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Abstract—The use of graphics processing units (GPUs) in
high-performance parallel computing continues to become more
prevalent, often as part of a heterogeneous system. For years,
CUDA has been the de facto programming environment for
nearly all general-purpose GPU (GPGPU) applications. In spite
of this, the framework is available only on NVIDIA GPUs,
traditionally requiring reimplementation in other frameworks
in order to utilize additional multi- or many-core devices.
On the other hand, OpenCL provides an open and vendor-
neutral programming environment and runtime system. With
implementations available for CPUs, GPUs, and other types of
accelerators, OpenCL therefore holds the promise of a “write
once, run anywhere” ecosystem for heterogeneous computing.

Given the many similarities between CUDA and OpenCL,
manually porting a CUDA application to OpenCL is typically
straightforward, albeit tedious and error-prone. In response
to this issue, we created CU2CL, an automated CUDA-to-
OpenCL source-to-source translator that possesses a novel design
and clever reuse of the Clang compiler framework. Currently,
the CU2CL translator covers the primary constructs found in
CUDA runtime API, and we have successfully translated many
applications from the CUDA SDK and Rodinia benchmark suite.
The performance of our automatically translated applications via
CU2CL is on par with their manually ported countparts.

I. INTRODUCTION

The introduction of the NVIDIA CUDA ecosystem [1] in
2007 spurred a flurry of activity in the use of the graphics
processing unit (GPU) as a programmable device for general-
purpose computing. As a result, the past four years has seen
tremendous growth in GPU-accelerated applications using
CUDA. However, CUDA is only available on NVIDIA GPUs.

In an effort to democratize the use of GPUs for general-
purpose computing and not be behooven to a single vendor,
Apple developed OpenCL and submitted it to the Khronos
Group to develop as an open-source standard [2]. OpenCL
is a vendor-neutral framework for writing programs that run
on heterogeneous computing platforms consisting of CPUs,
GPUs, or other processors, not just GPUs.

Though still relatively new, OpenCL has several implemen-
tations available from Intel (x86 CPUs), AMD (x86 CPUs
and AMD GPUs), NVIDIA (NVIDIA GPUs), and even IBM
(IBM POWER line, including Cell processor). As a result,
developers can write platform-independent applications that
can take advantage of any of these compute devices. This is
of particular importance to scientists who often want to simply
write an application once and not have to port it when moving
to another parallel computing platform.

However, adoption of OpenCL has been slow for a number
of reasons. One hindrance is the OpenCL API, which is lower
level than the commonly used CUDA API, thus requiring
more time and effort to set-up devices and execute kernels. Of
greater impact has been CUDA’s established presence in the
arena of general-purpose computation on the GPU (GPGPU),
which has made it the de facto GPGPU programming envi-
ronment. Not surprisingly, there are significantly more CUDA
applications available than those implemented in OpenCL.

In order to drive adoption of OpenCL, applications can be
ported from CUDA, a task that is relatively straightforward
given OpenCL’s GPU origins. Nevertheless, performing this
process by hand can be tedious and error-prone. Although
there is some initial work to alleviate this issue [3], nothing
has been done to automate the process.

We propose CU2CL, an automated CUDA-to-OpenCL
source-to-source translator built using the Clang compiler
framework. As shown in Figure 1, CU2CL takes an appli-
cation’s CUDA source files and rewrites them into equivalent
OpenCL host and kernel files. In this process, it adds all the
OpenCL “boilerplate” code necessary to set-up the compute
environment and translates the most-used CUDA features,
while delivering a framework to handle future versions (or
larger subsets) of CUDA in the future.

In addition to providing a robust translator framework
that will generate maintainable OpenCL code with little to
no manual porting. the framework will enable architecture-
aware optimization passes for different compute devices. (As
previously shown [4]–[6], OpenCL kernels must be optimized
for different architectures.) CU2CL is simply the first, albeit
critical, step in this process.

Our contributions in this paper include the following:
• The first framework for the automatic translation of GPU

applications from CUDA to OpenCL, i.e., CU2CL.
• General insights for designing source-level tools within

our framework, including (1) common patterns that arise
when performing the translations, (2) a technique for
recursively rewriting expressions, and (3) a process for
rewriting #includes.

• An evaluation of our CU2CL prototype with respect to
source-to-source translator performance, performance of
the translated applications, and translator coverage.

The remainder of this paper is organized as follows. Sec-
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Fig. 1. High-level overview of the CU2CL translation process.

tion II presents related work in the areas of GPGPU computing
and source-to-source translation. Section III gives an overview
of the CUDA and OpenCL frameworks, focusing on how their
similarities and differences influence the translation effort.
Section IV discusses our approach in designing and imple-
menting CU2CL, in particular, what influenced our decision
to use the Clang framework and how we overcame challenges
associated with the choice. In Section V, we evaluate CU2CL’s
translation performance, the performance of the automatically
translated applications, and an analysis of the CUDA coverage.
Lastly, we present future work in Section VI and summarize
our work and contributions in Section VII.

II. RELATED WORK

There exist several projects that translate to (or from) the
CUDA programming model. Of particular note is an OpenMP-
to-CUDA source-to-source translator [7]. Working towards a
similar goal, but in the reverse direction, MCUDA [8] is a
source-to-source translator that instead translates CUDA to
multi-threaded CPU code. Both translators are built using
Cetus [9], a source-to-source translator framework for C and
other C-based languages.

Closer to our goal, Swan [3] is tool that is meant to ease
the transition between OpenCL and CUDA. However, Swan is
not actually a source-to-source translator like CU2CL; instead
Swan provides a higher-level library that abstracts both CUDA
and OpenCL, such that an application makes calls to Swan
and allows Swan to take care of the details in mapping
them to CUDA or OpenCL. The Swan API is limited, as it
currently only abstracts a few features in common between
CUDA and OpenCL. On the other hand, it provides a simple
Perl script that can automatically translate some kernel code,
essentially performing a regular expression-based search and
replace operation on the source. Much of the work, however,
is left up to the developer to port his or her application
(especially host code) and its kernels to use Swan’s libraries.

Ocelot [10] is primarily a PTX-to-LLVM translator and
runtime system that can decide whether to run the PTX on
a GPU device or on a CPU after just-in-time (JIT) compiling
it to LLVM [11]. In this regard, Ocelot is similar to MCUDA
as it allows for CUDA kernels to be run on CPUs, but it
takes the approach of performing translations on lower-level

bytecodes. In today’s compilers, this is a typical approach to
take, converting a higher-level language to some intermediate
representation and then compiling it to the target architecture.

For GPUs and other OpenCL-capable devices, multiple
intermediate languages can be targeted, such as NVIDIA PTX,
AMD IL, and LLVM. Ocelot would need to implement a PTX-
to-AMD IL backend in order to execute CUDA applications
on an AMD GPU, as done in [12]. More generally, a new
backend must be made for each intermediate language that is
to be supported. With CU2CL, the OpenCL implementation
for the desired device will simply handle compiling the code
to the proper bytecode. As a result, CUDA applications, once
ported, are automatically available on several architectures.

Independent from our work, the University of Illinois is
also developing a CUDA-to-OpenCL translator [13], but using
Cetus and the CUDA parser from MCUDA. This work has not
been published yet nor has the code been released, but it is
stated that many CUDA features are not yet working.

III. GPGPU FRAMEWORKS

CUDA and OpenCL are frameworks designed for general-
purpose GPU computation. Both have kernels that execute on
compute devices, threads that run in parallel within them, and
methods for managing device memory and launching compute
kernels. However, since CUDA is meant for GPUs, CUDA
provides many GPU-centric features in that are not found in
OpenCL. OpenCL, on the other hand, provides a platform-
agnostic framework.

Below we examine version 3.2 of the CUDA API—the latest
stable release—along with the OpenCL 1.0 standard.1

A. CUDA

CUDA is a programming framework and environment that
enables data-parallel, SIMD computations to be offloaded onto
a GPU. Users write device code in a C-like language, which
then runs on the streaming multiprocessors of NVIDIA GPUs.
Kernels functions (i.e., SIMD procedures launched from the
host) are executed across a possibly multi-dimensional grid of
blocks. Each block contains numerous threads in another possi-
bly multi-dimensional configuration. These configurations are

1NVIDIA’s OpenCL 1.1 implementation is not yet released so we restrict
our attention to OpenCL 1.0 in order to execute on AMD and NVIDIA GPUs.
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Fig. 2. Overviews of the CUDA and OpenCL models. Items with multiple labels first give the CUDA and then the OpenCL term.

specified by the host during a kernel invocation. Figure 2a
gives an overview of the CUDA programming model.

CUDA’s memory model has three separate memory spaces:
global memory, off-chip and accessible by all threads in all
blocks—shared memory—on-chip and available to all threads
in a block—and registers—owned by one thread. In addition to
these, two special-use memory spaces provide faster memory
operations: constant memory and texture memory. Constant
memory is cached for fast reads, but is limited in size and
does not support writes. Texture memory allows for fast reads
as well as writes, but is also rather limited in size. Furthermore,
kernels must use special built-in functions to access data
residing in the region. In general, device memory must be
explicitly allocated through CUDA API calls and is usually
initialized by copying data from host memory. Figure 2b shows
how the memory spaces are laid out in CUDA.

CUDA consists of two different APIs: a low-level driver
API and a high-level runtime API. The driver API is CUDA’s
lower-level API for programming GPUs. It requires that a
GPU context be created for each GPU in use, as nothing is
implicitly done behind the scenes for the developer. Setting
up and executing kernels requires several API calls to set
arguments and the execution configuration. On the other hand,
the driver API allows for much finer control over GPU devices.

The CUDA runtime API is a higher-level API which ab-
stracts many of the lower-level details found in the driver API,
while simultaneously making reasonable assumptions behind
the scenes. For example, the runtime system initializes a GPU
device on the first call to any CUDA runtime API method.

CUDA also provides a small extension to C, coined CUDA
C, that allows kernel code and host code to be intermixed.
Device code and memory are distinguished by CUDA-specific
function or variable qualifiers added to their declarations.
CUDA C also extends C by introducing a special notation
for executing kernels, which allows the number of blocks

and threads per block to be specified. To take advantage
of these extensions, applications in CUDA C must be com-
piled with NVIDIA’s compiler, nvcc, which handles the C
extensions and properly sorts host and kernel declarations.

Most applications opt to use CUDA C along with the
runtime API [14], [15]. Thus, we initially focus our CU2CL
source-to-source translator on this combination.

B. OpenCL

The OpenCL standard is an open, vendor-neutral program-
ming model and environment for executing general-purpose
computations. More general than CUDA, it allows for the use
of arbitrary compute devices. Vendor-provided implementa-
tions map the abstract compute and memory models to real
hardware. OpenCL device code, written in a C99 variant, is
typically compiled at runtime by a vendor-provided compiler
through OpenCL API calls. Kernels consist of work-groups
(similar to CUDA blocks) each of which consist of work-items
(akin to threads in CUDA), as shown in Figure 2a.

Figure 2b shows that CUDA and OpenCL also have sim-
ilar memory models: global memory, equivalent to CUDA’s
global memory; local memory, which resembles CUDA’s
shared memory; and private memory, analogous to registers
in CUDA. Support for constant and image memory—like
CUDA’s texture memory—also exists.

The OpenCL standard defines one API which is very similar
to CUDA’s driver API. Users must be aware of the low-level
concerns and write some of the code that the CUDA runtime
API handles automatically. Additionally, OpenCL adds the
concept of platforms—an abstraction of the set of installed
implementations—and device command queues, similar to
CUDA streams, for sending commands to a particular device.
On the other hand, the OpenCL kernels are very similar
to those in CUDA, containing constructs that map almost
one-to-one to the CUDA equivalents. Noteworthy exceptions



include how image memory is accessed and the lack of some
synchronization functions.

C. Mapping CUDA to OpenCL

Many assume that translating CUDA to OpenCL is ef-
fectively a one-to-one mapping process. While most CUDA
constructs map one to one to OpenCL, not all do, as shown
in Tables I, II, and III. As a result, translating certain parts of
CUDA require a deeper understanding of both APIs to find
suitable corresponding constructs. Furthermore, these tables
provide only a high-level view of the translation process; in
practice, sophisticated techniques to perform the transforma-
tions are required. For example, in some cases, data must
be tracked throughout the lifetime of the translation before
certain translations can be finalized. Such a case is found when
rewriting device pointers to cl_mems, as the rewrite must
propagate through types found in parameters and sizeof
expressions.

CUDA OpenCL
Device pointers cl_mem created through

clCreateBuffer
dim3 size_t[3]
cudaDeviceProp No direct equivalent
cudaStream_t cl_command_queue
cudaEvent_t cl_event
textureReference cl_mem created through

clCreateImage
cudaChannelFormatDesc cl_image_format

TABLE I
COMMON CUDA DATA STRUCTURES AND THEIR OPENCL EQUIVALENTS.

CUDA Module Sample Call OpenCL Structure
Thread cudaThread-

Synchronize
Contexts & Command
Queues

Device cudaSetDevice Platforms & Devices
Stream cudaStream-

Synchronize
Command Queues

Event cudaEventRecord Events
Memory cudaMalloc Memory Objects

TABLE II
CUDA API MODULES AND THEIR OPENCL EQUIVALENTS.

CUDA OpenCL
gridDim.{x,y,z} get_num_groups({0,1,2})
blockIdx.{x,y,z} get_group_id({0,1,2})
blockDim.{x,y,z} get_local_size({0,1,2})
threadIdx.{x,y,z} get_local_id({0,1,2})
warpSize No direct equivalent
__threadfence_block() mem_fence(CLK_LOCAL_MEM_-

FENCE | CLK_GLOBAL_MEM_-
FENCE)

__threadfence() No direct equivalent
__syncthreads() barrier(CLK_LOCAL_MEM_-

FENCE | CLK_GLOBAL_MEM_-
FENCE)

TABLE III
COMMON CUDA KERNEL BUILTIN FUNCTIONS AND VARIABLES AND

THEIR OPENCL EQUIVALENTS.

IV. DESIGN AND IMPLEMENTATION OF CU2CL

Having covered how the two GPGPU frameworks differ, this
section presents the design of our CU2CL source-to-source
translator as a Clang plugin.

A. Approach

Several mechanisms for source-to-source translation are in
common use—from simple tools that use regular expressions
to find and replace strings in a program’s source to more
complex ones that leverage a full framework and parse a
language into an abstract syntax tree (AST) and perform
transformations at that level.

Our project seeks to produce a tool that can be rapidly
adopted by the CUDA and OpenCL communities. While nu-
merous frameworks and tools for source-to-source translation
exist [16]–[18], we chose to explore a number of production-
quality and widely-used, open-source compilers (e.g. gcc,
Clang, Open64) to base CU2CL on. Of those, gcc and Clang
have the largest communities behind them. We chose Clang
[19], primarily for the three following reasons. First, though
relatively young, Clang has a large and active community with
many new features and better quality every day. Second is
Clang’s design. Instead of being a monolithic compiler binary
like gcc, the Clang driver has been created from a set of
compiler libraries in the Clang framework. The libraries, which
provide lexing, parsing, semantic analysis, and much more,
may be used independently of the driver to create other source-
level tools. Finally, Clang recently added support for parsing
CUDA C extensions.

As implicitly noted in Figure 1, CU2CL is a Clang plugin
that ties into the main driver, allowing Clang to handle parsing
and generate an AST, as during normal compilation. Our
CU2CL then takes over and walks the generated AST to per-
form the rewrites. Of particular interest in designing CU2CL
were the following Clang libraries: AST, Basic, Frontend, Lex,
Parse, and Rewrite. These libraries facilitate file management
(Basic), AST traversal and retrieval of information from AST
nodes (AST), plugin interface and access to the compiler
instance (Frontend), preprocessor access and token utilities
(Lex), and the actual rewriting mechanism (Rewrite). By
uniquely composing the libraries and classes included within
each, we created a robust CUDA-to-OpenCL translator with
less than 2000 source lines of code (SLOC).

B. Architecture

In the Clang driver, once the AST has been created, an
AST consumer is responsible for producing something from
the AST. As a Clang plugin, CU2CL provides an AST con-
sumer that traverses the AST, searching for nodes of interest.
While Clang’s AST library provides several simple methods of
traversing the tree, we use our own method totraverse the AST
in a recursive descent fashion, using AST node iterators to
recurse into each node’s children. Figure 1 gives an overview
of how CU2CL’s translation procedure traverses the AST for
both host and device code, locating nodes of interest and
rewriting them.



The actual rewriting is done primarily through the use
of Clang’s Rewrite library. This library provides methods to
insert, remove, and replace text in the original source files. It
also has methods to retrieve the rewritten file by combining
the original with the rewritten portions. While many traditional
source-to-source translators build an AST, modify it, and then
walk the new AST to produce the rewritten file, CU2CL uses
the AST of the original source only to walk the program.
Rewrites are done through strings; therefore, we categorize
our approach as AST-driven and string-based.

In translating CUDA to OpenCL, this approach is quite
useful. Because the two languages are based on C, giving
a common ground between the two, only the CUDA-specific
constructs must be translated to OpenCL. Compared to typical
applications that make use of CUDA, the scope [20] of
our translations are very small. Rewriting only the parts of
interest and leaving everything else in the original source
as it was, allows for most of the original structure and the
original comments to be retained. One of CU2CL’s goals is to
translate CUDA to OpenCL such that further development may
continue in OpenCL. As a document’s structure and comments
are of vital importance to developers [21], leaving them intact
is a requirement in CU2CL.

C. AST-Driven, String-Based Translation

We have determined three areas of novelty in CU2CL’s
design as an AST-driven, string-based translator. First, we
have identified common patterns that occur when perform-
ing source-to-source translation within the Clang framework.
These are based on common structures found in CUDA C,
identifying which are of interest, and handling their rewriting
in a modular way. Second, we present a method for recursively
rewriting expressions using Clang’s Rewrite library. Being able
to properly rewrite expressions and their subexpressions is not
a trivial task with this string-based approach, as described
below. Finally, we demonstrate how to locate and rewrite
#includes by leveraging a preprocessor, such as the one found
in Clang’s Lex library. All three of the above are insights that
should aid future work in source-to-source translation based
on the Clang framework, if not in more general cases.

1) Common Patterns: In translating CUDA constructs to
OpenCL, some patterns occur multiple times. CU2CL’s design
takes into account two primary patterns: rewriting CUDA types
and processing CUDA API calls and their arguments. CUDA
types may be found in many declarations and expressions,
but the rules to identify and rewrite them are uniform save
for a few exceptions. CUDA API share similar patterns in
their arguments—what types are expected and how they are
laid out—and also in their return types, as they all return an
enumerated CUDA error value.

CUDA-specific type declarations may occur in several
places. These include variable declarations, parameter decla-
rations, type casts, and calls to sizeof, all of which may
occur in both host and device code. Rewriting such types
can be generalized for both CUDA host code and device
code. In the Clang framework, variable declarations carry with

float *newDevPtr;
...
cudaMalloc((void **)\&newDevPtr, size);
//Becomes
cl_mem newDevPtr;
...
newDevPtr = clCreateBuffer(clContext,

CL_MEM_READ_WRITE,
size, NULL, NULL);

Fig. 3. Example of rewriting a CUDA API call which expects a pointer to
an OpenCL call which does not.

them information about what their full type is (including type
qualifiers) as well as the source location of each part. The
base type can be derived from the full type, which may then
be inspected and rewritten accordingly. Types may be rewritten
differently depending on where the type declaration occurred
(e.g. host code, device code, kernel parameters, etc.). The
generalizations to type rewriting can be applied in locations
where there is overlap. For example, CUDA vector types
(Appendix B.3 in the CUDA C Programming Guide) may
be found in any of those areas. OpenCL vector types have
slightly different names depending on where they are found—
i.e., float4 versus cl_float4—but, for the most part,
rewriting vector types can be combined. This pattern also
extends to other CUDA types, like dim3s, which may be
declared anywhere in a CUDA C application.

Rewriting CUDA API calls can be logically separated into
their distinct modules. However, for the purposes of CU2CL’s
source-to-source translation, it preferable to generalize as
much of the rewriting as possible. In their arguments, the most
important pattern is when a pointer to a data structure that is to
be filled is passed in. The equivalent OpenCL API procedures
instead return a new structure, as shown in Figure 3, therefore
the dereferenced pointer must be retrieved from the argument
expression. This can be done by traversing the expression and
checking the types until the proper one is found. Then the
subexpression with this evaluated type may be pulled out and
used in the replacement OpenCL call. For the time being,
CU2CL simply dereferences the pointer argument expression.
The uniform enumerated CUDA error return type used by
all the CUDA API calls can be used in rewriting the call’s
parent expressions. While CU2CL does not currently support
rewriting the CUDA error type, knowledge of a CUDA call’s
possible returned error values in comparison to the equivalent
OpenCL procedure will help in properly rewriting parent that
use the returned error.

2) Recursively Rewriting Expressions: In performing
string-based rewriting using Clang, several complications
arise. Of these, being able to properly rewrite expressions
and their subexpressions is of significant importance (and
challenge). For example, when rewriting a kernel, one may
encounter an expression such as the one in Figure 4. In
order for the outer expression, __powf, to be rewritten,
the argument expressions should be processed first. In the



__powf(x[threadIdx.x], y[threadIdx.y])

x[threadIdx.x] y[threadIdx.y]

x[get_local_id(0)] y[get_local_id(1)]

native_pow(x[get_local_id(0), y[get_local_id(1))

Fig. 4. Example of rewriting an expression and its subexpressions.

1: procedure REWRITEEXPRESSION(expr)
2: type← TYPE(expr)
3: if type is interesting then
4: return REWRITETYPE(expr)
5: else
6: r ← SOURCERANGE(expr)
7: for all subexpr in SUBEXPRESSIONS(expr) do
8: s← REWRITEEXPRESSION(subexpr)
9: if rewrite occurred then

10: subr ← SOURCERANGE(subexpr)
11: REPLACESOURCE(subr, s)
12: end if
13: end for
14: return GETSOURCEWITHREWRITES(r)
15: end if
16: end procedure

Fig. 5. Algorithm detailing how expressions are recursively rewritten.

example, the arguments are rewritten by replacing references
to the CUDA built-in variables with calls to OpenCL built-
in functions. Then, the new strings are used in rewriting the
top-level expression as a whole. Rewriting expressions in this
recursive manner allows for nearly all expressions in CUDA
to be rewritten without the need for special cases.

Using the Clang framework, we accomplish recursive ex-
pression rewriting through the Rewrite library. This library is
also used at the top level for rewriting the input source files.
With each expression that is being rewritten, we associate
a Rewriter object to facilitate easy string-based rewriting.
Expressions are associated with the source range of text
they represent. Following along with Figure 5, the source
range is vital to performing string-based rewrites. When an
expression that is not interesting—one containing no CUDA
constructs—is encountered, CU2CL recurses down into its
child subexpressions in a depth-first manner, invoking the
recursive expression rewriting mechanism. If a subexpression
is rewritten, the function returns a new string which is used to
replace the text in the child’s original source range. After all
children have been processed in this manner, the associated
Rewriter is used to retrieve the range of text for the current
expression, including all rewrites that took place when in the
subexpressions.

Includer.cu

Includer-cl.cpp

Includer-cl.cl

Clang
Preprocessor

CU2CL
#include \

    "CudaFile-cl.cl"

...

#include \

    "CudaFile-cl.h"

...
...

#include \

    "CudaFile.cuh"

...

Fig. 6. Example of rewriting an #include directive.

3) Rewriting Includes: In order to provide a seamless trans-
lation experience, some #include preprocessor directives
in the original CUDA source must be removed or rewritten.
Because #includes are not resident in the AST we trans-
form, this rewriting has been implemented using the Clang
driver’s preprocessor, as shown in Figure 6. CU2CL registers
a callback with the preprocessor that is invoked upon a new
#include being processed. As the preprocessor expands the
include directive, it has all the information necessary to decide
whether CU2CL should rewrite the directive. In particular,
CU2CL needs the current file that is being parsed, the name of
the file that is to be included, and whether or not it is a system
header. Finally, if the directive is to be rewritten, the source
range associated with the #include is passed to Clang’s
rewriting mechanism along with any new text. By tying into
Clang’s preprocessor, CU2CL can avoid the task of locating
these directives manually. This adds robustness and efficiency
to CU2CL’s #include rewriting.

The #include rewrites fall into two categories: (1) remov-
ing #includes pointing to CUDA and system header files
and (2) rewriting #includes to CUDA files that CU2CL
has rewritten. In the first case, CU2CL removes includes to
cuda.h and cuda runtime api.h found in any rewritten files,
both host and kernel files. It also removes system header
files (e.g., stdio.h) from the OpenCL kernel files, as they
cannot be used in device code. In Clang, these header files are
identified as those included using the angle bracket notation as
opposed to double quotes. In the second case, CU2CL rewrites
#includes to files that have been rewritten. The original
included CUDA source files will be split into two new files,
one for the host and one for device code (e.g. cudaFile.cu will
become cudaFile-cl.h and cudaFile-cl.cl). Therefore, CU2CL
rewrites the original #includes so that they point to the
new OpenCL files. Figure 6 shows an example of how an
#include pointing to a CUDA file may be rewritten in a
new host code file. The kernel file will be used during runtime
compilation of device code, so it is not #included.

D. Challenges

1) Maintainable Code: In some cases, automatically trans-
lating CUDA to OpenCL makes generating maintainable code
difficult. For instance, CUDA is based on C and can therefore
make use of a preprocessor to generate code at compile time.
Consequently, while an abstract syntax tree (AST) representa-
tion of the source may be fine for compilation, the resulting
translated code may look very different from the original. This



is a direct consequence of what the C preprocessor is capable
of and little can be done to mitigate the issue.

2) Rewriting Macros: In Clang, macros are represented as
a series of tokens. While its libraries can provide access to the
tokens they are simply raw and unparsed. Hence, the process
of rewriting macros would require at least partial parsing of
the tokens contained within. This is a complex task that is
beyond the scope of this paper.

3) Use of Closed-Source Libraries: When CUDA appli-
cations make use of closed-source libraries built on top of
CUDA, such as the CUBLAS or CUFFT libraries in the
CUDA toolkit, CU2CL (or any other pure CUDA translator)
cannot fully translate these applications because the library
will continue to expect CUDA constructs. As a result, users
would need to either re-implement those libraries from scratch
in OpenCL or find other libraries written in OpenCL that
with equivalent functionalities. On the other hand, if a CUDA
library’s source code is available, it could be translated using
CU2CL and the problem resolved.

4) Function Rewriting: User functions expecting CUDA
constructs or results from CUDA calls as arguments cannot be
handled entirely without rewriting the functions first. This in-
cludes utility functions like those in the CUDA SDK’s cutil
library. This is also seen in benchmark suites where common
CUDA code is shared across applications, e.g., SHOC.

V. EVALUATION

We evaluate CU2CL using three metrics: the translator’s
performance, the performance of translated applications, and
the amount of CUDA covered.

A. Translation Performance

While CU2CL will ideally only be run once on a given
CUDA application, the speed at which CU2CL translates the
CUDA source code to OpenCL source code is a performance
metric of interest, particularly if the end user wishes to convert
multiple CUDA applications from the well-established CUDA
ecosystem. Thus, we evaluate its speed of translation on
several GPU applications from the CUDA SDK and Rodinia
benchmark suite. For each application, we averaged the total
time to translate the code from CUDA to OpenCL over ten
runs. This translation time includes the time for the Clang
driver to perform parsing and semantic analysis of the pro-
gram, in addition to CU2CL’s translation procedure. Table IV
summarizes our results.

The test applications vary in length from more than a
hundred source lines of code (SLOC) to nearly a thousand
SLOC. However, one can see that the translation time is not
strictly dependent on the length. In general, programs with
more CUDA constructs or more complicated ones tend to take
longer to translate. Even so, CU2CL takes no more than a few
seconds to translate many applications, making it a feasible
choice for porting a large number of CUDA programs.

B. Translated Application Performance: Auto vs. Manual

We evaluate the performance of three automatic vs. manu-
ally translated CUDA-to-OpenCL codes: vectorAdd from the

Source Application Translation Time Lines

CUDA SDK

asyncAPI 2.96s 136
bandwidthTest 5.76s 891
BlackScholes 5.52s 347
matrixMul 5.53s 351
scalarProd 2.96s 171
vectorAdd 2.59s 147

Rodinia

Back Propagation 2.68s 313
Breadth-First Search 2.67s 306
Hotspot 2.64s 328
Needleman-Wunsch 2.71s 418
SRAD 2.71s 541

TABLE IV
TIME FOR CU2CL TO TRANSLATE AN APPLICATION RELATIVE TO THE

LINES OF CODE IN THE ORIGINAL CUDA APPLICATION.

CUDA SDK and Needleman-Wunsch and SRAD from the
Rodinia benchmark suite. vectorAdd is an application that
generates two random vectors in host memory and copies them
to the GPU’s global memory. The kernel performs the addition
and stores them in a third vector allocated in global memory.
The resulting vector is then copied back to host memory.

Needleman-Wunsch is a global sequence aligner that is
commonly used in the field of bioinformatics for the analysis
of DNA sequences. Two character sequences are compared
and a two-dimensional matrix is filled with scores—calculated
using a predetermined scoring chart—showing how good the
match between the two is. The last step is to trace-back
through the matrix and find the aligned sequence, including
any insertions or deletions. Typical implementations would
launch a kernel per anti-diagonal in the matrix, but this im-
plementation breaks the matrix into blocks of which multiple
can be computed at once. This reduces the number of kernel
launches, resulting in better performance.

SRAD (Speckle Reducing Anisotropic Diffusion) is a com-
putational method that removes noise from images produced
by ultrasonic or radar imagery applications and doing so
without losing any of the important features present in the
pictures. Two kernels are launched per iteration of the main
loop and memory copies to and from the GPU are done.

For all of the experiments, we compiled and ran the ap-
plications on a commodity desktop computer with two 2.0-
GHz Intel Xeon E5405 quad-core CPUs and 4 GB of RAM.
The GPU device used is an NVIDIA GTX 280, which has
30 streaming multiprocessors (240 total cores) clocked at 1.3
GHz along with 1 GB of graphics memory.

Table V summarizes the performance comparisons between
the original CUDA code, CU2CL’s automatically-generated
OpenCL, and our manually-ported OpenCL. Each code was
executed a total of ten times and their runtimes were averaged.

In all applications, the automatically-translated OpenCL
performs just as well as the manually-ported OpenCL code.
This is to be expected as the differences between the two
versions for each application are minor and would not be
expected to have much performance impact at all.

On the other hand, SRAD’s OpenCL performance is roughly
25% worse than its CUDA version. The OpenCL Needleman-
Wunsch code performs about 30% worse than the CUDA



Application CUDA Automatic
OpenCL

Manual
OpenCL

vectorAdd 0.050s 0.051s 0.052s
Needleman-
Wunsch

6.65s 8.77s 8.77s

SRAD 1.25s 1.55 1.54s

TABLE V
RUNTIMES OF FOUR CUDA APPLICATIONS AND THEIR OPENCL PORTS

ON AN NVIDIA GTX 280

version. These results are typical as the NVIDIA OpenCL im-
plementation is known to not perform as many optimizations
as CUDA does [4].

Anecdotally, while it took a typical computer science
graduate student three weeks to manually translate the three
above codes from CUDA to OpenCL, our robust CU2CL
prototype automatically translated these three programs in
2.59 + 2.71 + 2.71 = 8.01 seconds, as noted in Table IV.

C. Translator Coverage

CU2CL supports a large majority of the CUDA runtime
API. In particular, it can automatically translate API calls from
the major CUDA modules: Thread Management, Device Man-
agement, Stream Management, and Event Management. The
translator also supports the most commonly used methods of
the Memory Management module, including calls to allocate
device and pinned host memory.

As a result of CU2CL’s robust translation methods alongside
its support for many CUDA constructs, it can automatically
translate many applications nearly in their entirety. Table VI
shows this for applications from the CUDA SDK and the
Rodinia benchmark suite. In each case, only a few lines
of host or kernel code had to be manually ported. Of the
manual changes, none are particularly difficult to handle and
automated support for these will be added in the coming
weeks, as CU2CL continues to evolve.

Source Application Lines Changed %

CUDA SDK

asyncAPI 136 4 97.06
bandwidthTest 891 9 98.99
BlackScholes 347 4 98.85
matrixMul 351 2 99.43
scalarProd 171 4 97.66
vectorAdd 147 0 100.00

Rodinia

Back Propagation 313 5 98.40
Breadth-First Search 306 8 97.39
Hotspot 328 7 97.87
Needleman-Wunsch 418 0 100.00
SRAD 541 0 100.00

TABLE VI
CU2CL’S AUTOMATIC TRANSLATION COVERAGE OF A RANGE OF

APPLICATIONS.

VI. FUTURE WORK

There still remains work to be done that could extend
CU2CL’s capabilities. To begin, we aim to support larger
subsets of the CUDA runtime API, in particular, the texture
management module and several procedures found in the
memory management module. Along the same lines, we plan

to add support for the CUDA driver API. In terms of CU2CL’s
design, we plan to identify other common patterns in CUDA
that will allow for further modularization of our translator.

Finally, we will support the application of device-specific
optimizations as a backend to our CU2CL translator. Why?
Preliminary results from running CU2CL’s automatically-
translated OpenCL applications in Section V on an AMD
Radeon HD 5870 (rather than an NVIDIA GTX 280) de-
liver mediocre results. Although the AMD GPU has higher
theoretical peak performance than the NVIDIA GTX 280, its
execution times are 0.075s, 15.24s, and 2.11s for vectorAdd,
Needleman-Wunsch, and SRAD, respectively. These values
are all at least 50% worse than the OpenCL run times
on the NVIDIA GPU presented in Table V. So, while we
have enabled the potential to run CUDA GPU codes on any
OpenCL-capable device, it does not mean that the these GPU
codes will perform well without device-specific optimizations,
as shown in [4], [5]. Thus, as long-term future work, CU2CL
will automatically apply the manual optimizations identified
in [4], [5] on its generated OpenCL code.

VII. CONCLUSION

We have presented CU2CL, an automated source-to-source
translator from CUDA to OpenCL. By leveraging the Clang
compiler framework, we took advantage of its powerful
source-level tools to create a robust translator in less than 2000
source lines of code.

In designing and implementing CU2CL, we determined
useful patterns that may be used in future Clang-based source-
to-source translators. We also demonstrated methods of re-
cursively rewriting expressions and of efficiently rewriting
#include directives through the use of Clang’s preprocessor.

We have shown that the currently supported subset of
CUDA covers most of the CUDA runtime API found in
many applications. In practice, CU2CL can translate several
application almost in their entirety with little to no manual
effort. Experiments on sample applications from the official
CUDA SDK and the Rodinia benchmark suite showed that
the OpenCL code generated by CU2CL can perform as well
as codes that are manually translated.
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