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Abstract

Two families of methods are widely used in data assimilation: the four
dimensional variational (4D-Var) approach, and the ensemble Kalman filter
(EnKF) approach. The two families have been developed largely through par-
allel research efforts. Each method has its advantages and disadvantages. It
is of interest to develop hybrid data assimilation algorithms that can combine
the relative strengths of the two approaches. This paper proposes a subspace
approach to investigate the theoretical equivalence between the suboptimal
4D-Var method (where only a small number of optimization iterations are
performed) and the practical EnKF method (where only a small number of
ensemble members are used) in a linear Gaussian setting. The analysis mo-
tivates a new hybrid algorithm: the optimization directions obtained from
a short window 4D-Var run are used to construct the EnKF initial ensem-
ble. The proposed hybrid method is computationally less expensive than a
full 4D-Var, as only short assimilation windows are considered. The hybrid
method has the potential to perform better than the regular EnKF due to
its look-ahead property. Numerical results show that the proposed hybrid
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ensemble filter method performs better than the regular EnKF method for
both linear and nonlinear test problems.
Keywords: Data assimilation, variational methods, ensemble filters, hybrid
methods.

1. Introduction

Data assimilation (DA) is a procedure to combine imperfect model pre-
dictions with imperfect observations in order to produce coherent estimates
of the evolving state of the system, and to improve the ability of models
to represent reality. DA is accomplished through inverse analysis by esti-
mating initial, boundary conditions, and model parameters. It has become
an essential tool for weather forecasts, climate studies, and environmental
analyses.

Two data assimilation methodologies are currently widely used: varia-
tional and ensemble filters [4, 13, 15, 26, 31, 44]. While both methodologies
are rooted in statistical estimation theory, their theoretical developments
and practical implementations have distinct histories. The four dimensional
variational (4D-Var) methodology has been used extensively in operational
weather prediction centers. In traditional (strong-constrained) 4D-Var a per-
fect model is assumed; the analysis provides the single trajectory that best
fits the background state and all the observations in the assimilation window
[48]. The 4D-Var requires the solution of a numerical optimization problem,
with gradients provided by an adjoint model; the necessity of maintaining an
adjoint model is the main disadvantage of 4D-Var. The ensemble Kalman
filter (EnKF) is based on Kalman’s work [25] but uses a Monte Carlo ap-
proach to propagate error covariances through the model dynamics. The
EnKF corrections are computed in a low dimensional subspace (spanned by
the ensemble) and therefore the EnKF analyses are inherently suboptimal.
Nevertheless, EnKF performs well in many practical situations [2], is easy to
implement, and naturally provides estimates of the analysis covariances.

It is known that the fully resolved variational method and the optimal
Kalman filter technique compute the same estimate of the posterior mean for
linear systems, linear observation operators, and Gaussian uncertainty [32].
For very long assimilation windows the 4D-Var analysis at the end of the
window is similar to the one produced by running a Kalman filter indefinitely
[19]. In the presence of model errors the weak-constrained 4D-Var and the
fixed-interval Kalman smoother are equivalent [38].
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With both methods coming to maturity, new interest in the community
has been devoted to assess the relative merits of 4D-Var and EnKF[27, 35].
The better understanding of the strengths of each method has opened the
possibility to combine them and build hybrid data assimilation methods; rel-
evant work can be found in [3, 5, 8, 12, 16, 17, 22, 24, 23, 28, 29, 30, 34, 39,
42, 43, 49, 51, 53, 54, 55, 56, 57, 58].

Little attention has been devoted to analyzing the practical situation
where only a small number of optimization iterations is performed in 4D-
Var, and only a small ensemble is used in EnKF. In this paper we study
the relationship between the suboptimal 4D-Var and the practical EnKF
methods in a linear Gaussian setting. The close relationship between 4D-
Var and EnKF opens the possibility of combining these two approaches, and
motivates a new hybrid data assimilation algorithm.

To be specific, consider a forward model that propagates the initial model
state x(t0) ∈ Rn to a future state x(t) ∈ Rn,

x(t) = Mt0→t (x(t0)) , t0 ≤ t ≤ tF. (1)

Here t0 and tF are the beginning and the end points of the simulation time
interval.

The model solution operator M represents, for example, a discrete ap-
proximation of the partial differential equations that govern the atmospheric
or oceanic processes. Realistic atmospheric and ocean models typically have
n ∼ 107 − 109 variables. Perturbations (small errors δx) may be simultane-
ously evolved according to the tangent linear model:

δx(t) = Mt0→t (x(t0)) · δx(t0) , t0 ≤ t ≤ tF. (2)

We consider the case where the initial model state is uncertain and a
better state estimate is sought for. The model (1) simulation from t0 to tF
is initialized with a background (prior estimate) xB

0 of the true atmospheric
state xt

0. The background errors (uncertainties) are assumed to have a normal
distribution (xB

0 − xt
0) ∈ N (0,B). The background represents the best

estimate of the true state prior to any measurement being available.
Observations of the true state yk = Hk(x

t
k)+εk are available at each time

instant tk, k = 0, . . . , Nobs − 1, where the observation operator Hk maps the
state space to the observation space. These observations are corrupted by
measurement and representative errors, which are assumed to have a normal
distribution, εk ∈ N (0,Rk). Data assimilation combines the background
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estimate xB
0 , the measurements y0, · · · ,yNobs−1, and the model M to obtain

an improved estimate xA
0 of the true initial state xt

0. This improved estimate
is called the “analysis” (or posterior estimate of the) state.

The four dimensional variational (4D-Var) technique is derived from vari-
ational calculus and control theory [48]. It provides the analysis xA

0 as the
argument which minimizes the cost function:

J (x0) =
1

2
(x0 − xB

0 )T B−1
0 (x0 − xB

0 ) (3)

+
1

2

Nobs−1∑

k=0

(Hk(xk) − yk)
T R−1

k (Hk(xk) − yk)

s.t. xk = Mt0→tk(x0) .

Typically, a gradient-based optimization procedure is used to solve the con-
strained optimization problem (3) with gradients obtained by adjoint mod-
eling.

In the incremental formulation of 4D-Var [4, 31, 41], one linearizes the
estimation problem around the background trajectory (the trajectory started
from the background initial condition xB

0 which has a state value xB
k at

tk). By expressing the state as the correction over the background state
xk = xB

k + ∆xk, k = 0, · · · , Nobs − 1, we have

J ′(∆x0) =
1

2
∆x0

T B−1
0 ∆x0 (4)

+
1

2

Nobs∑

k=0

(
Hk∆xk − dB

k

)T R−1
k

(
Hk∆xk − dB

k

)
,

dB
k = yk −Hk

(
xB

k

)
,

where ∆xk = Mt0→tk ∆x0, and Hk is the linearized observational operator
around xB

k at time tk. The incremental 4D-Var problem (4) uses linearized
operators and leads to a quadratic cost function J ′. The incremental 4D-Var
estimate is xA

0 = xB
0 +∆xA

0 . A new linearization can be performed about this
estimate and the incremental problem (4) can be solved again to improve the
resulting analysis.

Ensemble filters are based on the Kalman filter [25] theory, which gives
an optimal estimate of the true state under the assumption that probability
densities of all errors are Gaussian, and the model dynamics and observation
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operators are all linear. The extended Kalman filter [18] provides a subopti-
mal state estimation in the nonlinear case by linearizing the model dynamics
and the observation operator.

A typical assumption is that while the state evolves according to nonlinear
dynamics 1, small errors evolve according to the linearaized model 2. If the
errors in the model state at tk−1 have a normal distribution N (0,Ak−1) and
propagate according to the linearized model dynamics 2, then the forecast
errors at tk are also normally distributed N (0,Ak). The forecast is obtained
using

x
f
k = Mtk−1→tk

(
xA

k−1

)
, (5)Bk = Mtk−1→tk Ak−1 MT

tk−1→tk
+Qk ,

where MT is the adjoint of the tangent linear model, andQk is the covariance
matrix of model errors. In this paper we will consider perfect models, i.e., we
will assume Qk = 0 from now on. The analysis provides the state estimate
xA

k and the corresponding error covariance matrix Ak

xA
k = x

f
k + Kk

(
yk −Hk(x

f
k)

)
,Ak = Bk −Kk HkBk , (6)

Kk = Bk HT
k

(
HkBk HT

k +Rk

)
−1

,

where Kk is the Kalman gain matrix.
The extended Kalman filter is not practical for large systems because

of the prohibitive computational cost needed to invert large matrices and
to propagate the covariance matrix in time. Approximations are needed
to make the EKF computationally feasible. The (“perturbed observations”
version of the) ensemble Kalman filter [18] uses a Monte-Carlo approach to
propagate covariances. An ensemble of Nens states (labeled e = 1, · · · , Nens)
is used to sample the probability distribution of the background error. Each
member of the ensemble (with state xA

k−1(e) at tk−1) is propagated to tk using

the nonlinear model (1) to obtain the “forecast” ensemble x
f
k(e). If model

errors are considered, Gaussian noise is added to the forecast to account
for the effect of model errors. Each member of the forecast is analyzed
separately using the state equation in (6). The forecast and the analysis
error covariances (P f

k and P A
k ) are estimated from the statistical samples

({xf
k(e)}e=1,··· ,Nens

and {xA
k (e)}e=1,··· ,Nens

respectively). The EnKF approach
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to data assimilation has attracted considerable attention in meteorology [2, 6]
due to its many attractive features.

It has been established that the 4D-Var and the EnKF techniques are
equivalent for linear systems with Gaussian uncertainty [32], provided that
the 4D-Var solution is computed exactly and an infinitely large number of
ensemble members is used in EnKF, and they both use the same covariance
matrix. By equivalent we mean that the two approaches provide the same
estimates of the posterior mean. In practice, the dynamical systems of inter-
est for data assimilation are very large – for example, typical models of the
atmosphere have n ∼ 107 − 109 variables. As a consequence, the numerical
optimization problem in 4D-Var (3) can only be solved approximately, by
an iterative procedure stopped after a relatively small number of iterations.
(In practice, if possible, the number of iterations can be sufficient to ensure
that the difference between an exact solution of the minimization problem
and the truncated solution is smaller than the statistical uncertainty in the
analysis). Similarly, in an ensemble based approach, the number of ensemble
members is typically much smaller than the state space dimension and the
sampling is inherently suboptimal.

The main contribution of this work is conceptual, and proposes a subspace
approach to analyze the relationship between the suboptimal 4D-Var solution
and the suboptimal EnKF solution. The analysis motivates a new hybrid
filter algorithm for data assimilation which uses intermittent short 4D-Var
runs to periodically reinitialize an ensemble filter. Beside the conceptual
contribution, the new approach is potentially useful due to the following
characteristics:

• The hybrid method is computationally less expensive than the full
fledged 4D-Var: instead of solving the 4D-Var problem to convergence
over a long assimilation window, one solves it sub-optimally over a
short time sub-window; a less expensive hybrid filter then carries out
the data assimilation throughout the entire window.

• The hybrid method has the potential to perform better than the regular
EnKF. In the first cycle this is due to the special sampling of the initial
error space. In subsequent cycles the potential for better performance
comes from the look-ahead nature of the hybrid approach: while the
regular EnKF continues indefinitely with an error subspace constructed
based on past dynamics and past data, the hybrid EnKF periodically
chooses a new subspace based on future dynamics and future data.
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Preliminary versions of this work have been reported in Cheng’s Ph.D.
dissertation [11] and in the technical report [46].

The paper is organized as follows. Section 2 performs a theoretical analy-
sis that reveals subtle similarities between the suboptimal 4D-Var and EnKF
solutions in the linear Gaussian case, and for one observation time. This
analysis motivates a new hybrid filter algorithm for data assimilation, which
is discussed in Section 3. Numerical experiments presented in Section 4 re-
veal that the proposed algorithm performs better than the traditional EnKF
for both linear and nonlinear problems.

2. Comparison of Suboptimal 4D-Var and EnKF Solutions in the

Linear, Gaussian Case with a Single Observation Time

Consider a linear model that advances the state x ∈ Rn from t0 to tF ,

xF = M · x0 .

We assume that the model M is perfect (the model error is zero).
We also assume the initial state uncertain, and the prior distribution of

uncertainty is Gaussian, xt
0 ∈ N

(
xB

0 ,B0

)
. Consequently, the uncertainty

in the background state at the final time tF is also Gaussian. The mean
background state and the background covariance at the final time are

xB
F = M · xB

0 , BF = M ·B0 · MT .

A single set of measurements is taken at tF ; the measurements are corrupted
by unbiased Gaussian errors

yF = H · xt
F + εF , εF ∈ N (0,RF ) .

We consider the assimilation window [t0, tF ]. Under the above assumptions,
the posterior distribution of the true state is Gaussian, with mean xA and
posterior covariance matrix A

xt
0 ∈ N

(
xA

0 ,A0

)
, xt

F ∈ N
(
xA

F ,AF

)
.

We use both 4D-Var and EnKF methods to estimate the posterior initial
condition xA

0 . Each method is applied in a suboptimal formulation: only a
small number of iterations is used to obtain the 4D-Var solution, and only a
small number of ensemble members is used in EnKF.

We first state the main result of this section; the detailed analysis and
the proof follow.
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Theorem 1. Consider a linear, perfect model, with a Gaussian distribution
of the background initial condition errors. Consider the case of a single as-
similation window, with observations taken at only one time (at the end of
the window), and with Gaussian observation errors.

One posterior state estimate is computed by the suboptimal 4D-Var method
(truncated after several iterations); another estimate of the posterior mean
state is obtained by the suboptimal EnKF method (using only a small number
of ensemble members). Both methods use the same background covariance
matrix.

There exists a particular initialization of the ensemble for which the subop-
timal EnKF mean state estimate is equivalent to the state estimate computed
by the suboptimal 4D-Var method.

Comment. The setting of the theorem does not capture the ability of 4D-
Var to simultaneously incorporate time distributed observations, the effects
of nonlinear dynamics and nonlinear observation operators, and the benefits
of EnKF stabilization techniques like covariance inflation and localization.

Nevertheless, the simplified setting allows to draw interesting and useful
parallels between 4D-Var and EnKF, and to gain considerable insight.

2.1. Full 4D-Var Solution

The 4D-Var analysis is obtained as the minimizer of the function:

J (x0) =
1

2

(
x0 − xB

0

)T B−1
0

(
x0 − xB

0

)

+
1

2
(HMx0 − yF )T R−1

F (HMx0 − yF ) .

The first order necessary condition ∇
x0
J = 0 reveals that the optimum

increment is obtained by solving the following linear system:

A · ∆x0 = b

A =
(B−1

0 + MT HTR−1
F HM

)
(7)

b = MT HTR−1
F

(
yF − HMxB

0

)

∆x0 = x0 − xB
0 .

where the solution is the deviation of the analysis from the background state,
xA

0 = xB
0 + ∆x0. The system matrix A in (7) is the inverse of the posterior

covariance at t0 [20], A = A−1
0 . The right hand side vector b in (7) is the
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innovation vector corresponding to the background state dF = y − HMxB
0

scaled by the inverse covariance and “pulled back” to t0 via the adjoint model

b = MT HTR−1
F dF .

For nonlinear systems the above procedure (based on linearized dynamics
and observation operator) corresponds to the the incremental 4D-Var formu-
lation; this, in general, is only an approximation of full fledged 4D-Var, and
it coincides with the Gauss-Newton method for solving the optimality system
[21].

2.2. Iterative 4D-Var Solution by the Lanczos Method

In practice (7) is not solved exactly. It is solved within some approxi-
mation margin by using an iterative method and performing a number of
iterations that is much smaller than the size of the state space. We are
interested in the properties of this suboptimal algorithm. In the nonlinear
case a relatively small number of iterations are performed with a numerical
optimization algorithm.

Assume that the Lanczos algorithm [45] is employed to solve the sym-
metric linear system (7). The convergence of the Lanczos iterations (and, in
general, that of any iterative method) can be improved via preconditioning.
The background covariance is known and offers a popular preconditioner.
Assume that a Cholesky or a symmetric square root decomposition B1/2

0 ofB0 is available: B0 = B1/2
0 ·BT/2

0 , BT/2
0 =

(B1/2
0

)T

.

Applying the background covariance square root as a symmetric precondi-
tioner to the original 4D-Var system (7) leads to the following preconditioned
4D-Var system:

Ã · ∆u0 = b̃ (8)

Ã = BT/2
0 AB1/2

0 = In×n +BT/2
0 MT HTR−1

F HMB1/2
0

b̃ = BT/2
0 b = BT/2

0 MT HTR−1
F

(
yF − HMxB

0

)

∆x0 = B1/2
0 ∆u0

Assume that K Lanczos iterations are performed from the starting point
∆u

[0]
0 = 0, i.e., ∆x

[0]
0 = 0 (x

[0]
0 = xB

0 ). Consequently, the first residual is
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r[0] = b̃. The Lanczos method computes a symmetric tridiagonal matrix
T̃K ∈ RK×K and a second matrix

ṼK =
[
ṽ1, · · · , ṽK

]
∈ Rn×K

whose columns form an orthonormal basis of the Krylov space

KK(Ã, r[0]) =
{
r[0], Ã r[0], Ã2 r[0], · · · , ÃK−1 r[0]

}
.

The matrices have the following properties [45]

Ṽ T
K ṼK = IK×K , Ṽ T

K Ã ṼK = T̃K .

The approximate solution of the preconditioned 4D-Var system (8) obtained
after K Lanczos iterations is the exact solution of the system reduced over
the Krylov subspace KK ,

Ṽ T
K Ã ṼK · θ̃K = Ṽ T

K b̃ ; ∆u[K] = ṼK θ̃K (9)

Ṽ T
K Ã ṼK = IK×K + Ṽ T

K BT/2
0 MT HTR−1

F HMB1/2
0 ṼK

Ṽ T
K b̃ = Ṽ T

K BT/2
0 MT HTR−1

F

(
yF − HMxB

0

)

∆x0 = B1/2
0 ∆u[K] = B1/2

0 ṼK θ̃K

∆xF = M∆x0 = MB1/2
0 ṼK θ̃K .

An explicit form of the solution (9) can be obtained using the Sherman-
Morrison-Woodbury formula [37, 47]

(
W + UV T

)
−1

= W−1 − W−1U
(
I + V T W−1U

)
−1

V T W−1

with
W = IK×K and U = V = Ṽ T

K BT/2
0 MT HTR−1/2

F .

Together with the notationB̃1/2
0 = B1/2

0 ṼK ,B̃0 = B1/2
0 ṼK Ṽ T

K BT/2
0 ,B̃1/2

F = MB̃1/2
0 = MB1/2

0 ṼK ,B̃F = MB1/2
0 ṼKṼ T

K BT/2
0 MT ,
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the Sherman-Morrison-Woodbury formula leads to the following solution of
(9)

θ̃K = I − Ṽ T
K BT/2

0 MT HT
(RF + HMB1/2

0 ṼK Ṽ T
K BT/2

0 MT HT
)
−1

·HMB1/2
0 ṼK

(
I − B̃T/2

F HT
(RF + HB̃FHT

)
−1

HB̃1/2
F

)

·B̃T/2
F HTR−1

F

(
yF − HxB

F

)

∆xF = MB1/2
0 ṼK θ̃K = B̃1/2

F θ̃K

= B̃1/2
F

(
I − B̃T/2

F HT
(RF + HB̃FHT

)
−1

HB̃1/2
F

)

·B̃T/2
F HTR−1

F

(
yF − HxB

F

)

=
(B̃F − B̃F HT

(RF + HB̃FHT
)
−1

HB̃F

)

·HTR−1
F

(
yF − HxB

F

)

= B̃F HT
(RF + HB̃FHT

)
−1 (

yF − HxB
F

)
.

The above relation gives the 4D-Var update formula at tF :

xA
F = xB

F + B̃F HT
(RF + HB̃FHT

)
−1 (

yF − HxB
F

)
. (10)

A comparison between (10) and (6) reveals that the 4D-Var update (10)
is equivalent to a suboptimal Kalman filter update (10) at time tK = tF with

KF = B̃F HT
(RF + HB̃FHT

)
−1

.

Consequently the analysis covariance associated with the 4D-Var estimate is:ÃF = B̃F − B̃F HT
(RF + HB̃FHT

)
−1

H B̃F

= B̃F − B̃F HT R−1/2
F

(
I +R−1/2

F HB̃FHT R−1/2
F

)
−1R−1/2

F H B̃F

=
(B̃−1

F + HT R−1
F H

)
−1

,

where the last relation follows from another application of the Sherman-
Morrison-Woodbury formula.
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Finally, consider the “initial perturbations”

X̃0 = B1/2
0 ṼK . (11)

The system (9) can be rewritten in the following equivalent form

X̃T
0

(B−1
0 + MT HTR−1

F HM
)

X̃0 · θ̃K (12)

= X̃T
0 MT HTR−1

F

(
yF − HMxB

0

)

∆x0 = X̃0 θ̃K

∆xF = M∆x0 = MX̃0 θ̃K .

Thus the suboptimal 4D-Var solves the original system (7) by projecting it

onto the subspace spanned by X̃0.

2.3. EnKF Solution for a Small Ensemble

Consider now a standard formulation of the EnKF with K ensemble mem-
bers. Let 〈x〉 denote the ensemble mean and x′(i) = x(i)−〈x〉 , i = 1, · · · , K,
denote the deviations from the mean. The initial set of K ensemble pertur-
bations are drawn from the normal distribution N (0,B0). Equivalently, they
are obtained via a variable transformation from the standard normal vectors
ξi as follows:

x′

0(i) = B1/2
0 ξi , i = 1, · · · , K ; ξ =

[
ξ1, · · · , ξK

]
∈

(
N (0, 1)

)n×K
. (13)

The perturbations are propagated to the final time via the tangent linear
model (this holds true for perturbations of any magnitude for the linear
model dynamics assumed here)

x′

F (i) = M · x′

0(i) , i = 1, · · · , K .

Denote the scaled random vectors by

v̂i =
1√

K − 1
ξi , i = 1, · · · , K ; V̂ =

[
v̂1, · · · , v̂K

]
=

1√
K − 1

ξ ,

and the matrix of the scaled initial perturbations by

X̂0 =
1√

K − 1

[
x′

0(1), · · · ,x′

0(K)
]

(14)

= B1/2
0

[ ξ1√
K − 1

, · · · ,
ξK√
K − 1

]

= B1/2
0

[
v̂1, · · · , v̂K

]
.
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The ensemble covariance isB̂0 =
1

K − 1

K∑

i=1

x′

0(i)x′

0(i)
T = X̂0 · X̂T

0 (15)B̂1/2
0 = X̂0 = B1/2

0 V̂ ,

and, for a perfect and linear model,

X̂F = M · X̂0 , B̂F = X̂F · X̂T
F , B̂1/2

F = X̂F = MB1/2
0 V̂ . (16)

The EnKF analysis updates each member using the formula:

xA
F (i) = xB

F (i) + B̂FHT
(
HB̂FHT +RF

)
−1

·
(
yF (i) − HxB

F (i)
)

, i = 1, · · · , K .

Here yF (i) is the observation vector yF plus a random perturbation vector
drawn from the same probability distribution as the observation noise. The
ensemble mean values are updated using

〈xA
F 〉 = 〈xB

F 〉 + B̂FHT
(
HB̂FHT +RF

)
−1 (

yF − H〈xB
F 〉

)
. (17)

Comment. Other popular approaches to initializing the ensemble are the
breed vectors, the total energy singular vectors, and the Hessian singular
vectors [33]. For a linear system the breed vectors are (linear combinations
of) the eigenvectors associated with the dominant eigenvalues

M vi = λi vi , i = 1, · · · , K .

Let C0 and CF be two positive definite matrices. The total energy singular
vectors are defined with respect to the “energy” norms defined by these
matrices at t0 and tF , respectively:

MT CF M vi = λ′

i C0 vi , i = 1, · · · , K .

The Hessian singular vectors are the generalized eigenvectors associated with
the dominant generalized eigenvalues of the following problem:

MT CF M vi = λi ∇2J vi = λ′′

i

(B−1
0 + MT HTR−1

F HM
)

vi , i = 1, · · · , K .
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Note that the breed and total energy singular vectors are based only on the
model dynamics; the Hessian singular vectors account also for the initial
uncertainty (through B0) and for the observation operator H . None of them
accounts for the data yF . The 4D-Var Lanczos vectors account for the model
dynamics, the observation operators, and the data. The cost of computing
them is comparable to the cost of computing the Hessian singular vectors
over the same time window.

2.4. Comparison of 4D-Var and EnKF Solutions

2.4.1. 4D-Var Solution as a Kalman Update

A comparison of (10) and (17) reveals an interesting conclusion. The
suboptimal 4D-Var (in the linear case, with one observation time) leads to a
Kalman-like update of the state at the final time. The difference between the
4D-Var update (10) and the EnKF mean update (17) is in the approximation
given to the background covariance matrices. In the EnKF caseB̂1/2

F = MB1/2
0 V̂ ,

while in the 4D-Var case B̃1/2
F = MB1/2

0 Ṽ ,

where Ṽ are the orthonormal directions computed by the Lanczos algorithm
applied to the preconditioned system (9).

The standard EnKF initialization (13) is based on the random vectors ξ

sampled from a normal distribution. If the vectors ξ are chosen such that

1

K − 1
ξξT = V̂ V̂ T = Ṽ Ṽ T (18)

then the covariances are the sameB̂F = MB1/2
0 V̂ V̂ T B1/2

0 MT = MB1/2
0 Ṽ Ṽ T B1/2

0 MT = B̃F

and the EnKF analysis mean (17) coincides with the 4D-Var analysis (10).
An ensemble satisfying (18) will be called an equivalent initial ensemble.
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2.4.2. EnKF as an Optimization Algorithm

EnKF looks for an increment in the subspace of ensemble deviations from
mean

〈xA
F 〉 = 〈xB

F 〉 + X̂F · θ̂,
where the vector of coefficients θ̂ is obtained as the minimizer of the function
[40]:

J ens(θ̂) =
1

2
θ̂T θ̂ +

1

2

(
dB

F − HX̂F θ̂
)T R−1

F

(
dB

F − HX̂F θ̂
)

(19)

with
dB

F = yF − H〈xB
F 〉 .

The optimality condition ∇bθJ ens = 0 is equivalent to the linear system

(
IK×K + X̂T

FHTR−1
F HX̂F

)
· θ̂ = X̂T

FHTR−1
F dB

F . (20)

Using the Serman-Woodbury-Morrison formula to “invert” the system matrix
in (20) leads to the following closed form solution:

θ̂ = X̂T
FHT

(RF + HX̂F X̂T
FHT

)
−1

· dB
F (21)

〈xA
F 〉 = 〈xB

F 〉 + X̂F · θ̂
= 〈xB

F 〉 + B̂F HT
(RF + HB̂FHT

)
−1

·
(
yF − H〈xB

F 〉
)

.

This confirms that the EnKF analysis formula provides the minimizer for
(19).

Using (15)–(16) the system (20) becomes:

(
IK×K + X̂T

0 MT HTR−1
F HMX̂0

)
· θ̂ (22)

= X̂T
0 MT HTR−1

F dB
F

∆〈xF 〉 = 〈xA
F 〉 − 〈xB

F 〉 = X̂F · θ̂ = MB1/2
0 V̂ · θ̂

∆〈x0〉 = 〈xA
0 〉 − 〈xB

0 〉 = X̂0 · θ̂ = B1/2
0 V̂ · θ̂
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We can rewrite (22) as

X̂T
0

(B̂#
0 + MT HTR−1

F HM
)

X̂0 · θ̂

= X̂T
0 MT HTR−1

F dB
F (23)

∆〈xF 〉 = MX̂0 · θ̂
∆〈x0〉 = X̂0 · θ̂

where B̂#
0 is the pseudo-inverse of the initial ensemble background covarianceB̂0 = X̂0X̂

T
0 , X̂0 = UΣV T , B̂#

0 = UΣ−2UT .

A comparison of the EnKF system (22) with the 4D-Var system solved by
K Lanczos iterations (12) reveals that the two formulas are nearly identical.
EnKF solves a modified 4D-Var problem, with the inverse of background
covariance replaced by the pseudo-inverse of the ensemble background co-
variance; the system is solved via a reduction over the ensemble subspace.

Note that a reduction of the original 4D-Var system (7) onto the subspace
of randomly sampled ensemble deviations does not give correct results since

X̂T
0

(B−1
0 + MT HTR−1

F HM
)

X̂0 ≈ n − 1

K − 1
IK×K + X̂T

0 MT HTR−1
F HMX̂0

which is (considerably) different than the system matrix in (22).
Loosely speaking, an important difference between 4D-Var and EnKF

is the choice of subspace where the full system is reduced. In 4D-Var the
subspace is carefully chosen by the iterative procedure, while in EnKF this
subspace is chosen randomly in the first step, and is given by the assimilation
history in subsequent steps.

2.5. Statistical Properties of the Equivalent Initial Ensemble

We now consider the construction of an equivalent initial ensemble, i.e.,
the choice of vectors ξ such that (18) holds. A first idea is to use the initial
perturbations (11), i.e., to replace the random vectors by the scaled Lanczos
directions:

ξ =
√

K − 1 · Ṽ , (24)

x′

i = B1/2
0 ξi =

√
K − 1 ·B1/2

0 ṽi , i = 1, · · · , K .
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Note that the initial perturbations in the regular EnKF have zero mean. On
the other hand the Lanczos orthonormal directions ṽi are independent, and
therefore their ensemble mean is nonzero,

〈ṽ〉 =
1

K

K∑

i=1

ṽi =
1

K
Ṽ · 1K 6= 0

Consequently the ensemble (24) is biased and performs an adjustment of the
initial mean state. The bias can be removed by constructing a double-sized
ensemble of symmetric perturbations using ξ ∈ Rn×2K as follows

ξi =

√
K − 1

2
ṽi , ξK+i = −

√
K − 1

2
ṽi , i = 1, · · · , K . (25)

The mean is zero and the equivalence property (18) holds exactly

1

K − 1
ξ ξT =

[
1√
2
Ṽ ,− 1√

2
Ṽ

]
·
[

1√
2
Ṽ ,− 1√

2
Ṽ

]T

= Ṽ Ṽ T .

The existence of an equivalent initial ensemble completes the proof of Theo-
rem 1.

In practice one seeks to avoid the construction of large ensembles, which
are computationally expensive. We now discuss other approaches to generate
unbiased initial ensembles with a smaller number of members, and for which
the equivalence property (18) holds within some approximation margin.

1. Remove the bias by subtracting the mean from each Lanczos direction.

ξi =
√

K − 1 ·
(

ṽi −
1

K
Ṽ 1K

)
, i = 1, · · · , K. (26)

In this case the resulting initial ensemble covariance isB̂0 = B1/2
0 Ṽ

(
IK×K − 1

K
1K 1T

K

)
Ṽ T B

1/2
0

Alternatively, the bias can be removed by adding one additional en-
semble member initialized using

ξi =
√

K − 1 · ṽi , i = 1, · · · , K ; ξK+1 = −
√

K − 1 · Ṽ · 1K . (27)

In this case the initial ensemble covariance readsB̂0 = B1/2
0 Ṽ

(
IK×K + 1K 1T

K

)
Ṽ T BT/2

0
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2. The orthonormal Lanczos directions do not provide a random sam-
ple. In order to preserve the statistical interpretation of the EnKF the
initialization can be performed by a random sampling of the Lanczos
subspace:

ζ ∈
(
N (0, 1)

)K×K

, ξ = Ṽ · ζ . (28)

With this choice the initial ensemble is unbiased, and the equivalence
property (18) holds in a statistical sense:E [ξ] = Ṽ ·E [ζ ] = 0n×K ,E [

1

K − 1
ξ ξT

]
= Ṽ ·E [

1

K − 1
ζ ζT

]
· Ṽ T = Ṽ · Ṽ T .

3. A Hybrid Approach to Data Assimilation

The above analysis reveals a subtle similarity between the 4D-Var and
EnKF analyses for the linear, Gaussian case with one observation window.
If the initial ensemble is constructed using perturbations along the directions
chosen by the 4D-Var solver, the EnKF yields the same mean analysis as the
4D-Var yield. This result motivates a hybrid assimilation algorithm, where
4D-Var is run for a short window; the 4D-Var search directions are used to
construct an initial ensemble, and then EnKF is run for a longer time window.
The procedure can be repeated periodically, i.e., additional short window 4D-
Var runs can be used from time to time to regenerate the ensemble.

3.1. The Hybrid Algorithm

We now describe in detail the hybrid data assimilation algorithm; even
if the motivation comes from a linear analysis, the algorithm below can be
applied to nonlinear systems as well.

1. Starting from x
(0)
0 = xB

0 , run 4D-Var for a short time window. The
iterative numerical optimization algorithm generates a sequence of in-
termediate solutions x

(j)
0 for each iteration j = 1, . . . , ℓ.

2. Construct St0 , a matrix whose columns are the normalized 4D-Var dif-
ferences between adjacent iterations:

St0 =



 x
(j)
0 − x

(j−1)
0∥∥∥x

(j)
0 − x

(j−1)
0

∥∥∥





j=1,...,ℓ

∈ Rn×ℓ . (29)
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In the linear symmetric case the solution increment belongs to the
subspace spanned by the Lanczos vectors. In the nonlinear case the so-
lution increment belongs to the subspace spanned by successive search
directions. Therefore, the normalized differences between adjacent it-
erations play the role of the Lanczos vectors in the general case. Note,
however, that they are not orthogonal.

3. Perform a singular value decomposition of St0 :

St0 = UΣV T , (30)

and retain only the first K right singular vectors u1, . . . uK that cor-
respond to the largest K singular values σ1, . . . , σK . The directions
ṽi = ui, i = 1, · · · , K, are used in (24) to generate the initial EnKF
ensemble.
Alternatively, a less expensive Gram-Schmidt procedure can be used to
orthogonalize the columns of St0 ; in this case one chooses (the first) K

directions out of the set of ℓ orthogonal vectors.

4. EnKF initialized as above is run for a longer time period, after which
the ensemble is reinitialized using another short window 4D-Var run.

We next discuss qualitatively several aspects of the proposed hybrid ap-
proach.

3.2. The 4D-Var Perspective on the Hybrid Approach

The proposed hybrid method is computationally less expensive than the
full fledged 4D-Var, as only short assimilation windows are considered, and
only a relatively small number of iterations is performed. Instead of solving
the 4D-Var problem to convergence over the entire assimilation window, one
solves it sub-optimally over a short time sub-window; the less expensive
hybrid EnKF then carries out the data assimilation for the entire length
of the assimilation window. From a computational standpoint the hybrid
algorithm is an ensemble filter, with intermittent short 4D-Var runs used to
re-generate the ensemble subspace.

A practical question is how to choose the length of the short 4D-Var win-
dows in relation to the total length of the assimilation window. The answer is
likely to depend on the particular dynamics of the underlying model. There-
fore, a practical implementation would require an algorithm to monitor the
performance of the ensemble filter, and to decide on-line when to regenerate
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the ensemble subspace by running a new 4D-Var. A theoretical basis for such
an adaptive approach is not available, and needs to be the focus of future
research.

3.3. The EnKF perspective on the Hybrid Approach

The hybrid method is expected to perform better than the randomly
initialized EnKF due to the special sampling of the initial error space. Note
that the application of the hybrid method requires the 4D-Var machinery to
be in place (and in particular, requires an adjoint model). The infrastructure
is thus more complex than that required by regular EnKF; the complexity
is similar to the case where the total energy singular vectors (or the Hessian
singular vectors) are computed and used to initialize the ensemble.

Another popular approach to initializing the EnKF is to place the initial
perturbations along the “bred vectors” (BVs) [52]. The bred vectors share
similar properties with the Lyapunov vectors [1, 7]; they have finite ampli-
tude, finite time, and have local properties in space. The BVs capture the
maximum error growth directions in the model. For example, for linear sys-
tems, the bred vectors are (well approximated by) linear combinations of the
dominant eigenvectors (see the numerical experiments described in section
4.1). While the bred error subspace depends only on the model dynamics,
the hybrid subspace takes into account both the model dynamics and the
data over the short 4D-Var window. In his regard the hybrid initialization
has the potential to provide better results than the bred vector initialization.

Other methods of formulating/initializing the EnKF using special basis
vectors have been proposed in the literature, including the use of an in-
ternal coordinate system [40], and the use of orthogonal bases [34, 50]. A
comprehensive comparison of the hybrid approach with other initialization
methods is outside the scope of this paper; future research will elucidate the
similarities and differences.

In a longer run the error subspace sampled by (any flavor of) EnKF is
given by the previous analyses. Thus, over a long assimilation time window,
the differences between the analyses given by different versions of EnKF
will likely fade away. The hybrid method periodically resamples the error
space. (Note that this is also a common practice with particle filters). The
resampling involves a short 4D-Var run over the next small time interval.
At the resampling time the two filters take very different approaches. While
the regular EnKF continues with an error subspace constructed based on
past dynamics and past data, the hybrid EnKF chooses a subspace based on
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future dynamics and future data. Past information is used in the form of the
background covariance matrix. Due to this look-ahead property the hybrid
EnKF has the potential to perform better than the regular EnKF.

A practical question is whether it is possible to optimally combine the
regular subspace, which contains past information, with the hybrid subspace,
which contains future information. For example the random sampling (28)
could involve 2K basis vectors from both subspaces. Future research is
needed to fully answer this question.

4. Numerical Experiments

We now illustrate the proposed hybrid data assimilation algorithm using
two test problems, one linear and one nonlinear. The performance of the
hybrid approach is compared with the regular EnKF as well as with the
EnKF with the breeding initialization. While it is difficult to extrapolate the
results from simple test problems to complex systems, the numerical results
are encouraging and point to the potential usefulness of the hybrid approach.

4.1. Linear Test Case

To test the proposed hybrid approach, we first use a simple linear model
with n = 7 states. Define the diagonal eigenvalue matrix

D = diag{10, 9.9, 0.2, 0.1, 0.01, 0.001, 0.0001} ,

and the tridiagonal eigenvector matrix V :

V =




2 1 0 · · ·
1 2 1 · · ·
...

...
...

...
· · · 0 1 2


 .

The linear model is defined by the matrix

M = V · D · V −1

such that a multiplication by M advances the state in time by one time
unit. The linear model has two directions along which the error is amplified
(corresponding to the eigenvalues greater than one). The two dimensional
subspace of error growth can be spanned by only three ensemble members
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in EnKF, and by the first three directions generated by the 4D-Var itera-
tive optimization routine. For our test case, since the total state dimension
is seven, with only two major directions where the error grows, three 4D-
Var iterations (and three ensemble members, respectively) are sufficient to
capture these directions and hence obtain a sub-optimal solution.

The background covariance is constructed with a correlation distance L =
1, where each element is computed as follows: follows:B0(i, j) = σi · σj · exp

(
−|i − j|2

L2

)
, i, j = 1, . . . , n , (31)

with the standard deviations σi = 0.1.
The linear model is run for six time units. The “true” solution xt

i = 0
is zero at all times. Synthetic observations at the end of each time unit
are obtained by adding random noise with mean zero and covariance Ri =
diag{0.01}.

Since the system is linear, the cost function is quadratic, and the 4D-Var
solution is obtained by solving a linear system for the six time units. We
compute the perfect 4D-Var solution by solving this linear system exactly.
We also compute a suboptimal 4D-Var solution by applying a preconditioned
conjugate gradients (PCG) method with three iterations. The PCG and
the Lanczos approaches are equivalent [45], however, as discussed in [10],
practical applications favor PCG due to its low overhead and disk storage
requirements.

We use three ensemble members for the EnKF. Covariance inflation could
be used to correct for under-sampling errors. Since the test system has only
seven states, covariance inflation is not used here. Several versions of the
EnKF are implemented as follows:

1. EnKF-Regular. The ensemble is initialized using normal random sam-
ples and the perturbed observations version of the algorithm imple-
mented in [14].

2. EnKF-Eigenvector. The initial ensemble perturbations are placed along
the three dominant eigenvectors of the linear system, i.e., the initial
ensemble spans the directions of maximal error growth. This approach
represents the initialization along the bred vectors [52].

3. EnKF-Hybrid. A “short window” 4D-Var solution is obtained by using
only the observations t the end of the first time unit, and by applying
three PCG iterations. The directions generated by the short window
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4D-Var are used to initialize the hybrid EnKF method. The initial bias
is removed by subtracting the mean (26).

To assess the effectiveness of each assimilation method we compute the
2-norm of the analysis error ‖xa

i − xt
i‖ (analysis minus truth) at the end

of each time unit i = 1, · · · , 6. The results of the EnKF-Regular method
depend on the particular draw of normal random numbers used to initialize
the ensemble. To remove the random effects from the comparison, we perform
multiple EnKF-Regular experiments (each initialized with a different random
draw) and report the average errors from 1,000 converging runs.

In the regular EnKF ensemble generation, the ensemble of initial per-
turbations has zero mean. In the EnKF-Hybrid approach we take an extra
step to eliminate the bias by subtracting the mean from each perturbation
direction before constructing the initial ensemble. The same procedure is
applied in the EnKF-Eigenvector case. The evolution of the analysis errors
for different assimilation methods is shown in Figure 1.

The smallest errors are associated with the perfect 4D-Var solution, fol-
lowed by the suboptimal 4D-Var solution (three PCG iterations). The errors
keep decreasing until the end of window 4. The suboptimal 4D-Var solution
also shows small errors, approaching the perfect 4D-Var solution.

Among the three EnKF methods the largest errors are associated with
the regular version, which uses a random initial ensemble. The medium
errors are associated with the case where the initial perturbations are along
the dominant eigenvectors. Finally, the EnKF-Hybrid solution shows the
smallest errors. This indicates that the initial ensemble generated with 4D-
Var directions is more effective than initial ensembles obtained through either
random sampling or breeding.

To quantify the improvement provided by the hybrid approach we com-
pute the ratio between the analysis errors with hybrid EnKF and the regular
EnKF as follows:

error ratio =

∥∥xEnKF−Hybrid − xt
∥∥

‖xEnKF−Regular − xt‖ .

A similar metric is used for the analysis errors of EnKF-Eigenvector. The
error ratios are presented in Figure 2. The results indicate that both the
eigenvector and the hybrid versions of EnKF provide smaller errors than
the regular (randomly initialized) EnKF. The hybrid error is consistently
smaller than the eigenvector error, showing the power of the proposed hybrid
approach.
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Figure 1: Comparison of analysis errors for several data assimilation methods applied
to the linear test problem. Among the EnKF methods the hybrid version is the most
accurate.

We have performed additional experiments where the “short window 4D-
Var” used to initialize the hybrid ensemble spans two time units. The results
are similar to those obtained from only one window, and are not reported
here.

4.2. Nonlinear Test Case

The nonlinear test is carried out with the Lorenz-96 model [36]. This
chaotic model has n = 40 states and is described by the following equations:

dxj

dt
= −xj−1 (xj−2 − xj+1) − xj + F , j = 1, . . . , n , (32)

x−1 = xn−1 , x0 = xn , xn+1 = x1 .

The forcing term is F = 8.0. The Lorenz-96 model has been used to compare
4D-Var and 4D EnKF in [17].

The conventional EnKF method implementation follows the algorithm
described in [14]. We compare the following methods:

1. EnKF-Regular: sample normal random numbers to form the perturba-
tion ensemble, then add the perturbations ensemble to the initial best
guess (the background initial condition in the first window).
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Figure 2: Ratios of analysis errors obtained with different assimilation methods for the
linear test. EnKF-eigenvector over regular EnKF (solid), and unbiased EnKF-Hybrid over
regular EnKF (dashed).

2. EnKF-Breeding. The “breeding” technique described in [52] is used
to capture the maximum error growth directions of the system. The
initial ensemble perturbations are set along the bred vectors.

3. EnKF-Hybrid. A 4D-Var assimilation is run in a short window of 0.2
time units. The directions generated by the L-BFGS numerical opti-
mization routine are used to initialize the hybrid ensemble as explained
in Section 3. The initial bias is removed by subtracting the mean (26).

Each method uses an ensemble of 10 members. The total simulation time is
three time units of the Lorenz model. There are 15 equidistant observation
times; synthetic observations for all states are obtained from the reference
solution. The 4D-Var short window run used to initialize the hybrid ensemble
spans 0.2 time units (one observation time). This is very short compared to
the total assimilation window of 5 time units.

The background covariance is generated using (31) with L = 1.0 and
standard deviations equal to 1% of the initial reference values. The breeding
EnKF implementation follows the description in [52], where the perturba-
tions are propagated with the system for one time unit and rescaled. The
propagation and rescaling are carried out ten times. We use three resulting
bred vectors as maximum error reduction directions to construct the pertur-
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bation ensembles.
The ensemble filters use neither covariance inflation nor covariance local-

ization. While these techniques are useful in large scale systems, they are
not needed here as the number of samples is relatively large compared to the
size of the state space. Covariance inflation and localization could be used
with any of the ensemble filters if under-sampling becomes an issue.

In order to alleviate the impact of different random choices of the initial
conditions in EnKF-Regular, and of different random noise levels used to
perturb the observations, we run 100 independent tests with each method
to obtain the average solutions. Without loss of generality, we plot the first
component of the Lorenz chaotic state. Figure 3 shows the first component
of the solutions obtained with different methods. The reference solution is
represented with a solid line, with circles on it indicating the observations.
The background solution is represented with a dashed line. The EnKF-
regular solution is represented with dash dotted line, and the EnKF-Hybrid
solution is represented by a solid line with triangles. Both EnKF analyses
are in good agreement with the reference solution.

To better assess the accuracy of each method, we compute the root mean
square error (RMSE) of the average solution obtained from 100 runs for each
method, and plot the error in Figure 4. The dotted line shows the background
RMSE error. The EnKF-Regular RMSE is shown with a dash dotted line.
The EnKF-Hybrid RMSE is the solid line with triangles. The dashed line
with circle on it represents the EnKF-Breeding RMSE. We observe that both
the EnKF-Hybrid RMSE and the EnKF-Breeding RMSE are smaller than
the EnKF-Regular RMSE, showing improvements of both methods over the
regular sampling method for EnKF ensemble generation.

Figure 5 reports the ratio of the EnKF-Hybrid RMSE over the EnKF-
Regular RMSE, and the ratio of the EnKF-Breeding RMSE over the EnKF-
Regular RMSE. Both ratios are well below one throughout the simulation
interval, indicating that both methods perform better than EnKF-Regular.
The hybrid analysis error is smaller during most of the intervals [0,1.5] and
[2.5,3]. The breeding analysis error is smaller on most of the interval [1.5,2.5]
time units. The hybrid RMSE is about 70% of that of the regular EnKF.
We conclude that, for some time interval after initialization (here, 1.5 units)
the hybrid ensemble method works better than the breeding method. After
this interval a new short window 4D-Var may be necessary to reinitialize
the ensemble. More work is needed to formulate and test this resampling
strategy.
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Figure 3: Time evolution of the first Lorenz-96 component for different solutions. Refer-
ence (solid line), background (dashed line), analysis with regular EnKF, 10 members (dash
dotted line), and analysis with hybrid EnKF, 10 members (solid line with triangles).
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and breeding EnKF solutions.
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Figure 5: Ratios of analysis errors obtained with different assimilation methods for the
nonlinear test. Breeding over regular EnKF (dashed) and hybrid over regular EnKF
(solid).

The numerical tests in both linear and nonlinear cases show the hybrid
method improves the analysis solution when compared to the regular EnKF
solution. The implementation requires running a 4D-Var for a short time
window in order to collect the directions used to initialize the ensemble.
Tests also show that the proposed hybrid approach performs better than the
breeding method for some time interval after the initialization.

5. Summary

This work takes a subspace perspective on different data assimilation
methods. Based on this it establishes the equivalence between the EnKF with
a small ensemble and the suboptimal 4D-Var method in the linear Gaussian
case, and for a single observation time within one assimilation window.

The subtle relationship between these two methods motivates a new hy-
brid data assimilation approach: the directions identified by an iterative
solver for a short window 4D-Var problem are used to construct the EnKF
initial ensemble. The proposed hybrid method is computationally less expen-
sive than a full 4D-Var, as only short assimilation windows are considered,
and only a relatively small number of iterations is performed. The hybrid
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method has the potential to perform better than the regular EnKF due to its
look-ahead property. While the regular EnKF uses an error subspace that
is either randomly chosen, or constructed based on past dynamics and past
data, the hybrid EnKF uses a subspace based on future dynamics and future
data. The cost for the hybrid method is the more complex infrastructure
required including an adjoint model.

Numerical tests on both linear and nonlinear cases show that the proposed
hybrid approach improves the analysis accuracy of the regular EnKF. The
overall increase in computational cost over regular EnKF is moderate, as
short window 4D-Var problems are solved infrequently, and only a small
number of iterations is performed each time. The hybrid method requires
that a model adjoint is available. The proposed approach brings together
two different families of methods, variational and ensemble filtering. More
detailed tests on complex systems will be performed to further understand
the properties of hybrid data assimilation approaches.

Several extensions of the present work are possible and needed in order
to make the hybrid approach useful in real calculations. A theoretical basis
for choosing the length of the short 4D-Var windows in relation to the total
length of the assimilation window, and for deciding on-line when to regenerate
the ensemble subspace by running a new 4D-Var, is needed. Moreover, one
should investigate the possibility to optimally combine the regular subspace,
which contains past information, with the hybrid subspace, which contains
future information, and to assess the implications of this approach.
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