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Synthesis of Derivatives of 3-Aminoquinazolinone and  

2’-Deoxyguanosine as Potential Protein Tyrosine 

Kinase Inhibitors 

Kirk D. Wyatt, Laurie A. Witucki, Felix N. Ngassa 

Department of Chemistry, Grand Valley State University, Allendale, MI 49401 

ABSTRACT Protein kinases play an important role in post-translational cellular signaling by 

regulating cell growth, differentiation and apoptosis, among other cellular activities. Furthermore, protein 

kinase (PK) deregulation has been implicated in many diseases, including cancer. For this reason, there 

has been considerable interest in the development of PK inhibitors, which could lead to the discovery of 

new cancer-treating drugs. Derivatives of 3-aminoquinazolinone and 2’-deoxyguanosine were 

synthesized as potential ATP-competitive inhibitors of the Src and FAK protein tyrosine kinases, and the 

effectiveness of the synthesized derivatives as protein tyrosine kinase inhibitors was quantified using [γ-

32P]ATP radioisotope assays. The results of the assays indicated that none of the compounds synthesized 

were as effective as other previously discovered inhibitors. 

INTRODUCTION  

Protein kinases (PKs) play an important role in post-translational cellular signaling by regulating cell 

growth, differentiation and apoptosis; among other cellular activities. Protein tyrosine kinases (PTKs) are 

a class of protein kinases which catalyze the transfer of a phosphate group from ATP to a tyrosine 

residue. PK deregulation has been implicated in numerous diseases, with the most notable being cancer.1 

Given the association between PK deregulation and disease, it is no surprise that PKs have become some 

of the most extensively studied biological targets in drug discovery research, accounting for an estimated 
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20-30% of all drug discovery projects in the pharmaceutical industry. One major focus of these research 

efforts is the development of PK inhibitors which has received much attention after the FDA approval in 

2001 of the drug Gleevec—a PK inhibitor—for the treatment of certain forms of cancer. As a result of 

these efforts, numerous protein kinase inhibitors are currently in human clinical trials as cancer 

treatments.2 

Focal adhesion kinase (FAK) is a protein tyrosine kinase that was discovered less than twenty years 

ago, making its discovery relatively recent. Despite extensive efforts to characterize FAK and to 

understand its functions in cellular signaling, many questions regarding the precise role of FAK in the 

regulation of vital cellular functions remain unanswered. FAK is thought to play a role in the regulation 

of cellular activities such as cell growth, cell division, cell migration, and apoptosis.3 Further research has 

shown that human tumor cells displayed increased levels of FAK, as compared to those levels in non-

neoplastic cells from the same subject.4 Moreover, other studies have shown that FAK inhibition has led 

to apoptosis in human cancer cells, and that combining this inhibition with the inhibition of another PK 

such as EGFR or c-Src, has had the effect of further enhancing apoptosis.5,6 The Src family of PKs has 

also been shown to regulate a variety of cellular activities such as cell division, motility and apoptosis.7 

The activity of the Src family of kinases has been shown to be elevated in human breast and colon 

cancers, and their inhibition has been shown to cause mitotic arrest in human cancer cells.8 Given that Src 

and FAK have been shown to be deregulated in several types of human tumors, the development of 

selective inhibitors of these PKs has emerged to be a promising area of cancer research. 

Previous work in our laboratory resulted in the discovery of a 3-aminoquinazolinone derivative and a 

2’-deoxyadenosine derivative which were found to be effective inhibitors of the Src and FAK kinases.9 

Encouraged by these results, we decided to synthesize other derivatives of 3-aminoquinazolinone and 2’-

deoxyguanosine and test them as potential inhibitors of the FAK and Src PTKs. Herein, the results of the 

synthesis and inhibition studies involving various derivatives of 3-aminoquinazolinone and 2’-

deoxyguanosine are reported. 
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RESULTS AND DISCUSSION 

Imine and amide derivatives of 3-aminoquinazolinone are easy to prepare, and given the availability of 

a vast number of aldehydes and carboxylic acids (with which to react the parent compound) in our 

laboratory, we decided that preparing imine and amide derivatives would provide us with the greatest 

diversity of 3-aminoquinazolinone derivatives. Furthermore, as previous work in our laboratory resulted 

in the discovery of a 2’-deoxyadenosine derivative which was found to be an effective PTK inhibitor, we 

decided to pursue the synthesis of a broad array of 2’-deoxyguanosine (dG) derivatives given the 

structural similarity between 2’-deoxyadenosine and 2’-deoxyguanosine. 

Synthesis of 3-Aminoquinazolinone Derivatives  

3-Aminoquinazolinone was prepared according to a method reported in the literature, and subsequently 

reacted with either aldehydes to give imine derivatives or with acid chlorides to give amide derivatives 

(Scheme 1).10 Reacting 3-aminoquinazolinone (1) with the appropriate acid chloride in dry THF, in the 

presence of pyridine resulted in the formation of the amide derivatives 3a-c. Similarly, in a single step, the 

reaction of 3-aminoquinazolinone (1) with the appropriate aldehyde in the presence of a catalytic amount 

of acetic acid resulted in the formation of imine derivatives 2a-h. Examples of imine and amide 

derivatives synthesized are shown in Figure 1. 

Scheme 1. Preparation of imine and amide derivatives of 3-aminoquinazolinone 
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Figure 1. List of 3-aminoquinazolinone derivatives prepared 
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Synthesis of 2’-Deoxyguanosine Derivatives 

Derivatives of dG could not be synthesized directly from commercially-available dG. Instead, the sugar 

hydroxyl groups first had to be protected, and a sulfonate group introduced at O6 to facilitate SNAr 

displacement by alcohol and amine nucleophiles, as reported in the literature (Scheme 2).11 
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Scheme 2. Preparation of O6-alkyl–, O6-aryl– and N6-alkyl– derivatives of 2’-deoxyguanosine 
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Nucleophilic alcohols, amines and phenols promoted facile displacement of the sulfonate group resulting 

in moderate to good yields of the desired substituted products (Figure 2).   

Figure 2. List of 2’-deoxyguanosine derivatives prepared 
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 The activity of FAK and Src in the presence of 3-aminoquinazolinone derivatives and dG derivatives 

was quantified using a [γ-32P]ATP radioisotope labeling assay. As points of reference, the compounds 
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were tested alongside several commercially-available inhibitors (I-1, I-2, I-3, I-4, Figure 3) as well as the 

two lead compounds that generated this research project (RS-7A and DK-40 both refer to two different 

samples of the same 3-aminoquinazolinone lead compound; F-2 was the 2’-deoxyadenosine lead 

compound). In the graphs that follow, the activity of the kinase is shown in the presence of each 

compound. A low percent activity indicates that the compound is effective at inhibiting the kinase. 

Figure 3. Structures of known inhibitors 
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FAK Activity in the Presence of Inhibitors 

The activity of FAK in the presence of each of the inhibitors was quantified. A 10mM solution of each 

inhibitor (to give a concentration of 1mM when tested) was prepared for the assays; however, several of 

the inhibitors were not fully soluble in DMSO at 10mM, and therefore, the assays do not all reflect 

inhibition at a uniform concentration of the inhibitor. Nevertheless, these data were used to screen for 

any initial “hits” which could then be further investigated. Compound 8b was not tested here because the 

supply of kinase ran out during the assay. 
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Figure 4. Activity of FAK in the presence of inhibitors 
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Several activities were found to be in excess of 100%, and we suspect that this may be due to 

improperly calibrated pipettors. Not withstanding, the effectiveness of commercially-available inhibitors 

I-1 and I-4 is apparent. Lead compounds RS-7A and F-2 are also shown to exhibit some inhibition of the 

kinase, confirming previous results; however none of the novel inhibitors were shown to be more 

effective (within experimental error) than the lead compounds or the best commercially-available 

inhibitors. A second screening of compound 2c—the most promising of the inhibitors from the initial 

screening—alongside lead compound RS-7A showed that 2c displayed 74% activity, while the lead 

compound displayed 56% activity. Given these results, we concluded that none of the compounds 

prepared were effective inhibitors of FAK. 
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Src Activity in the Presence of Inhibitors 

Given the solubility issues, only those compounds that were soluble in DMSO at 10mM were tested in 

the initial screening with Src. 

Figure 5. Activity of Src in the presence of inhibitors 
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From this screening, the most promising of the novel inhibitors were 2e and 2h; however, neither was 

as effective as commercially-available inhibitors I-1, I-3, I-4 or lead compound DK-40. 

All of the novel inhibitors that were tested with Src in the next screening were tested at 0.167mM 

(except for 2h and 2e which were tested at 1mM). 
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Figure 6. Activity of Src in the presence of inhibitors 
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Compounds 2e and 2h were shown to effectively inhibit Src; however, these were tested at 1mM, and 

all other inhibitors had been tested at 0.167mM.  

Since all of the inhibitors have to be tested at a uniform concentration in order to compare them side-

by-side, another screen needed to be done to compare all of the inhibitors at the same concentration. 

Thus, in the next screen, 2e and 2h were tested alongside two other promising novel inhibitors of Src (7b 

and 7d), a commercially-available inhibitor and the two lead compounds at 0.1mM. 
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Figure 7. Activity of Src in the presence of inhibitors 
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These data indicate that the best of the novel Src inhibitors was 2h; however, it was tested as a crude 

product, and thus an assay with a pure product would be necessary to definitively identify the compound 

as an effective inhibitor. Compound 2e was found in other screens to be an effective inhibitor of Src; 

however, the results were not reproducible in this screen. Despite the fact that these inhibitors were 

somewhat effective, they were not as effective as commercially-available inhibitor I-3 or the two lead 

compounds RS-7A and F-2. 
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EXPERIMENTAL 

Synthesis of 3-Aminoquinazolinone Derivatives 

General Procedure for the Synthesis of Imine Derivatives of 3-Aminoquinazolinone (2a-h) 

Imine derivatives of 3-aminoquinazolinone were generally prepared by stirring the parent compound (1 

eq), the appropriate aldehyde (1 eq) and a few drops of AcOH in MeOH or EtOH at reflux for 24 hours 

under an inert nitrogen atmosphere. The reaction mixture was then slowly cooled to room temperature 

and chilled on ice to precipitate the product, which was isolated via vacuum filtration and rinsed with 

cold alcohol. 

General Procedure for the Synthesis of Amide Derivatives of 3-Aminoquinazolinone (3a-c) 

Amide derivatives of 3-aminoquinazolinone were generally prepared by stirring the parent compound 

(1 eq), the appropriate acid chloride (1.2 eq) and pyridine (1.5 eq) in dry THF at 0°C, then slowly 

bringing the reaction mixture to room temperature and stirring at room temperature for 24 hours under 

an inert nitrogen atmosphere. The reaction was quenched with saturated NaHCO3 and the reaction 

mixture was diluted with EtOAc, followed by sequential extractions with saturated NaHCO3 and 

saturated NaCl. The organic layer was dried over anhydrous Na2SO4. Evaporation of the organic 

solvents gave the crude product, which was recrystallized in methanol to give the final product. 

3-amino-4(3H)quinazolinone 1. The 3-aminoquinazolinone parent compound was prepared by 

stirring a mixture of 2-aminobenzhydrazide (1 eq) and triethyl orthoformate (1.08 eq) in ethanol (0.5 M) 

at reflux for 5.5 hours under an inert nitrogen atmosphere. More triethyl orthoformate (0.1 eq) was 

added to drive the reaction to completeness, and the reaction mixture was stirred o.n. at r.t. Reaction 

mixture was then stirred for 1 hour at reflux, then cooled to r.t. on benchtop and subsequently chilled on 

ice to precipitate all of the product, which was filtered under vacuum and rinsed with cold ethanol. 

Product was dried under vacuum. Second crop was obtained via filtration, and third crop via trituration 

to give 2.055g (60%) yield of a tan solid. M.P.(°C): 204-209, 1HNMR (400 MHz, DMSO-d6, δ): 8.33 (s, 

1H), 8.14 (d, 1H), 7.79 (t, 1H), 7.65 (d, 1H), 7.53 (t, 1H), 5.82 (s, 2H). 
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3-(4-Methylbenzylideneamino)quinazolin-4(3H)-one 2a. Methanol was used as the solvent, and the 

product (white solid) was oven-dried at 90-100°C for 1 hr to remove solvent impurities and give the final 

product with 55mg (35%) yield. M.P.(°C): 153-156, 1HNMR (300 MHz, DMSO-d6, δ): 9.2 (s, 1H), 8.6 

(s, 1H), 8.2 (d, 1H), 7.8 (overlapping, 3H), 7.7 (d, 1H), 7.6 (t, 1H), 7.3 (d, 2H), 2.4 (s, 3H) 

3-((E)-3-phenylallylidene)aminoquinazolin-4(3H)-one 2b. Methanol was used as the solvent and the 

product (white solid) was isolated with 132mg (77%) yield. M.P.(°C): 113-115, 1HNMR (400 MHz, 

DMSO-d6, δ): 9.0 (d, 1H), 8.4 (s, 1H), 8.2 (d, 1H), 7.8 (t, 1H), 7.7 (d overlapping 3H), 7.6 (t, 1H), 7.4 

(overlapping, 4H), 7.2 (dd, 1H). 

3-(4-Nitrobenzylideneamino)quinazolin-4(3H)-one 2c. Methanol was used as the solvent, and 3Å 

molecular sieves were added to the reaction mixture. TLC indicated no reaction progress after several 

hours, so more MeOH and one additional drop of AcOH was added, and the reaction was stirred at 

reflux overnight. TLC the next morning showed that the reaction was still incomplete. MeOH was 

evaporated on rotary evaporator, and the residual solid was dissolved in a minimal amount of hot DMF. 

The solution was cloudy-tan (presumably due to molecular sieves being ground up), so the solution was 

hot-filtered to give a clear/tan solution. DMF was then evaporated to give a solid, which was dissolved in 

hot EtOH, and two drops AcOH were added. The reaction mixture was stirred at reflux overnight, and 

the reaction mixture cooled to r.t. on benchtop, then chilled in an icebath. The precipitate (yellow solid) 

was isolated by vacuum filtration to give only 14mg (8%) yield. M.P.(°C): 231-237, 1HNMR (300 MHz, 

CDCl3, δ): 10.1 (s, 1H), 8.4 (s, 1H), 8.4 (overlapping, 3H), 8.0 (d, 2H), 7.8 (overlapping, 2H), 7.6 (t, 

1H). 

3-(3-Nitrobenzylideneamino)quinazolin-4(3H)-one 2d. Methanol was used as the solvent, and 3Å 

molecular sieves were added to the reaction mixture. TLC indicated no reaction progress after several 

hours, so more MeOH and one additional drop of AcOH was added, and the reaction was stirred at 

reflux overnight. TLC the next morning showed that the reaction was still incomplete. MeOH was 

evaporated on rotary evaporator, and the residual solid was dissolved in a minimal amount of hot DMF. 
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The solution was cloudy-tan (presumably due to molecular sieves being ground up), so the solution was 

hot-filtered to give a clear/tan solution. DMF was then evaporated to give a solid, which was dissolved in 

hot EtOH, and two drops AcOH were added. The reaction mixture was stirred at reflux overnight, and 

the reaction mixture cooled to r.t. on benchtop, then chilled in an icebath. The precipitate (yellow solid) 

was isolated by vacuum filtration to give only 32mg (18%) yield. M.P.(°C): 209-211, 1HNMR (300 

MHz, DMSO-d6, δ): 10.1 (s, 1H), 8.8 (s, 1H), 8.4 (s, 1H), 8.4 (d, 2H), 8.2 (d, 1H), 7.8 (overlapping, 

2H), 7.7 (t, 1H), 7.6 (t, 1H). 

3-(4-Hydroxybenzylideneamino)quinazolin-4(3H)-one 2e. Methanol was used as the solvent, and 

the product (brown/tan solid) was isolated with 47mg (29%) yield. M.P.(°C): 196-197, 1HNMR (400 

MHz, DMSO-d6, δ): 10.3 (br s, 1H), 9.0 (s, 1H), 8.5 (s, 1H), 8.2 (d, 1H), 7.8 (t, 1H), 7.7 (overlapping, 

3H), 7.5 (t, 1H), 6.9 (d, 2H). 

3-(Furan-2-ylmethyleneamino)quinazolin-4(3H)-one 2f. Methanol was used as the solvent, and the 

product (brown needles) was isolated with 32mg (22%) yield. M.P.(°C): 135-138, 1HNMR (400 MHz, 

CDCl3, δ): 9.6 (s, 1H), 8.4 (s,1H), 8.3 (d, 1H), 7.8 (m, 2H), 7.6 (s, 1H), 7.5 (t, 1H), 7.0 (d, 1H), 6.6 (q, 

1H). 

3-(Naphthalen-2-ylmethyleneamino)quinazolin-4(3H)-one 2g. Methanol was used as the solvent, 

and the product (white powder) was isolated with 82mg (45%) yield. M.P.(°C): 169-172, 1HNMR (400 

MHz, CDCl3, δ): 9.8 (s, 1H), 8.4 (s, 1H), 8.4 (d, 1H), 8.2 (s, 1H), 8.1 (d, 1H), 7.9 (d, 2H), 7.9 (d, 1H), 

7.8 (overlapping, 2H), 7.6 (overlapping, 3H). 

3-(Butylideneamino)quinazolin-4(3H)-one 2h. Butanal (1eq) was dissolved in toluene and five drops 

of AcOH were added. The mixture was stirred for five minutes, and then 3-aminoquinazolinone (1 eq) 

was added. The flask was connected to a Dean-Stark apparatus filled with toluene and stirred at reflux 

overnight. The reaction mixture was cooled to r.t. on benchtop, then chilled on ice. No solid precipitated. 

Toluene was evaporated, and the residual oil was dissolved in hot EtOH, cooled to r.t., and chilled on 

ice. No solid precipitated. Upon addition of water, a milky-white emulsion formed. Water and ethanol 
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were evaporated in vacuo to give a tan/light brown solid. Trituration in DCM was attempted to purify 

the solid; however, TLC and 1HNMR indicated that impurities were still present in the white solid that 

was obtained. 66mg (50%) of the crude product was obtained, and the crude product was used for the 

assay. M.P.(°C): 133-137, 165-185, 1HNMR (300 MHz, CDCl3, δ): 8.4 (t, 1H), 8.3 (d, 1H) 8.1 (app. t, 

1H), 7.8 (q, 1H), 7.6 (t, 1H), 7.4 (q, 1H),  2.5 (q, 2H), 1.7 (m, 2H), 1.0 (t, 3H). 

4-Methoxy-N-(4-oxoquinazolin-3(4H)-yl)benzamide 3a. Due to a mishap, toluene was added to the 

reaction mixture after 24 hours of mixing, but before the work-up was conducted. The crude product 

(light tan solid) was recrystallized in methanol, and the resulting solid was oven-dried at 90°C-100°C for 

1 hr to remove solvent impurities apparent in 1HNMR. The dried solid was then triturated in 75:25 

EtOAc:Hexanes to give the final product (white solid) with 22mg (12%) yield. M.P.(°C): 168-169, 

1HNMR (400 MHz, DMSO-d6, δ): 11.7 (s, 1H), 8.4 (s, 1H), 8.2 (dd, 1H), 8.0 (overlapping, 2H), 7.9 (d, 

1H), 7.8 (d, 1H), 7.6 (t, 1H), 7.1 (d, 2H), 3.9 (s, 3H). 

N-(4-Oxoquinazolin-3(4H)-yl)benzamide 3b. The crude product was oven-dried at 90°C-100°C for 

1 hr to remove solvent impurities and give the final product (tan solid) with 88mg (54%) yield. M.P.(°C): 

186-188, 1HNMR (300 MHz, DMSO-d6, δ): 11.9 (s, 1H), 8.5 (s, 1H), 8.2 (d, 1H), 8.0 (overlapping, 

3H), 7.9 (t, 1H), 7.8 (d, 1H) 7.6 (broad overlapping, 3H). 

4-Methyl-N-(4-oxoquinazolin-3(4H)-yl)benzamide 3c. The same procedure was followed as in the 

other amide syntheses, except that the acid chloride was formed in situ by stirring p-toluic acid (1.2 eq) 

and oxalyl chloride (1.4 eq) in THF (5 mL) and DMF (two drops) for one hour. The reaction was 

quenched by the addition of pyridine (1 eq). After the reaction, the crude product was recrystallized in 

MeOH to give the final product (tan solid) with 44mg (25%) yield. M.P.(°C): 202, 1HNMR (300 MHz, 

DMSO-d6, δ): 11.8 (s, 1H), 8.4 (s, 1H), 8.2 (d, 1H), 7.9 (overlapping, 3H), 7.8 (d, 1H), 7.6 (t, 1H), 7.4 

(d, 2H), 2.4 (s, 3H). 
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Synthesis of 2’-Deoxyguanosine Derivatives 

General Materials and Methods 

NMR spectra of 7a-3 and 8a-b were recorded at 300 MHz in deacidified CDCl3. Deacidification was 

performed by percolating the solvent through solid NaHCO3 and basic alumina. Syntheses of 7a-3 and 

8a-b were performed in oven-dried screw-capped vials equipped with oven-dried stirbars and purged 

with nitrogen. 

General Procedure for the Preparation of N
6
-alkyl– Derivatives of dG 

N6-alkyl– derivatives of dG were prepared by stirring a mixture of sulfonated TBDMS-dG (1 eq), Et3N 

(5 eq) and the appropriate amine (5 eq) in 1,2-DME with 4Å molecular sieves at 50°C for 23 hours 

under an inert atmosphere. The reaction mixture was then decanted into a separatory funnel and diluted 

with EtOAc. The organic layer was extracted with 10% (w/v) citric acid and saturated NaHCO3. The 

organic layer was then dried over anhydrous Na2SO4. Evaporation of organic solvents gave the crude 

product, which was purified by column chromatography generally using DCM to load the compound and 

2% MeOH in DCM to elute the product. Alike fractions were collected and the organic solvents were 

evaporated to leave behind the product, which was dried overnight under vacuum. 

General Procedure for the Preparation of O
6
-alkyl–, and O

6
-aryl– Derivatives of dG 

O6-alkyl–, and O6-aryl– derivatives of dG were prepared by stirring a mixture of sulfonated TBDMS-

dG (1 eq), DABCO (2 eq) and the appropriate alcohol (5 eq) in 1,2-DME with 4Å molecular sieves at 

room temperature under an inert atmosphere. After 30 minutes of stirring, DBU was added and the 

reaction mixture was stirred at room temperature for 24 hours under an inert atmosphere. The reaction 

mixture was then decanted into a separatory funnel and diluted with EtOAc, followed by sequential 

extractions with 1N NaOH and H2O. The organic layer was dried over anhydrous Na2SO4, and the 

solvents were evaporated to give the crude product, which was purified via column chromatography 

using either a combination of DCM to load the compound and 2% MeOH in DCM to elute the product 

or a 4% MeOH in DCM to load the compound and elute the product, depending on the polarity of the 
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product. Alike fractions were collected and the organic solvents were evaporated to leave behind the 

product, which was dried overnight under vacuum. 

2-Amino-6-(benzylamino)-9-[2-deoxy-3,5-bis-O-(tert-butyldimethylsilyl)-ββββ-D-erythro-pento-

furanosyl]purine 7a. Due to a mishap, the vial was not purged with nitrogen until fifteen minutes after 

reaction start. This did not appear to have any adverse effect on the outcome of the experiment. The 

reaction mixture was stirred for 24 hours and the product (tan/white solid) was obtained with 66.4mg 

(77%) yield. Rf(silica/2% MeOH in DCM) = 0.41, 1HNMR (300 MHz, deacidified CDCl3, δ): 7.74 (s, 

1H8), 7.3 (m, 5H, ArH), 6.32 (app. t, 1H1), 5.88 (s, 1H, NH), 4.78 (s, 2H, NH2), 4.72 (s, 2H, NCH2), 

4.54 (app. m, 1H3), 4.00 (app. q, 1H4), 3.78 (app. dd, 2H5), 2.58 (app. m, 1H2), 2.32 (app. ddd, 1H2), 

1.73, 1.26, 0.89 (s, 18H, t-butyl), 0.08 (s, 12H, SiCH3). 

2-Amino-6-(allylamino)-9-[2-deoxy-3,5-bis-O-(tert-butyldimethylsilyl)-ββββ-D-erythro-pento-

furanosyl]purine 7b. The reaction mixture was stirred for 23 hours, and after the first chromatographic 

separation using DCM to load the compound and 2% MeOH in DCM to elute the product, the product 

was not clean as judged by 1HNMR and TLC. The crude product was rechromatographed using the same 

solvent system, but this second separation was not successful either. Trituration in cold hexane was 

attempted; however, it did not result in any further purification. Finally, the crude product was 

rechromatographed using 1:1 hexane:ethyl acetate to load the compound and elute the product. Alike 

fractions were collected and the organic solvents were evaporated to leave behind the clean product, 

which was dried overnight under vacuum. The product (white solid) was obtained with 38.1mg (48%) 

yield. Rf(silica/2% MeOH in DCM) = 0.36, 1HNMR (300 MHz, deacidified CDCl3, δ): 7.74 (s, 1H8), 

6.27 (t, 1H1), 5.94 (m, 1H, =CH), 5.58 (br s, 1H, NH), 5.27 (dd, 1H, =CHtrans), 5.13 (dd, 1H, =CHcis), 

4.72 (br s, 2H, NCH2), 4.56 (m, 1H3), 4.20 (br s, 2H, NH2) 3.94 (m, 1H4), 3.76 (m, 2H5), 2.56 (quint, 

1H2), 2.31 (m, 1H2), 2.13 (br s, residual H2O), 0.89 (s, 18H, t-butyl), 0.09 (s, 12H, SiCH3). 

2-Amino-6-(4-methylpiperazino)-9-[2-deoxy-3,5-bis-O-(tert-butyldimethylsilyl)-ββββ-D-erythro-

pento-furanosyl]purine 7c. The reaction mixture was stirred for 25 hours, and the solvents used for the 
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purification were DCM to load the compound and 10% MeOH in DCM to elute the product, which was 

isolated as a yellow oil in 62.2mg (73%) yield. Rf(silica/2% MeOH in DCM) = 0.02, 1HNMR (300 MHz, 

deacidified CDCl3, δ): 7.68 (s, 1H8), 6.29 (t, 1H1), 4.64 (br s, 2H, NH2), 4.53 (m, 1H3), 4.21 (br s, 4H, 

N-C-N-CH2), 3.94 (q, 1H4), 3.73 (m 2H5), 2.48 (t, m overlapping, 5H, 4CH3-N-CH2, 1H2), 2.31 (s, m 

overlapping, 4H, 3N-CH3, 1H2), 0.88 (s, 18H, t-butyl), 0.04 (s, 12H, SiCH3). 

2-Amino-6-morpholino-9-[2-deoxy-3,5-bis-O-(tert-butyldimethylsilyl)-ββββ-D-erythro-pento-

furanosyl]purine 7d. The reaction mixture was stirred for 25 hours, and the solvents for the purification 

were DCM to load the compound and 5% MeOH in DCM to elute the product, which was isolated as a 

yellow oil with 64.8mg (82%) yield. Rf(silica/2% MeOH in DCM) = 0.32, 1HNMR (300 MHz, 

deacidified CDCl3, δ): 7.70 (s, 1H8), 6.30 (t, 1H1), 4.65 (br s, 2H, NH2), 4.55 (m, 1H3), 4.20 (app. t, 4H, 

CH2-N-CH2), 3.94 (m, 1H4), 3.75 (overlapping m, 6H, 4CH2-O-CH2, 2H5), 2.52 (app. quint, 1H2), 2.31 

(m, 1H2), 0.89 (s, 18H, t-butyl), 0.08 (s, 12H, SiCH3). 

O
6
-Benzyl-3’-5’-bis-O-tert-butyldimethylsilyl-2’-deoxyguanosine 8a. The reaction mixture was 

stirred for 24 hours. The solvent system for the purification was DCM to load the compound and 2% 

MeOH in DCM to elute the product (yellow oil with crystal formation evident) with 51.7mg (60%) 

yield.. Rf(silica/2% MeOH in DCM) = 0.66, 1HNMR (300 MHz, deacidified CDCl3, δ)1: 7.89 (s, 1H8), 

7.48 (d, 2H, ArH), 7.36 (overlapping, 2H, ArH), 7.31 (overlapping, 1H, ArH), 6.31 (t, 1H1), 5.5 (s, 2H, 

OCH2), 4.84 (br s, 2H, NH2), 4.56 (m, 1H3), 3.98 (m, 1H4), 3.77 (overlapping dd, 2H5), 2.53 (quint, 

1H2), 2.35 (quint, 1H2), 0.90 (s, 18H, t-butyl), 0.08 (s, 12H, SiCH3). 

O
6
-Phenyl-3’-5’-bis-O-tert-butyldimethylsilyl-2’-deoxyguanosine 8b. The reaction mixture was 

stirred for 24 hours. The solvent system for the purification was 4% MeOH in DCM to load the column 

and elute the product (slightly oily yellow/white solid) with 64.8mg (77%) yield. Rf(silica/2% MeOH in 

DCM) = 0.63, 1HNMR (300 MHz, deacidified CDCl3, δ): 7.99 (s, 1H), 7.38 (m, 2H, ArH), 7.20 

                                                

1 1HNMR showed minor uncharacterized impurities 
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(overlap, 3H, ArH), 6.33 (t, 1H1), 4.80 (br s, 2H, NH2), 4.58 (m, 1H3), 3.98 (m, 1H4), 3.79 (qd, 2H5), 

2.57 (app quint, 1H2), 2.37 (m, 1H2), 0.91 (s, 18H, t-butyl), 0.08 (s, 12H, SiCH3). 

ACKNOWLEDGMENTS  

We acknowledge the generous support of Grand Valley State University through its Student Summer 

Scholars Program and the Chemistry Department at GVSU for the use of its instrumentation. 

REFERENCES 

1 Liao, J.L. J. Med. Chem. 2007, 50, 409. 

2 Cohen, P. Nat. Rev. Drug Discov. 2002, 1, 309. 

3 Parsons, J. T. J. Cell Sci. 2003, 116, 1409. 

4 Owens, L. V.; Xu, L.; Craven, R. J.; Dent, G. A.; Weiner, T. M.; Kornberg, L.; Liu, E. T.; Cance, W. 

G. Cancer Res. 1995, 55, 2752. 

5 Golubovskaya, V.; Beviglia, L.; Xu, L.; Earp, H. S.; Craven, R.; Cance; W. J. Biol. Chem. 2002, 277, 

38978. 

6 Golubovskaya, V.; Gross, S.; Kaur, A. S.; Wilson, R. I.; Xu, L.; Yang, X. H.; Cance, W. G. Mol. 

Cancer. Res. 2003, 1, 755. 

7 Summy, J. M.; Gallick, G. E. Cancer and Metastasis Rev. 2003, 22, 337. 

8 Moasser, M. M.; Srethapakdi, M.; Sachar, K. S.; Kraker, A. J.; Rosen, N. Cancer Res. 1999, 59, 

6145. 

9 Witucki, L. A.; Ngassa, F. N. Results unpublished. 

10 Scheiner, P; Frank, L. Giusti, I.; Arwin, S.; Pearson, S. A.; Excellent, F.; Harper, A. P. J. 

Heterocyclic Chem. 1984, 21 1817. 

11 Lakshman, M. K.; Ngassa, F. N.; Keeler, J. C.; Dinh, Y. Q. V.; Hilmer, J. H.; Russon, L. M. Org. 

Lett. 2000, 2, 927. 


	Grand Valley State University
	ScholarWorks@GVSU
	2008

	Synthesis of Derivatives of 3-Aminoquinazolinone and 2'-Deoxyguanosine as Potential Protein Tyrosine Kinase Inhibitors
	Kirk D. Wyatt
	Laurie A. Witucki
	Felix N. Ngassa
	Recommended Citation


	Microsoft Word - Final Draft.doc

