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Abstract 

AmpC, a class C β-lactamase, is a main cause of antibiotic resistance to cephalosporins in many species 

of bacteria.  The current proposed mechanism of action involves an acyl-intermediate, where the 

enzyme becomes covalently attached to the drug at serine-64, before an activated water hydrolyzes the 

bond and regenerates the enzyme.  Although this mechanism is generally accepted, the exact roles that 

the other active site residues play in recognition and breakdown of the substrate are not fully 

understood.  Here, we investigate the role of the active site residue asparagine-152 (Asn152) in E. coli 

AmpC by mutating it to a glycine, serine, or threonine residue and examining the effect that these 

mutations have on kinetic and structural properties, when acting upon three different β-lactam drugs: 

cefotaxime, cefoxitin, and oxacillin.  We found that the mutations cause 50 to 200 times higher kcat 

values against cefotaxime and also allow the enzyme to break down oxacillin, which is not hydrolyzed at 

a detectable rate by wild type AmpC.  We obtained the crystal structure of wild type AmpC and AmpC 

N152G bound to cefotaxime and found a rotation of glutamine-120 and lysine-67 to be the only 

significant differences in the active site residues as well as a slight conformational change in the drug 

itself.  Uncovering the specific role of Asn152 in the function of AmpC in conjunction with work done to 

understand the roles of other active site residues will be useful in the development of inhibitors to these 

enzymes that may help combat antibiotic resistance.  

Introduction 

β-lactam drugs, such as penicillins and cephalosporins, have been used to treat bacterial infections since 

the 1950’s, but resistance to these drugs is increasingly becoming a problem in both gram-positive and 

gram-negative species
1
.  The β-lactam drugs mimic the substrates of penicillin-binding proteins (PBPs) 

which are involved in synthesis of the cell wall.  The drugs covalently bind to the PBPs and thereby 

inactivate them and cause the destruction of the bacteria
2
.  One of the main causes of resistance to 

these β-lactam drugs is the production of β-lactamases.  These enzymes, found both chromosomally and 

on plasmids, are capable of hydrolyzing the β-lactam ring, rendering the antibiotic unable to bind PBPs 

and thus harmless to the bacterium
3
.    

One important β-lactamase that is a problem in many gram-negative pathogens is AmpC
4
.  Found 

chromosomally in many Enterobacteriaceae and in some other species of bacteria, this class C β-

lactamase is normally expressed at very low levels; however, different mutations can cause 

hyperproduction of the protein
5,6

.  AmpC is able to hydrolyze extended-spectrum antibiotics, including 

2
nd

 and 3
rd

 generation cephalosporins and cephamycins, which are usually active against a wide range of 

bacteria
7
.  The proposed mechanism of action of AmpC, shown in figure 1, is based on a nucleophilic 

attack by serine-64 on the carbonyl carbon of the β-lactam ring. This nucleophilic attack breaks open the 



β-lactam ring and forms an acyl-enzyme intermediate with the substrate.  Deacylation occurs as an 

activated water acts as the nucleophile, attacking the same carbonyl carbon and breaking the acyl bond, 

regenerating the enzyme and releasing the harmless product
8
.   

 

 

 

 

 

 

Although the general mechanism is understood, it is not known how exactly the specific residues of the 

active site contribute to the catalysis, nor how they are involved in recognition of the substrate.  

Elucidating the roles of each of the key residues would not only provide a clearer picture of the 

mechanism of hydrolysis of the drugs, but could also provide details of substrate recognition and 

binding which would be useful in the development of new drugs. 

One of the key residues in the active site is asparagine-152
9
.  The Asn152 residue is highly conserved in 

class C β-lactamases and takes part in the active site hydrogen-bonding network
10,11

.  This residue 

appears to play a role in substrate selectivity, as a study done on P99 cephalosporinase, another class C 

β-lactamase, revealed that mutations to small, polar residues at this site led to a switch in substrate 

selectivity, causing some substrates to be hydrolyzed more quickly than the wild type enzyme but others 

to be hydrolyzed more slowly
10

.  Understanding the exact role of this residue could help determine the 

reason for the substrate specificity of AmpC.  This information could be used to develop inhibitors that 

bind very well to the active site but are not hydrolyzed, thereby inactivating the β-lactamase and helping 

to kill the infectious bacteria.  Here, we mutate Asn152 to glycine, serine, or threonine and measure the 

Michaelis-Menten kinetic constants with three β-lactam drugs, structures of which are shown in figure 

2.  Cefotaxime is a third generation cephalosporin, cefoxitin is a semi-synthetic cephamycin, and 

oxacillin is a penicillinase-stable penicillin
12,13

.  
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Figure 1: Proposed mechanism of β-lactam hydrolysis for AmpC 

Figure 2: β-lactam drugs used in this study, with the β-lactam ring in 

red, C4 carboxylate in green, and the amide of the R1 sidechain in blue. 



Results and Discussion 

The Michaelis-Menten kinetic constants were determined using UV-Vis spectroscopy to follow the 

hydrolysis of the β-lactam amide bond.  The values and standard deviations for the wild type AmpC 

enzyme and the N152G/S/T mutants with 3 different β-lactam drugs are shown below in table 1. 

Cefotaxime 

K
m

 (μM)  k
cat 

 (s
-1

)  k
cat

/K
m 

 (μM
-1

s
-1

)  

 WT  1.32±0.22
‡
  0.012±0.005 0.008±0.003 

 N152G  455±116 1.09±0.57 0.002±0.001 

 N152S  47±20 0.56±0.14 0.012±0.003 

 N152T  799±129 1.85±0.01 0.002±0.000 

Cefoxitin 

K
m

 (μM)  k
cat 

 (s
-1

)  k
cat

/K
m 

 (μM
-1

s
-1

)  

 WT  0.99±0.018
‡
  0.11±0.01 0.11± 0.01 

 N152G  56±18 0.050±0.023 0.0010±0.0005 

 N152S  1.16±0.22
‡
  0.008±0.000 0.0071±0.0000 

 N152T  1.12±0.08
‡
  0.004±0.000 0.0038±0.0001  

Oxacillin 

K
m

 (μM)  k
cat 

 (s
-1

)  k
cat

/K
m 

 (μM
-1

s
-1

)  

 WT  0.053±0.034
‡
 ND* ND*

 

 

 N152G  0.27±0.07
‡

 

 0.41±0.17  1.52±0.64 

 N152S  0.068±0.012
‡
 0.21±0.02 3.17±0.24 

 N152T  1.2±0.5
‡
  1.38±0.09 1.15±0.08 

    Table 1: Michaelis-Menten kinetic constants for AmpC  

With cefotaxime, we discovered that the mutants have higher kcat values than the wild type enzyme, but 

also have higher Km values, leading to kcat/Km values that are all within an order of magnitude of each 

other.  With cefoxitin, however, we observed a 10 - 100 times reduction in kcat/Km values for the mutants 

compared to the wild type.  We find that N152S and N152T mutants have similar Km values as wild type 

but have the lowest kcat values of all 4 enzymes.  The N152G mutant, however, shows a 50 times higher 

Km value than wild type, with a kcat that is half the value of that of AmpC WT.  And finally, with oxacillin, 

we demonstrated that the wild type enzyme does not have measureable activity against this drug, but 

all three mutants show significant activity.  And although the mutants do not all bind oxacillin as well as 

the wild type enzyme, their relatively low Km values and high kcat values lead to kcat/Km values that are 

the highest of any of the three drugs.  Overall, we established that the mutations created a substrate 

specificity switch—allowing the enzyme to now break down oxacillin, at the cost of reducing activity 

against cefoxitin, as well as reducing affinity for cefoxitin and cefotaxime. 

‡
Estimated as Ki    *Not detected 



Focusing at the N152G mutant, we find that it binds cefotaxime and cefoxitin worse than the wild type 

enzyme.  However, while it is slower to break down cefoxitin than wild type, it is significantly faster than 

the wild type enzyme when acting upon cefotaxime.  To examine the cause of this difference, the 

structures of AmpC N152G acylated to cefoxitin or cefotaxime were determined by X-ray 

crystallography.  The structures of the active site in complex with cefoxitin and cefotaxime are shown in 

figures 3 and 4, respectively. 

 

 

 

 

 

 

 

 

 

By overlaying the two structures, we can compare the orientations of the two drugs. One obvious 

difference is the orientation of the C4 carboxylate, shown in figure 5.  It is evident that the C4 carboxylate 

group on the dihydrothiazine ring of the cefotaxime structure hydrogen bonds to waters, while the 

cefoxitin structure shows a flip of the ring and the carboxylate now bonds to a water and Gln120.  

 

 

 

Figure 3: Active site of AmpC N152G in an acyl-

intermediate complex with cefoxitin.  Blue cages 

represent electron density contoured at 1σ. Image 

and subsequent images were produced with Pymol 

1.3. 

Figure 4: Active site of AmpC N152G in an acyl-

intermediate complex with cefotaxime.  Blue cages 

represent electron density contoured at 1σ.  

Figure 5: Overlay of AmpC N152G acylated to cefoxitin (cyan) 

or cefotaxime (green), focusing on C4 carboxylate.   Red 

waters and yellow hydrogen bonds are associated with the 

cefoxitin structure, while magenta waters and orange 

hydrogen bonds are associated with the cefotaxime 

structure.  



One other major change between the two structures is the orientation of the amide which is on the R2 

sidechain, shown in figure 6.  In the cefotaxime structure, the carbonyl of the amide points out toward 

residue-152 and hydrogen bonds to a water and Gln120.  In the structure of AmpC bound to 

cephalothin, which a good substrate for AmpC, the carbonyl is seen in a similar position and it also 

hydrogen bonds with Asn152
14

.  Additionally, we see the nitrogen of the amide hydrogen bonding with 

the main chain of Ala318, as is also seen in the cephalothin structure.  But in the cefoxitin structure, we 

observe that the carbonyl has rotated away from Gln120 and towards Ser64, and it now hydrogen bonds 

with the main-chain nitrogen of Ser64.  The nitrogen shows no hydrogen bonds.  This different 

conformation may be the reason behind the slower activity of AmpC against cefoxitin.  

 

 

 

In conclusion, we determined that although mutations at residue 152 in AmpC decrease the binding 

affinity of 3 different β-lactam drugs, they increased the catalytic activity of AmpC against cefotaxime 

and oxacillin and decreased activity against cefoxitin. The crystal structures of AmpC N152G acylated to 

cefoxitin and cefotaxime were used to infer possible reasons behind the different rates of hydrolysis of 

the two drugs, which include rotation of the R2 amide and flipped dihydrothiazine ring, moving the C4 

carboxylate.  Future work includes determining the structure of AmpC with oxacillin, as well as 

additional measurements of kinetic constants in order to obtain more precise values.  I plan to present 

this work at the West Michigan Regional Undergraduate Science Research Conference this fall, as well as 

the Enzyme Mechanisms Conference in January. 
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Figure 6: Overlay of AmpC N152G acylated to cefoxitin or 

cefotaxime, focusing on the amide of R1 side chain.  Coloring 

is the same as in figure 5.  



Materials and Methods 

Materials: 

Cefoxitin and oxacillin were purchased from Sigma-Aldrich.  Cefotaxime was purchased from 

Calbiochem.  CENTA {(6R,7S)-3-[(3-carboxy-4-nitrophenyl)sulfanylmethyl]-8-oxo-7-[(2-thiophen-2-

ylacetyl)amino]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid}, a chromogenic cephalosporin, 

was synthesized using a published method
15

.   

Growth and expression: 

E. coli AmpC wt and N152G/S/T mutants in the pET24a vector were expressed using BL21(DE3) E. coli 

cells.  Cells were grown in LB medium with 30 μg/mL kanamycin at 37°C.  Once reaching an OD600 of 

0.6, the cells were induced with 100 μM IPTG and incubated at 17°C with shaking overnight.  The cells 

were harvested using centrifugation at 8200 x g for 10 minutes at 4°C.  The pellets were stored at -80°C 

until purification.  

mAPB resin preparation: 

Affi-gel 10 (Biorad) was washed with isopropanol and water,  then incubated with 2 volumes of 1 M 

KHCO3, 267 mM m-aminophenyl-boronic acid hemisulfate (MAPB, Aldrich), 534 mM sorbitol for 4 hours 

at 4°C with mixing, maintaining the pH at 8.0 with 1 M KHCO3.  It was then washed with 2 volumes of 1 

M NaCl, 0.5 M sorbitol, pH 7.0, then with 2 volumes of 0.5 M borate, pH 7.0, and finally with 2 volumes 

of 0.5 M NaCl and 20 mM Tris-HCl, pH 7.0. 

Protein purification: 

Cell pellets were thawed and resuspended in 20 ml loading buffer (25 mM Tris-HCl, 500 mM NaCl, 25 

mM borate, pH 7.0) with 200 μl Halt Protease Inhibitor Single-Use Cocktail, EDTA-free (Thermo 

Scientific) and 50 units of DNAse I.  Cells were lysed with sonication, and lysates were centrifuged at 

26900 x g for 20 minutes at 4°C.  The supernatant was incubated with 10 ml mAPB resin for 30 minutes 

at 4°C with shaking before loading onto a column.  The column was washed with 100 ml of wash buffer 

(25 mM Tris-HCl, 500 mM NaCl, 50 mM borate, pH 7.0), and then the protein was eluted with 500 mM 

NaCl, 500 mM borate, pH 7.0.  The protein was concentrated using ultrafiltration, followed by dialysis 

against either 50 mM sodium phosphate, pH 7.0 (used in kinetics experiments) or 5 mM potassium 

chloride, 5 mM potassium phosphate, pH 7.0 (used in crystallization).  The concentration of the protein 

was determined using the A280 with an extinction coefficient of 93850 M
-1

 cm
-1

.  The dialyzed protein 

was aliquoted, snap frozen in liquid nitrogen, and stored at -80°C.   

Kinetic characterization: 

Kinetics measurements were performed on either an Agilent Cary 60 or Cary 100, at 25°C in 50 mM 

sodium phosphate, pH 7.0. The concentration of enzyme varied from 1 to 9 μM depending on the 

substrate and enzyme.  Rates of hydrolysis were determined for at least 7 different substrate 

concentrations and the initial velocities were fit to the Michaelis-Menten equation using non-linear 



regression analysis to determine Km and kcat values.  Extinction coefficients for substrates were: 

cefotaxime Δε=-7500 M-1cm-1 at 260 nm; cefoxitin Δε=-7700 M-1cm-1 at 260 nm; oxacillin Δε=+258 M-

1cm-1 at 260 nm; CENTA Δε=+6400 M-1cm-1 at 405 nm.  For all AmpC enzymes with oxacillin, 

wt/N152S/N152T with cefoxitin, and wt with cefotaxime, the Km was too low to be determined by this 

method, so Ki was determined using a competition with CENTA.  Competitions were carried out by 

varying inhibitor concentrations (from 25 nM to 25 μM, depending on substrate) in the presence of 

constant amounts of enzyme (from 10 to 150 nM, depending on enzyme) and CENTA (170 to 800 μM, 

depending on enzyme).  The initial velocities were fit to the equation: νo = A-V*[I]/(Kdapp+[I]).  Ki was 

calculated from the Kdapp using the equation: Ki=Kdapp/(1+[CENTA]/Km(CENTA)).  For all enzymes with 

oxacillin, N152S/N152T with cefoxitin, and wt with cefotaxime, kcat was determined by measuring 

hydrolysis at saturating concentrations of substrate, typically 75 to 125 μM, at least 50 times higher than 

the measured Ki.   

Crystal growth: 

AmpC N152G crystals were grown using hanging drop diffusion with microseeding over 1.7 M potassium 

phosphate, pH 8.7.  Initial protein concentration in the drop was 88 μM and initial buffer conditions in 

the drop were 1.1 M potassium phosphate, pH 8.7.  Crystals appeared within 2-5 days at 25°C.  For the 

cefotaxime structure, a crystal was soaked in 50 mM cefotaxime in crystallization buffer for two 

minutes, then dipped in 20% sucrose in crystallizing buffer before freezing in liquid N2.  For the cefoxitin 

structure, a crystal was soaked in 50 mM cefoxitin in crystallizing buffer for 1.5 minutes, then dipped in 

20% sucrose in crystallizing buffer before freezing in liquid N2. 

Data collection and processing:  

Data were measured from a single crystal on LS-CAT beam line (21IDD or 21IDF) of the Advanced Photon 

Source at Argonne National Lab at 100 K using a Mar CCD detector.  Reflections were indexed, 

integrated, and scaled using HKL2000.  The structure of the complex was determined with Phaser, using 

a native apo AmpC structure (PDB entry 1KE4)
16

, with water molecules and ions removed, as the initial 

phasing model.  Refinement and electron density map calculations were performed with Refmac5 in the 

CCP4 Program Suite.  Manual rebuilding of the model was done with Coot.  For the AmpC N152G-

cefotaxime structure, the space group was C2, with four AmpC molecules in the asymmetric unit.  

Cefotaxime was modeled into each of the active sites based on initial Fo-Fc difference electron density 

maps and further refined with Refmac5.  For the AmpC N152G-cefoxitin structure, the space group was 

C2, with one AmpC molecule in the asymmetric unit.    Cefoxitin was modeled into each of the active 

sites based on initial Fo-Fc difference electron density maps and further refined with Refmac5.   
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