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ABSTRACT 

This updated review considers the magmatic processes in the Carpathian-Pannonian 

Region (CPR) during Early Miocene to Recent times, as well as the contemporaneous 

magmatism at its southern boundary in the Dinaride and Balkans regions. This geodynamic 

system was controlled by the Cretaceous to Neogene subduction and collision of Africa with 

Eurasia, especially by Adria that generated the Alps to the north, the Dinaride-Hellenide belt 

to the east and caused extrusion, collision and inversion tectonics in the CPR. This long-lived 

subduction system supplied the mantle lithosphere with various subduction components. The 

CPR contains Neogene to Quaternary magmatic rocks of highly diverse compositions (calc19 

alkaline, K-alkalic, ultrapotassic and Na-alkalic) that were generated in response to complex 

post-collisional tectonic processes. These processes formed extensional basins in response to 

an interplay of compression and extension within two microplates: ALCAPA and Tisza- 

Dacia. Competition between the different tectonic processes at both local and regional scales 

caused variations in the associated magmatism, mainly a result of extension and differences in 

the rheological properties and composition of the lithosphere. Extension led to disintegration 

of the microplates that finally developed into two basin systems: the Pannonian and 

Transylvanian basins. The southern border of the CPR is edged by the Dinaride and Balkans 

(Sava and Vardar zones) that acted as a regional extensional tectonic setting during Miocene 

times. This extension was associated with small volume volcanism in narrow extensional 

sedimentary basins or granitoids in core-complex detachment systems. 

Major, trace element and isotopic data of magmatic rocks from the CPR suggest that 

subduction components were preserved in the lithospheric mantle after the Cretaceous- 

Miocene subduction and were reactivated especially by asthenosphere uprise via extension. 

Pre-collisional subduction-related volcanic activity is absent from the CPR area. Changes in 

the composition of the mantle through time support geodynamic scenarios of collision and 

extension that are linked to the evolution of the main blocks and their boundary relations. 

Weak lithospheric blocks (i.e. ALCAPA and western Tisza) generated the Pannonian basin 

and the adjacent Styrian, Transdanubian and Zărand basins which show high rates of vertical 

movement accompanied by a range of magmatic compositions. Strong lithospheric blocks 

(i.e. Dacia) were only marginally deformed, as in the northern and eastern part of the 

Transylvanian basin, where strike-slip faulting was associated with magmatism and extension. 

Strike slip tectonic and core complex extension was associated with small volume volcanism 

along older suture zones (Sava zone and Vardar zone) accommodating the extension in the 

Pannonian basin. Various magmas acted as lubricants in a range of tectonic processes. 

 

Key words: magmatism, lithosphere, asthenosphere, extension, core-complex-related 

magmatism, transtension-related magmatism 

 



1. Introduction 

This review interprets previous and recent data on magmatic and geodynamic processes 

in the Carpathian-Pannonian Region (CPR) during Early Miocene to Recent times, as part of 

the long-lived Alpine-Carpathian-Dinaridic orogenic system (see Schmid et al. 2008 and 

references therein). We discuss the geodynamic implications of magmatism in an area where 

several microplates invaded the Carpathian embayment. The microplates (ALCAPA and 

Tisza-Dacia) represent the northernmost fragments caught between the European mega-plate 

(including the European plate, East European platform and Moesian microplate) and the 

northward propagation of the Afro-Arabian mega-plate including its Adria promontory (Fig. 

1) (Rosenbaum et al., 2004). 

The CPR has long been an excellent laboratory in which to study the interaction 

between tectonics, deep mantle processes and igneous activity (Chalot-Prat and Gîrbacea, 

2000; Downes et al., 1995a,b; Harangi, 2001; Harangi et al., 2001, 2006, 2007; Harangi and 

Lenkey, 2007; Konečný et al., 2002; Kovács et al., 2007; Kovács and Szabó, 2008; Mason et 

al.,1996, 1998; Pécskay et al., 1995, 2006; Póka et al., 1988, 2004; Salters et al., 1988; 

Seghedi et al., 2004a,b, 2005, 2010; Szabó et al., 1992). These studies revealed that the most 

voluminous igneous rocks, the calc-alkaline ones, are derived from a subduction-enriched 

source, with a typical subduction-related geochemical signature (i.e., high LILE/HFSE ratios, 

negative Nb, Ta and Ti anomalies; lower 87Sr/86Sr and higher 143Nd/144Nd radiogenic isotopic 

ratios), which is commonly suggested to reside within the mantle lithosphere. However 

genuine subduction-related calc-alkaline magmatic arcs show linear arrays of point magma 

sources, parallel to the mantle wedge above subduction zones (e.g. Stern, 2002; Kogiso et al., 

2009 and references therein) with a melt zone resulting from the release of hydrous fluids 

from subducted materials lowering the melting temperature of the overlying asthenospheric 

mantle. Such a linear array cannot be found in the CPR. However, similar situations where 

lithospheric mantle enriched with subducted material was involved in late melt-production are 

not uncommon (e.g. McPherson and Hall, 1999; Kovács and Szabó, 2008; Karaoğlu et al., 

2010). In the CPR the calc-alkaline magmatism is considered to be post-collisional and 

entirely of lithospheric origin. It is dominantly a result of extensional processes dependent on 

the rheological properties and specific lithosphere composition of the microplates and their 

boundaries (Fig. 2). In addition, the transition toward the asthenosphere-derived magmas, 

represented mainly by the Na-alkalic suite, is of crucial importance in understanding the 

tectonic processes. 

Within the CPR literature, there is not yet a consensus whether or not the calc-alkaline 

magmas were generated during direct subduction processes. Disagreements also occur over 

the relationships between magmatism and geodynamics in the CPR, since the overall 

geodynamic post-Miocene reconstructions are not very different from the early models of 

Balla (1984), Csontos et al. (1992) and Ratschbacher et al. (1991). Additionally, there are still 

many geodynamic reconstructions that ignore or minimize the importance of magmatism in 

the evolution of the CPR (e.g. Ustaszewski et al., 2008; Lorinczi and Houseman, 2010). 

Here we give a new overview and propose a working hypothesis with the aim of giving 

the most plausible interpretation of the most credible geochemical data-base. The large 

amount of geological, structural, petrologic and geochemical data (most at the same quality 

level) has broadened the understanding of the importance of magmatism in the larger scale 

geodynamic evolution. Our interpretation will follow the changes in the magma compositions 

through time in connection to the evolution of the main sedimentary basins (Pannonian and 



Transylvanian basins) that resulted from the disintegration and rearrangement of ALCAPA 

and Tisza-Dacia blocks that filled the Carpathian embayment, in order to discuss various 

geodynamic scenarios. This approach differs from our previous one (Seghedi et al., 2004a) 

when we discussed the magmatism in relation to the place of main eruption areas in four 

―segments‖, without including the magmatism in the Styrian basin or the Sava and Vardar 

zones because of the scarcity of data for these areas at that time. 

We consider the close link between the magmatism and the extensional evolution of the 

main lithospheric blocks and their boundaries. The rheological properties of the lithosphere 

(i.e. whether it is rigid or weak) cause specific magmatic evolution during orogenic processes 

(Cloething et al., 2006, Tesauro et al., 2009). Melt production and migration followed various 

kinds of extension and we suggest that both large and small volume magmatic activity 

influenced the dynamics of extension. 

 

2. Geodynamic features 

In the eastern Mediterranean area, tomographic models have shown the ―Aegean 

Tethys‖ to be a subduction zone whose features have been studied extensively and correlated 

to geologic events. The still-subducting ―Aegean Tethys‖ is inferred to have started at 

approximate 171±5 Myr and its slab remnant was shown to reach a depth of ~ 1500 km (e.g. 

Facenna et al., 2003; van der Meer, 2009). According to this scenario the whole post-Miocene 

evolution of the region between Africa, with its Adria block promontory, is a still-active 

subduction zone. Inside the Carpathian-Moesian realm, lithospheric block motion was 

considered to be driven by retreat of a west-dipping European lithospheric slab (e.g. Royden, 

1988) and the push of Adria (e.g. Ratschbacher 1991; Rosenbaum et al., 2004) and resulted in 

various translation movements, and diachronous extensional rotation that broke up the upper 

crust and squeezed it into the available space (Csontos, 1995; Fodor et al. 1999; Horváth et al. 

2006; Márton 2000; Márton and Fodor, 2003; Seghedi et al., 1998). The emplacement of 

these microplates, recognized as belonging either to Adria (Africa) or Europe, or both (Figs. 

2, 3) (Schmid et al. 2008) caused a ‗‗soft‘‘ continental collision at ~11 Ma with only minor 

crustal thickening. Continental collision was accompanied by substantial strike-slip faulting, 

extension and opposed block rotations (e.g. Csontos and Nagymarosi, 1998; Maţenco et al., 

2007) involving corner effects at the Bohemian (Sperner et al. 2002) and Moesian 

(Ratschbacher et al. 1993; Schmid et al. 1998; Fügenschuh and Schmid 2005) promontories. 

In Lower Miocene times the inferred subduction was at a much smaller scale than classic 

subduction systems (which can be thousands of km wide) being a land-locked basin several 

hundred km in width between Moesian and European plate (e.g. Csontos, 1995 and the 

references therein, Ustaszewski et al., 2008). The Moesian plate was stable during the 

Miocene, being overthrust and deformed until mid-Eocene times to the south, due to 

subduction/collision in the Aegean arc, and transpressionally deformed by eastward 

propagation of the Dacia microplate during Miocene times along its northern margin 

(Fügenschuh and Schmid 2005; van Hinsbergen et al., 2008). Substantial Miocene 

dislocations took place along the Mid-Hungarian Fault Zone that disrupted the former 

connection between ophiolitic units in the West Carpathians and the Dinarides (Schmid et al. 

2008). The Adriatic indentor was responsible for Pliocene-Quaternary inversion in the 

Pannonian basin and all around the Carpathians by fault reactivations, large scale folding and 

present-day seismicity (Pinter et al., 2005; Jarosinski et al., 2010). 

The simultaneous occurrence of compression and extension is considered typical for 



slab retreat and low-stress subduction zones (Royden, 1993). Slab break-off (Mason et al., 

1998; Nemčok et al., 1998; Seghedi et al, 1998; Wortel and Spakman, 2000) or slab 

delamination (Sperner et al., 2001; Gîrbacea and Frisch, 1998; Knapp et al, 2005, Fillerup et 

al., 2010) have been invoked to explain magma generation along plate boundaries. The 

Transylvania basin, consisting of the Dacia block and north-east Tisza block, displayed minor 

Miocene upper crustal extension, which was replaced during the late Miocene by small scale 

contraction features and shallow salt diapirs (Krézsek and Bally, 2006; Maţenco et al, 2010a). 

Its crust and lithosphere have normal thicknesses (Dérerová et al., 2006), the surface heat-flux 

is low (30-60mW/m2) and shows higher values (120mW/m2) only where overlapping the 

narrow East Carpathian volcanic range (Demetrescu and Andreescu, 1994; Demetrescu et al., 

2001). 

Major processes accommodating the extensional deformation in the Pannonian basin 

were of wide-rift type and core-complex type, characterized by crustal flow sometimes 

associated with doming and lateral escape of the lower-middle crust at the expense of low154 

buoyancy lithosphere (Tari et al., 1999; Csontos and Vörös, 2004). The unusual hot and weak 

Pannonian lithosphere presently observed (e.g., Cloetingh et al., 2006) with a present-day 

high heat flow (~ 90-100mW/m2) evident also in the digital elevation models (e.g. Dunkl and 

Frisch, 2002) and thermal and rheological modeling (Tesauro et al, 2009), implies an 

overthickened crust and thin lithosphere at the onset of extension (Tari et al., 1999). 

A synthesis of Miocene-Quaternary geodynamic developments in the CPR showing 

time intervals of geodynamic processes leading to final collision in different parts of the 

system, major rotation during extension and recent inversion due to the push of Adria is given 

in Fig. 4. 

 

3. Classification of magmatic rocks and their spatial and temporal distribution 

Analyses of approximately 650 magmatic rocks have been divided into four main groups 

based on their variation in the SiO2 versus Na2O + K2O diagram (Fig. 5): (1) Calc-alkaline, 

(2) Na-alkalic, (3) K-alkalic and (4) Ultra-K. The reason for using this traditional 

classification (Le Bas et al., 1986) is to avoid any genetic connotation, since this is mostly 

debated. 

The most complex and abundant group is the calc-alkaline group (Group 1), that, based 

on dissimilar geochemical and petrographic features, discussed later, has been divided into 

several subgroups: 

(1a) a felsic subgroup, dominantly acid (>70 wt% SiO2) pyroclastic rocks and rare 

minor domes (Lexa et al., 2010) generated during the Miocene (21–10 Ma) in the Pannonian 

and Transcarpathian basins (Fig. 3). This subgroup is the same as the ―silicic suite‖ of 

Harangi and Lenkey (2007); 

(1b) a normal calc-alkaline subgroup spread across the CPR during middle Miocene to 

Quaternary times (17–0.1 Ma) is dominated by andesites and dacites with minor basalts, 

basaltic andesites and rhyolites. Garnet-bearing andesites, dacites and rhyolites are part of this 

group and were erupted at different times in most areas (e.g. Harangi et al., 2001; Niţoi et al., 

2002; author‘s unpublished data) (Fig. 3); 

(1c) an adakite-like subgroup characterized by rocks dominated by amphibole and 

biotite as mafic phenocrysts with high Sr/Y ratio occurred in the Apuseni Mts. at 12.5-7.5 Ma 

and in South Harghita at 3.5-0.03 Ma (Roşu et al, 2004; Seghedi et al., 2004a, 2007, 2010); 

(1d) a transitional subgroup, formed of basaltic andesites to rhyolites characterized by 



higher Nb (35ppm) and Nb/Y, shifting to a more enriched composition similar to 

asthenosphere-derived magmas, present between 11 and 8 Ma in the Pannonian basin (Central 

Slovakian volcanic field), or as rare occurrences at 7-8 Ma in Apuseni Mts. or at 2 Ma in the 

Perşani Mts. (Harangi et al., 2007; Mason et al., 1996, 1998; Roşu et al., 2004; Seghedi et al., 

2005). 

K-alkalic volcanism (Group 2) includes large volume shield volcanoes in the Styrian 

basin (15.5-16.5 Ma), which form part of a complex and voluminous buried volcanic area 

(e.g. Ebner and Sachsenhofer, 1995; Ntaflos et al., 2007). A similar buried trachybasalt 

volcano, 200m thick, was found in southern Transdanubia and is dated at 14.5-15.0 Ma 

(Harangi, 2001). The younger 1.5-1.8 Ma K-alkalic volcanism situated at the southern margin 

of Transylvanian basin is of small volume (e.g. Pécskay et al., 1995b). 

Ultra-K volcanism (Group 3) is rare, existing as a buried 2-2.2 Ma leucitite in the 

interfluve region between the Danube and Tisza rivers (Pécskay et al., 1995; Harangi et al., 

1995b) and as a unique lamproite volcano at 1.3 Ma at the south-eastern border of Pannonian 

basin (Seghedi et al., 2008). 

Na-alkalic volcanism (Group 4) was generated during the late Miocene to Quaternary 

(~11–0.2 Ma), generally following the calc-alkaline magmatism in different areas. It 

comprises monogenetic volcanic fields of maars, diatremes, tuff cones, cinder/ spatter cones 

and lava flows (Lexa et al., 2010). However, even though it may be important, we are not able 

to discuss the 11–12 Ma large trachyandesite to alkaline trachyte volcano associated with 

minor alkali basalts situated beneath 2000m thick sediments in the Little Hungarian plain, 

eastern Pannonian Basin, attributed by Harangi et al. (1995a) and Harangi (2001b) to the Na208 

alkalic volcanic series, because of a lack of published geochemical data. For the same reason, 

(missing geochemical data) we cannot discuss the 10-8 Ma Na-alkali basalts buried in the 

interfluve region between the Danube and Tisza rivers (Pécskay et al., 1995a, 2006) (Fig. 2). 

Fig. 3 is a simplified and updated spatial and temporal distribution (Pécskay et al., 

2006) in which we have distinguished the development of magmatism as related to the main 

sedimentary basins (Pannonian and Transylvanian) generated during the main tectonic events 

in the CPR. These events include tectonic escape and extension of the main ALCAPA and 

Tisza-Dacia blocks, resulting in a simultaneous breakup; and collision in the East Carpathians 

and Pliocene-Quaternary inversion tectonics derived from the push of Adria. We have added 

the contemporaneous magmatism situated at the southern limit of the CPR that includes the 

Sava and Vardar zones ophiolitic accretionary prisms. Calc-alkaline intrusions in Fig. 3 are of 

two kinds: (1) those induced by extensional exhumation located in the footwall of core 

complexes in the Styrian Basin (18.2-16.5 Ma) and Vardar zone (20-16 Ma) (Cvetković et al., 

2007; Fodor et al, 2008; Schefer et al., 2010; Koroneos et al., 2010), that will be not 

commented on from a geochemical point of view, and (2) hypabyssal intrusive complexes, 

which are frequently associated with volcanic rocks (not shown), or piercing flysch-type 

sedimentary rocks along the internal margin of the Carpathian accretion prism (Pieniny at 

13.5-11 Ma, Trua et al, 2006) or following a transtensional fault system in the northern part of 

Transylvanian basin (12-8 Ma), where they are known as the ―subvolcanic zone‖ (Pécskay et 

al., 2009) (see also Fig. 2). 

 

 

 

 



4. Geochemical features 

In previous summaries of the geochemical features of the Neogene to Quaternary volcanic 

rocks of the CPR (Harangi, 2001a; Harangi et al., 2006; Harangi and Lenkey, 2007; Seghedi 

et al. 2004a, 2004b, 2005), there are detailed discussions of the petrological features of 

magmatic rocks. Here we will use only a limited number of diagrams: Nb/Y and 87Sr/86Sr as 

source indicators; SiO2 as an indicator of magma chamber processes, and Th/Y as an indicator 

of subduction or crustal input, in order to outline the most important characteristics connected 

to the geodynamic processes (Figs 6a, b, 7a, b, 8a, b). High Nb/Y, low SiO2 and low 87Sr/86Sr 

are indicators of mantle (asthenosphere) whereas low Nb/Y, high SiO2 and high 87Sr/86Sr are 

indicative of crust or metasomatized mantle. We use Y instead of Yb in the same way as 

Pearce (2008), since Yb and Y behave similarly and Yb is sometimes missing from our data 

base. Besides being a source indicator, Nb/Y is also sensitive to fractional crystallization, as 

Nb is more strongly partitioned into melt during magma chamber processes than Y, although 

its behaviour is somewhat different at higher pressure when Y partitions strongly into garnet 

(e.g. Natland, 2007). Brief interpretations of geochemical features will be discussed along 

with the regional magmatic and geodynamic development (Figs. 3-10). 

 

5. Regional geodynamic development-connection with magmatic processes 

The post-Miocene evolution of the Alcapa and Tisza-Dacia blocks attests to an 

important disintegration and rearrangement, so the accompanying magmatic activity was 

connected temporally and spatially to the main basin system development: a Pannonian Basin 

system that splintered into several sub-basins each with specific associated magmatism: 

Styrian, main Pannonian, Transcarpathian and Zarand basins, and the Transylvanian basin 

system (Figs. 2, 3). 

 

5.1 Pannonian Basin system 

5.1a Styrian basin and surrounding areas - the south westernmost Pannonian sub-basin 

The volcanic events (Fig. 3) occurred after the low-angle extensional core-complex 

deformation that controlled lower crust exhumation along the western margin of the Styrian 

basin and generation of the Pohorije pluton along the transpressional Periadriatic fault system 

(Dunkl et al., 2003; Fodor et al., 2008). 

This basin contains allochthonous felsic pyroclastic deposits (not discussed) and 

intermediate calc-alkaline and K-alkalic volcanic rocks generated at 17.5-14 Ma. The 

geochemical diagrams suggest a common source and isotopic variability suggests a variably 

enriched lithospheric source (perhaps enriched during earlier subduction events) without 

significant fractionation (Figs. 6a, 7a). The magmatism may be associated with extension (see 

also Harangi et al., 1995) following extrusion tectonics of low-angle core-complex type 

during counterclockwise rotation (Márton and Fodor, 2003) that triggered melt generation at 

different levels in the lithosphere. 

Small volumes of Na-alkali basalts occurred at ~11Ma in Burgenland and at 4-1.8 Ma in 

the Styrian basin. Burgenland basalts were generated during small scale lithospheric extension 

at the western edge of the Pannonian basin through passive upwelling and adiabatic 

decompression melting of asthenospheric mantle (Ali and Ntaflos, 2010). The Styrian basin 

basalts show heterogeneous isotopic features that suggest asthenospheric decompression 

melting from various depths (Embey-Isztin et al., 1993; Ali et al., submitted). We associate 

this with the push of Adria and tectonic inversion which caused a north-east directed 



asthenospheric mantle flow coupled to small scale lithospheric extension (Márton and Fodor, 

2003). 

 

5.1b. Western Carpathians and Pannonian Basin 

Here the magmatism shows the most complex compositional variation and longest 

duration (Fig. 3). It started as large volume felsic pyroclastic eruptions at 21-18 Ma, followed 

at 18-8 Ma by large volume felsic pyroclastic and intermediate calc-alkaline lavas and 

pyroclastics, and ended with small volume Na-alkalic basaltic volcanism (10-0.1 Ma) (Lexa et 

al., 2010). Magmatism became younger towards the north, where it intruded the Outer 

Carpathian nappes (Pécskay et al., 2006). Geochemical data imply a change in source from a 

crustal one (showing highest SiO2, 87Sr/86Sr, Th/Y and lowest Nb/Y), through a mixed 

crustal/lithospheric mantle source, to a lithospheric mantle source with decreasing subduction 

component through time (Figs. 6a, 7a). The younger intrusions in the Carpathian nappes have 

the lowest Th/Y, suggesting a less enriched lithosphere source (Trua et al., 2006). Garnet289 

bearing varieties occurred mainly at 16.4-15 Ma and suggest high pressure partial melting, as 

well as contamination via mixing of lithosphere mantle-derived magmas with variable 

amounts of lower crustal metasedimentary material, explaining the large Nb/Y and 87Sr/86Sr 

isotope variation (Harangi et al., 2001). The garnet-bearing rocks were interpreted as a sign of 

change in the regional stress field from compressional to tensional, since garnet is not stable 

at shallow depths and its preservation requires a rapid ascent of the host magma to the surface 

(Harangi and Lenkey, 2007). The high Nb/Y ―transitional‖ andesites generated at 11-8 Ma 

show a different Nb/Y trend and fractionation. The data demonstrate the diminution of 

subduction-components in the lithospheric mantle with time (Fig. 7a, 1b, Th/Y vs. Nb/Y) in 

favor of less affected asthenospheric mantle that had already started to generate melts at that 

time (Harangi et al., 2007; Seghedi et al., 2005). Mixing of magmas derived from the 

lithosphere and asthenosphere probably caused the rather sudden increase of Nb/Y (Fig.7a). 

Wide-rift extension and block rotation contemporaneous with extrusion tectonics towards 

the south (e.g. Marton and Fodor, 2003), triggered partial melting initially at the crustal level 

and then at the upper lithosphere mantle level favored by asthenosphere upwelling (Figs. 4, 

9). A Miocene (17-18 Ma) thermal event in the basement outcrops suggests that a regional 

distribution around volcanic areas in the Western Carpathians and Pannonian basin was 

associated with the high heat flow during crustal extension (Danišík et al., 2008). It is possible 

that extension and rotation triggered the crustal flow that may have also generated a small 

volume of magma (e.g., Teyssier et al., 2005), however we suggest that the heat from the 

asthenosphere produced melting in the hydrated part of lithosphere (with probable 

underplating) and favored crustal melting. In this scenario, the addition of both volume and 

heat from crustal and lithospheric magmas led to melt-induced weakening at the crust-mantle 

boundary that initiated the detachments (Tari et al., 1999). 

The origin of the small intrusions in the Pieniny and Eastern Moravia (Western 

Carpathians) has been a matter of long debate. Since at around 14 Ma the western part of 

ALCAPA had already collided with Europe (e.g. Fodor et al., 1999) (see Fig. 4), we suggest 

their generation was related to regional transtensional faulting at the block boundary during 

and after major counterclockwise rotation and collision of the westernmost ALCAPA block at 

around 14-12 Ma that generated the Transcarpathian basin (Márton et al., 2007). 

Generation of Na-alkalic magmatism at 4-3 Ma along the mid-Hungarian line in the 

Balaton area, included in the 1b group (Pécskay et al., 2006, Wijibrans et al., 2007) suggests 



(as in the case of Styrian basin basalts) a north-east-directed asthenosphere mantle flow and 

small volume partial melting that produced volcanism along NW-SE strike-slip lithospheric 

faults. The process was most likely controlled by mantle perturbations resulting from the 

counterclockwise rotation of the Adriatic microplate and tectonic inversion in the Pannonian 

basin (Márton and Fodor, 2005; Bada et al, 2007). Continuous generation of small volume 

Na-alkalic basalts between 8 and 0.13 Ma, following normal and transitional calc-alkaline 

magmatism (16.5-11; 11-8 Ma) suggests a long period of small volume asthenospheric melt 

production via decompression melting (Harangi and Lenkey, 2007). The region of Na-alkali 

magma generation that is superposed on the previous calc-alkaline volcanism (Lexa et al., 

2010) encircles the place of asthenosphere uprise and could potentially be the site of a mantle 

plume (Konečný et al, 2005). This is possibly suggested by recent tomography data 

(Koulakov et al., 2009), but not yet conclusively demonstrated. 

 

5.1c Transcarpathian basin 

In the north-westernmost part of the Pannonian Basin, felsic and normal calc-alkaline 

volcanism erupted in the Transcarpathian basin at a triple junction between ALCAPA, Tisia- 

Dacia and the European foreland. This volcanism occurred all around the margins of the 

Transcarpathian basin at 15-9 Ma (Pécskay et al, 2006), following a crustal fault system that 

allowed magma extrusion along N-S tectonic depressions and an E-W transtensional fault 

system (e.g. Baráth et al, 1997). It formed an aligned chain of composite volcanoes, but also 

erupted inside the basin that attains a thickness up to 6-7 km, with more than 1.5 km of 

volcanic products (Lexa et al, 2010). Geochemical studies indicate a heterogeneous 

lithospheric mantle source associated with assimilation-fractional crystallization (AFC) 

processes in crustal magma chambers (Seghedi et al., 2001). The calc-alkaline magmas show 

small scale fractionation with higher Th/Y for the volcanic rocks in the interior of the basin, 

where younger felsic magmas are present, suggesting a derivation and possible mixing of 

upper lithosphere mantle and lower crust sources (Fig. 6a, 7a,-1c). Little is known about the 

garnet-bearing rocks in this area; recently Konečný et al. (2010) showed the presence of 

garnet in rhyolites, attributing them to a crustal origin, based on Sr and Nd isotopes. 

Magmatism in the Transcarpathian basin was generated at the mantle lithosphere/crust 

level as a result of major extension via counter-clock rotation of the easternmost part of 

ALCAPA that caused core-complex exhumation of lower-middle crustal units (Soták et al, 

2000, Bárath et al., 1997). The counter-clockwise rotations of ALCAPA and the clockwise 

rotation of Tisza-Dacia started at ~18.5 Ma. However after 14.5 Ma the Transcarpathian 

Basin area disintegrated from ALCAPA along the Hernad fault (Márton et al, 2007) and up to 

11 Ma collided with the European plate. The Transcarpathian basin appears to have resulted 

from typical core-complex extension that allowed decoupling and flow of lower-middle crust 

and magma generation within the decoupling area. Back-arc rotational extension and 

asthenosphere uprise was invoked for magma generation (Seghedi et al, 2004a), however 

although the back-arc concept has been invoked by most specialists in the Pannonian area, it 

is an ambiguous concept for any basins within the CPR, since no true ―arc-type‖ magmatism 

exists, as required (e.g. Stern, 2002). 

We suggest that magmas generation, closely correlated to extension, occurred at the 

same time in both the crust and lithospheric mantle (already affected by subduction 

components). We correlate extension to an asthenosphere uprise (Konečný et al., 2002, 

Seghedi et al., 2004a), at a smaller scale than in the Pannonian area, that at the end of 



collision did not produce asthenosphere-related magmas (Figs. 4, 9 ). The evidence is the high 

heat flow of 80-100 mW m-2 (Čermák, 1977) and the lithosphere thickness up to ~60 km 

(Horváth et al., 2006). 

 

4.1d. Zărand basin and Apuseni Mts 

Calc-alkaline and adakite-like magmas erupted in the Zărand Basin and Apuseni 

Mountains at 15-9 Ma and are known to be buried in the Bekes basin toward the west. Garnet374 

bearing rocks occurred at 13-12 Ma and a small volume of transitional-type andesitic basalts 

were generated at ca. 8 Ma. After a long time-gap, magmatic activity resumed with small 

volume Na-alkalic basalts (2.5 Ma), K-alkalic at 1.6 Ma and ultrapotassic magmas at 1.3 Ma. 

The SiO2 and 87Sr/86Sr show that AFC processes were unimportant in the formation of these 

magmas (Fig. 6b), typical for a crustal and lithospheric origin that evolved in an extensional 

setting. Th/Y shows a narrow variation parallel with the mantle array, higher in the adakite380 

like magmas. Younger adakite-like magmas and transitional basaltic andesites have the lowest 

Th/Y that suggests mixing of asthenospheric and lithospheric magmas (Fig. 7b). Generation 

of most adakite-like magmas occurred via delamination and partial melting of a high density 

garnet-bearing (eclogitic) lower crust (Seghedi et al., 2007). Missing geochemical data makes 

it difficult to understand the generation of garnet-bearing rocks in this area, however we 

suppose that they have a similar origin as those from the Pannonian basin (upper 

lithosphere/crust level) and show evidence of extension and rapid emplacement (see Harangi 

et al., 2001). 

Lithosphere breakup during extreme block rotations (~60o) at 14-12 Ma was responsible 

for extension with core-complex formation at the easternmost continuation of the Bekes basin. 

This mainly led to decompression melting of an enriched lithospheric mantle/crust source 

during major extension and by asthenosphere uprise (Figs. 4, 10). 

The magmas generated after 2.5 Ma suggest a close relationship with Pliocene inversion 

tectonics along the South Transylvanian fault due to the push of Adria, with small volume 

melt generation (Na-alkalic, K-alkalic and ultrapotassic) from diverse lithospheric and 

asthenospheric sources (see Seghedi et al., 2010, Fig. 6b). 

 

5.2. Transylvania basin system 

5. 2.a Northern part of Transylvanian Basin 

Here calc-alkaline magmatism was generated at 12-8 Ma in the northern part of the Tisza- 

Dacia block following the Dragoş Vodă - Bogdan Vodă transcurrent fault system (Pécskay et 

al., 2009). It is entirely intrusive, ranging from basalts to rhyolites. Garnet-bearing varieties 

occurred at 9.5-10.5 Ma. The intrusive bodies may represent magma chambers that fed 

surface volcanism Their appearance may be related to strong erosion during the uplift of 

middle crust metamorphic rocks (at least 1 km) as shown by exhumation histories (e.g. 

Tischler et al. 2006, 2008; Gröger et al., 2008). 

The rocks scatter in the SiO2 vs. 87Sr/86Sr or Nb/Y diagrams, and also show a large 

variation in Th/Y ratios. AFC processes are suggested, but since the source was highly 

heterogeneous these are difficult to demonstrate for a specific case. Most probably each body 

evolved independently with specific AFC and/or magma mixing processes; a conclusive 

petrological study is still lacking. 

A sinistral transtensional stress regime at 12-10 Ma along the Dragoş Vodă transcurrent 

fault system at lithosphere scale (following a transpressional phase at 16-12 Ma) (Gröger et 



al., 2008) controlled the generation and emplacement of the intrusive bodies (Figs. 2, 4); rapid 

emplacement is suggested by the presence of garnet-bearing andesite and dacite bodies. The 

event was coeval with the 12 Ma differential rotation and decoupling from the main body of 

Transcarpathia (NE-ALCAPA) that occurred at or near the Hernád fault (Márton et al, 2007) 

(Fig. 4). The mechanism of magma generation was decompression melting of the local 

heterogeneous mantle lithosphere and lower crust, as suggested by low mineral oxygen 

isotope values (Papp et al., 2005). This may be the result of oblique convergence of Tisza– 

Dacia with the NW–SE striking European margin, evidenced by eastward thrusting in the 

external Miocene thrust belt (Maţenco and Bertoti, 2000). 

 

5. 2b. Eastern part of Transylvanian Basin 

This area is a continuation of the previous area and consists of calc-alkaline volcanism 

that occurred along the easternmost margin of the rigid Dacia block, in the front of European 

Platform, forming the Călimani-Gurghiu-North Harghita volcanic chain, known for its 

diminishing age and volume southwards at 10-3.9 Ma (Szakács and Seghedi, 1995). It marks 

the end of subduction-related magmatism along the post-collision front of the European 

convergent plate margin (Mason et al, 1996, 1998). 

The rocks show homogeneous 87Sr/86Sr, but a linear trend of Th/Y vs Nb/Y that reflects a 

common mantle source considered to be the metasomatized lithospheric mantle wedge (Fig. 

6b). Fractionation or AFC are characteristic for each main volcanic area, suggestive of lower 

to middle crust magma chamber processes (Mason et al., 1996) (Figs. 6b, 7b). 

The locations of the eruption centers in the CGNH chain are concentrated at intersections 

of crustal fault system that propagated from N to the S along the arc at the eastern boundary 

of Dacia, suggesting NNW–SSE striking sinistral transtensional faulting (Fielitz and Seghedi, 

2005). The relatively large volume of magma in the CGNH is difficult to relate exclusively 

with a transtensional fault mechanism, as in the northern part of the Transylvanian Basin. Its 

generation may be associated with asthenosphere uprise, explained by progressive break-off 

of the Miocene subducted slab (Seghedi et al., 2004a) (Figs. 4, 10). The evidence is the 

present high heat flow corresponding exclusively to the volcanic area (Tari et al, 1999; 

Demetrescu et al., 2001). Along-arc temporal distribution of the volcanism has been already 

explained as gradual slab detachment following an oblique subduction stage (Mason et al. 

1998; Seghedi et al., 1998; Wortel and Spakman, 2000). 

 

5. 2c. South-Eastern part of Transylvanian Basin 

The South Harghita volcanic area is the continuation of the CGNH volcanic chain. Here at 

ca. 3 Ma following a time-gap, magma compositions changed suddenly to adakite-like calc449 

alkaline and continued until recent times (< 0.03 Ma). This volcanism was interrupted at 1.6- 

1.2 Ma by simultaneous generation of Na- and K-alkalic varieties in nearby areas, suggestive 

of various sources and melting mechanisms (Downes et al., 1995; Mason et al., 1998; Seghedi 

et. al., 2004a, b). The specific geochemistry is revealed by higher Nb/Y and Th/Y ratios and 

lower 87Sr/86Sr as compared to the CGNH chain (Figs. 6b, 7b). 

This complex magmatism is situated in front of the Moesian platform and was associated 

with two main geodynamic events: (a) slab-pull and steepening, with opening of a tear456 

window in the vertical Vrancea lithospheric block hanging into the asthenospheric mantle 

(forming adakite-like calc-alkaline magmas) and (b) inversion tectonics along reactivated 

fault systems that allowed decompression melting of asthenospheric and lithospheric sources, 



thus generating the Na- and K-alkalic magmas. A detailed explanation and a profile 

interpretation were given recently (Seghedi et al., 2010, Fig. 6a). 

 

5. 3. Areas with Miocene to recent magmatism situated at the southern boundary of 

CPR 

5. 3a. Sava Zone 

This area coincides with the Sava depression bounded by a E-W system of faults (Pamić, 

1998, Pamić and Balen, 2001) bordering the southern part of Tisza-Dacia block (Fig. 2). 

Small volume calc-alkaline volcanic rocks found in this depression, mostly described from 

boreholes, in several successive periods between 22.8 and 7.4 Ma, with K-alkalic rocks at 

17.5-15.4 and 9.8-7.4 Ma (Pécskay et al., 2006). The calc-alkaline rocks show high 87Sr/86Sr, 

large SiO2 range and low Nb/Y, without significant AFC (Figs. 8a, b). The K-alkalic rocks 

have higher Nb/Y and Th/Y that reflect a different source considered to be a metasomatized 

lithospheric mantle wedge (Fig. 8b). Balen and Pamić (2001) suggested slab-breakoff for their 

generation. During Miocene the area acted as a strike-slip wrenching at the boundaries of the 

former blocks (Tari, 2002) and we suggest that it was reactivated several times in 

transpressional to transtensional mode, generating magmas via decompression melting of 

heterogeneous lithospheric mantle, sometimes influenced by AFC. 

 

5. 3b. Vardar Zone 

Miocene-Pliocene magmatism characterizes the Serbian part of the Vardar zone and its 

extension southward to FYROM and Greece. Ultrapotassic, shoshonitic and high K-alkalic 

magmas were erupted at 23-21 Ma; at 12.9-10 Ma shoshonitic magmas were generated. 

Magmatism ended with K-alkalic and ultrapotassic magmas at 9.1-1.5 Ma, becoming younger 

southward. Following Cvetković et al. (2004) and Prelević et al. (2005), we separated low 

SiO2 shoshonitic and ultrapotassic rocks that, due to their special mineralogical features 

(kamafugite affinities), are not properly distinguished in the TAS diagram from those that fall 

normally in the alkalic and ultra-alkalic fields. The kamafugite rocks with lower 87Sr/86Sr, 

higher Nb/Y and lower Th/Y reflect a different mantle source enriched during Mesozoic 

subduction events which corresponds to the Western Vardar, since the other group belongs to 

the eastern Vardar (Figs. 8a, b) (Prelević et al., 2005; Schmid et al., 2008). 

The small volume magmas, were generated in a metasomatized depleted mantle, more 

enriched for K-alkalic rocks compared with ultra-potassic during various transtensional events 

that affected the whole Vardar zone during Oligocene-Miocene times (Prelević et al., 2005, 

2007). The calc-alkaline dominantly crust-derived intrusions formed at 20-16 Ma, 

contemporaneous with volcanic activity, were induced by extensional exhumation located in 

the footwall of core complexes in the Vardar zone. This local extensional area seems to have 

accommodated the extension in the Pannonian basin during Miocene times (Cvetković et al., 

2007; Fodor et al, 2008; Schefer et al., 2010; Koroneos et al., 2010; Maţenco et al., 2010b). 

 

6. Discussion 

6.1. Extension and magma generation 

Extension tectonics related to magmatism in this review are mainly of two types: core502 

complex type and transtensional faulting. Core-complex type extension was initially 

illustrated for the whole lithosphere, showing the implication of crustal flow (e.g. Buck, 1991; 

Wernike, 1992). The concept evolved mainly toward understanding crustal flow involving 



extension and thinning of thick and hot crust, leading to the formation of a large diversity of 

metamorphic core complexes cored by migmatite domes that are bounded by vertical or 

usually low angle faults (Fayon et al., 2004; Dunkl and Frisch, 2002). Models of crustal 

partial melting related with crustal flow have been also developed (e.g. Corti et al., 1993; Ray 

et al., 2009), however such models rarely imply that types of magmatism can be generated at 

lithosphere scale. Tari et al., (1999) recognized core-complex type extension at the scale of 

Pannonian basin, remarking on its association with magmatism. Roşu et al. (2004) and 

Seghedi et al. (1998, 2004a, 2007) related the magmatism in the Apuseni Mts. area with 

extension, however without explaining the specific implication of core-complex type 

extension. In the Balkan, Aegean or Anatolian areas, many authors recognize the temporal 

association of extension and core-complex massifs with widespread volcanic activity (e.g. 

Aldanmaz et al., 2000, Bonev et al., 2006; Bozkurt, 2004; Dilek and Whitney, 2000; Dilek 

and Altatuniak, 2007; Karaöglu et al., 2010; Ersoy et al, 2010; Marchev et al., 2004). In most 

cases the models suggest partial melting formed by asthenospheric upwelling that caused 

mantle delamination. 

We suggest that major extension associated with crustal flow was crucial in magma 

generation on both sides of the Moho boundary, along with asthenosphere upwelling. 

Extension caused heating of the crust and allowed generation of crustal partial melts which, in 

association with the presence of subduction-related mantle lithospheric magmas, made the 

crust more ductile and facilitated the tectonic processes (Figs. 4, 9, 10). 

Geological and geophysical observations, together with new experimental data, 

demonstrate coupling of the lower crust and upper mantle beneath major transcurrent faults 

(e.g. Vauchez et al., 1998). In these cases, lithosphere deformation leads to small volume 

magma production that often accommodates and assists the lithospheric deformation (e.g. 

Vaughan and Scarrow, 2003). Initiation of faulting in heterogeneous enriched lithospheric 

mantle is followed by adiabatic decompression melting and ascent of magma-driven fractures 

to shallow levels similar to magmatism along the North and South Transylvanian basin. 

Transtension-related magmatism in the CPR is of small volume, at the margins of a 

strong lithospheric block (Dacia), mirroring the local lithosphere composition and consisting 

of a large variety of magmas: calc-alkaline, K-alkalic (shoshonitic) and ultrapotassic. Calc535 

alkaline magma generation (e.g. north and east of the Transylvanian basin) was the result of 

catastrophic oblique collision that led to crustal fragmentation, transtensional faulting 

(Gröeger et al., 2008; Fielitz and Seghedi, 2005), exhumation and final collision in the East 

Carpathians (Maţenco et al., 2007) and eventually by progressive break-off of the Miocene 

subducted slab (e.g. Mason et al. 1998). Sometimes Na-alkalic asthenospheric magmas are 

also extruded along such transtensional fault systems. Generation of Na-alkalic 

asthenospheric magmas is characteristic for various geodynamic situations (see Lustrino and 

Wilson, 2007) and was controversially explained at the scale of the CPR (see Harangi and 

Lenkey, 2007; Seghedi et al., 2004b). Here we link it mostly with post-collisional lithospheric 

mantle perturbation (as the one generated by Adria push) that allowed small degree 

asthenospheric melting. In the case of Central Slovakian volcanic field, the small volume 

intermittent Na-alkalic volcanism showing the longest interval of activity, from 8 Ma to 

recent times, a mantle plume scenario should be considered. 

 

 

 



6.2 Temporal variation and magma generation 

Temporal variation is a useful indicator of the degree and depth of partial melting during 

the evolution of a magmatic province. The most significant observation is the Pannonian 

basin example (1b in Fig. 2) that shows an age range from 22 Ma to recent times (Fig. 3). 

Here crustal melting occurred during catastrophic lithospheric extension, long before 

asthenosphere melting or uprise followed by mantle lithosphere melting. The explosive 

eruption of crustal magmas indicates the presence of a large volume of volatiles that helped to 

reduce the solidus temperature during partial melting. Initially the andesites have been derived 

from sub-continental mantle lithosphere with melting at progressively shallower levels (crust 

/mantle boundary) in the period of maximum extension with systematic change and 

diminishing volume. The partial melts of the mantle lithosphere rising upwards stalled and 

ponded at the base of the crust that usually is less dense, forming underplating magma 

reservoirs that further fractionated or mixed with the crustal melts. In the next phase the small 

degree melting of the deeper asthenospheric mantle produced Na-alkalic magmas. In time the 

large amount of melting in the lithosphere diminished and asthenosphere uprise initiated 

melting, showing small volume and intermittent eruption rates. This is a similar to the Basin 

and Range (Bradshaw et al., 1993) where a decrease in magma generation suggests relaxation 

of geotherms following extension that subsequently requires the melting zone to reach greater 

depths (Na-alkalic magmas). The estimated magma volumes and eruption rates correlate with 

the amount of extension that was most significant in the Pannonian area, and less significant 

in Transcarpathia and the Apuseni Mountains (Fig. 3) (Lexa et al., 2010). 

 

6.3. Petro-chemistry and magma generation 

Geochemistry and isotope geology are crucial in understanding the way magmas have 

been formed and reached the surface. They provide a simple way to separate the crustal, 

lithospheric and asthenospheric magma sources. Correlation with petrographic data is 

essential, as for example the presence of garnet-bearing calc-alkaline rocks that implies high 

pressure crystallization from a hydrous source (lower crust or upper mantle), followed by 

rapid magma ascent to the surface (Harangi et al, 2001, 2007). Garnet-bearing magmas are 

suggested to be generated mostly via partial melting of the metasedimentary crust in areas of 

anomalously high temperature, which produces peraluminous felsic magmas which generally 

crystallize at depth as leucogranitic plutons (e.g. Clemens, 2003). More rarely, these viscous 

and relatively cool magmas may rise and extrude onto the Earth‘s surface, however they 

require an extensional setting to get quickly to the surface, in order for the garnet to survive 

(e.g. Harangi et al., 2001). A variable delay (up to 3 Ma) between magma production and lava 

extrusion found in crustal-derived Miocene garnet-bearing rocks in the Betic area, by using 

U-Pb SHRIMP geochronology shows that is difficult to constrain the real age of crustal 

melting and judging the data should be done with caution (Cesare et al., 2008). 

Variation of SiO2 vs. alkali and 87Sr/86Sr are essential to evaluate magma chamber 

processes, as FC or AFC. Trace element variability, e.g. Nb/Y vs Th/Y, suggests that there are 

no important differences between crustal sources (with highest Th/Y, as most metasomatized) 

and a subduction-related lithospheric mantle source (Figs. 7a, b, 8b). During the peak periods 

of extension we expect higher degrees of partial melting to correlate with large magma 

volumes, whereas lower degrees of melting form smaller volumes. The correlation between 

high volume magma and low Nb/Y and high Th/Y may suggest a high crustal and mantle 

potential temperature, the volume of melting increasing with both the amount of extension 



and the mantle potential temperature. In contrast magmas showing small volumes have high 

Nb/Y that do not require high mantle potential temperature for decompression melting. In the 

CPR from the Miocene to the present there were two regions of melting: one was situated in 

the mantle lithosphere and another in the asthenosphere, the latter always following the main 

periods of extension. 

 

7. Conclusion 

This review of the tectonic setting, timing and geochemistry of post-collisional volcanism 

in the CPR leads us to constrain the role of orogenic processes on melt production and 

migration as follows: 

The geodynamic record of the CPR may be explained as the result of continuous 

northward Aegean subduction and accretion since the Cretaceous, followed by 

widespread extension, sometimes with exhumation of metamorphic rocks as a result of 

west-ward slab retreat (roll-back) of several blocks in a small landlocked basin since 

the late Miocene. In the Aegean and Anatolian areas where slab retreat was southward, 

similar extension and lower-middle crust exhumation occurred (e.g. Dilek et al., 2009; 

Jolivet and Brun, 2010; Tirel et al., 2009; van Hinsenberg et al, 2010). 

• The magmatism is post-collisional and the absence of the proper arc-type volcanism 

makes the term ―back-arc‖ in the CPR inappropriate. Extension was the main process 

during which magmas were generated. The main tectonic mechanisms imply both 

core-complex extension and transtensional faulting. Blocks with weak lithosphere 

(e.g. Alcapa, Tisza) tended to break and disintegrate: magmas formed above and at the 

boundaries (e.g. Pannonian basin). Blocks with relatively strong lithosphere (Dacia) 

formed magmas at destructive boundaries along transtensional faults (e.g. at margins 

of the Transylvanian Basin). 

• Magmatism mirrors the composition of its source (mantle lithosphere, crust and 

asthenosphere) and occurred during catastrophic tectonic events, acting as a lubricant 

for lithospheric block extension. 

• Decompression melting of a hydrated and/or metasomatized mantle was the main 

magma-generating mechanism. 

• Magmatic activity influenced the extension dynamics. Magma generation and tectonic 

activity were contemporaneous. Magmatism enhances lithospheric weakness in 

several ways: Decompression mantle melting and further underplating by 

asthenosphere uprise and assisting crustal melting correlate with increased amount of 

extension. K-alkalic and large volume of calc-alkaline magmas are formed. Decrease 

in magma volume following extension marks the transition from lithosphere melting 

to asthenosphere melting. Magmatism enhances lithospheric weakness and controls 

timing and location of transtensional faulting: calc-alkaline magmas are generated via 

crust and mantle melting; slab breakoff or delamination associated with asthenosphere 

uprise enhanced the magma production. Small volume K-alkalic, ultra-K and Na635 

alkalic asthenospheric magmas used transtensional faults to aid eruption. 

 

 

 

 

 



Acknowledgements 

Early ideas of this review were presented by the first author in a plenary lecture at the 

CBGA Congress in Thessaloniki, September 2010, at the invitation of Giorgios Christofides, 

the President of the Congress and at the GSA Meeting in Ankara, October 2010 at the 

invitation of Yildirim Dilek, the main organizer of the meeting. We are grateful to all our 

friends who helped us to prepare and complete this review, especially Zoli Pécskay, Theo 

Ntaflos, Sanyi Szakács, Jaro Lexa, Liviu Maţenco, Szabi Harangi. We thank Tim Horscroft 

from Elsevier and Editor M. Santosh for inviting us to write this review article for Gondwana 

Research. 

 

References 

Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., Mitchell, J.G., 2000. Petrogenetic evolution of 

late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of 

Volcanology and Geothermal Research 102, 67–95. 

Ali, S., Ntaflos T., 2011. Alkali basalts from Burgenland, Austria: Petrological constraints on 

the origin of the westernmost magmatism in the Carpathian–Pannonian Region. Lithos 

121, 176–188. 

Ali, S., Ntaflos T., Tschegg C., (submitted). Petrogenesis and mantle source characteristics of 

Quaternary alkaline mafic lavas in the western Carpathian-Pannonian Region, Styria, 

Austria. Chemical Geology. 

Bada, G., Horváth, F., Dövényi, P., Szafián, P., Windhoffer, G., Cloetingh, S., 2007. Present658 

day stress field and tectonic inversion in the Pannonian basin. Global and Planetary 

Change, 58: 165-180, doi:10.1016/j.gloplacha.2007.01.007. 

Balla, Z., 1987. Tertiary palaeomagnetic data for the Carpatho-Pannonian region in the light 

of Miocene rotation kinematics. Tectonophysics, 139: 67-98. 

Balen D., Pamić J., 2001. Tertiary shoshonite volcanic association from the adjoining area of 

south Pannonian basin and Dinarides, Acta Vulcanologica13, 117-125. 

Baráth I., Kováč M., Soták J., Lankreijer A., 1997. Tertiary collision, metamorphism and 

basin forming processes in the Eastern Slovakia (central Western Carpathians). In 

Geological evolution of the Western Carpathians, P. Grecula, D. Hovorka and M. Putiš 

(eds) Mineralia Slovaca, Monograph, Bratislava, 65-78. 

Bradshaw T.K, Hawkesworth C.J., Gallager K., 1993. Basaltic volcanism in the Southern 

Basin and Range: no role for a mantle plume. Earth and Planetary Sci. Letters 116, 45-62 

Bonev, N., Burg, J.-P., Ivanov, Z., 2006. Mesozoic-Tertiary structural evolution of an 

extensional gneiss dome - the Kesebir-Kardamos dome, eastern Rhodope (Bulgaria– 

Greece). International Journal of Earth Sciences 95, 318–340. 

Bozkurt, E., 2004. Granitoid rocks of the southern Menderes Massif (southwestern Turkey): 

field evidence for Tertiary magmatism in an extensional shear zone. International Journal 

of Earth Sciences 93, 52–71. 

Buck, W. R., 1991. Modes of continental lithospheric extension. Journal of Geophysical 

Research 96, 20161–20178. 

Cesare, B. Rubatto, D., Gómez-Pugnaire, M. T. 2008. Do extrusion ages reflect magma 

generation processes at depth? An example from the Neogene Volcanic Province of SE 

Spain. Contrib Mineral Petrol. DOI 10.1007/s00410-008-0333-x, 

Chalot-Prat, F., Gîrbacea, R., 2000. Partial delamination of continental mantle lithosphere, 

uplift-related crust-mantle decoupling, volcanism and basin formation: a new model for 



the Pliocene-Quaternary evolution of the southern East-Carpathians, Romania. 

Tectonophysics 327, 83-107. 

Clemens, J. D., 2003. S-type granitic magmas – petrogenetic issues, models and evidence. 

Earth Sci. Rev. 61: 1-18. 

Cloetingh, S., Bada, G., Maţenco, L., Lankreijer, A., Horvath, F., Dinu, C., 2006. Modes of 

basin (de)formation, lithospheric strength and vertical motions in the Pannonian- 

Carpathian system: inferences from thermo-mechanical modelling. Geological Society 

London Memoirs, 32: 207-221. 

Csontos L., Nagymarosy A., Horváth F., Kováč M., 1992. Tertiary evolution of the Intra- 

Carpathian area: a model. Tectonophysics, 208: 221-241. 

Csontos L., 1995. Tertiary tectonic evolution of the Intra-Carpathian area: a review. Acta 

Vulcanologica 7, 1-13. 

Csontos, L., Nagymarosy, A., 1998. The Mid-Hungarian line: a zone of repeated tectonic 

inversions. Tectonophysics 297, 51–71. 

Csontos, L., Vörös, A., 2004. Mesozoic plate tectonic reconstruction of the Carpathian region. 

Palaeogeography, Palaeoclimatology, Palaeoecology, 210(1): 1-56. 

Čermák V., 1977. Heat flow measured in five holes in eastern and central Slovakia. Earth and 

Planetary Science Letters, 34 (1977) 67-70. 

Cvetković V., Prelević D., Downes H., Jovanović M., Vaselli O., Pécskay Z., 2004. Origin 

and geodynamic significance of Tertiary postcollisional basaltic magmatism in Serbia 

(central Balkan Peninsula). Lithos 73, 161–186 

Cvetković V., Poli G., Christofides G., Koroneos A., Pécskay Z., Resimić-Sarić K., Eric V., 

2007. The Miocene granitoid rocks of Mt. Bukulja (central Serbia): evidence for 

pannonian extension related granitoid magmatism in the northern Dinarides. Europ. J. 

Mineral. 19, 513–532 

Danišík M., Kohút M., Dunkl I., Hraško Ľ., Frisch W. 2008. Apatite fission track and (U709 

Th)/He thermochronology of the Rochovce granite (Slovakia) – implications for the 

thermal evolution of the Western Carpathian-Pannonian region. Swiss J. Geosci. DOI 

10.1007/s00015-008-1279-8, 1-9. 

Demetrescu, C., Andreescu, M., 1994. On the thermal regime of some tectonic units in a 

continental collision environment in Romania. Tectonophysics 230, 265-276. 

Demetrescu, C., Nielsen, S.B., Enea, M., Şerban, D.Z., Polonic, G., Andreescu, M., Pop, A., 

Balling, N., 2001. Lithosphere thermal structure and evolution of the Transylvanian 

Depression - insights from new geothermal measurements and modelling results. 

Physics of the Earth and Planetary Interiors, 126: 249-267. 

Dérerová J, Zeyen H, Bielik M., Salman K., 2006. Application of integrated geophysical 

modeling for determination of the continental lithospheric thermal structure in the eastern 

Carpathians. Tectonics 25: TC3009, doi:10.1029/2005TC001883. 

Dilek Y., Whitney, D. L. 2000. Cenozoic crustal evolution in central Anatolia: extension, 

magmatism and landscape development. In: Panayides, I., Xenophonot, C. & Malpas, J. 

(eds) Proceedings of the Third International Conference on the Geology of the Eastern 

Mediterranean. Geological Survey Department, September 1998, 183–192. 

Dilek Y., Altunkaynak, S., 2007. Cenozoic crustal evolution and mantle dynamics of 

postcollisional magmatism in western Anatolia: International Geology Review, v. 49, p. 

431–453, DOI: 10.2747/0020-6814.49.5.431. 

Dilek, Y., Altunkaynak, S., Öner, Z., 2009. Syn-extensional granitoids in the Menderes core 



complex and the late Cenozoic extensional tectonics of the Aegean province. Geological 

Society London Special Publications, 321, 197–223. DOI: 10.1144/SP321.10 

Downes H., Seghedi I., Szakács A., Dobosi G., James D.E., Vaselli O., Rigby I.J., Ingram 

G.A., Rex D., Pécskay Z., 1995a. Petrology and geochemistry of the late 

Tertiary/Quaternary mafic alkaline volcanism in Romania. Lithos 35, 65-81. 

Downes H., Pantó Gy. Póka T., Mattey D.P., Greenwood P.B., 1995b. Calc-alkaline volcanics 

of the Inner Carpathian arc, Northern Hungary: new geochemical and oxygen isotopic 

results. Acta Vulcanologica 7, 29-41. 

Dunkl I., Frisch, W., 2002. Thermochronologic constraints on the Late Cenozoic exhumation 

along the Alpine and West Carpathian margins of the Pannonian basin. EGU Stephan 

Mueller Special Publication Series, 3, 135–147, 2002 

Dunkl I., Frisch, W., Grundmann, G. 2003. Zircon fission track thermochronology of the 

southeastern part of the Tauern Window and the adjacent Austroalpine margin, Eastern 

Alps. Eclogae Geologica Helvetica 96, 209–217. 

Ebner, F., Sachsenhofer, R.F. 1995. Palaeogeography, subsidence and thermal history of the 

Neogene Styrian Basin (Pannonian basin system, Austria). Tectonophysics 242, 133- 

150. 

Embey-Isztin A., Downes H., James D. E., Upton B.G.J., Dobosi G., Ingram G.A., Harmon 

R.S., Scharbert H.G., 1993. The petrogenesis of Pliocene alkaline volcanic rocks from 

the Pannonian Basin, Eastern Central Europe. J. Petrology 34, 317-343. 

Ersoy E. Y., Helvacı, C., Sözbilir H., 2010. Tectono-stratigraphic evolution of the NE–SW750 

trending superimposed Selendi basin: Implications for late Cenozoic crustal extension in 

Western Anatolia, Turkey. Tectonophysics 488, 210–232. 

Fayon, A.K., Whitney, D.L., Teyssier, C., 2004. Exhumation of orogenic crust: diapiric ascent 

vs. low-angle normal faulting. In: Whitney, D.L., Teyssier, C. & Siddoway, C.S. (eds) 

Gneiss Domes in Orogeny. Geological Society of America Special Paper 380, 129–139. 

Fielitz W., Seghedi I., 2005. Late Miocene - Quaternary volcanism, tectonics and drainage 

system evolution in the East Carpathians, Romania. Tectonophysics 410, 111-136 

Fodor L., Csontos L., Bada G., Györfy I., Benkovics L., 1999. Tertiary tectonic evolution of 

the Pannonian Basin system and neighboring orogens: a new synthesis of paleostress 

data. In: ―The Mediteranean Basins: Tertiary extensions within the Alpine orogen‖, B. 

Durand, L. Jolivert, F. Horvath & M. Seranne (Eds.) Geol. Soc. London. Spec. Publ., 

156, 295-334 

Fodor, L.I., Gerdes, A., Dunkl, I., Koroknai, B., Pécskay, Z., Trajanova, M., Horváth, P., 

Vrabec, M., Balogh, K., Jelen, B., Frisch, W. 2008. Miocene emplacement and rapid 

cooling of the Pohorje pluton at the Alpine-Pannonian-Dinaric junction: a 

geochronological and structural study. Swiss Journal of Geosciences, doi: 

10.1007/s00015-008-1286-9. 

Faccenna, C., Jolivet, L., Piromallo, C., Morelli, A., 2003. Subduction and the depth of 

convection in the Mediterranean mantle. J. Geophys. Res., 108(B2), 2099, DOI: 

10.1029/2002TC001488. 

Fillerup M. A., Knapp J. H., Knapp C. C., Răileanu V., 2010. Mantle earthquakes in the 

absence of subduction? Continental delamination in the Romanian Carpathians. 

Lithosphere 2, 333–340; doi: 10.1130/L102.1. 

Fügenschuh, B., Schmid, S.M., 2005. Age and significance of core complex formation in a 

very curved orogen: Evidence from fission track studies in the South Carpathians 



(Romania). Tectonophysics 404, 33–53. 

Gîrbacea R.A., Frisch W., 1998. Slab in the wrong place: lower lithospheric mantle 

delamination in the last stage of the Eastern Carpathians subduction retreat. Geology 26, 

611-614. 

Gröger, H.R., Fugenschuh, B., Tischler, M., Schmid, S.M., Foeken, J.P.T., 2008. Tertiary 

cooling and exhumation history in the Maramures area (internal eastern Carpathians, 

northern Romania): thermochronology and structural data. Geological Society London 

Special Publications 298, 169-195. 

Harangi Sz., Vaselli O., Tonarini S., Szabó Cs., Harangi R., Coradossi N.,1995a. Petrogenesis 

of Neogene extension-related alkaline volcanic rocks of the Little Hungarian Plain 

Volcanic field (Western Hungary). Acta Vulcanologica, 7, 173-187 

Harangi Sz., Wilson M. and Tonarini S.,1995b. Petrogenesis of the Neogene potassic volcanic 

rocks in the Pannonian Basin. Acta Vulcanologica, 7, 125-134 

Harangi Sz, Downes H., Kósa L., Szabó Cs., Thirlwall M.F., Mason P. R. D., Mattey D., 

2001a. Almandine garnet in calc-alkaline volcanic rocks of the Northern Pannonian 

Basin (Eastern-Central Europe): geochemistry, petrogenesis and geodynamic 

interpretations. J. Petrol. 42, 1813-1843. 

Harangi Sz., 2001b. Neogene magmatism in the Alpine-Pannonian Transition zone – a model 

for melt generation in a complex geodynamic setting. Acta Vulcanologica, 13, 1-11 

Harangi, S., Mason, P.R.D., Lukács R., 2005. Correlation and petrogenesis of silicic 

pyroclastic rocks in the Northern Pannonian Basin, Eastern–Central Europe: In situ trace 

element data of glass shards and mineral chemical constraints. Journal of Volcanology 

and Geothermal Research 143, 237–257. 

Harangi Sz., Downes H., Seghedi I., 2006. Tertiary-Quaternary subduction processes and 

related magmatism in Europe. In: Gee, D. G. & Stephenson, R. A. (eds) European 

Lithosphere Dynamics. Geological Society London Memoirs 32, 167-190 

Harangi, S., Downes, H., Thirlwall, M., Gmeling K., 2007. Geochemistry, petrogenesis and 

geodynamic relationships of Miocene calc-alkaline volcanic rocks in the Western 

Carpathian Arc, eastern central Europe. Journal of Petrology 48, 2261–2287. 

Harangi Sz., Lenkey L., 2007. Genesis of the Neogene to Quaternary volcanism in the 

Carpathian - Pannonian region: Role of subduction, extension, and mantle plume 

Geological Society of America Special Paper, 418, 67-90. 

Horváth, F., Bada, G., Szafián, P., Tari, G., Ádám, A., Cloetingh, S. 2006. Formation and 

deformation of the Pannonian Basin: constraints from observational data. In: Gee, D.G. & 

Stephenson, R. (Eds.): European Lithosphere dynamics, Geological Society London 

Memoir 32, 191–206. 

Jarosinski M., Beekman F., Maţenco L., Cloetingh S., 2010. Mechanics of basin inversion: 

Finite element modeling of the Pannonian Basin System. 

Tectonophysics.doi.org/10.1016/j.tecto.2009.09.015 

Jolivet, L., Brun, J.-P., 2010. Cenozoic geodynamic evolution of the Aegean. International 

Journal of Earth Sciences 99, 109–138. 

Karaoğlu, Ö., Helvacı, C., Ersoy Y., 2010. Petrogenesis and 40Ar/39Ar geochronology of the 

volcanic rocks of the Uşak-Güre basin, western Türkiye. Lithos 119, 193-210. 

Klébesz R., Harangi Sz., Ntaflos T. 2009. Petrogenesis of the ultrapotassic trachyandesite at 

Balatonmária, Földtani Közlöny 139, 237-250 (in Hungarian). 

Knapp J.H., Knapp C.C., Răileanu V., Maţenco L, Mocanu V., Dinu C., 2005. Crustal 



constraints on the origin of mantle seismicity in the Vrancea zone, Romania: The case 

for active continental lithospheric delamination. Tectonophysics 410, 311-323 

Kogiso T., Omori S., Maruyama S., 2009. Magma genesis beneath Northeast Japan arc: A 

new perspective on subduction zone magmatism. Gondwana Research 16, 446–457. 

Konečny V., Lexa J., Balogh Kad., Konečny V., 1995. Alkali basalt volcanism in Southern 

Slovakia: volcanic forms and time evolution. Acta Vulcanologica, 7, 167-171 

Konečný, V., Kováč, M., Lexa, J., Šefara, J., 2002. Neogene evolution of the Carpatho- 

Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle. 

EGS Special Publication Series 1, 165-194. 

Konečný P., Bačo P., Konečný V., 2010. Acid Miocene volcanism in the Eastern Slovakia, 

variable sources and magma forming processes: constraints from petrology and 

geochemistry, Abstract, CBGA Congress, Thessaloniki, 2010, Geologica Balcanica 39, 

199-200. 

Koroneos A., Poli G., Cvetkovič V., Christofides G., Krstić, D., Pécskay, Z., 2010. 

Petrogenetic and tectonic inferences from the study of the Mt Cer pluton (West Serbia). 

Geol. Mag. 148 (1), 89–111, doi:10.1017/S0016756810000476 

Koulakov I., M.K. Kaban, M. Tesauro, Cloetingh, S., 2009. P and S velocity anomalies in the 

upper mantle beneath Europe from tomographic inversion of ISC data, Geophys. J. Int. 

179, 1, p. 345-366. doi: 10.1111/j.1365-246X.2009.04279.x 

Kovács, I., Csontos, L., Szabó, Cs., Bali, E., Falus, Gy., Benedek, K., Zajacz, Z., 2007. 

Paleogene-early Miocene igneous rocks and geodynamics of the Alpine-Carpathian- 

Pannonian-Dinaric region: an integrated approach. In: Beccaluva, L., Bianchini, G., 

Wilson, M. (Eds.), Cenozoic Volcanism in the Mediterranean Area: Geological Society of 

America Special Paper. 418, 93–112. 

Kovács, I., Szabó, Cs., 2008. Middle Miocene volcanism in the vicinity of the Middle 

Hungarian zone: Evidence for an inherited enriched mantle source. Journal of 

Geodynamics 45, 1–17. 

Krézsek C., Bally A.W., 2006. The Transylvanian Basin (Romania) and its relation to the 

Carpathian fold and thrust belt: Insights in gravitational salt tectonics. Marine and 

Petroleum Geology 23, 405-442 

LeBas, M.J., LeMaitre, R.W., Streckeisen, A., Zanettin, B., 1986. A chemical classification of 

volcanic rocks based on the total alkali silica diagram. J. Petrology 27,745-750. 

Lexa J., Seghedi I., Németh K., Szakács A., Konečný V., Pécskay Z., Fülöp A., Kovacs M., 

2010. Neogene-Quaternary volcanic forms in the Carpathian-Pannonian Region: a 

review. Cent. Eur. J. Geosci. 2(3), 207-270, DOI: 10.2478/v10085-010-0024-5. 

Lorinczi P., Houseman G., 2010. Geodynamical models of lithospheric deformation, rotation 

and extension of the Pannonian Basin of Central Europe. Tectonophysics 492, 73-97, 

http://dx.doi.org/10.1016/j.tecto.2010.05.007. 

Lukács R., Harangi, S., Mason, P.R.D., Ntaflos T. 2009. Bimodal pumice populations in the 

13.5 Ma Harsány ignimbrite, Bükkalja Volcanic Field, Northern Hungary: syn-eruptive 

mingling of distinct rhyolitic magma batches? Central European Geology 52/1, 51-72, 

DOI: 10.1556/CEuGeol.52.2009.1.4 

Lukács R., Harangi, S., Radócz Gy., Kádár M., Pécskay Z., Ntaflos T., 2010. The Miocene 

pyroclastic rocks of the boreholes Miskolc–7, Miskolc–8 and Nyékládháza–1 and their 

correlation with the ignimbrites of Bükkalja (in Hungarian with an English abstract). 

Földtani Közlöny 141/1, 31-48. 



Lustrino, M., Wilson, M., 2007. The circum-Mediterranean anorogenic Cenozoic igneous 

province. Earth-Sci. Rev. 81, 1–65. 

Marchev, P., Raicheva, R., Downes, H., Vaselli, O., Chiaradia, M., Moritz, R., 2004. 

Compositional diversity of Eocene–Oligocene basaltic magmatism in the Eastern 

Rhodopes, SE Bulgaria: Implications for genesis and tectonic setting: Tectonophysics 

393, 301–328, doi: 10.1016/j.tecto .2004.07.045. 

Márton E, Kuhlemann, J., Frisch W., Dunkl I., 2000. Miocene rotations in the Eastern Alps874 

palaeomagnetic results from intramontane basin sediments. Tectonophysics 323, 163- 

182 

Márton, E., Fodor, L., 2003. Tertiary paleomagnetic results and structural analysis from the 

Transdanubian Range (Hungary): rotational desintegration of the Alcapa unit. 

Tectonophysics 363, 201–224. 

Márton, E., Tischler, M., Csontos, M., Fügenschuh, B., Schmid, S. M., 2007. The contact 

zone between the ALCAPA and Tisza-Dacia mega-tectonic units of Northern Romania 

in the light of new paleomagnetic data. Swiss Journal of Geosciences, DOI 

10.1007/s00015-007-1205-5 

Mason P., Downes H., Thirlwall M.F., Seghedi I., Szakács A., Lowry D., Mattey D., 1996. 

Crustal assimilation as a major petrogenetic process in the East Carpathian Neogene and 

Quaternary continental margin arc, Romania. J. Petrology 37, 927-959 

Mason P.R.D., Seghedi I., Szakács A., Downes H., 1998. Magmatic constraints on 

geodynamic models of subduction in the Eastern Carpathians, Romania. Tectonophysics 

297, 157-176. 

Maţenco L, Bertotti G, Leever K, Cloetingh S., Schmid S.M., Tărăpoancă M., Dinu C., 2007. 

Large-scale deformation in a locked collisional boundary: Interplay between subsidence 

and uplift, intraplate stress, and inherited lithospheric structure in the late stage of the SE 

Carpathians evolution. Tectonics 26: Art. No. TC4011, doi 10.1029/2006TC001951 

Maţenco, L., Bertotti G., 2000. Tertiary tectonic evolution of the external East Carpathians 

(Romania). Tectonophysics 316, 255-286. 

Maţenco, L., Krézsek, C.,Merten,S., Schmid, S., Cloetingh S., Andriessen, P., 2010a. 

Characteristics of collisional orogens with low topographic build-up: an example from the 

Carpathians. Terra Nova, 22, 155–165. 

Maţenco L., Toljic M., Ducea M., ter Borgh, 2010b. On the link between the formation of the 

Pannonian basin and the extensional collapse of the Dinarides. Abstract, CBGA Congress, 

Thessaloniki, 2010, Geologica Balcanica 39, 205-206. 

McPherson C.G., Hall R., 1999. Tectonic controls of geochemical evolution in arc 

magmatism in SE Asia. Proceedings of 4th PACRIM Congress, Australian Institute of 

mining and Metallurgy, 359-368. 

Natland J. H., 2007. ΔNb and the role of magma mixing at the East Pacific Rise and Iceland. 

GSA Special Papers 2007, v. 430, p. 413-449 

Nemčok M., Pospisil L., Lexa J., Donelik R.A., 1998. Tertiary subduction and slab breakoff 

model of the Carpathian Pannonian region. Tectonophysics 295, 307-340. 

Niţoi E., Munteanu M., Marincea S., Paraschivoiu V., 2002. Magma- enclaves interaction in 

the East Carpathians subvolcanic zone, Romania: petrogenetic implications. J. Volcanol. 

Geoth. Res. 118, 229—259. 

Ntaflos T., Krumpel G., Harangi Sz., Tschegg C., 2007. The origin of the alkaline and high-K 

calc-alkaline magmas along the SE margin of the Styrian Basin; Austria. Abstract. 



European Mantle Workshop (EMAW 2007), Ferrara, Italy. 

Pamić, J., McKee, H.E., Bullen, D.T., Lanphere, A.M., 1995. Tertiary volcanic rocks from the 

Southern Pannonian Basin, Croatia. Int. Geol. Rev. 37, 259–283. 

Pamić, J., 1998. North Dinaridic late-Cretaceous-Paleogene subduction-related 

tectonstratigraphic units of southern Tisia, Croatia, Geol. Carpathica 49, 341-350. 

Pamić, J., Balen, D., 2001. Tertiary magmatism of the Dinarides and the adjoining south 

Pannonian Basin: An overview: Acta Vulcanologica 13, 9–24. 

Papp D.C., Ureche I., Seghedi I., Downes H., Dallai L. 2005. Petrogenesis of convergent921 

margin calc-alkaline rocks and the significance of the low oxygen isotope ratios: the 

Rodna- Bârgău Neogene subvolcanic area (Eastern Carpathians). Geol. Carpathica 56, 

1, 77-90. 

Pearce J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to 

ophiolite classification and the search for Archean oceanic crust. Lithos 100, 14-48. 

Pécskay Z, Lexa J., Szakács A., Balogh Kad., Seghedi I., Konečny V., Kovacs M., Marton E., 

Széky-Fux V., Póka T., Gyarmaty P., Edelstein O., Roşu E., Ţec B., 1995a. Space and 

time distribution of Neogene - Quaternary volcanism in the Carpatho-Pannonian 

Region. Acta Vulcanologica, 7, 15-29 

Pécskay Z., Edelstein O., Seghedi I., Szakács A., Kovacs M., Crihan M., Bernad A., 1995b. 

K-Ar datings of the Neogene-Quaternary calc-alkaline volcanic rocks in Romania. In: 

Downes, H. & Vaselli, O. (eds) Neogene and related volcanism in the Carpatho- 

Pannonian Region. Acta Vulcanologica 7, 53-63. 

Pécskay Z., Lexa J., Szakács A., Seghedi I., Balogh K., Konečný V., Zelenka T., Kovacs M., 

Póka T., Fülöp A., Márton E., Panaiotu C., Cvetković V., 2006. Geochronology of 

Neogene-Quaternary magmatism in the Carpathian arc and Intra-Carpathian area: a 

review. Geologica Carpathica, 57, 511-530. 

Pinter, N., Grenerczy, G., Weber, J., Stein, S., Medak, D., 2005. The Adria Microplate: GPS 

Geodesy, Tectonics and Hazards (Nato Science Series: IV: Earth and Environmental 

Sciences). Springer, 413 pp. 

Póka, T., 1988. Neogene and Quaternary volcanism of the Carpathian-Pannonian region: 

changes in chemical composition and its relationship to basin formation. In: Royden, 

L.H., Horváth, F. (Eds.), The Pannonian Basin: A Study in Basin Evolution. American 

Association of Petroleum Geologist and Hungarian Geological Society, Tulsa, Budapest, 

257–277. 

Póka T., Zelenka T., Seghedi I., Pécskay Z., Márton E., 2004. Miocene volcanism of the 

Cserhat Mts. (N Hungary): integrated volcano-tectonic, geochronologic and 

petrochemical study. Acta Geologica Hungarica, 47/2-3, 221-246. 

Prelević D, Foley S.F, Romer RL, Cvetković V, Downes H., 2005. Tertiary ultrapotassic 

volcanism in Serbia: constraints on petrogenesis and mantle source characteristics. J 

Petrol 46:1443–1487 

Prelević D, Foley SF, Cvetković V., 2007. A review of petrogenesis of Mediterranean 

Tertiary lamproites: a perspective from the Serbian ultrapotassic province. Geol. Soc. 

Am. Special Pap. 418, 113–129 

Ratschbacher, L., Frisch, W., Linzer, H.-G., Merle, O., 1991: Lateral extrusion in the Eastern 

Alps; Part 2, Structural analysis. Tectonics 10, 257–271. 

Ratschbacher, L., Linzer, H.G., Moser, F., Strusievicz, R.O., Bedelean, H., Har, N., Mogoş, 

P.A. 1993. Cretaceous to Miocene thrusting and wrenching along the central South 



Carpathians due to a corner effect during collision and orocline formation. Tectonics 12, 

855–873. 

Rosenbaum, G., G. S. Lister, Duboz. C., 2004. The Mesozoic and Cenozoic motion of Adria 

(central Mediterranean): A review of constraints and limitations. Geodin. Acta 17, 125- 

139. 

Roşu E., Seghedi I., Downes H., Alderton D.H.M., Szakács A., Pécskay Z., Panaiotu C., 

Panaiotu C.E., Nedelcu L., 2004. Extension-related Miocene calc-alkaline magmatism 

in the Apuseni Mountains, Romania: origin of magmas. Swiss Bulletin of Mineralogy 

and Petrology 84/1-2, 153-172. 

Royden, L.H. 1988. Late Cenozoic tectonics of the Pannonian Basin system. In: Royden, L.H. 

& Horváth, F. (Eds.): The Pannonian Basin. A Study in Basin evolution, AAPG 

Memoir, 45. The American Association of Petroleum Geologists and the Hungarian 

Geological Society, Tulsa, Budapest, 27–48. 

Royden L.H., 1993. The tectonic expression slab pull at continental convergence boundaries. 

Tectonics 12, 303-325. 

Rudnick, R.L., Fountain, D.M., 1995. Nature and composition of the continental crust—a 

lower crustal perspective. Rev. Geophys. 33, 267–309. 

Salters, V.M.J., Hart, S.R., Pantó, Gy., 1988. Origin of Late Cenozoic Volcanic rocks of the 

Carpathian Arc, Hungary. The Pannonian Basin: A Study in Basin Evolution, 45. 

American Association of Petroleum Geologist, Hungarian Geological Society, Tulsa, 

Budapest, 279–292. 

Santosh, M., 2010. A synopsis of recent conceptual models on supercontinent tectonics in 

relation to mantle dynamics, life evolution and surface environment. Journal of 

Geodynamics 50, 116-133. 

Schefer S., Cvetković V., Fügenschuh B., Kounov A., Ovtcharova M., Schaltegger U., M. 

Schmid S., 2010. Cenozoic granitoids in the Dinarides of southern Serbia: age of 

intrusion, isotope geochemistry, exhumation history and significance for the 

geodynamic evolution of the Balkan Peninsula. Int. J. Earth. Sci. (Geol. Rundsch.). DOI 

10.1007/s00531-010-0599-x 

Schmid, S.M., Berza, T., Diaconescu, V., Froitzheim, N., Fügenschuh, B. 1998. Orogen989 

parallel extension in the Southern Carpathians. Tectonophysics 297, 209–228. 

Schmid, S., Bernoulli, D., Fügenschuh, B., Maţenco, L., Schefer, S., Schuster, R., Tischler, 

M., Ustaszewski, K., 2008. The Alpine-Carpathian-Dinaridic orogenic system: 

correlation and evolution of tectonic units. Swiss Journal of Geosciences: doi: 

10.1007/s00015-008-1247-3, 139-183. 

Seghedi I., Szakács A., Mason P. R. D., 1995. Petrogenesis and magmatic evolutions in the 

East Carpathians Neogene volcanic arc (Romania). Acta Volcanologica 7(2), 135-145. 

Seghedi, I., Balintoni I., Szakács A., 1998. Interplay of tectonics and Neogene post-collisional 

magmatism in the Intracarpathian area. Lithos 45, 483-499. 

Seghedi I., Downes H., Pécskay Z., Thirlwall M. F., Szakács A., Prychodko M., Mattey D., 

2001. Magmagenesis in a subduction-related post-collisional volcanic arc segment: the 

Ukrainian Carpathians. Lithos 57, 237-262. 

Seghedi, I., Downes, H., Szakács, A., Mason, P.R.D., Thirlwall, M.F., Roşu, E., Pécskay, Z., 

Marton, E., Panaiotu, C., 2004a. Neogene-Quaternary magmatism and geodynamics in 

the Carpathian-Pannonian region: a synthesis. Lithos, 72, 117-146. 

Seghedi I., Downes H., Vaselli O., Szakács A., Balogh K., Pécskay Z., 2004b. Post-collisional 



Tertiary-Quaternary mafic alkalic magmatism in the Carpathian-Pannonian region: a 

review. Tectonophysics 393, 43-62 

Seghedi, I., Downes, H., Harangi, S., Mason, P.R.D., Pécskay, Z., 2005. Geochemical 

response of magmas to Neogene-Quaternary continental collision in the Carpathian- 

Pannonian region: A review. Tectonophysics 410, 485-499. 

Seghedi I., Bojar A.-V., Downes H., Roşu E., Tonarini S., Mason P. R.D., 2007. Generation 

of normal and adakite-like calc-alkaline magmas in a non-subductional environment: A 

Sr-O-H isotopic study of the Apuseni Mountains Neogene magmatic province, 

Romania. Chemical Geology 245, 70-88 

Seghedi I., Ntaflos T., Pécskay, Z., 2008. The Gătaia Pleistocene lamproite: a new occurrence 

at the southeastern edge of the Pannonian Basin, Romania. Geological Society London 

Special Publication 293, 83-100, doi:10.1144/SP293.5 

Seghedi I., Maţenco L., Downes H., Mason P. R. D., Szakács A., Pécskay Z., 2010. Tectonic 

significance of changes in post-subduction Pliocene-Quaternary magmatism in the south 

east part of the Carpathian-Pannonian Region, Tectonophysics 

doi:10.1016/j.tecto.2009.12.003. 

Soták J., Biroñ A., Prokešova R., Spišak J., 2000. Detachment control of core complex 

exhumation and back-arc extension: case study from East Slovak basin. Geolines 10, 

66-67. 

Sperner, B., Lorenz, F. Bonjer, K., Hettel, S., Muller B., Wenzel, F., 2001. Slab break-off1025 

abrupt cut or gradual detachment? New insights from the Vrancea Region (SE 

Carpathians, Romania). Terra Nova 13, 172-179. 

Stern R.J., 2002. Subduction zones. Reviews of Geophysics, 40, doi:10.1029/2001RG000108. 

Szabó Cs., Harangi Sz., Csontos L., 1992. Review of Neogene and Quaternary volcanism of 

the Carpathian-Pannonian region. Tectonophysics 208, 243-256. 

Szakács, A., Seghedi, I., 1995. The Călimani-Gurghiu-Harghita volcanic chain, East 

Carpathians, Romania: Volcanological features. Acta Vulcanologica 7(2), 145-153. 

Sun S., McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts: 

implications for mantle compositions and processes. In: Saunders A.D. & Norry M.J. 

(eds.) Magmatism in the ocean basins. Geol. Soc. Spec. Pub. 42, 313-345. 

Tari, G., Dovenyi, P., Dunkl, I., Horváth, F., Lenkey, L., Ştefanescu, M., Szafian, P., Toth, T., 

1999. Lithospheric structure of the Pannonian basin derived from seismic, gravity and 

geothermal data. In: Durand, B., Jolivet, L., Horvath F. and Serrane M. (Editors), The 

Mediterranean Basins: extension within the Alpine Orogen. Geol. Soc. London Spec. 

Publ. 156, 215-250. 

Tari, G., 2002. Evolution of the northern and western Dinarides: a tectonostratigraphic 

approach. EGU Stephan Mueller Special Publication Series, 1, 223–236. 

Tesauro M., Kaban M.K., Cloetingh S. A.P.L., 2009. A new thermal and rheological model of 

the European lithosphere. Tectonophysics 476, 478–495. 

Teyssier, C., Ferré, E.C., Whitney, D.L., Norlander, B., Vanderhaeghe, O., Parkinson, D., 

2005. Flow of partially molten crust and origin of detachments during collapse of the 

Cordilleran Orogen, in Bruhn, D.& Burlini, L., High-strain zones: Structure and 

physical properties: Geological Society London Special Publication 245, 39–64. 

Tirel, C., Gautier, P., van Hinsbergen, D.J.J., Wortel, M.J.R., 2009. Sequential development 

of metamorphic core complexes: numerical simulations and comparison to the 

Cyclades, Greece. In: van Hinsbergen, D.J.J., Edwards, M.A., Govers, R. (Eds.), 



Collision and Collapse at the Africa–Arabia–Eurasia Subduction Zone: Geological 

Society London Special Publication 311, 257–292, doi:10.1144/SP311.10. 

Tischler, M., Gröger, H.R., Fügenschuh, B., Schmid, S. M. 2006. Miocene tectonics of the 

Maramureş area (Northern Romania) - implications for the Mid-Hungarian fault zone. 

International Journal of Earth Sciences, Online first: doi: 10.1007/s00531- 006-0110-x. 

Tischler, M., Matenco L., Filipescu S., Gröger, H.R., Wetzel A., Fügenschuh, B. 2008. 

Tectonics and sedimentation during convergence of the ALCAPA and Tisza–Dacia 

continental blocks: the Pienide nappe emplacement and its foredeep (N. Romania). 

Geological Society London Special Publications 298, 317–334. 

Trua T., Serri G, Birkenmajer K., Pécskay Z., 2006. Geochemical and Sr-Nd-Pb isotopic 

compositions of Mts Pieniny dykes and sills (West Carpathians): Evidence for melting 

in the lithospheric mantle. Lithos 90, 57-76. 

Tschegg C., Ntaflos T., Kiraly F., Harangi Sz., 2010. High temperature corrosion of olivine 

phenocrysts in Pliocene basalts from Banat, Romania. Austrian Journal of Earth 

Sciences 103, 101-110. 

Ustaszewski, K., Schmid, S., Fügenschuh, B., Tischler, M., Kissling, E., Spakman, W., 2008. 

A map-view restoration of the Alpine-Carpathian-Dinaridic system for the Early 

Miocene. Swiss Journal of Geosciences, 101(0): 273-294. 

van der Meer D. G., SpakmanW., van Hinsbergen D. J. J., Amaru M. L., Torsvik T. H., 

2009. Towards absolute plate motions constrained by lower-mantle slab remnants. 

Nature Geoscience, http://www.nature.com/doifinder/10.1038/ngeo708. 

van Hinsbergen, D.J.J., Dupont-Nivet G., Nakov, R., Ouda K., Panaiotu, C. 2008. 

Implications for the kinematic evolution of the Carpathian and Aegean arcs. Earth and 

Planetary Science Letters 273, 345-358 

van Hinsbergen, D.J.J., Dekkers, M.J., Bozkurt, E., Koopman, M., 2010. Exhumation with a 

twist: paleomagnetic constraints on the evolution of the Menderes metamorphic core 

complex (western Turkey). Tectonics 29, TC3009. doi: 10.1029/2009TC002596. 

Vauchez A., Tommasi, A., Barruol G., 1998. Rheological heterogeneity, mechanical 

anisotropy and deformation of the continental lithosphere. Tectonophysics 296 61-86. 

Vaughan A.P.M., Scarrow J. H., 2003. K-rich mantle metasomatism control of localization 

and initiation of lithospheric strike-slip faulting. Terra Nova, 15, 163–169. 

Vinkler A.P., Harangi Sz., Ntaflos T., Szakács A., 2007. Petrology and geochemistry of 

pumices from the Ciomadul volcano (Eastern Carpathians) - implication for petrogenetic 

processes. (in Hungarian with an English abstract) Földtani Közlöny 137/1, 103-128. 

Wernicke, B. 1992. Cenozoic extensional tectonics of the U.S. Cordillera. In: Burchfield, 

B.C., Lipman, P.W. & Zoback, M. L. (eds.) The Cordilleran Orogen: Conterminous U. 

S., The Geology of North America.Geological Society of America 43, 553–581. 

Wijbrans J., Nemeth K., Martin U., Balogh K., 2007. Ar40/Ar39 geochronology of Neogene 

phreatomagmatic volcanism in the western Pannonian Basin, Hungary, J. Volcanol. 

Geoth. Res. 164, 193-204. 

Wortel M.J.R., Spakman W., 2000. Subduction and slab detachment in the Mediterranean- 

Carpathian region. Science 290, 1910-1917. 

Yanev, Y., Boev B., Doglioni C., Innocenti F., Manetti P., Pécskay Z., Tonarini S., D‘Orazio 

M., 2008. Late Miocene to Pleistocene potassic volcanism in the Republic of 

Macedonia. Miner. Petrol. DOI 10.1007/s00710-008-0009-2. 

 



Figure caption 

Fig. 1. Simplified map (after Harangi et al., 2006) with the distribution of Tertiary to 

Quaternary volcanic rocks in Europe. The geodynamic system is controlled by subduction of 

the Africa megaplate with Adria promotory (that separates west Mediterranean area -WM 

from the east Mediterranean area -EM) with the European megaplate. Miocene and Oligocene 

volcanic rocks are separated only in Carpathian-Pannonian region and Balkan area. Dark blue 

areas indicate oceanic crust. Abbreviations: ECRIS, European Cenozoic Rift System; BAR, 

Betic-Alboran-Rif province (Ab, Alboran; Be, Betic; RTG, Gourougou-Trois Furches-Ras 

Tarf (Rif); Or, Oranie; Ca, Calatrava; Ol, Olot); CM, Central Mediterranean (Sa, Sardinia; Si, 

Sisco; Tu, Tuscany; Rp, Roman province; Ca, Campania; Vu, Vulture; Va, Vavilov; Ma, 

Marsili; Us, Ustica; Ai, Aeolian Islands; Et, Etna; Hy, Iyblei; Pa, Pantelleria); PIL, 

Periadriatic-Insubric Line (Be, Bergell; Ad, Adamello; Ve, Veneto); CPR, Carpathian- 

Pannonian region (WC, western Carpathians; EC, eastern Carpathians; Ap, Apuseni); Balkans 

-BK; (S-Sava Zone; VZ- Vardar zone; Di-Dinarides ,He-Hellenides); Rhodope (R- Rhodope 

Th-Thrace); AA, Aegean–Anatolia (Sa, Santorini; WA, Western Anatolia; Ku, Kula; Af, 

Afyon; Ko, Konya; Ga, Galatia; CA, Central Anatolia). 

Fig.2. Sketch map of the Carpathian-Pannonian region (simplified after Schmid et al., 2008) 

showing the Miocene-Quaternary magmatism (simplified after Pécskay et al., 2006) without 

Miocene-Quaternary sedimentary cover. The regions where volcanism has developed 

volcanic edifices are encircled: 1a. Styrian basin, 1b. Western Carpathians and Pannonian 

basin, 1c. Transcarpathian basin, 1d. Zărand basin and Apuseni Mountains belonging to the 

main Pannonian basin system; 2a Northern part of Transylvanian basin, 2b Eastern part of 

Transylvanian basin, 2c South-eastern part of Transylvanian basin, belonging to the 

Transylvanian basin system; 3a Sava zone and 3b. Vardar zone that compose the southern 

boundaries of CPR system. Time intervals of volcanic activity for each region are given. 

Fig 3. Simplified and updated spatial and temporal distribution (after Pécskay et al., 2006) 

distinguishing the development of magmatism as related to the main sedimentary basins 

(Pannonian and Transylvanian) generated during the main Miocene-Quaternary tectonic 

events in CPR. The events include tectonic escape and extension of the main ALCAPA and 

Tisza-Dacia blocks, resulting in a simultaneous breakup and various time of collision, last one 

in the East Carpathians and Pliocene-Quaternary inversion tectonics derived from the push of 

Adria. The contemporaneous magmatism situated at the southern limit of CPR that includes 

the Sava and Vardar zones ophiolitic accretionary prisms is shown. 

Fig. 4. Sketch map of the Carpathian-Pannonian region (simplified after Schmid et al., 2008) 

showing the Miocene-Quaternary geodynamic developments in CPR with Miocene- 

Quaternary sedimentary cover. Time intervals of geodynamic processes that led to final 

collision in different parts of the system showing a shift from west to east during major 

extensional processes (wide rift and core-complex types), main rotational events and young 

inversion processes due to Adria push are given. The curved arrows indicate the major 

rotation processes during the extension. Map legend as in the Fig. 2. 

Abbreviations: SB- Styrian basin; MHL-Mid Hungarian line; PB- Pannonian basin; TcB1142 

Transcarpathian basin; H. fault-Hernad fault; D.V. fault –Dragoş Voda fault system; S-TS1143 

South Transylvanian fault system. A-A‘, B-B‘, C-C‘ and D-D‘ are the profile lines that will 

be shown in figures 9 and 10. Metamorphic core complex of lower-middle crust are shown by 

oval shape with interrupted lines (after Tari et al., 1999; Csontos and Vörös, 2004; Soták et 

al., 2000; Dunkl and Frisch, 2002). Fault and fracture pattern that governed the Miocene– 



Quaternary volcanism and basinal subsidence along a transtensional corridor in the CGH1148 

mountain region is after Fielitz and Seghedi (2005). Continuous oval shape shows the 

Vrancea seismogenic area. 

Fig. 5. SiO2 vs. Na2O + K2O (Le Bas et al, 1986) for Carpathian–Pannonian region volcanic 

rocks. (1) Calc-alkaline, (2) Na-alkalic, (3) K-alkalic and (4) Ultra-K have been separated. 

Mantle type rocks show low silica and crustal-derived rocks show high-silica content. Data 

from Ali et al., 2011, submitted; Downes et al., 1995a, b; Embey-Isztin et al., 1993; Harangi 

et al., 1995a, b, 2001a, 2005, 2007; Klébesz et al., 2009; Lukács et al., 2009, 2010; Mason et 

al, 1996, 1998; Niţoi et al., 2002; Ntaflos et al., 2007; Papp et al., 2005; Pécskay et al., 1995a, 

b, 2006; Póka et al., 2004; Roşu et al., 2004; Salters et al, 1988; Seghedi et al., 1995, 2001, 

2004a, 2004b, 2005, 2007, 2008; Trua et al., 2006; Tschegg et al., 2010; Vinkler et al., 2007. 

Average continental crust after Rudnick and Fountain (1995) and average local continental 

crust from Mason et al. (1998). 

Fig. 6a. SiO2 vs Na2O + K2O and SiO2 vs 87Sr/86Sr diagrams for 1a. Styrian basin, 1b. 

Western Carpathians and Pannonian basin, 1c. Transcarpathian basin including sign legend. 

Data as in Fig. 5. Symbols are shown. 

Fig. 6b. SiO2 vs Na2O + K2O and SiO2 vs. 87Sr/86Sr diagrams for 1d. Zărand basin and 

Apuseni Mountains, 2a Northern part of Transylvanian basin, 2b, c Eastern and South-eastern 

part of Transylvanian basin. Data as in Fig. 5 and symbols as in Fig. 6a. 

Fig. 7a. Nb/Y vs. Age (Ma), SiO2 and Th/Y diagrams for 1a. Styrian basin, 1b. Western 

Carpathians and Pannonian basin, 1c. Transcarpathian basin. Data as in Fig. 5 and symbols as 

in Fig. 6a. 

Fig. 7b. Nb/Y vs. Age (Ma), SiO2 and Th/Y diagrams for 1d. Zărand basin and Apuseni 

Mountains, 2a Northern part of Transylvanian basin, 2b, c Eastern and South-eastern part of 

Transylvanian basin. Data as in Fig. 5 and symbols as in Fig. 6a. 

Fig. 8a. SiO2 vs. Na2O + K2O and SiO2 vs. 87Sr/86Sr diagrams for Sava zone and Vardar zone 

including sign legend. Data from Balen and Pamić, 2001; Cvetković et al., 2004; Pamić et al., 

1995; Pamić and Balen, 2001; Prelević et al., 2005, 2007; Yanev et al., 2008. Symbols are 

shown. 

Fig. 8b. Nb/Y vs. Age (Ma), SiO2 and Th/Y diagrams for Sava zone and Vardar zone. Data 

and symbols as in Fig. 8a. 

Fig. 9. Interpretative profiles for the style of magma generation in the Pannonian and West 

Carpathians- as wide rift system A-A‘ (after Tari et al., 1999) and for Transcarpathian basin- 

B-B‘, showing core-complex extension and rotation mechanism and crust-mantle lithosphere 

melting. In both cases asthenosphere upwelling is crucial for magma generation. 

Abbreviations in A-A‘ profile: 1. Initiation of the volcanism as crustal-derived rhyolitic 

explosive volcanism, followed by 2. andesitic lithosphere-derived mostly effusive volcanism 

and further mixing with crustal-derived melts and 3. Na-alkalic volcanism, as both explosive 

and effusive (see also Fig. 3). 

Fig.10. Interpretative profiles for the style of magma generation in the Zărand basin and 

Apuseni - as core-complex extension and rotation system C-C‘ (after Tari et al., 1999) and for 

East Carpathians- D-D‘ (after Maţenco et al., 2010a), showing slab detachment following an 

oblique subduction stage and mantle lithosphere melting. In both cases asthenosphere 

upwelling is crucial for magma generation. Abbreviations in C-C‘ profile: 1. Initiation of the 

volcanism as crust-derived volcanism, followed by 2. normal and adakite-like calc-alkaline 

rocks, as mostly effusive volcanism and 3. Small volume transitional basaltic andesites, 



suggesting asthenosphere-derived magmas mixed with lithospheric magmas (see also 

discussion at Apuseni area). 
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