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Abstract  

Future large scale high performance supercomputer systems 

require high energy efficiency to achieve exaflops computational 
power and beyond. Despite the need to understand energy 

efficiency in high-performance systems, there are few techniques to 

evaluate energy efficiency at scale. In this paper, we propose a 

system-level iso-energy-efficiency model to analyze, evaluate and 

predict energy-performance of data intensive parallel applications  
with various execution patterns running on large scale power-

aware clusters. Our analytical model can help users explore the 

effects of machine and application dependent characteristics on 

system energy efficiency and isolate efficient ways to scale system 

parameters (e.g. processor count, CPU power/frequency, workload 
size and network bandwidth) to balance energy use and 

performance. We derive our iso-energy-efficiency model and apply 

it to the NAS Parallel Benchmarks on two power-aware clusters. 

Our results indicate that the model accurately predicts total system 

energy consumption within 5% error on average for parallel 
applications with various execution and communication patterns.  

We demonstrate effective use of the model for various application 

contexts and in scalability decision-making 

Keywords: Iso-energy-efficiency, Performance Isoefficiency, 

Power Consumption, Power-Aware Clusters.  

I.    INTRODUCTION 

As we enter the era of exascale computing, energy 

consumption of large scale parallel systems and data centers 

has become one of the most significant hindrances for 

designing highly scalable data intensive applications and 

larger parallel systems. For instance, recommendations in a 

recent report from the US Department of Energy suggest the 

power consumption of an exaflop machine, capable of a  

1000-fold performance increase over current petaflop 

systems, must be constrained to a 10-fold increase in power 

consumption [1]. This engineering challenge coupled with 

the high operational costs and system failure rates 

associated with many-megawatt computing resources has 

increased the need to consider power and the entangled 

effects of performance in emergent exascale systems and 

applications.  

Research[2-5] in high-performance power-aware 

computing has focused on identifying power saving 

opportunities in communicat ion phases and applying DVFS 

[6] (dynamic voltage and frequency scaling) strategies to 

these phases to reduce power consumption without 

sacrificing performance. Figure 1 depicts the types of 

controllers used in these techniques to build  sophisticated 

power management software. The focus in previous work 

has been developing a controller that uses observational data 

and (in later techniques) predictive data to schedule power 

states and balance performance.  

 

 
Figure 1. Past and current approaches to power 

management in high-performance systems. 

 

A key limitat ion of past approaches is a lack o f power-

performance policies allowing users to quantitatively bound 

the effects of power management on the performance of 

their applicat ions and systems. Existing controllers and 

predictors use policies fixed by a knowledgeable user to 

opportunistically save energy and minimize performance 

impact. While the qualitative effects are often good and the 

aggressiveness of a controller can be tuned to try to save 

more or less energy, the quantitative effects of tuning and 

setting opportunistic policies on performance and power are 

unknown. In other words, the controller will save energy 

and minimize performance loss in many cases but we have 

litt le understanding of the quantitative effects of controller 

tuning. This makes setting power-performance policies a 

manual trial and erro r process for domain experts and a 

black art fo r practit ioners. To improve upon past approaches 

to high-performance power management, we need to 

quantitatively understand the effects of power and 

performance at scale. 

We use a modeling based approach that captures power-

performance tradeoffs system-wide and at scale. Our basic 

idea is to apply the concept of iso-efficiency [7] for 

performance, or the ability to maintain constant per-node 

performance as a system scales, to power-performance 

management. We want to create techniques that allow us to 

quantitatively control and maintain power-performance as 

systems and applications scale; we thus name our approach 

iso-energy-efficiency. In conducting this work, we found the 

first essential step toward controlling for iso-energy-

efficiency was to create a detailed, sophisticated, accurate 

model of the effects of performance and power on scaled 

systems and applications.  

The contributions of this work include: 
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 Development of a fine-grained, analytical iso-energy-

efficiency model that incorporates parallel system  

components and computational overlap at scale.  

 Accuracy analysis and verification of the model on two 

power-scalable clusters. 

 Creat ion of a set of open source tools for deriving and 

measuring model input parameters. 

 Results from a detailed power-performance scalability 

analysis of EP, FT and CG from the NAS Parallel 

Benchmarks [8], including use of the iso-energy-

efficiency model to bound and maintain system energy 

efficiency at scale. 

To the best of our knowledge, this is the first system-

level, scalable, analyt ical model of both power and 

performance on real systems and applications. We begin the 

succeeding discussions with some related work followed by 

an overview of the model. Next , we show validation and 

results using the model to perform scalability analysis of the 

NAS Parallel Benchmarks. Lastly, we show fu ll derivation 

of the model and its parameters  and conclusions. 

II. RELATED WORK 

A. Isoefficiency 

 According to Amdahl’s law [9], speedup for parallel 

systems is limited by the amount of parallelis m inherent in  

the application. This law characterizes the performance 

impact of parallelism. Though there are several other 

alternative viewpoints on speedup, the most relevant to our 

work is that of Grama et al [7] who proposed a formal 

performance isoefficiency function describing how ideally  

performance efficiency will remain constant relative to the 

smallest node configuration. 

  
Figure 2a. FT performance and energy efficiency. 

 

For a fixed problem size, Figures 2a and 2b show the 

performance efficiency curves for FT and CG. FT scales 

reasonably well while CG drops off at 16 CPUs then 

recovers relative to the ideal case. There are a p lethora of 

performance analysis tools and techniques available to help 

us interpret and understand an application’s scalability. 

These analyses may suggest any number of root causes that 

can be addressed to improve isoefficiency. 

In contrast, just measuring energy use is challenging for 

non experts. Figures 2a and 2b  show the energy efficiency 

for FT and CG. Moreover, even though the energy 

efficiency (o r lack thereof) in these applications is obvious 

as they scale, there are few tools currently availab le to 

explain the observed energy efficiency. 

 
Figure 2b. CG performance and energy efficiency. 

 

Being able to identify the root cause of energy 

inefficiency would allow us to improve system and 

application efficiency more in line with the ideal isoefficient 

case. However, analyzing and potentially pred icting energy 

efficiency is exceed ingly difficult since we must identify  

and isolate the interacting effects of power and performance. 

For example, changing the power settings on a processor 

using DVFS affects performance which in turn potentially  

affects the length of time an application takes to complete 

which is key to its overall energy usage. 

B. Parallel performance models 

There has been extensive research conducted on 

performance speedup and scalability of parallel applicat ions 

in high performance computing. As mentioned, Amdahl’s 

law [9] introduced the concept that the speedup is limited by 

the fraction of the workload that can be computed in parallel.  

Grama et  al [7, 10] formally  defined isoefficiency as 

discussed. The fixed-time speedup model [11], memory-

bounded speedup model [12], and other related studies[13, 

14] all extend Amdahl’s law in unique ways. However, all 

of these approaches focus on performance and ignore both 

energy consumption and the performance effects of power 

management. 

C. Energy efficiency in HPC  

Several h igh-profile efforts such as the Top500 List [15], 

the Green500 List [16], the SPECPower benchmark [17], 

and power-performance evaluation of the HPCC 

benchmarks [18, 19] have elevated the interest in energy 

efficiency for high-end systems and servers. 
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Ge et al proposed the PowerPack [20] framework for 

measuring correlated power and performance data on large 

scale systems and we use this framework to collect the 

results presented. Early work to improve the efficiency of 

high-end systems [3, 4, 21, 22] used various DVFS 

scheduling strategies to gain significant energy savings 

under performance constraints. Freeh et al [2, 23, 24] 

similarly studied energy-performance tradeoffs for MPI 

applications.  

Our proposed iso-energy-efficiency model analyzes and 

predicts the combined effects of performance and power on 

scalable systems. The policy module highlighted in Figure 1 

is a practical application of improved understanding of the 

power-performance tradeoffs and contrasts our work with 

approaches to energy efficiency in HPC which have 

historically focused on improving controllers and predictors. 

The iso-energy-efficiency approach will improve our 

understanding of power-performance to quantitatively 

bound the impact of power management on performance.  

D. Energy modelling 

The power-aware speedup model proposed by Ge and 

Cameron [25] is a generalization of Amdahl’s Law for 

energy. While this model accurately captures some of the 

effects of energy management on speedup, it provides little  

insight to the root cause of poor power-performance 

scalability. 

In contrast, the iso-energy-efficiency model generally  

predicts energy consumption as the system scales up 

allowing  direct  analysis and comparison of  the tradeoffs 

between various model parameters. 

The Energy Resource Efficiency (ERE) metric proposed 

by Jiang et al [26] defines a link between performance and 

energy variations in a system to clearly h ighlight the various 

performance-energy tradeoffs.  As with  other models that 

identify energy efficiency, this model analyzes at a very  

high-level and does not identify causal relat ionships with 

poor metric results. 

The energy model proposed by Ding et  al [27] uses 

circuit -level simulation to analyze power-performance 

tradeoffs. While th is model shows promise for circuit-level 

design, it is too unwieldy for use in analyzing existing large-

scale power-scalable clusters. The model also makes a 

number of simplify ing assumptions such as homogenous 

workloads and no computational overlap making it less 

practical for modeling real systems.  

III. ISO-ENERGY-EFFICIENCY MODEL 

Here we briefly describe the iso-energy-efficiency 

model fo r evaluating the power-performance tradeoffs of 

parallel applications and systems. The derivation of the 

model is described in detail in  Section 6. Tables 1 and 2 

provide a summary of all model parameters.  
Let    be the total energy consumption of sequential 

execution and    be the total energy consumption of parallel 

execution for a g iven application on  p parallel processors.  

Table 1 Machine-depended parameters 

 
 

Table 2 Application-depended parameters 

Let    represent the additional energy overhead required 

for parallel execution:is the energy overhead for parallel 
execution. 
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We now define iso-energy-efficiency (EE) as: 
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Parameters Definition  

   Total on-chip computation workload 
   Total off-chip memory access workload. 
    Total parallel computation overhead 
    Total number of memory access overhead 

in parallelization  
  Total number of messages packaged in 

parallelization  

  Total number of bytes transmitted 
P Number of homogeneous processors available 

for computing the workloads 
  N Workload or total amount of work(in 

instructions or computations)  

  the extent of overlap among computation, 
memory access and network transmission 

   Total overhead time due to parallelism 

   Total execution time of an application 
running on a single processor  

parameters Definition 
Time related 
        

 
 [28],  Average time per on-chip 

computation instruction (including on-chip 
caches and registers) 

   Average memory access latency 
     Average start up time to send a message 
      Average time of transmitting a 8-bits word 

    Total I/O access time 
Power-related 

      Average CPU power in running state 
        Average CPU power in idle state 
                  

      Average memory power in running state 
        Average memory power in idle state 

                  
       Average IO device power in running state 
         Average IO device power in idle state 

                     
       Average  sum of other devices’ power such 

as motherboard, System/CPU fans, NIC, etc. 
            Average system power on idle state 

f The clock frequency in clock cycles per 
second 



Let EEF= 
  

  
 be the energy efficiency factor (EEF). EEF  

is the ratio  of parallel energy overhead to the energy of an 

application running sequentially. An application with a large 

EEF has low energy efficiency, and vice versa. Effect ive 

use of the iso-energy-efficiency model (EE) requires 

accurate estimation of the EEF. We can more accurately  

estimate EEF using the following equation: 
 

EEF= 
  

  
=
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EE then becomes:  
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(4). 

Equations (3) and (4) form the basis for computing iso-

energy-efficiency. The challenge is to capture each of the 

parameters used in these equations for a given application 

and system combination. 

Tables 1 and 2 show the model parameters used to 

calculate EEF and EE can be classified as either machine-

dependent or application-dependent. The machine-

dependent variable vector can be described as a function of 

frequency (i.e. computational speed) and workload 

bandwidth (i.e. computational throughput) of the hardware:  
 

        
             

 
                                        

 

The application-dependent variable vector can be 

described as a function of the amount of parallelism 

available and the workload for the application: 
 

    
                            

 

Section 6 provides details describing and motivating the 

use of these parameters. The reader may skip to this section 

to learn more about the iso-energy-efficiency model 

derivation or continue to the next  two sections where we  

validate the iso-energy-efficiency model and demonstrate its 

usefulness for evaluating parallel power-performance 

efficiency.  

IV. TEST ENVIRONMENT AND MODEL VALIDATION 

A. Test Environment 

We use two different power-aware clusters to conduct 
our experiments: SystemG and Dori. The SystemG 22.8 

TFlop supercomputer provides a research platform for 
development of high-performance software tools and 

applications at scale. It utilizes 325 Mac Pro computer nodes 
and each node has two 4-core 2.8 Ghz Intel Xeon Processors. 

Each node has an 8 GB RAM and each core has a 6 MB 

cache. SystemG is equipped with Mellanox 40Gbytes/sec 
end to end InfiniBand adapters and switches which 

dramatically increases the transmission bandwidth and 
reduce the latency. Since G stands for ‘green”, SystemG is a 

power-scalable system and has over 10,000 power and 
thermal sensors. DVFS, concurrency throttling and dynamic 

thermal monitoring enabled. Intelligent Power Distribution 

Units (Dominion PX) are attached to adjacent machines so 
users can dynamically profile power consumption of 

controlled machines or remotely turn on/off nodes, etc. 
The Dori system is composed of 8 nodes and each node 

contains dual core AMD Opteron Processor dusl processors. 
Each node has 6 GB RAM and each core has 1 MB cache. 

Dori is equipped with 1 Gbytes/sec Ethernet and switches.  
PowerPack  2.0 [18, 20], designed and implemented by 

the SCAPE Laboratory at Virginia Tech, is a framework for 

power/energy profiling, analysis and prediction of parallel 
applications and systems. The PowerPack  infrastructure is 

composed of both hardware and software components: the 
hardware is responsible for accurate and reliable direct 

measurement of both system-wide and component level 
power consumption and the software automatically collects, 

processes and synchronizes power data with system load. We 

used the PowerPack toolkit for all of the power and 
performance measurements obtained herein on both clusters. 

The NAS Parallel Benchmarks consist of 5 kernels and 3 

pseudo-applications that mimic the computation and data 

movement characteristics of large scale CFD applicat ions 

which are widely used in HPC community. We validate the 

proposed model on both systems for the NAS Parallel 

Benchmarks. We conducted scalability studies for 3 

benchmarks (FT, CG, EP) on SystemG.  

B. Model Validation 

To validate the iso-energy-efficiency model, we need to 

verify the correctness of the model single and parallel 

processor configurations. We vigorously measure and derive 

the parameters from Tables 1 and 2; namely the machine 

and application dependent parameters. 

For the machine-dependent parameters, we built a tool 

using the Perfmon API from UT-Knoxville to automatically  

measure the average   (time per on-chip computation 

instruction) derived as  
     

 
. We use the lat_mem_rd 

function from the LMbench microbenchmark [29] to 

estimate memory costs                     is obtained by 

using the MPPTest tool [30] fo r both the InfiniBand [31] 

and Ethernet interconnects in the two clusters . In addition, 

                        can be obtained by using 

PowerPack  [20]. We d id not include d isk I/O in our 

estimations for our energy efficiency model because the 

applications we tested are not disk intensive. We leave this 

to future work. For completeness, though it is not used in 

the current study, we were able to estimate    can be 

estimated by using the Linux pseudo file /proc/stat.  

 For the applicat ion-dependent parameters, we build a 

workload and overhead model for each parameter by 



analyzing the algorithm and measuring the actual workload 

for each application. We use Perfmon to measure each 

workload parameter,               and we use the TAU 

performance tool from the University of Oregon to measure 

M and B. Figure 3 illustrates the accuracy of the energy 

model for P processors. (Note: Specifically, these results are 

for Equation (15) in the derivation Section 6).  

Figure 3 compares the energy consumption predicted by 

the iso-energy-efficiency model with the actual energy 

consumption obtained using the PowerPack framework on 

Dori for p=4. We repeated all experiments five t imes to 

reduce measuring errors. The results indicate that the 

proposed energy model can accurately  predict the actual 

energy consumption within 5% prediction error. We 

conducted similar experiments on SystemG. for p=1, 2, 8, 

16, 32, 64, 128. Figure 4 shows the average error rate of EP, 

FP, and CG applicat ions on SystemG under different levels 

of parallelism using the InfiniBand interconnect. The results 

show good accuracy. Upon detailed  analysis, the relatively  

higher errors (8.31%) found with CG were due to 

inaccuracies in our memory model fo r this application.  

Improving the accuracy for CG is the subject of future work.  

Based on the accuracy results for both SystemG and 

Dori clusters, we conclude that our iso-energy-efficiency 

model performs well on d ifferent network interconnection 

infrastructures and can predict total system energy 

consumption with an average of 5% prediction error rate for 

parallel applications with various execution and 

communicat ion patterns.  

 

V. EXPERIMENTAL RESULTS 

A. Energy consumption and efficiency prediction for large 

scale systems 

Given the accuracy of our modeling techniques as 
described in the previous section, we use measurements from 

smaller configurations to predict and analyze power-

performance tradeoffs on larger systems. (Note: we build  our 

energy consumption and efficiency models using Equations 
(13), (15), (18), (21) from Section 6 applied a smaller 

representative portion of a large scale system. 
Initially, we obtain machine-dependent variables from 

the smaller system and use these values and our models to 
predict values for increasing number of nodes:   

 

          
             

 

                                               

 

All variables can be measured as described in the previous 
section. Frequency-dependent variables can be combined by 

normalizing measurements obtained through the use of 
hardware counters, LMbench, MPPTest and Powerpack. For 

example,    can be described as 
    

 
      sec on SystemG. 

We assume power is proportional to   ( ≥1). 

Next, we model application-dependent variables from the 
smaller system: 

 
                                    

 
Except for  , all of these variables in           depend on a 

performance model and can be described as a function of 
problem size, n, and the level of parallelis m, p. For example, 

    could be described as        in one-dimensional, 

unordered and radix-2 binary exchange Fast Fourier 
Transform. With all parameters accounted for, we can solve 

for Equations (3) and (4). (Note: Specifically, we first solve 
Equations (13), (15), (18), and (21) described in the next 

section.) We can then project values for larger values of p to 
predict the power-performance behavior and tradeoffs of 

large scale systems.  

B. Scalability studies for NAS PB  

In this section, we analyze the power-performance 

characteristics of FT, EP and CG using the iso-energy-

efficiency approach. We isolate power-performance 

efficiency problems and use the model findings to tune 

parameters such as problem size, n, CPU clock frequency, f, 

and level of parallelis m, p to improve efficiency.  

 
Figure 3.  Model validation on Dori  system. All the 

applications run on 4 nodes under same CPU clock 

frequency. Model accuracy for all the benchmarks are 

over 95 %. 

0

50000

100000

150000

200000

E
n

er
g
y

 (
Jo

u
le

)

NAS benchmark suites

Energy Model Validation on Dori System

Actual Measurement (Joule)
Estimation By Energy Model(Joule)

Figure  4. The average error rate of EP, FT and CG 

program.  class=B  in node number p= 1,2,4,8,16, 

32,64,128. 

0.00%

5.00%

10.00%

EP FT CG

6.64%
4.99%

8.31%

Average error rate  on SystemG

(P=1,2,4,8,16,32,64,128)

E
rro

r rate 



In each case, we use the methods described in  the 

previous sections to obtain model para meters and build our 

model from measurements on a smaller system.  Once we’ve 

identified estimates for         
             

  and 

           vectors, we build EE and EEF as described in  

Equations (3) and (4). In the rest of this section, all the 

parameterizations are obtained for the SystemG cluster 

though the same methodology can be applied  other 

platforms. 

1) FT 

FT computes a 3-D part ial d ifferential equation solution 

using Fast Fourier Transforms. The applicat ion stresses the 

CPU, memory and the communication network during 

various phases. Parallel FT iterates through approximately  

four phases during the execution: computation phase 1, 

reduction phase, computation phase2 and all-to-all 

communicat ion. The FT benchmark is communication 

intensive with dominating parallel communication overhead 

for the all-to-all phase. FT has a large memory footprint 

compared to the EP (Embarrassingly Parallel) applicat ion in  

the NAS suite. 

We use the Pairwise exchange/Hockney model [32, 33] 

to estimate the MPI_Alltoall operations required to solve for 

EE and EEF. (Note: This replaces the general approach to 

communicat ion estimat ion described by Equation (17) in the 

next  section.) By analyzing the FT’s Alltoall 

communicat ion algorithm on the architecture of the 

SystemG cluster, we found the Pairwise exchange/Hockney 

model appropriate and accurate in our validation testing. 

The time duration fo r this implementation is described as 

follows: 
 

                         . 
 

In the equation above,   is the message size,        is  

message start up time, and        is the transmission 

time. For details, please refer to the original paper [32]. We 

use our own measurements, MPPTest and the PowerPack 

framework to obtain the machine dependent parameters: 
 

                
             

  

                                               

      
    

 
                                

                                     

Figure 5: 3D plot of        with p and f as variables. 

 

In the equation above, for simplicity, we set γ=2 based 

on our test bed System G. We analyze FT and measure the 

actual workload by observing on-chip executing instructions, 

L1, L2 cache misses, main memory accesses and total 

instructions using Perfmon to obtain: 

 

            
                            

= (0.86, 1.06    n, 9.49n, 4.46          , -0.73       

   
  

        ) 

 

We then solve for        : 

 

           
  

  
  

                                    

                                  
   

       
                             

     
 

 
     

         

         
, 

 

and thus for         we obtain: 

          
 

  
                                  

       

        
 

         

 . 

 

Figure 5 plots EE with a fixed workload size n. We can 

see the level of parallelism,  p, most affects changes in 

energy efficiency versus frequency (or DVFS power states). 

In fact, for this code, frequency f has little  impact  on energy 

efficiency. FT is dominated by all-to-all communicat ions 

and synchronizations which makes it less likely to be 

influenced by changes in CPU frequency. As the number of 

processors scales, the effects of CPU clock frequency on on-

chip workload diminishes eventually while the increasing 

effects of parallel overhead and memory dominate. Thus, 

for fixed workloads on FT, increasing p will d ramatically  

decrease the energy efficiency. 
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Figure 6: 3D plot  of        , Assume constant frequency f=2.8GHz 
with p and n as variables. 

 

Figure 6 illustrates      when frequency fixes to 

2.8GHz since frequency does not affect energy efficiency. 

We can see p still dominates the variance of energy 

efficiency. It  is also obvious that increasing the problem size,  

n, does enhance the energy efficiency. 

 

2)  EP  

In parallel computing, an embarrassingly parallel (EP) 

workload has little  inter-processor communicat ion between 

parallel processes. EP in the NPB benchmarks generates 

pairs of Gaussian random deviates using Marsaglia polar 

method. It  separates tasks with little or no overhead. Results 

of EP can also be considered as a reference of peak 

performance of a given machine. We use our measurements, 

MPPTest and the PowerPack framework to obtain the 

machine dependent parameters : 
 

                    
             

  

                                                   

           
    

 
                                

                                       
 

After analyzing the parallel EP codes, we have:  
 

                                            
= (0.93, 109.4*n, 1.03     *n, 0, 6.7     *n *(p-1), 0, 0) 
 

Since communication in embarrassingly parallel is trivial, 
we simply set M and B to zero in              .  

Thus, from Equation (19), we have      : 

 

           
  

  
  

                                    

                                  
 

      
           

                 

 

So      becomes: 

 

          
 

  
           

               

  

Figure 7  3D plot of      with p and f as variables 

 

Figure 7 illustrates the variation of     . This figure 

indicates that energy efficiency hardly changes with p and f. 

Energy efficiency  is close to 1 for different combinations of 

p and f because only minimum communication overhead is 

imposed. Since th is is nearly ideal iso-energy-efficiency, we 

cannot improve the energy efficiency by scaling problem 

size n at all because    increases as fast as   .  

 
Figure 8 3D plot of     , Assume frequency f=2.8GHz, with p and n as 

variables. 

3) CG 

The NAS CG benchmark evaluates a parallel system’s 

computation and communication performance. It uses the 

conjugate gradient method to find out the smallest 

eigenvalue of a large, sparse matrix. It solves a sparse linear 

algebra problem which is common to scientific applicat ions 

on large-scale systems. We first obtain the machine-

depended parameters using the previous methods:  

 

                 
             

  

                                                 

            
    

 
                               

                                  
 

For the application-dependent parameters we obtain:  
  

              
                              

= (0.85, 2.13          , 0.96      , 1.86          

             ,-4.75                      
     ). 

 

Thus, we solve for      : 
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and then for       : 
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Figure 9 3D plot of    , Assume problem size n=75000, with p and f 

as variables. 

From               , we plot the relationships 

between level of parallelism, p, problem size,  n and 

frequency, f. In Figure 8, we first fix the frequency f at 2.8 

GHz to examine the relation between p and n. We notice 

that the energy efficiency decreases as p increases. However,  

increasing the workload size, n, will improve the energy 

efficiency.  

Fixing the workload size n, we next  observe the 

relationship between p and f. Figure 9 shows energy 

efficiency declines with increase in the level of parallelis m. 

In contract to EP, the energy efficiency increases with CPU 

frequency. Digging further to examine the energy overhead 

  and energy consumption of    , we observe both increase 

when frequency increases. However, the      decreases 

while frequency increases because    increases faster than 

  . In this strong scaling case, users can scale the frequency 

up using DVFS to achieve better energy efficiency. Also, 

compared to FT (see Figure 6), the effects of frequency 

have more impact on the on-chip workload of CG than FT 

as p scales due to a lower communication to computation 

ratio.  

4) Discussion of                     

We classify            ,    and     into machine-

dependent variables because their behaviors are highly  

related to Chip’s     and frequency, f. However, they are 

not only affected by machine architecture but also affected 

by traits of application. The execution pattern of an 

application could also affect the power consumption during 

execution. For simplicity, we assume they are only affected 

by hardware. From Kim, et  al [6, 34], we assume power is 

proportional to   ( ≥1). Different hardware architecture 

could result in different    value. 

5) Discussion of the effect of  the level of parallelism, p 
We can rewrite Equation (16) as follows to see the 

relation between    and p when the workload is evenly 
divided among processers (homogeneous workload):  

 

               

          
            

                      

                         
           

                    
                                   

 

Thus,    is      (k   ). Generally speaking, more 
parallelization will incur lower energy efficiency. In this case, 

the application’s tasks among all nodes require extra 
computation, memory accesses and communication efforts to 

coordinate with each other to complete the job. We observe 
this phenomenon in FT and CG. In contrast, EP incurs 

almost no overhead and energy efficiency doesn’t decrease 

significantly with the increase of the levels of parallelizat ion. 

6) Discussion of problem size n. 
Problem size is a dominant factor affecting energy 

efficiency. The EE for applications FT and CG improve if 
the problem size scales. However, increasing problem size 

does not necessarily improve energy efficiency as in the case 
of EE for EP.  

7) Discussion of  frequency, f 
Decreasing frequency can either increase or decrease energy 

efficiency. For EP  and FT, we observed no energy efficiency 
improvements for parallel execution when we adjust to low 

frequency. However, in the case of CG, we found that higher 
frequencies can improve energy efficiency because the 

memory overhead     value decreases.  

VI. MODEL DETAILED DERIVATION 

In this section we describe the details for deriving the iso-

energy-efficiency model first presented in Section 3. 

A. Performance Model 

At the system level, the theoretical sequential execution 

time for an on-chip/off-chip workload comprises three 

components [35, 36]: computation time     (with on-chip  

instruction execution frequency), main  memory access 

latency     , and I/O access time     (with off-chip  

instruction execution frequency). Thus the theoretical 

execution time can be expressed as: 
 

T=                                                               (5)   

 

Since optimization techniques could raise various levels 

of overlap between components  [37], we multiply T by an 

overlap factor   (     ) such that: 

 
                                                   (6) 

         is the actual execution time. 
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B. Energy Model for one and p parallel processor(s): 

When executing a parallel applicat ion, total energy 

consumption can be divided into four parts: computation 

energy,   main memory access energy,     , I/O access 

energy,    , and other system components energy,       , 

such as motherboard, system and CPU fans, power supply, 

etc. Thus, we have total energy E [20]: 
 
E =                                                         (7)   

 

The first three parts of this equation can be further 

separated into two energy states: running state and idle state. 

For example,    can be divided into       and        . Thus, 

we can deduce total energy E as [18, 20]: 

 
                                       
                                                                       (8). 

 
From (6) and (8), 

 
                                            (9) 

 

where      is the total computation time;      is the 

total memory access time and      is the total I/O access 

time.  

                         
                         
                           

 

Equation (9) seems quite cumbersome; however, it is 

intuitive:                is the total energy consumption of 

an idle-state system during an applicat ion’s execution time. 

        is the additional energy used while an applicat ion 

is performing computation. Similarly,        and 

        are the additional energy consumption for 

conducting main memory and I/O accesses. 
 

 
Figure 10. Power Profiling of MPI_FFT program in HPCC 

Benchmark 

  

Figure 10 provides additional insight to Equation (9). It  

shows the power profiling of the MPI_FFT program in the 

HPC Challenge Benchmark [19] measured by the 

PowerPack framework. The power fluctuates  for each 

component over the idle-state power line (dashed line) 

during the execution time. For the CPU, the red shaded 

(lower) portion in Figure 10 represents total CPU energy 

consumption in idle -state, and the blue (upper) portion 

represents the additional energy while doing computation.  

In reality, I/O access time includes the network and all 

kinds of local storage devices accesses. If an application is 

disk I/O-intensive, it should introduce      to the 

performance and the energy model. For simplicity, we 

assume a simple, flat model for I/O accesses though the 

benchmarks we measured did not exercise I/O making this 

component effectively zero. Users can always replace  

        with any combinations of specific I/O components 

according to their parallel applicat ions. Demonstrating the 

accuracy of the model for all types of I/O is beyond the 

scope of this paper and the subject of future work.  
 

The equations follow similar to Equation (6): 

 

                                                       (10)                                                                                  

                                       

With energy model:  

 

                                
                                                                         (11)                                                                     

 

In our experiments  (on both the Dori system with 

Ethernet and SystemG with InfiniBand), the difference 

between                       is not significant so we 

simply ignore the effect                         in (11): 

 

                  
                                  (12)  

C. Energy Model for A Single Processor 

Equations (10) and (12) are the kernel components of the 

performance model and iso-energy-efficiency model in this 

paper. Let us apply these to    which  we discussed in 

Section 3. When an application executes on a single 

processor, there are no messages exchanged. This means no 

     in (10). Thus,             
 

            
            

                     (13) 
     where                                                                                                            

                                                     

D. Energy Model for p Parallel Processors 

Similarly, to get     we define the energy model in ith 

(     ) processor among p parallel processors:  

 

          
            

                    

                                                                        (14)  

where                                                      

 

In (14),         and        are computation and memory  

access overheads for the ith of p processors in terms of 
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parallelism. Thus, we have    representing total energy 

consumption for all processors:  

 

             
 
        

            
      

                                                             (15)  
 
where,         

 
                            

               
 
       nd    i  l “ ” r  r   n    u    i n  f  ll 

workload in all processors. 
 

From (1) we can calcu late the energy overhead      
 

                  
            

           

                                                                                 (16) 
 

   r                         
 
                                                                                                                                                         

 

In (15) and (16),      is the total parallel computation 

overhead (   =      
 
    ) and      represents  the total 

parallel memory access overhead (           
 
   ).  

        
 
   stands for accumulated networking time. 

       
 
    can be fu rther div ided into two parts: message 

start up time and data transmitting t ime  [32]. 

Communicat ion overhead modeling varies depending on 

application and network infrastructure. Equation (17) is a 

general approach and specific parameterizat ion for network 

modeling is applied for each application (see Section 5).  

 

          
 
                                                           (17)     
 

So that    can be expressed as: 

 

                                                       
                                                 

              

E. Energy Efficiency Factor (EEF) 

Using the Equations (13) and (18), we can formulate the 

Energy Efficiency Factor (EEF) more accurately, 

 

       
  

  
  

                                    

                                  
            (19)  

Where                                 

              )                                                              

 

Equation (19) contains two categories of parameters 

which d irectly  impact performance and energy consumption: 

1) machine dependent variables  

                                        and 2) application  

dependent variables:                   and B. For the 

application dependent vector,     , the processor number  p  

and problem size n are two main factors affecting these 

parameters. They can be represented as            

                      .                               

The values of                can be obtained by the 

combination of analyzing an application’s algorithm and 

directly measuring the specific performance counters to 

estimate the on-off chip workload. A lso, M and B can be 

acquired by using PMPI in MPICH2 [30] or TAU[38]. The 

overlap factor   can be calculated using: 

 

       
                     

              
  

 

The machine dependent vector can be represented as: 

        
             

 

                                          

For machine dependent variables, machine frequency,   

and the network bandwidth,             are the main factors 

affecting these parameters. For the time parameters,    is 
     

 
            can be also described as functions of  . 

Only         is related with the network bandwidth. From 

Kim et al [6, 34] . 
 

          
          

   

 

                       
                               (20)                              

 

We can assume                    , are also functions 

of  . Here we assume power is proportional to    (γ≥1). We 

use the correlation between power and frequency in our 

energy model to pred ict total energy consumption and 

energy efficiency of large scale parallel system.  

From Equations (2) and (19), the iso-energy-efficiency 

model for parallel applications can be defined as: 

 

         
 

     
 

 

  
                                    

                                  
 
  

where                               ,       

                                  )                                  (21)  

 

In equation (21), EEF  is a combination of machine and 

application dependent parameters. To maximize the system 

energy efficiency, we need to keep EEF  as small as possible 

by scaling characteristics such as degree of parallelis m, 

workload, processor frequencies  and network bandwidth. 

F. Computational Overlap 

Accurately capturing performance characteristics is 

critical to a model of iso-energy-efficiency. Early on in  our 
attempt to create an iso-energy-efficiency model we realized 

computational overlap, or the ability to conduct 

computations while waiting on memory or communication 
delays, could not be ignored since they can reduce execution 

time dramatically [37]. The amount of overlap varies with an 
application, the underlying machine architecture, and 

compiler settings. For example, an application code may 
have computation time      , memory access time 

     and network transmitting time     . Without 



optimization, the total execution time is          ; 

however, the actual time is smaller.  
Thus we propose a comprehensive optimizat ion 

parameter, α, to capture computational overlap. α Theoretical 

execution time consists of computation time, memory access 
time, and remote data access time (or network transmission 

time). Thus we have: 
 

                                                      
                                                      
 

And we can define  :  

 
                                                         

                                                          
For parallel applications, we found empirically for the 

applications studied that an application using the same 

compiler settings has the same α value under different levels 
of parallelis m. However, different applications could have 

different α due to different execution patterns. In addition, 
same applications running on different machines also have 

different α values because of diverse underlying architectures. 

 

VII. CONCLUSIONS 

In this paper, we present a system level energy efficiency 

model for various parallel applications and large scale 
parallel system architectures. We extend the concept of 

performance isoefficiency to iso-energy-efficiency and show 
how to build an accurate system level energy efficiency 

model step by step. Then we apply our analytical model to 
real scientific applications from NAS Parallel Benchmark 

suites and illustrate how to derive essential model parameters 

to predict total system energy consumption and efficiency for 
large scaling parallel systems. After a thorough and detailed 

investigation of machine and application dependent 
parameters which have nontrivial impact on system energy 

efficiency, we apply the model to three scientific 
benchmarks representing different execution patterns to 

study what the influential factors are for system energy 

efficiency and how to scale them to maintain efficiency. The 
results conducted on two power-aware clusters show that our 

model can predict total system energy consumption within 
average 5% prediction error rate for parallel applications 

with various execution and communication patterns. And 
also, in the case study experiments, the results clearly show 

what the most influential factors are and how these factors 

can be tuned to maintain energy efficiency. Though this 
model can precisely predict energy in  various combinations 

of applications and hardware architecture, we still have a bit 
more parameters compared with the micro-architecture 

approach. In the future, we plan to integrate PowerPack  with 
other system measurement tools and together make it more 

compatible and easier for all users to model. Also, we want 
to extend the current model to heterogeneous systems. 
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