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Abstract

As supercomputers continue to grow in scale and ca-
pabilities, it is becoming increasingly difficult to isolate
processor and system level causes of performance degra-
dation. Over the last several years, a significant number
of performance analysis and monitoring tools have been
built/proposed. However, these tools suffer from several
important shortcomings, particularly in distributed envi-
ronments. In this paper we present ScALPEL, a Scalable
Adaptive Lightweight Performance Evaluation Library for
application performance monitoring at the functional level.
Our approach provides several distinct advantages. First,
ScALPEL is portable across a wide variety of architectures,
and its ability to selectively monitor functions presents
low run-time overhead, enabling its use for large-scale
production applications. Second, it is run-time configurable,
enabling both dynamic selection of functions to profile as
well as events of interest on a per function basis. Third,
our approach is transparent in that it requires no source
code modifications. Finally, ScALPEL is implemented as a
pluggable unit by reusing existing performance monitoring
frameworks such as Perfmon and PAPI and extending them
to support both sequential and MPI applications.

1. Introduction

Millions of dollars are spent each year in building faster
HPC systems to reduce computation time for a wide range
of computational science and engineering applications. How-
ever, only a few select benchmarks achieve anything close
to peak performance on these high-end resources, with most
applications running at a small fraction of the advertised
peak speed. Increasing the usable capacity of high-end
computational resources necessitates the use of performance
measurement and analysis tools that provide detailed sensor
data to guide algorithm redesign and optimization.

Performance analysis of even sequential single node ap-
plications is complicated by several factors including cache
hierarchy, data placement, resource usage and TLB misses
to name a few. This problem is significantly exacerbated
for large-scale parallel applications that face variations in
scheduling and message transfer latency.

Simple UNIX commands and basic tools like time and
gprof [1] provide preliminary information such as the total
amount of time spent in a particular code segment. However,
in order to optimize the application this information is not
sufficient. The total time reported by these tools is a function
of several factors which are often not visible in the source
code but happen dynamically when the code is executed
on a particular platform. Hardware performance counters
provide valuable insights into various performance aspects
of applications; they report the “cause(s)” rather than just
the “effect(s)”.

Traditional tools such as Perfmon [2], PAPI [3], [4], Perf-
suite [5] and many others are commonly used to monitor
hardware counters. While such tools are quite useful, they
suffer from several shortcomings.

First, such tools/libraries monitor only a fixed set of events
throughout the lifetime a program. Modern x86 processors
only allow monitoring of four events at best. These events
are hard-coded while profiling the program. Hence, fully
exploring the desired event space1 requires a time consuming
iterative process of compiling and running the application
many times. Moreover, this process may also require mod-
ifications to the source code in order to accommodate a
different set of events. Additionally, some of the tools [2], [3],
[4], [6], [7] are not easily usable, since they involve a learning
curve to understand the API they provide.

In addressing these issues, some of the tools [2], [5]
provide transparency through statistical code sampling and
time sharing software multiplexing techniques [8], [9], [10],
[2]. While such techniques are useful in exploring the event
space, they suffer from tradeoffs involving high accuracy
(high sampling rate) and low performance overhead (low
sampling rate).

Most importantly, such techniques are not suitable for a
wide range of applications because they report the counter
values during a particular phase. This is a serious limitation.
Consider a scenario where an application is iterative in
nature with varying phases during iterations. Multiplexing
events in time may not be synchronized with the phase of
the application and hence the true nature of the application

1. The set of all counters the performance analyst is interested in
monitoring.



is not captured.
Second, existing tools do not facilitate a complete run-

time configuration of hardware performance counters. The
counters are defined at compile time and cannot be modified
during execution of the program.

Third, most of tools are based on techniques that involve
a significant overhead. These techniques commonly involve
interrupts, timers, break-points, etc. Such techniques affect
the critical path of execution and often result in significant
monitoring overhead.

Finally, most of the tools do not provide runtime access to
the counters. The raw values obtained from the counters are
usually reported after program termination. The lack of such
information prevents applications from making any runtime
decisions based on performance characteristics. Libraries
such as PAPI and Perfmon provide an API to read the
counters. However, the counters cannot be accessed asyn-
chronously since the API function calls must be embedded
in the code and hence must be specified at compile time.

Even though there are a plethora of performance moni-
toring tools, analyzing the performance of parallel applica-
tions is still a tedious task for two reasons. First, parallel
applications are inherently complex. Second, as discussed
previously, the tools are not flexible enough and do not
simplify the task of performance analysis. In order to sim-
plify this problem and address the above mentioned issues,
we present a compiler directed tool called ScALPEL to
monitor hardware performance counters. Our intent is not
to develop yet another performance monitoring tool, but
instead to develop an approach that can be easily combined
with existing tools such as Perfmon and PAPI and make them
more usable.

In this paper, we propose a simple solution that addresses
the above problems and makes the following contributions:

• Simple: We provide an approach that simplifies the
process of performance monitoring.

• Lightweight: We propose and demonstrate a new com-
piler driven technique that reduces the performance
monitoring overhead significantly, compared to tradi-
tional approaches.

• Dynamic: We provide a technique that facilitates con-
figuration and access of hardware performance coun-
ters at runtime.

• Portable: We propose an approach that is portable and
transparent and can be seamlessly plugged into existing
libraries.

The rest of the paper is organized as follows, we discuss
related work in Section 2. We present the details of our
approach and implementation in Section 3. In Section 4 we
present our evaluation, case study and experimental results.
In Section 5 we present the limitations of our approach and
finally in Section 6 we summarize our conclusions.

2. Related Work

To place our work in the context of existing research and
to help clearly understand our contributions, we classify ex-
isting approaches based on the level of their implementation
(software and hardware).

Software tools can be classified into libraries, tools
and simulators. Libraries such as PAPI [3], [4], Perfmon
(libpfm) [2] and PCL [7] provide APIs that are well doc-
umented and easily accessible. However, they suffer from
several important drawbacks. First, they do not offer any
transparency to the performance analyst. The performance
analyst usually has to go through the tedious task of modify-
ing the program and re-compiling it several times to monitor
all the counters.

On the other hand, open source tools such as Perfmon
(Pfmon) [2], Apple’s Shark [6], Perfsuite [5], ProfileMe [11],
TAU [12] and commercial tools such as Intel’s VTune [13]
are usable, transparent and provide elaborate graphical re-
sults. However they often suffer from significant profiling
performance overhead. Most importantly most of these tools
install break points in the application and hence are not
suitable for profiling recursive or nested function calls. Our
experiments with Perfmon indicate that such techniques can
lead to significant performance overheads. Another approach
proposed by Zagha et al. [14] provides minimal information
at a per process level. Such implementations have lower
performance overhead at the expense of granularity and
portability. Most importantly, Zagha’s implementation is
specific to the MIPS architecture and it is not portable across
other commonly used architectures such as x86. We take a
completely different approach by providing a much more
fine-grained, portable and architecture independent solution.

Software tools can also be classified based on the under-
lying profiling technique. Several approaches [8], [15], [2], [6],
[12] are based on statistical sampling. Such implementations
are often faced with a choice between accuracy and perfor-
mance penalty. Our approach does not involve sampling; in
fact, we leverage support from the compiler to profile the
application.

Other implementations of performance tools rely on sim-
ulators [16], [17], [18], [19]. They provide limited information
with a limited set of events for the modeled processors. Such
an approach is often slow and not scalable across different
nodes in a cluster. We choose to implement our technique
using real systems running on commonly used architectures;
moreover, our approach is easily scalable across multiple
cores and nodes in a cluster.

Finally, other approaches [20], [11] include special purpose
hardware to monitor the counters. Such techniques incur
relatively less performance overhead compared to software
based approaches. However, they are not usable in that they
require special hardware, which is expensive and usually not
a feasible solution to install on all the nodes in a cluster.



Furthermore, they require architecture-specific software to
use their hardware. In contrast, our approach is software
based and can run as a module on existing tools and libraries.

3. Our approach

In this section we discuss the design and implementation
details of ScALPEL. We also explain the rationale behind
some of our design choices.

3.1. Overview

We present an overview of our approach in Figure 1a.
Our design includes support for instrumenting source code
and adaptively configuring hardware performance counters
and functions at runtime. We provide a runtime library
that implements the instrumentation callbacks and facilitates
runtime reconfiguration. We link the application’s object
code and the runtime library with a pre-existing user-space
hardware performance monitoring library to generate the
application binary.

Unlike traditional debugging techniques such as break-
points, interrupts and timers, we use a compile time tech-
nique to instrument source code. We choose this approach
because of its low overhead and ease of installing callbacks
in the object code. From a performance analyst’s perspective,
while our current implementation requires source recom-
pilation, it does not require any code modifications. The
instrumentation occurs at the object code level. We designed
our approach to be generic in that it can be extended to other
existing compilers and performance monitoring utilities. We
choose to use the GNU compiler collection and Perfmon
for several reasons. First, they are both open source and are
commonly available. While Intel Compilers [21] also support
function level instrumentation, they are commercial products
and not freely available. Second, the design and interface for
the Perfmon library is well written and easy to understand.
Finally, extending our approach to include other libraries
such as PAPI requires little or no effort.

We present a detailed discussion of ScALPEL’s instru-
mentation methodology and its runtime system in the fol-
lowing subsections.

3.2. Compiler directed instrumentation

The GNU compiler [22] supports function level instru-
mentation through its code generation options [23]. Based
on these options, the compiler instruments either all or
selected 2 functions in an application. In the case of selective
functional profiling, the performance analyst is required to
identify the functions that are of interest and enumerate the

2. selective functional profiling is available in GCC 4.3.2 onwards

rest of the functions as arguments to the compiler command-
line. The compiler then instruments these functions with
function handlers or callbacks upon function entry and exit.
These function handlers are embedded in the object code.
For example, as shown in Figure 1b, function foo is instru-
mented by the compiler by inserting callbacks immediately
upon entry and just before exit. This concludes the first
step where the application is aware of functions that can
be monitored.

We provide two degrees of freedom to the user: the ability
to dynamically change the “events” and the “functions” to
monitor at runtime. It is important to note that the list of
functions specified at compile time defines the set of all
functions that are intercepted. Our design provides enough
flexibility to let the user select a subset from this set of
functions at runtime. If the set cannot be determined at
compile time then an alternative is to choose all functions to
be intercepted. This results in additional but minor overhead
in most cases. However, the actual overhead is strictly
application dependant. We present a detailed discussion of
the performance implications of these alternatives in the
Section 4.

We define a context for each function that the user is
interested in monitoring. In ScALPEL a context is centered
around a function. The context includes the function name,
total number of events, the events, number of subevents for
a given event and its corresponding subevents. In Table 1
we present a semantic representation of a typical context.
This contextual information is supplied by the user in a
configuration file and can be altered at anytime during the
application’s execution.

3.3. Runtime library

In this section we discuss the next step in perfor-
mance monitoring, i.e., how ScALPEL actually monitors
the hardware counters and how the context information
can be changed at runtime. Recall that during compile
time, only function handlers are placed in the object code.
The ScALPEL’s runtime shared library implements these
function entry and exit handlers. When it is first loaded
the runtime library creates a list of all function contexts
described by the user from the initial configuration file.

At runtime, for every function in the set, on entry
ScALPEL checks if a context corresponding to this function
is specified by the user. If a context does not exist then
the function continues executing normally. If a context does
exist, then it is loaded and monitoring is initiated for the
function. ScALPEL retains the context across any recursive
or immediate successive calls to the same function. This
helps in reducing the monitoring overhead during recursion
and also in situations where a function is called several times
repeatedly within a loop. ScALPEL stops monitoring the
counters on exit of a function. ScALPEL’s runtime library



(a) overview (b) control flow

Figure 1: Overview and instrumentation process of ScALPEL.

uses the user-space Perfmon library (libpfm) to monitor
performance counters. The hardware counters are specific
to the executing process and not for the entire system. In
fact they specifically measure the counters during the scope
of a function’s execution. The callbacks installed during
the instrumentation process identify functions by only their
addresses. ScALPEL resolves the addresses with function
names by reading the symbol table in the object file to
present meaningful results to the user. The results include the
name of the function, set of events and their corresponding
counter values.

The runtime library is flexible in that it allows the
performance analyst to modify the contexts at runtime in
several ways. For instance, a new configuration file may
be loaded at any time by sending a signal (SIGUSR1) to
the application. At this point the runtime system dumps the
previous contexts and creates a new set of contexts. New
functions can be added or deleted from the list as long
as they are from the set specified at compile time. If new
functions are added, and whenever they are encountered dur-
ing execution thereafter, they are monitored. Functions may
also be deleted which stops their monitoring. In addition to
dynamically configuring the functions and events, ScALPEL
also supports multiplexing of events within a function based
the number of function calls.

The runtime library contains other data structures that
store the counter information and provide easy access to
this data at runtime. This allows the performance analyst to
make runtime decisions. By default, the values of hardware

counters observed during program execution are written to
stdout upon termination of the program. In our present
implementation we choose to use libpfm to monitor the
hardware counters; however, other libraries such as libpapi
can be used with minor code modifications to the runtime
system.

4. Experimental analysis and results

In this section we explain in detail our experimental
methodology and the results of our approach. We tested the
ScALPEL prototype on the System-G [24] supercomputer
running Linux 2.6.27.10 x86 64 kernel with the Perfmon
kernel patch [25]. Each node in System G has two quad
core Intel Xeon processors running at 2.8 GHz and 8GB of
main memory. The nodes are interconnected over a QDR
Infiniband switching fabric.

We initially present a performance analysis of our ap-
proach compared to Perfmon. We then present a case study
to show the flexibility and ease of use of ScALPEL. We
used the NAS-Parallel benchmark suite [26] for performance
analysis and LINPACK [27] as a case study to help illustrate
the adaptivity provided by ScALPEL.

4.1. Performance evaluation

We quantify the performance overhead by measuring the
total real time for each execution using the UNIX time
command. We define the following four test cases;
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Figure 2: Illustrates the performance overhead of various test cases vanilla, perfmon, all and selective along with the selected
function and its total number of calls. We choose to use log10 scale for BT and IS because the overhead of perfmon was
too dramatic and the rest of the cases were negligible in the graph otherwise.

• vanilla: does not involve any hardware performance
monitoring. The application is run natively

• perfmon: measures the hardware counters using Perf-
mon tool

• all: intercepts all the functions in an application, i.e.,
set of all intercepted but not necessarily monitored
functions

• selective: intercepts and monitors only a subset of the
total functions in an application

In order to fully understand the extent of performance
overhead involved in providing complete flexibility to
choose both functions and counters, we sub-divide our
approach into two categories (all and selective), depending
on the size of the set3. The all and selective test cases
describe the worst and best case scenarios respectively of our
instrumentation overhead. However, it is important to note
that they are not necessarily indicative of the performance
counter monitoring overhead. To evaluate the monitoring
overhead, we choose to monitor a single function at a time
throughout the execution of an application. We choose to
do this because it is not possible to obtain the hardware
performance counter values for individual functions at a per-
function level using perfmon without involving sampling.

3. Recall that the size of the set indicates the number of functions chosen
for profiling at compile time.

Hence, in the case of all, we intercept all functions but
monitor only one function, thereby paying the cost of
monitoring without any gains from the ability to dynamically
change the set of monitored functions. Similarly, in the case
of selective and perfmon we intercept and monitor only one
function. We monitored the same set of events and same
functions across all four test cases.

We monitored several functions, one at a time per each
benchmark. The choice of these functions is based on the
number of times they are called during the entire program
execution. In Figure 2 we present results for the functions
that were called the maximum number of times. Figure 3
illustrates the results for functions which were called on
the order of tens of times, hundreds of times and several
thousands of times. We choose the NAS CLASS C work-
load and ran each benchmark with increasing number of
processors (1 <= NPROCS <= 81). Finally, we ran
each benchmark using perfmon (pfmon-3.6). We compiled
the sources of Perfmon with debugging support disabled
(CONFIG PFMON DEBUG=n) in the config.mk file and
we also commented a printf statement that prints “unknown
ptrace event” in Line 2045 in pfmon task.c.

We present our findings briefly below:
• In general, vanilla took the least amount of time to

execute (shown in Figures 2a–2f) compared to the
other cases (perfmon, all and selective). This was the



Table 1: Layout of a sample configuration file

BINARY=my_a.out // name of the binary
NO_FUNCTIONS=1 // number of functions

[FUNCTION]
FUNC_NAME=foo // name of the function

NO_EVENTS=2 // total number of events

[EVENT]
ID=DATA_CACHE_MISSES // the event name or id
NO_SUBEVENTS=0 // number of subevents
[/EVENT]

[EVENT] // begin event information
ID=DISPATCHED_FPU
NO_SUBEVENTS=3
[SUBEVENT] // list of subevents
ID=OPS_ADD
ID=OPS_ADD_PIPE_LOAD_OPS
ID=OPS_MULTIPLY_PIPE_LOAD_OPS
[/SUBEVENT]
[/EVENT] // end of event

[/FUNCTION] // end of function

expected result.
• In scenarios where the number of times a particular

function is invoked is relatively small (tens of thou-
sands), the performance monitoring overhead of perf-
mon is comparable to selective and all, as shown in Fig-
ure 2e. This is because the overhead of the underlying
technique (breakpoints or compiler instrumentation) is
independent of the total life time or scope of a particular
function; instead, it depends on the number of times
the function is called. Hence, in such scenarios, the
actual impact of the hardware performance monitoring
methodology is insignificant in the total execution time.

• The overhead of all was higher compared to vanilla and
selective for some benchmarks. Since the underlying
performance monitoring technique of all and selective
are the same, this overhead is solely attributed to addi-
tional cost of intercepting all functions. The extent of
this overhead depends on the total number of functions
and the number of times each is invoked. We found that
in some cases with relatively small number of function
calls, (shown in Figures 3g-3h) all had slightly more
overhead compared to Perfmon.

• In general, for a majority of benchmarks the over-
head of perfmon was much higher than ScALPEL; in
some cases (Figures 2a-2b) by two to three orders of
magnitude. We found that the selective test case had
significantly lower overhead compared to perfmon. This

overhead varies with function call counts in different
benchmarks as shown in Figures 2a-2f. The key reason
for the reduction in overhead was our use of function
interception instead of breakpoints in perfmon, which
incurs increasing overhead as the monitored function is
called repeatedly. Also, the overhead of using perfmon
to monitor a particular function was higher than the
overhead of cumulatively profiling all the functions and
monitoring the counters for a given function using all.
Figure 2 clearly shows that the compiler directed ap-
proach provided by ScALPEL provides a low overhead
approach to parallel performance measurement.

4.2. Case Study

In this section we use a simple case study to illustrate
the benefits of runtime reconfigurability as provided by
ScALPEL. Two features of ScALPEL are particularly im-
portant in this case study, namely the ability to profile only
specified functions and the ability to dynamically switch be-
tween any number of hardware counters. Existing tools, such
as Perfmon, allow users to change the counters of interest at
regular specified time intervals. However, switching events
at fixed time intervals does not yield accurate performance
results for function-level profiling since there may not be
any correlation between the time intervals and the function
call pattern of the application. In this case study we use
ScALPEL to cycle through the event sets of interest after
a fixed number of calls to the function(s) of interest. Fur-
thermore, the performance of real applications often depends
subtly on interactions among several factors, e.g., instruction
level scheduling and parallelism, register pressure, memory
hierarchy issues, etc. Hence, it is extremely difficult to
know, a priori, which few event counters to track in a given
performance gathering run. With ScALPEL, we can gather
data from an arbitrary number of performance counters, by
cycling through a large set of counters in a predictable way.

As a case study, we use the LINPACK benchmark to
compare the performance of two different implementations
of the Basic Linear Algebra Subprograms (BLAS), viz.
ATLAS [28] and GotoBLAS [29]. The goal here is not to
benchmark a system, but rather to study the performance of
two implementations of the dominant linear algebra kernel
underlying that benchmark code. We do this by analyzing the
hardware counters and not the implementations themselves.

High-performance scientific computations depend to a
large degree on the performance of the matrix multiplication
kernel. The General Matrix Multiply (GEMM) subroutine in
BLAS performs matrix multiplications C ← αAB + βC;
A, B and C being matrices, while α and β are scalar
coefficients. GEMM is often highly tuned to run as fast
as possible for high-performance computing as it is the
building block for many other routines. GEMM is often used
recursively, with input matrices decomposed into smaller
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Figure 3: Illustrates the performance overhead of various test cases vanilla, perfmon, all and selective along with the selected
function and its total number of calls.



block matrices which are in turn operated on using GEMM.
Such matrix decompositions allow for better locality of
reference, thereby yielding better utilization of system cache.
When there is more than one level of cache, blocking
can be applied at each level. This technique is one of
the optimizations used in the implementation of ATLAS,
and based on published reports, one expects the ATLAS
implementation of GEMM to perform well in terms of its
use of the memory hierarchy. In GotoBLAS, on the other
hand, the focus is on minimizing Translation Look-aside
Buffer (TLB) table misses. According to [30], “While the
importance of cache is also taken into consideration, it is the
minimization of such TLB misses that drives the approach.”
TLB misses are minimized by filling most of the memory
addressable by the TLB with the matrix A, while operating
on matrices C and B a few columns at a time.

We used ATLAS developmental version 3.9.5 and
GotoBLAS version 1.26 in our case study. Both ATLAS
and GotoBLAS were compiled to use only a single
thread. ATLAS was compiled with both the architectural
defaults and full search (-Si archdef 0). Five different
sets of events were monitored in a single sampling
run of the benchmark viz. {DTLB MISSES:ANY
and L2 LINES IN:ANY}, {L2 RQSTS:ANY and
SSE PRE MISS:NTA:L1:L2}, {L1D ALL REF and
L1D ALL CACHE REF}, {X87 OPS RETIRED:ANY
and SIMD INST RETIRED:ANY} and
{INST RETIRED:ANY P and RESOURCE STALLS:ANY}
(all in perfmon2 format). The ATL dgemm function was
instrumented in the ATLAS implementation, while the
dgemm function was instrumented for GotoBLAS. We
cycled through the event sets of interest after every 100
calls to the DGEMM implementation during the sampling
run. We also ran the exhaustive case in which we monitored
one set of events per run and ran the benchmark five times
capturing a different set of events on each run.

Table 2: Hardware counter values for LINPACK run NB =
200, N = 20000 sampling run

Event name ATLAS
(default)

ATLAS
(full) Goto

DTLB MISSES 2.78e07 2.88e07 4.61e07
L2 LINES IN 1.65e09 1.56e09 5.72e08
L1D ALL REF 2.26e11 2.25e11 1.52e11
L1D ALL CACHE REF 2.26e11 2.25e11 1.52e11
X87 OPS RETIRED 7.16e05 2.66e05 0.00e00
SIMD INST RETIRED 7.13e11 7.13e11 7.11e11
INST RETIRED 8.19e11 8.19e11 8.76e11
RESOURCE STALLS 6.39e10 6.35e10 1.57e10

The raw hardware counter values are presented in Table 2
for problem size N = 20000 and block size NB = 200 with
sampling. We do not present the results for the second set of
events {L2 RQSTS:ANY and SSE PRE MISS:NTA:L1:L2}
as the counters returned zeros. In Figure 4 we compare
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Figure 4: Comparison of ATLAS full build and GotoBLAS.

the relative ratio of ATLAS full build and GotoBLAS
with the architectural defaults build of ATLAS for both
exhaustive and sampling runs. Comparing the exhaustive
runs to our function call multiplexed sampling technique
shows that the error introduced by sampling is marginal. In
terms of bottom-line performance, the benchmark built with
GotoBLAS is 9.5% faster than with the default build of
ATLAS, while with ATLAS full build we get only an 0.6%
improvement over the default build of ATLAS. Normally,
all we can do is attribute these performance differences
to the cleverness of one implementation over another; but
with ScALPEL we can look closer and understand in detail
why these observed differences occur, and perhaps identify
opportunities for further improvements in this or other codes.

Recall that the stated goal of the GotoBLAS implemen-
tation is to reduce TLB misses. Surprisingly, we see from
Figure 4 that GotoBLAS has 65% more TLB misses than
ATLAS. Looking at other counters, however, we see that
GotoBLAS has 65% fewer L2 cache misses than ATLAS,
and 75% fewer resource stalls. It seems clear that the Goto-
BLAS implementation is gaining a performance advantage
from these significant reductions in expensive events. Simply
counting the total number of TLB misses is misleading.
In fact, the Goto implementation incurs substantially more
total TLB misses. However, it appears that Goto is able to
amortize (or even completely hide) the cost of these misses
over a relatively greater amount of useful computation. Said
another way, not all TLB misses are created equally. Some
may be essentially harmless, and if the TLB misses are
managed and scheduled carefully (e.g., with aggressive pre-
fetching), then an implementation may be able to reduce
other expensive events (e.g., stalls and cache misses), as
happens in this case.



5. Limitations

In this section we discuss some of the limitations of
ScALPEL. First, as discussed previously, while our approach
does not require any source code modifications, it does
require recompilation. Second, we presently support pro-
filing functions that are recursive and have nested calls to
other functions. In such situations we monitor the hardware
counters for both the function (parent) and its nested call
sequence (children). However, we do not support monitoring
both the parent and the child at the same time in the same
nested call sequence. Third, the granularity of our profiling
is restricted to a function level; we do not support profiling
at block level. Finally, our present implementation does not
report the results on a per thread basis within a process.
This is also an issue with Perfmon. In the future we plan to
enhance our prototype to isolate the hardware counter values
at the granularity of a thread in multi-threaded application.

6. Conclusion

In this paper we addressed several shortcomings of exist-
ing performance monitoring tools. We demonstrated that it is
possible to monitor the hardware counters using ScALPEL
without imposing any significant overhead by using a com-
piler directed instrumentation technique. Moreover, by cou-
pling the instrumentation technique with our runtime system,
we were able to provide an efficient performance monitoring
scheme.

We provided a prototype to adaptively configure both
functions and events at runtime. We discussed the per-
formance implications of our approach and validated its
usage with a case study. We discussed the key issues that
lead to performance overhead. Our results indicate that
our function instrumentation technique outperforms if not
matches other existing tools for a majority of benchmarks.
Moreover, for certain benchmarks, both our best and worst
case scenarios performed significantly better than Perfmon.
And most importantly, we accomplish this without the
need for any modifications to an application’s source code.
Finally, our approach is completely portable and can be used
with existing implementations such as Perfmon and PAPI.
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