Boltzmannian Statistical Mechanical Foundations of

Irreversibility

 \rightarrow

Doug Coleman Advisor: Dr. Milun Raković, Physics

$$
s = nc_v \ln \frac{T}{T_0} + nR \ln \frac{V}{V_0}
$$

$$
\Delta S = S_f - S_i = nR \ln \frac{V_f}{V_i} > 0
$$

2nd Law of Thermodynamics implies: *S* will increase for every irreversible process occurring between two equilibrium states of a closed system. \rightarrow "Thermodynamic Arrow of Time"

Classical Dynamics

Dynamical State:

$$
(\mathbf{q}, \mathbf{p}) \equiv \{q_1, ..., q_i \dots; p_1, ..., p_i, ...\} \in \Gamma
$$
 $, i = 1,...,rN$

Hamiltonian:
e.g.
$$
H(q, p) = \sum_{i=1}^{rN} \frac{p_i^2}{2m} + \frac{1}{2} \sum_{i=1}^{rN} \sum_{\substack{j=1 \ i \neq j}}^{rN} 4\varepsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right]
$$

$$
\text{Eqn's of motion:} \quad \frac{dq_i}{dt} = \frac{\partial H(q_1, \dots, q_i, \dots; p_1, \dots, p_i, \dots)}{\partial p_i} \quad \left\{ \begin{array}{l} (i = 1, \dots, rN) \\ \frac{dp_i}{dt} = -\frac{\partial H(q_1, \dots, q_i, \dots; p_1, \dots, p_i, \dots)}{\partial q_i} \end{array} \right\} \quad (i = 1, \dots, rN)
$$
\n
$$
\Rightarrow \left[\mathbf{q}_i(t), \mathbf{p}_i(t) \right]
$$

G-path in Γ (Phase Space)

Two solutions to dynamical equations due to "time symmetry" $[\mathbf{r}_i(t), \mathbf{p}_j(t)]$ and $[\tilde{\mathbf{r}}_i(t), \tilde{\mathbf{p}}_j(t)] = \mathbf{r}_i(-t), -\mathbf{p}_j(-t)]$

Statistical Mechanics

 $(q, p) \rightarrow 6x10^{23}$ variables!

 \rightarrow F(\bf{r}, \bf{v}, t) Reduced Dynamical Description

 $F(\mathbf{r}, \mathbf{v}, t) \delta \mathbf{r} \delta \mathbf{v} = \# \text{ of }$.'s with $\sim \mathbf{r}$ and \mathbf{v}

$$
F_{\text{eq}}(\mathbf{r}, \mathbf{v}) = F_{MB}(v) \equiv N \sqrt{\frac{2}{\pi} \left(\frac{m}{kT}\right)^3 v^2 e^{\frac{-mv^2}{2kT}}}
$$

Boltzmann's Transport Equation: $\frac{\partial F(\mathbf{r}, \mathbf{v}, t)}{\partial t} = -\mathbf{v} \cdot \nabla_{\mathbf{r}} F(\mathbf{r}, \mathbf{v}, t) + \iiint dv_1 b \, db \, d\epsilon \, |\mathbf{v}_1 - \mathbf{v}| [F'F_1' - F_1F] + \Gamma_w,$

Boltzmann's *H*-theorem:

If *F* satisfies the BE, the functional

$$
H[F] \equiv \int d\mathbf{r} \int d\mathbf{v} F(\mathbf{r}, \mathbf{v}, t) \log F(\mathbf{r}, \mathbf{v}, t) = H(t)
$$

never decreases, i.e.
$$
\frac{dH(t)}{dt} \le 0
$$

Boltzmann further showed:

 $dH(t)/dt = 0$ only when $F = F_{MB}(v)$ And for an ideal gas $\Delta S = -k\Delta H!$

Implies *S(F(q,p))*

and S*(t)*

Loschmidt's Paradox:

How can we derive irreversible behavior from time-reversible dynamics?

Specifically, for every G-path which increases S, there is one that decreases it!

Indicated original BE derivation (using Stosszahlansatz) was not strictly mechanical

Loschmidt's Paradox Resolution

- 1.# of microstates for F_{MR} > than all others combined
- 2. Ergodic Hypothesis \rightarrow a time spent by a microstate in a region is proportional to its volume
- \rightarrow Equlibrium is "the rule"

Deviations are the exceptions

$$
\bullet \ H: \underline{\hspace{1cm}} \underline{\hspace{cm}} \underline{\hspace{1cm}} \underline{\hspace{1cm}} \underline{\hspace{1cm}} \underline{\hspace{1cm}} \underline{\hspace{1cm}} \underline{\hspace{1cm}}
$$

Conclusions

- 1. Anti-kinetic evolutions exist, as indicated by Loschmidt.
- 2. These evolutions are unstable to small perturbations.
- 3. Statistical Interpretation:
	- 1. At each later time *t*, the value of *H* for nearly every element is equal to each other, or very near each other. This *H* value at each time corresponds to a point on a curve which is claimed to monotonically decrease until it reaches its minimum value, from which it never departs, just as observed for entropy (with a sign change) for a single system in reality
	- 2. This "concentration curve" exactly corresponds to the BE *H* curve.

While neither claim 1 or 2 have been proven, they could in principle, using only mechanical means, thus giving the Boltzmann Equation and *H* a rigorous mechanical albeit statistical—foundation.

Thank you for you time.

Questions?

t

Potential

• Intermolecular, Lennard Jones

• Wall:
 $U_{x_i}^{\text{wall}} = C \left(\frac{1}{x_i^{\alpha}} + \frac{1}{(a - x_i)^{\alpha}} \right), i = 1,2$

To restate the above, let us consider (as the Ehrenfests do) three values of H much above H_{eq} $\equiv H_0$ such that $H_a < H_b < H_c$. If we consider a very long segment of the $H(t)$ curve (a.k.a. "H-curve") and look at all intersections it has with the $H = H_b$ line, Loschmidt demands that we should observe the time sequence

$$
H_{\rm c}
$$
 as often as $H_{\rm c}$
 $H_{\rm b}$ $H_{\rm a}$ $H_{\rm a}$

where our implied axes are $+t$ pointing right, and $+H$ pointing up. However, the sequence

$H_{\tt h}$

$H_{\rm a}$ $H_{\rm a}$

can still be expected to occur much more often since for any $H>H_0$ one expects H to decrease due to the very large $[Z_{eq}]$ and indecomposability. Finally, the smallest fraction of H_b instances should occur like $H_{\rm c}$ $H_{\rm c}$

H_b