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Abstract. In this paper we explore the properties of being hereditary and being
strong among the radicals of associative rings, and prove certain results such as a
relationship between Brown-McCoy and Behrens radicals.
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I.

In this paper rings are all associative, but not necessarily with a unit element. As usual,
I / A and L /l A (R /r A) denote that I is an ideal and L is a left ideal (R is a right ideal) in
A, respectively. Ao will stand for the ring on the additive group (A,+) with multiplication
xy = 0, for all x, y ∈ A.

Let us recall that a (Kurosh-Amitsur) radical γ is a class of rings which is closed under
homomorphisms, extensions (I and A/I in γ imply A in γ), and has the inductive property
(if I1 ⊆ · · · ⊆ Iλ ⊆ . . . is a chain of ideals, A = ∪Iλ, and each Iλ is in γ, then A is in γ).
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The unique largest γ-ideal γ(A) of A is then the γ-radical of A. A hereditary radical
containing all nilpotent rings is called a supernilpotent radical. Let M be a class of rings.
Put

M = {A | every ideal of A is in M}.

A radical γ is said to be principally left (right) hereditary if a ∈ A ∈ γ implies Aa ∈ γ
(aA ∈ γ, respectively). A radical γ is said to be left (right) strong if L/lA (R/rA) and L ∈ γ
(R ∈ γ) imply L ⊆ γ(A) (R ⊆ γ(A), respectively). A radical γ is normal if γ is left strong
and principally left hereditary. We shall make use of the following condition a left ideal L of
a ring A may satisfy with respect to a class M of rings:

(∗) L /l A and Lz ∈M for all z ∈ L ∪ {1}.
A radical γ is said to be principally left strong if L ⊆ γ(A) whenever the left ideal L of a

ring A satisfies condition (∗) with respect to the class γ(=M). Principally right strongness
is defined analogously.

We will focus on two conditions that a class M can satisfy.
(H) If Ao ∈M then S ∈M for every subring S ⊆ Ao.
(Z) If A ∈M then Ao ∈M.

A classM of rings is said to be regular if every nonzero ideal of a ring inM has a nonzero
homomorphic image in M. Starting from a regular (in particular, hereditary) class M of
rings the upper radical operator U yields a radical class

UM = {A | A has no nonzero homomorphic image in M}.

Recall that the Baer radical β is the upper radical determined by all prime rings, the
Brown-McCoy radical G is the upper radical determined by all simple rings with unity el-
ement, and the Behrens radical B is the upper radical of all subdirectly irreducible rings
having a nonzero idempotent in their hearts.

The lower principally left strong radical construction Lps(M) is similar to the lower (left)
strong radical construction Ls(M) (see [1]).

We shall construct the lower principally left strong radical (see also [7]) in the following
way. Let M be a homomorphically closed class of rings and define M =M1,

Mα+1 =

{

A
∣∣∣

every nonzero homomorphic image of A has a
nonzero left ideal with (∗) in Mα or a nonzero
ideal I ∈Mα

}

for ordinals α ≥ 1 and Mλ =
⋃
α<λ

Mα for limit ordinals λ. In particular,

M2 =

{

A
∣∣∣

every nonzero homomorphic image of A has a
nonzero left ideal with (∗) inM or a nonzero ideal
I ∈M

}

.

The class Lps(M) =
⋃
α

Mα is called the lower principally left strong radical class. As shown

in [6] Lps(M) is the smallest principally left strong radical containing M and

M⊆ L(M) ⊆ Lps(M) ⊆ Ls(M).
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For any class M let us define Mo = {A | Ao ∈ M}. It is easy to see that if M is a
radical then so is Mo. Let

γl = {A ∈ γ | every left ideal of A is in γ}

and
γr = {A ∈ γ | every right ideal of A is in γ}.

Next, we recall some results which will be used later on.

Proposition 1. [2, Lemma 1] Let γ be a radical. If S is a subring of a ring A such that
So ∈ γ, then also (S∗)o ∈ γ where S∗ denotes the ideal of A generated by S.

Proposition 2. [5, Lemma 2.4] Let γ be a radical. If (β(A))o ∈ γ, then β(A) ∈ γ.

Proposition 3. [2, Corollary 1] If M ⊆ Mo then L(M) ⊆ (L(M))o and Ls(M) ⊆
(Ls(M))o.

Proposition 4. [4, Theorem 4] If a radical γ is left strong and principally left hereditary,
then γ is normal.

Proposition 5. [2, Lemma 2] For any element a of a ring A, I = r(a)a, where r(a) = {x ∈
A | ax = 0} is an ideal of Aa and I2 = 0. In addition Aa/I is a homomorphic image of aA.

Proposition 6. [5, Corollary 4.2] A radical γ is hereditary and normal if and only if γ is
principally left strong, principally left hereditary and satisfies condition (H).

Proposition 7. [7, Theorem 6] A radical γ is normal if and only if γ is principally left or
right hereditary and principally left or right strong.

Proposition 8. [6, Theorem 3.3] LetM be a homomorphically closed class of rings satisfy-
ing:

1) M contains all zero rings;
2) M is hereditary;
3) if I / A, I2 = 0 and A/I ∈M then A ∈M.

Then Lps(M) =M2.

Proposition 9. [5, Theorem 5.1] The Behrens radical class B is the largest principally left
hereditary subclass of the Brown-McCoy radical class G, in fact

B =MG,

where
MG = {A | Aa ∈ G for all a ∈ A}.

A ring A is said to be (right) strongly prime if every non-zero ideal I of A contains a
finite subset F such that rA(F ) = 0, where rA(F ) = {x ∈ A | Fx = 0}.

The (right) strongly prime radical S is defined as the upper radical determined by the
class of all strongly prime rings, i.e. for any ring A,

S(A) = ∩{I / A | A/I is strongly prime}.

It is known that the radical S is special: so, in particular, S is hereditary and contains
the prime radical β.

Proposition 10. [3, Corollary 1] The (right) strongly prime radical S is right strong.
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II.

Proposition 11. Let γ be a principally left strong radical satisfying the conditions (H) and
(Z). Then the largest hereditary subclass γ of γ will be principally left strong.

Proof. Let L /l A be such that L ∈ γ and Lz ∈ γ for every z ∈ L. Let L∗ be the ideal in A
generated by L, L∗ = L + LA and suppose I / L∗. Then IL / L, IL /l I and ILz / Lz ∈ γ
for all z ∈ L. Since γ satisfies condition (H), γ is hereditary, and so ILz ∈ γ for all z ∈ IL.
Since γ is principally left strong IL ⊆ γ(I). We have

I(L∗)2 = I(L+ LA)L∗ = (IL+ ILA)L∗ ⊆ ILL∗ ⊆ γ(I)L∗ ⊆ γ(I).

So I3 ⊆ I(L∗)2 ⊆ γ(I) and therefore I/γ(I) is nilpotent, implying I/γ(I) ∈ β. We claim
that Io ∈ γ. Since L ∈ γ ⊆ γ, by (Z) we conclude that Lo ∈ γ. Now Proposition 1 implies
that (L∗)o ∈ γ and so by (H) it follows Io ∈ γ. Hence (I/γ(I))o ∈ γ ∩ β and applying
Proposition 2 and taking into consideration that I/γ(I) is nilpotent, we get

I/β(I) = β(I/γ(A)) ∈ γ.

Thus I ∈ γ and so γ is principally left strong.

Corollary 12. If a classM is hereditary and satisfies (Z) then Lps(M) is hereditary.

Proof. By Proposition 3, we have Lps(M) ⊆ Ls(M) ⊆ (Ls(M))o. Let A ∈ Lps(M) then
we get Ao ∈ Ls(M) and so Ao ∈ L(M). Since L(M) is hereditary, we conclude that
Ao ∈ L(M) and so Ao ∈ Lps(M). This means that Lps(M) satisfies the conditions (Z) and

(H). By Proposition 11, Lps(M) is principally left strong and M⊆ Lps(M) ⊆ Lps(M) and

this implies Lps(M) = Lps(M).

Proposition 13. Let γ be a principally left strong radical satisfying the conditions (H) and
(Z). Then γr is left strong.

Proof. Let L/l A and L ∈ γr and let K be a left ideal of L∗ = L+LA. Since L ∈ γr, kL ∈ γ
for every k ∈ K. Let R /r kL. Then it is easy to see that RkL ∈ γ, and by conditions (Z)
and (H), R/RkL ∈ γ and so R ∈ γ. Hence kL ∈ γr for every k ∈ K. An argument similar
to the proof of Proposition 5 will show that (Lk + r(k)k)/r(k)k is a homomorphic image of
kL, where r(k) = {x ∈ L∗/kx = 0}. Hence (Lk+ r(k)k)/r(k)k ∈ γ. By (H) and (Z) we have
r(k)k ∈ γ and so Lk ∈ γ for every k ∈ K. Therefore Lk ⊆ γ(K) and LK ⊆ γ(K). Clearly

K3 ⊆ (L∗K)K ⊆ (LA1K)K ⊆ LL∗K ⊆ LK ⊆ γ(K)

hence K ∈ γ by Proposition 2.

The next result is a generalization of [2, Corollary 4].

Corollary 14. IfM is a right hereditary class with (Z), then Lps(M) is one-sided hereditary
and Lps(M) = Ls(M) (i.e. Lps(M) is left and right hereditary).
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Proof. By Corollary 12, Lps(M) satisfies condition (H). Let A ∈ Lps(M). Then it is easy to
see that Ao ∈ Lps(M). Hence Lps(M) satisfies condition (Z). Hence Lps(M)r is a radical.
By Proposition 13, Lps(M)r is left strong. Since M ⊆ Lps(M)r we get M ⊆ Lps(M)r ⊆
Lps(M) ⊆ Ls(M) and Lps(M)r = Ls(M). Hence Lps(M) = Ls(M). Since Lps(M)r is right
hereditary and left strong, we have that Lps(M) is one-sided hereditary.

Theorem 15. Let γ 6= 0 be a principally left strong radical with (Z) and (H). Then γr is
contained in γ as a largest nonzero hereditary and normal subradical. Furthermore, γ is
contained in γ as a largest non-zero hereditary principally left strong subradical.

Proof. Let 0 6= A ∈ γ. By (Z), Ao ∈ γ and by (H), Ao ∈ γr. All zero-rings of γ are in γr
and so γr 6= 0. Hence γr satisfies conditions (Z) and (H). By Propositions 13, 6 and 4, γ is
normal and hereditary.

The second part of the theorem follows from Proposition 11.

Corollary 16. The largest left hereditary subclass Sl of strongly prime radical S is the largest
normal radical contained in S.

Theorem 17. The following statements are equivalent for a radical γ.

1) γ is hereditary and normal.

2) γ is left or right principally hereditary, principally left or right strong and satisfies
condition (H).

3) There exists a principally left (right, respectively) strong radical δ such that δr = γ
(δl = γ, respectively) and satisfies conditions (Z) and (H).

4) There exists a right (left, respectively) hereditary class M of rings satisfying (Z) such
that γ = Lps(M) (γ = L′ps(M), respectively), where L′ps(M) is principally right strong
radical generated byM.

Proof. 2) =⇒ 1): By Proposition 7, γ is normal and by Proposition 6, γ is hereditary.
1) =⇒ 3): We claim that γ is one-sided hereditary. So let L /l A ∈ γ. Since γ is normal,

γ is principally left hereditary, so Aa ∈ γ, for all a ∈ L. Therefore Aa · z ∈ γ for every
z ∈ Aa. Hence Aa ⊆ γ(L) for all a ∈ L, and this gives L2 ⊆ γ(L). Again, since γ is
normal and satisfies condition (Z), Ao ∈ γ and by hereditariness Lo ∈ γ. Therefore L ∈ γ.
Right hereditariness is proved analogously. Now we choose δ to be γ, δ = γ and we have
γ = δ = δl = δr.

3) =⇒ 4): We choose M = δr (M = δl, respectively). Then δr = Lps(δr) = Lps(M)
(δl = L′ps(δl) = L′ps(M), respectively) by Proposition 13 and clearly δr satisfies (Z).

4) =⇒ 2): By Corollary 14, γ = Lps(M) (γ = L′ps(M)) is one-sided hereditary and left
strong. Hence by Proposition 4 it is normal. It is easy to see that γ satisfies 2).

Proposition 18. Let γ be a supernilpotent radical and let us assume that γl = γr is the
largest principally left hereditary subclass of γ which we will denote by δ. Then

Lps(γ) = Lps(δ) ∨ γ

where ∨ denotes the union in the lattice of all radicals (i.e. the lower radical determined by
the union of the components).
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Proof. Clearly Lps(δ) ∨ γ ⊆ Lps(γ). Conversely, let A ∈ Lps(γ). Under our hypothesis, we
can apply Proposition 8 and so Lps(γ) = γ2. Thus any non-zero homomorphic image A′ of
A has a non-zero γ-ideal or a nonzero left ideal L such that La ∈ γ for all a ∈ L ∪ {1}.
Using our hypothesis again, we conclude that L ∈ δ and therefore the Lps(δ)-radical of A′ is
nonzero. Hence A′ has a nonzero ideal in Lps(δ) ∪ γ and so A ∈ Lps(δ) ∨ γ.

Corollary 19. Lps(G) = Lps(B) ∨ G and G2 = B2 ∨ G.

Proof. By Proposition 9, the Brown-McCoy radical satisfies the assumption of Proposition 18,
in fact, MG = Gl = Gr = B.

Remark. This corollary can also be obtained as an application of Proposition 8 to the
radicals G and B.
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