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Abstract—This paper describes in detail the continuous iteative guided spectral class rejection (CIGSCR)
classification method based on the iterative guided spectralass rejection (IGSCR) classification method for remotsf
sensed data. Both CIGSCR and IGSCR use semisupervised clasing to locate clusters that are associated with classes
in a classification scheme. In CIGSCR and IGSCR, training daa are used to evaluate the strength of the association
between a particular cluster and a class, and a statistical ypothesis test is used to determine which clusters should be
associated with a class and used for classification and whiausters should be rejected and possibly refined. Experimeal
results indicate that the soft classification output by CIGER is reasonably accurate (when compared to IGSCR), and the
fundamental algorithmic changes in CIGSCR (from IGSCR) resilt in CIGSCR being less sensitive to input parameters
that influence iterations. Furthermore, evidence is preseted that the semisupervised clustering in CIGSCR produces
more accurate classifications than classification based onustering without supervision.

I. INTRODUCTION

The conversion of the iterative guided spectral class tiejeIGSCR) classification method ([1], [2], [3]) from a far
classification to a soft classification method called cardirs iterative guided spectral class rejection (CIGSCRe8an soft
clustering will require the soft cluster evaluation andmefinent methods developed in Part 1. IGSCR evaluates hasteidu
using a statistical hypothesis test based on a binomialrandariable. This discrete random variable can be used tcehiaid
cluster and class memberships. CIGSCR uses the hypotlessisidveloped in Part 1 that is based on both discrete random
variables modeling class memberships of training data antirmious random variables modeling soft cluster memlyessi he
iterative cluster refinement in IGSCR assumes samples atbuatd to only one cluster (hard clustering), but the sidister
refinement proposed in Part 1 uses soft memberships to seedlngters, taking advantage of soft clustering and progdin
alternative mechanism for cluster refinement.

This paper describes how the soft cluster evaluation andem@nt are incorporated into the IGSCR framework to form
CIGSCR, and provides experimental results demonstratiaig@IGSCR can produce superior classifications to IGSQObgaally
in circumstances that are ideally suited for soft clusgramd classification. Section Il provides a detailed detonpof the
CIGSCR algorithm including pseudocode, and Section lItdlises how alternative clustering distance (dissimylafiinctions
may be used within CIGSCR. Section IV presents experimaetallts and detailed discussion, and Section V concludes th
paper.

II. CIGSCR ALGORITHM

CIGSCR, like IGSCR, begins by clustering an image, but enliBSCR, CIGSCR uses soft clusters where each sample has
partial membership in each cluster. Each soft cluster is th@luated using the association significance test based®wof two
standard normal random variables defined in Part 1,
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wheren, is the number of samples labeled with tktl class { < ¢ < C), W, ; is the average weight of samples labeled with
the cth class for thejth cluster { < j < K), w; is the sample mean of all weights in thth cluster, andSy; is the sample
standard deviation of the weights for thth cluster, and

z= ch _ ncmj 5 (2)
c
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wherey,. ; is the sum of weights of samples labeled with #ik class for thejth cluster,p. is the estimated probability of
the cth class, andSy, ; is the sample standard deviation of weights of samples dabeiith thedth class for thejth cluster.
Clusters that fail the test are refined in subsequent itarati Recall that unless termination criteria are met, a nlester is
introduced using information in an existing cluster, efffezly splitting that cluster into two clusters. The full GECR algorithm
is precisely defined in the pseudocode below using theisafeans clustering algorithm and the maximum likelihoodiglen
rule as discussed in Part 1.

Algorithm CIGSCR
Input: X (3-dimensional image)
¢~ (set of (row, col) indices for each class)
Kinit (number of initial clusters)
Kmax (maximum number of clusters)
C (number of classes)
¢ (convergence threshold)
« (Type-I error for one-sided hypothesis test)
0 (distance function penalty)
Output: DR (decision rule classification)
1S (iterative stacked classification)
begin
Initialize cluster mean#’ along the mean plus or
minus the standard deviation of the image
K = Kinit;
for iteration := Kinit step 1 until Kmax do
begin
w = 0; convergence := 1;
while convergence > € do
begin
num := 0; denom := 0;
for i := 1 step 1 until rows do
for j :=1 step1 until cols do
for k:=1 step 1l until K do
begin

1/[|X%) — ™3
K ..
Y YIX® —uO)3

=1
(update sums for mean calcs.)
num® := num® + 1I)Z-2j kX(ij);

2 .
i,k

*) Wij k=

)

denomy, := denomj, + W
end
(update cluster means)
for k:=1 stepl1 until K do
Uk num®) )
denomy,’
convergence := max |wij g — Wijkl;
75



w = W,

end
for k:=1 stepl1 until K do
begin
Determine majority class of clusterk;
Ck ‘= C,
() o= VAT T,
ka
end
if any class is not associated with a cludteen
begin

¢ := first unassociated class
e We, k
k= argma%—w%k
K:=K+1
Z wij p X )

K — ij€p~1(c)

Wi,k
ije€d~1(c)
end
elseif (any(Z;, < Z(«),k =1,...,K) then
begin
k = argmin, Zy;
K:=K-+1;
Z wij X )

UK — ijed—1(ck)

Wij,k
ijEp~(ck)
end
else
exit for loop;
end
end
for k:=1 step 1 until K do
begin
(initialize for covariance calcs.)
Y :=0;
denomy, :=0;
end
(IS classification)
for i := 1 step 1 until rows do
for j:= 1 step1 until cols do
begin
csum = 0;
for k:=1 step 1 until K do
if (Zr > Z(«)) then
CSUMye,, = CSUMc,, + Wij k;
for ¢:= 1 step1 until C do

CSUM
ISijﬁ = C 3
E csumyg
k=1

(calculate covariance matrices)
for k:=1 step 1l until K do



begin
Y=+ Wij k
(X)) — gy (x @) — gENT,
denomy, 1= denomy, + wyj k;
end
end
for k:=1 step 1l until K do
Yk = 1/denomy, - Xy;
(DR classification)
for i := 1 step 1 until rows do
for j := 1 step1 until cols do
begin
csum = 0;
for k:=1 step 1 until K do
if (Zr > Z(«)) then

begin
g 3D ) T () p (k)
p= 7TB/2|21@\% ’
CSUM, = CSUM, + D;
else
csume, =0,
end
for ¢:=1 step1 until C do
DRijo = Ccsumc :
Z cSuUMy,
k=1
end

end
(2) could be used in place of the less sophisticafgdalculation in line (**).

III. DISTANCE FUNCTIONS

For positive real numberg;;, i =1, ..., n; j =1, ..., K + 1, and weightsw;; computed in a particular way (such as in
soft k-means), the addition of a cluster will result in a smalleluezof the objective functiow(p) = >"." , > wfjpij (refer to
Part 1). Although the soft clustering iteration for the atjee functionJ(p) = > , Zj wfjpij is only guaranteed to converge
when p;; is Euclidean distance squared (between tiesample X and thejth cluster prototype/(?)), [4] suggests that
other functions may be used. The Euclidean distance squsradspecial case of a radial functiorf:: R — R is radial if
f(x) = f(y) for ||z||a = ||y||2- Thuspi; = f(z® —UD) = ||z —U)|} is radial. Some alternative radial functions include

f(@) = exp(||2]13)
and
f(x) =|l=ll3

whereg > 1 and p;; = f(z¥ — U\). The advantage of using a radial function is that distanees lie magnified so the
difference between large and small cluster weights will lrarextreme, approaching hard clustering.

None of the aforementioned metrics or radial functions arflte the assignment of cluster weights based on the prethbel
points. Semisupervised clustering uses prior informatomfluence a clustering method. Although the associatignificance
test and iteration are indirectly doing this, a modified ohje function could directly use prior information to inflace clusters.
Consider the modified objective function component

K
Ji= Y whpi(1+BLy), i=1,...,n,

j=1



where the term3L;; is the penalty associated with assigning a labeled pixel ttuster with a different associated label [5].
¢(i) = c is the class label of théh labeled pixel, and lep(i) = Q ¢ {c1, ..., cc} if the ith pixel is unlabeled,

¢, if the jth cluster is associated with the
{ cth class,
Q, otherwise,

Lo { 1, if 6(i) £, () # C(), CU) £ 9,
I 0, otherwise.

The distance functiorf (z() — U = d;; = p;;(1 + BL;;) can be substituted fgu;; in the CIGSCR algorithm to magnify the
weights of pixels labeled with theth class to clusters associated with b class. Note that in place of the distance function
used in line (*) of the above algorithm, one of the radial fiimes of Euclidean distance or a distance function with aafign
(6) could be used.

i) =

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The first dataset used to obtain experimental results folCEand CIGSCR is a mosaicked Landsat Enhanced Thematic
Mapper Plus (ETM+) satellite image taken from Landsat Witk Reference System (WRS) path 17, row 34, located in
Virginia, USA, shown in Fig. 1. This image, hereafter reéglito as VA1734, was acquired on November 2, 2003 and consists
largely of forested, mountainous regions, and a few dewslaggions that are predominantly light blue and light pinkFig.

1. Fig. 1 contains a three color representation of VA1734relibe red color band in Fig. 1 corresponds to the near irdrare
wavelength in VA1734, the green color band in Fig. 1 corresisato the red wavelength in VA1734, and the blue color band in
Fig. 1 corresponds to the green wavelength in VA1734. Figorains a zoomed area of interest.

The training data for this image was created by the inteaticet of point locations from a systematic, hexagonal grid
over Virginia Base Mapping Program (VBMP) true color digjitathophotographs. A two class classification was perfarme
(forest/nonforest), and classification parameters andltseesre given in Table 1 (DR classification) and Table 2 @%$/I
classification). Classification images for this datasetgiven in Figs. 3 though 8.

Validation data in the form of point locations at the centélUSDA Forest Service Forest Inventory and Analysis (FIA)
ground plots were used to assess the accuracy of this atasisifi. Since these validation data are typically used aluate
crisp classifications, only homogeneous FIA plots were ugdtther 100 percent forest or nonforest), and these plotse we
obtained between 1997 and 2001. Accuracy was assessed dasmd error matrix where classification results for specific
points (not included in the training data set) are compagainst known class values. The accuracies reported in §dbié
were obtained by first converting all soft classificationshtrd classifications for the purpose of comparing hard iflesson
values to hard ground truth values. The classification teseported in Tables 1-4 used 10, 15, 20, and 25 initial etagior
IGSCR and CIGSCR. Experimental runs of IGSCR used homotyetigiesholds (test probabilities of observing the majorit
class in a particular cluster) of .5 and .9, with= .01 for all IGSCR classifications. A threshold of .9 would indiea
a homogeneous cluster, but a threshold of .5 is perhaps mmalgous to the new association significance test used in
CIGSCR. Experimental runs of CIGSCR used traditional Flezin distance squared in addition to two proposed radiatifurs
f(X@D k) = || X6 —U®|d and f(X ) — UR)) = exp(]| X+ — UF)||,). For all reported CIGSCR runs, = .0001
(values ofz tend to be high for the association significance test). Adloréeed CIGSCR classifications used hypothesis test (2).
Only three out of 24 total CIGSCR classifications reportedhis paper were different using (1) and (2), and the diffeeeim
resulting classification accuracies was not significant @iddnot show that one test consistently resulted in highassification
accuracies than the other test. ValuesZofre slightly smaller using (2) than (1), resulting in moretgmdial for cluster
refinement. Additionally, the distance function with papalbas used in classification, although results are not teddn Tables
1 and 2 because incorporating the penalty into the distamoetibn did not increase classification accuracies in apggmental
runs. Large values of produced less accurate classification results. Finalassification was performed using just clustering
without the semisupervised framework to evaluate the efféthe combination of the association significance test itardtion
in CIGSCR on classification accuracies.

The second dataset used to obtain experimental result&S®BER and CIGSCR is a hyperspectral image of the Appomattox
Buckingham State Forest in Virginia, USA. The AVIRIS 224nbalow-altitude flight lines were acquired in the winter 9D
and ranged from approximately 400-2500nm (10nm spectsdlugon) with 3.4m spatial resolution [6]. The AVIRIS data
were geometrically and radiometrically corrected (to lel@ at-sensor radiance, units of microwatts per squareiroeter per
nanometer per steradian) by the Jet Propulsion Laboradéty; (Pasadena, California, USA). The three flight lines usedhis
study were registered (8—12 control points per flight lir@)ah existing 0.5m orthophoto of the area. Resampling rdutt
root mean square errors (RMSE) ranging between 0.23 andpix2¥ [6].
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Training data were acquired by collecting 142 field locadi¢@]surrounded by homogeneous areas of single pine species
(64 loblolly (Pinus taeda), 30 shortleaf Pinus echinata), and 48 Virginia pine Pinus virginiana)) with differentially corrected
global positioning system (GPS) coordinates. These looativere used in a region growing algorithm to obtain a seffici
number of points for training and validation, and nonpiraring data were acquired using knowledge of the area and wlap
known stands in the region. The image (shown in Fig. 9 anddfierereferred to as ABSF) contains various tree stands that
include the three species of pines listed above, hardwaodbmixed (evergreens and hardwoods).

400 points were randomly selected to serve as validatioa fdatthese four classes (loblolly, shortleaf, and Virgipiaes,
and nonpine). Classification results for these data arertegpan Tables 3 and 4, Fig. 10 contains the IGSCR IS clastiita
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Fig. 3. IGSCR DR classification using 10 initial clusters anbdomogeneity threshold of 90%.
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Fig. 4. CIGSCR DR classification using 10 initial clustersl &uclidean distance squared.

image using 25 initial clusters and a homogeneity thresbéld, and Figs. 11a—d contain the CIGSCR IS classificatioages
using 10 initial clusters and Euclidean distance to the tfogower. Classifications were run using the same paramaters
classifications reported in Tables 1 and 2. An asterisk (jdates that the classification failed because at least @ss tiad

no associated clusters. Tables 5 and 6 report the numberrefghusters (IGSCR), and the number of clusters produced and

number of associated clusters (CIGSCR).

A. Discussion.
The soft clustering and soft classification in CIGSCR canltdés qualitatively different classifications than IGSCRven
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Fig. 5. CIGSCR DR classification using 10 initial clustersl &uclidean distance to the fourth power.

when the final classifications are similar, CIGSCR providesarinformation through soft classification. The soft cifisations
in Figs. 4 and 5 compared to the hard classification in Fig.®vsthat even when the hard clustering/classification in IB2@d
the soft clustering/classification in CIGSCR identify ttearge general regions as likely to be forest or likely to be noedt, the
soft classifications in Figs. 4 and 5 provide extra informmtielating to how strongly a particular sample is forest onforest.
The dark green and dark brown colors indicate a high proialuif forest and nonforest, respectively. Lighter shadébath
colors indicate lower probabilities of membership in redpe classes, and the beige regions indicate that the pildles
of that region being forest or nonforest are almost equale @lassifications in Figs. 10 and 1la—d show that in addition t
providing more information, CIGSCR can produce qualiindifferent classifications than IGSCR. The classificadipresent
in Figs. 10 and 11a—d are the IS classifications that resoih fclustering, showing that soft clustering in CIGSCR piaahl
different clustering and classification than the hard esg in IGSCR. The regions identified by CIGSCR as beinglyike
contain individual pine species are different from the oegi identified by IGSCR, although both algorithms identifséahilar
nonpine regions.

Based on accuracies reported in Tables 1 and 2, CIGSCR iségsstive to the number of initial clusters than IGSCR,
especially when the alternative radial functions are ugesddshown in Tables 1 and 2, IGSCR can be sensitive to the nuofber
initial clusters and the homogeneity threshold. The setludters ultimately used for classification in IGSCR is dileaffected
by the number of initial clusters and the homogeneity test] furthermore, when all clusters fail the homogeneity, tés¢
iteration terminates and no more clusters are found. Thebeumf clusters used for classification can vary widely dejpagnon
the number of iterations completed as each iteration pialgnproduces several pure clusters. The low accuracipsrted for
the IGSCR IS+ classifications in Table 2 occur when a smallbbemof iterations occurs, which can be greatly influencedhey t
number of initial clusters and the homogeneity test. Thaesifwation accuracies reported for CIGSCR in Tables 1 ande2 a
more consistent as CIGSCR does not have the same sendisiitys. First, the association significance test no lorepprires
a user input threshold like the homogeneity test. The homeiye test evaluates the observed values against a uselieslipp
probability of observing a specific class (within a clustdm)t the association significance test determines if theageecluster
memberships per class are statistically significantlyedéht (requiring no user specified probability). Seconttlg, iteration in
CIGSCR is fundamentally different from the iteration in IGB. While each iteration in IGSCR locates multiple clustea@ch
iteration in CIGSCR adds one additional cluster, and teatig this iteration potentially excludes many fewer atustfrom the
final classification than terminating the iteration in IGSQGRpecially when few iterations occur). As classificatioetinods are
already sensitive to training data and clustering methodsensitive to initial prototype locations, classificadeing sensitive
to fewer parameters is a desirable property.

The CIGSCR classifications shown in Figs. 4, 5, 7, and 8 erpantally validate the discussion in Section 7 that radial
functions magnify the difference between the largest andllest cluster weights and will more closely approximatedha
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Fig. 7. CIGSCR IS classification using 10 initial clustersl &uclidean distance squared.

clustering. The classifications based on clustering withliaan distance to the fourth power have significantly fesamples
with almost equal probabilities of being in either classrfesponding to the beige color in the classification imageBhe
classifications based on clustering with an exponentiattian of Euclidean distance (not pictured) are even closehard
classification. Some beige areas remain in Figs. 5 and 8catidg that although classifications based on these fumtio
become more like hard classifications, in practice thesssiflaations retain desirable properties of soft clasdifica Based on
accuracies reported in Tables 1 and 2, these CIGSCR clagisifis with alternative radial functions are often the masturate
classifications for a given number of initial clusters. CIG8 with alternative radial functions is accurate, can apinate
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Fig. 8. CIGSCR IS classification using 10 initial clustersl &uclidean distance to the fourth power.

TABLE 1
IGSCR AND CIGSCR DECISION RULE (DR) CLASSIFICATION ACCURACIES FOR VA1734.

no. init.| IGSCR @ = .01) CIGSCR @ = .0001) clustering
clustersp=.5 p=.9 |p=|lz=Ul3|p=|z—Ul3|p=el*=Ulz| (no iteration)
10| 85.81 75.49 88.74 87.07 87.70 72.26
15| 88.22 74.56 80.50 88.53 86.97 73.72
20| 84.78 89.57 79.87 89.68 88.74 76.54
25| 87.49 84.25 81.44 89.47 88.74 77.58
TABLE 2

IGSCR ITERATIVE STACKED PLUS (IS+) AND CIGSCR ITERATIVE STACKED (IS)
CLASSIFICATION ACCURACIES FOR VA1734.

no. init.| IGSCR @ = .01) CIGSCR @ = .0001) clustering

clusterslp=.5| p=.9 |p=|lz=Ul3|p=|lz—-Ul3]|p=ell*"Ull|(no iteration)
10| 68.30 75.39 83.63 84.67 85.09 72.26
15| 86.34 74.56 76.96 86.03 85.19 72.99
20| 84.46 88.95 75.60 85.40 86.86 76.85
25| 66.63 83.94 78.52 88.32 87.28 76.75

hard classification when hard classification is desiredl, gtbvides more information than strict hard classificati@nd is less

sensitive to input parameters than IGSCR.

All classification methods can be expected to perform poatign training data are insufficient (samples within the sktta
are not represented in the training set). This is espedially in IGSCR where spectrally pure hard clusters contginmltiple
training samples must be located in order for samples tolieldd with that particular class. In the VA1734 dataset,anmle
of a spectral class with insufficient training data is waterd although water is technically nonforest, water is oftssified as
forest because water and forest are spectrally similar itaicewavelength regions. This is the case in Fig. 7 whereNbe
River running vertically through the zoomed area of intetess been identified as forest. In Fig. 6, this region is “assified”
meaning that these pixels are not part of a pure cluster asceegh (few or no water training samples are identified fos thi
image/training dataset). Another misclassification os@sg a result of shadows in the forested mountains runnirggpdaly in
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