigma - \lambda + 1) = 0$ for $\sigma > \lambda - \frac{1}{2}$ and $\mu(\sigma - \lambda + 1) = \lambda - \sigma - \frac{1}{2}$ for $\sigma \le \lambda - \frac{1}{2}$. Hence the exponent in (3.6) is now

$$\begin{array}{ll} 1 - \lambda + \varepsilon & \text{if } \sigma > \lambda - \frac{1}{2} \\ \frac{1}{2} - \sigma + \varepsilon & \text{if } \sigma \leq \lambda - \frac{1}{2} \end{array}.$$

Both are negative if $\sigma > \frac{1}{2}$ for sufficiently small ε .

As in part(i), if $\sigma < \lambda - 1$, then $\sigma - \lambda + 1 < 0$ and the expression in (3.6) is at least $c|t|^{\frac{1}{2}-\sigma} \to \infty$. For $\sigma \geq \lambda - 1$ we cannot deduce anything about (3.6) for large |t| unless we know that ζ has no zeros in certain strips inside the critical strip. On R.H., the above argument applies for $\sigma - \lambda + 1 < \frac{1}{2}$, and (ii) follows.

Remark. For $\lambda > \frac{3}{2}$, the zeros in any right half-plane (apart from at most a finite number of exceptions) actually lie in a region

$$\left\{\sigma+it: -\frac{A}{\log|t|} \le \sigma - \frac{1}{2} \le \frac{B}{\log|t|}, |t| \ge 2\right\},\,$$

for some constants A, B. For $\hat{N}_{\lambda}(s) = 0$ if and only if

$$\frac{s}{s-1} + \int_0^1 x^{-s} dR_{\lambda}(x) = -2\rho_{\lambda}(2\pi)^{s-\lambda} \Gamma(\lambda) \Gamma(1-s) \cos \frac{\pi(s-\lambda)}{2} \zeta(\lambda-s). \tag{3.7}$$

Take σ such that $|\sigma - \frac{1}{2}| \le \lambda - \frac{3}{2} - \delta$ for some $\delta > 0$, and $|t| \ge 2$. The LHS of (3.7) is 1 + o(1), while the RHS is, in modulus,

$$\sim rac{|
ho_{\lambda}|\Gamma(\lambda)}{(2\pi)^{\lambda-\sigma-rac{1}{2}}}|t|^{rac{1}{2}-\sigma}|\zeta(\lambda-\sigma-it)|.$$

Since $\lambda - \sigma \ge 1 + \delta$, this is $\approx |t|^{\frac{1}{2} - \sigma}$, uniformly in σ . In particular, for $\frac{1}{2} - \sigma > A/\log|t|$ and A sufficiently large, the LHS of (3.7) is less than the RHS in modulus, and hence there are no zeros for |t| sufficiently large in this range. Similarly, for $\sigma - \frac{1}{2} > B/\log|t|$ and B sufficiently large, the LHS is greater than the RHS in modulus.

We can be more precise. Let $\sigma = \frac{1}{2} + \frac{\theta_t}{\log |t|}$ where $\theta_t = O(1)$. Then for a zero $\sigma + it$ with large |t|, we need

$$\frac{|\rho_{\lambda}|\Gamma(\lambda)}{(2\pi)^{\lambda-1}}e^{-\theta_t}|\zeta(\lambda-\sigma-it)| \sim 1.$$

Since $|\zeta(\lambda - \sigma - it)| \sim |\zeta(\lambda - \frac{1}{2} - it)|$, this requires

$$\theta_t = \log \left(\frac{|\rho_{\lambda}|\Gamma(\lambda)}{(2\pi)^{\lambda-1}} \Big| \zeta \left(\lambda - \frac{1}{2} - it \right) \Big| \right) + o(1).$$

As such and taking $t \geq 2$, the RHS of (3.7) is, using Stirling's formula, asymptotically

$$-\frac{\rho_{\lambda}\Gamma(\lambda)}{(2\pi)^{\lambda-1}}e^{\theta_t+\frac{i\pi}{2}(\lambda-\frac{1}{2})}e^{-i(t\log t-t-t\log 2\pi)}\zeta\Big(\lambda-\frac{1}{2}-it\Big) = -\frac{\rho_{\lambda}\zeta(\lambda-\frac{1}{2}-it)}{|\rho_{\lambda}\zeta(\lambda-\frac{1}{2}-it)|}e^{-i(t\log t-t-t\log 2\pi-\frac{\pi}{2}(\lambda-\frac{1}{2}))}.$$

At a zero, we want this to be asymptotic to the LHS of (3.7); i.e. to 1. Thus we want $t \log t - t - t \log 2\pi = 2\pi k + O(1)$ for $k \in \mathbb{Z}$; i.e.

$$f(t) := \frac{t}{2\pi} \log \frac{t}{2\pi} - \frac{t}{2\pi} = k + O(1).$$

Since f(t) is continuous we should expect a zero $\sigma_k + it_k$ for each k sufficiently large. The number of such zeros with $t_k \leq T$ is therefore roughly f(T); i.e. we should expect, for $\lambda > \frac{3}{2}$,

$$\frac{T}{2\pi}\log\frac{T}{2\pi} - \frac{T}{2\pi} + O(1)$$

zeros up to height T.

Theorem 5

Let $\lambda > 1$. Then $\hat{N_{\lambda}}$ has

$$\frac{T}{2\pi}\log\frac{T}{2\pi} - \frac{T}{2\pi} + O(\log T)$$

zeros in the rectangular strip $\{\sigma + it : 0 \le \sigma \le 1, 0 \le t \le T\}$.

Proof. Choose σ_0 sufficiently large so that $|\Re \hat{N}_{\lambda}(\sigma_0 + it)| \ge c > 0$ for all t. Denote by n(T) the number of zeros in the rectangular strip

$$\{\sigma + it : 0 < \sigma < \sigma_0, 1 < t < T\}.$$

This differs from the required number by O(1). Let γ denote the (anti-clockwise) boundary path of this strip. We may assume without loss of generality that there are no zeros of \hat{N}_{λ} on γ . Then

$$n(T) = \frac{1}{2\pi} \Delta_{\gamma} \arg \hat{N}_{\lambda},$$

where $\Delta_{\gamma} \arg \hat{N}_{\lambda}$ is the continuous variation of the argument of \hat{N}_{λ} around γ .

On the right-hand vertical, $\hat{N}_{\lambda}(\sigma_0 + it) \to 1$ as $t \to \infty$. Hence the variation of the argument along this vertical line segment is O(1). For the top horizontal, we use Lemma 9.4 of [6] (with '2' replaced by ' σ_0 '). Since \hat{N}_{λ} has finite order, this Lemma implies that the variation along here is at most $O(\log T)$. The variation along the bottom horizontal is trivially O(1). Finally on the left vertical, we have

$$\hat{N}_{\lambda}(it) = 2\rho_{\lambda}\Gamma(\lambda)(2\pi)^{it-\lambda}\Gamma(1-it)\cos\frac{\pi(it-\lambda)}{2}\zeta(\lambda-it) + 1 + o(1)$$
$$\sim \frac{\rho_{\lambda}\Gamma(\lambda)}{(2\pi)^{\lambda-\frac{1}{2}}}t^{\frac{1}{2}}e^{-i(t\log t - t - t\log 2\pi)}e^{\frac{i\pi}{2}(\lambda-\frac{1}{2})}\zeta(\lambda-it).$$

Since $\zeta(\lambda - it)$ is bounded and bounded away from zero, $\arg \hat{N}_{\lambda}(it) = -(t \log t - t - t \log 2\pi) + O(1)$, and the variation of the argument along the (downward) left hand vertical is $T \log T - T - T \log 2\pi + O(1)$.

Remark. It seems plausible that the $O(\log T)$ -term can be replaced by $O((\log T)^{\kappa})$, with κ decreasing steadily from 1 to 0 as λ varies from 1 to $\frac{3}{2}$.

Zeros on the negative real axis: For $\lambda = 1$, $\hat{N}_{\lambda}(s) = \zeta(s)$ has zeros on the negative real axis at -2k for each positive integer k — the so-called trivial zeros. Very similar behaviour occurs for $\lambda > 1$.

We require the following elementary result.

Lemma 6

Suppose f is holomorphic and real valued on $[0,\infty)$. Suppose further that, as $x\to\infty$,

$$f(x) = \cos \frac{\pi x}{2} + o(1)$$
 and $f'(x) = -\frac{\pi}{2} \sin \frac{\pi x}{2} + o(1)$.

Then for every sufficiently large integer n, the interval (2n, 2n + 2) contains exactly one zero, say x_n , and $x_n = 2n + 1 + o(1)$.

Proof. For $n \in \mathbb{N}$, $f(2n) - (-1)^n \to 0$, so for n sufficiently large, the sign of f(2n) is $(-1)^n$. Hence there is at least one zero in each interval (2n, 2n + 2) (for n large). In fact the zero(s) must be close to 2n+1 since for $|h| \leq 1$,

$$f(2n+h) - (-1)^n \cos \frac{\pi h}{2} \to 0,$$

uniformly in h, and $\cos \frac{\pi h}{2}$ is bounded away from zero if |h| < 1. Now for x = 2n + y, $f'(x) = (-1)^{n-1} \frac{\pi}{2} \sin \frac{\pi y}{2} + o(1)$, so for $x \in [2n + h, 2n + 2 - h]$ (any fixed h>0, $(-1)^{n-1}f'(x)>0$ for n large enough; i.e. f is monotonic in this interval. Thus can be at most one zero, say x_n . This must satisfy $x_n = 2n + 1 + o(1)$.

Theorem 7

For every sufficiently large positive integer n, $\hat{N}_{\lambda}(\lambda - x)$ has exactly one zero x_n in each interval (2n, 2n+2) $(n \in \mathbb{N})$. Furthermore $x_n = 2n+1+o(1)$ as $n \to \infty$.

Proof. Apply Lemma 6 with

$$f(x) = \frac{(2\pi)^x \hat{N}_{\lambda}(\lambda - x)}{2\rho_{\lambda}\Gamma(\lambda)\Gamma(x + 1 - \lambda)} = \zeta(x)\cos\frac{\pi x}{2} + \frac{(2\pi)^x}{2\rho_{\lambda}\Gamma(\lambda)\Gamma(x + 1 - \lambda)} \left(\frac{x}{x + 1} + \sum_{m=1}^{\infty} \frac{ma_{\lambda}(m)}{m + x}\right)$$

(using (3.5)). The final term and its derivarive tend to 0 with x, while $\zeta(x) \to 1$, $\zeta'(x) \to 0$, so f satisfies the conditions of Lemma 6 and the result follows.

Acknowledgement. It is a pleasure for me to thank Eric Saias for some stimulating discussions on flows of Mellin transforms to the Riemann zeta function.

References

- [1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976.
- [2] P. T. Bateman and H. G. Diamond, Analytic Number Theory, World Scientific Publishing, 2004.
- [3] T. W. Hilberdink, A lower bound for the Lindelöf function associated to generalised integers, J. Number Theory 122 (2007) 336-341.
- [4] T. W. Hilberdink and M. L. Lapidus, Beurling zeta functions, Generalised Primes, and Fractal Membranes, *Acta Appl Math* **94** (2006) 21-48.
- [5] E. C. Titchmarsh, The Theory of Functions, Second edition, Oxford University Press, 1986.
- [6] E. C. Titchmarsh, *The Theory of the Riemann Zeta-function*, Second edition, Oxford University Press, 1986.