
IMPACT OF NETWORK SHARING IN MULTI-CORE ARCHITECTURES

G. NARAYANASWAMY, P. BALAJI, AND W. FENG

Virginia Tech. Technical Report TR-08-06

Argonne National Laboratory Preprint ANL/MCS-P1488-0308

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computer Science Technical Reports @Virginia Tech

https://core.ac.uk/display/10676185?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Impact of Network Sharing in Multi-core Architectures
G. Narayanaswamy

Dept. of Computer Science
Virginia Tech

cnganesh@cs.vt.edu

P. Balaji∗

Mathematics and Computer Science Division
Argonne National Laboratory

balaji@mcs.anl.gov

W. Feng
Dept. of Computer Science

Virginia Tech
feng@cs.vt.edu

Abstract
As commodity components continue to dominate the realm
of high-end computing, two hardware trends have emerged as
major contributors—high-speed networking technologies and
multi-core architectures. Communication middleware such as
the Message Passing Interface (MPI) uses the network technol-
ogy for communicating between processes that reside on dif-
ferent physical nodes, while using shared memory for commu-
nicating between processes on different cores within the same
node. Thus, two conflicting possibilities arise: (i) with the ad-
vent of multi-core architectures, the number of processes that
reside on the same physical node and hence share the same
physical network can potentially increase significantly, result-
ing in increased network usage, and (ii) given the increase in
intra-node shared-memory communication for processes resid-
ing on the same node, the network usage can potentially de-
crease significantly.
In this paper, we address these two conflicting possibilities and
study the behavior of network usage in multi-core environments
with sample scientific applications. Specifically, we analyze
trends that result in increase or decrease of network usage, and
we derive insights into application performance based on these.
We also study the sharing of different resources in the system
in multi-core environments and identify the contribution of the
network in this mix. In addition, we study different process
allocation strategies and analyze their impact on such network
sharing.

1 Introduction
High-end computing (HEC) systems are increasingly be-
ing characterized by nodes built out of commodity com-
ponents. Two of the significant trends in the HEC do-

∗This author was supported by the Mathematical, Information, and
Computational Sciences Division subprogram of the Office of Ad-
vanced Scientific Computing Research, Office of Science, U.S. Dept.
of Energy, under Contract DE-AC02-06CH11357.

main have been the dramatic improvements in network-
ing technology (using high-speed network accelerators)
and in processor technology (with the advent of multi-
core architectures). With respect to the networks, sev-
eral technologies are available in the market, including
10-Gigabit Ethernet [6–8], Myrinet [11], and InfiniBand
(IB) [9]. With respect to multi-core processors, quad-
core processors from Intel and AMD are considered com-
modity today. Processors with higher number of cores
(e.g., Intel Xscale) and multithreading within each core
(e.g., SUN Niagara) are also becoming available. As
these two trends emerge, it is becoming increasingly im-
portant to analyze their interaction.

Scientists typically use standard parallel programming
models to develop their applications over HEC systems
in a portable manner. The Message Passing Interface
(MPI) is the de facto standard in such programming
models and is used by a vast majority of scientific ap-
plications. With the growing importance of multi-core
environments, most implementations of MPI are opti-
mized on such environments by using the network tech-
nology for communicating between processes that reside
on different physical nodes, while using shared memory
for communicating between processes on different cores
within the same node. Using shared memory within the
node typically reduces the network overhead, resulting
in higher performance. Based on such a design for MPI
implementations, two conflicting possibilities arise: (i)
with the advent of multi-core architectures, the number
of processes that reside on the same physical node and
hence share the same physical network can potentially in-
crease significantly resulting in increased network usage
and (ii) given the increase in intra-node shared-memory
communication for processes residing on the same node,
network usage can potentially decrease significantly.

Based on these two conflicting possibilities, it is not clear

1



whether modern multi-core architectures add extra re-
quirements on networks, thus requiring future HEC sys-
tems to scale up network capacity further, or whether
the increase in intra-node shared memory communication
compensates for the increase in network sharing, thus not
requiring any changes. Thus, depending on the applica-
tion communication pattern and the layout of processes
across nodes, interesting questions about network shar-
ing and scalability need to be studied.

In this paper, we address these two conflicting possibil-
ities and study the behavior of network usage in multi-
core environments with sample scientific applications
within the NAS parallel benchmark suite. Specifically,
we analyze trends that result in increase or decrease of
network usage and derive insights into application per-
formance based on these. We also study the sharing of
different resources in the system in multi-core environ-
ments and identify the contribution of the network in this
mix. Further, we study different process allocation strate-
gies and analyze their impact on such network sharing.
Our experimental results demonstrate that for some ap-
plications multi-core architectures can significantly ham-
per performance because of the increased network shar-
ing, while for others the performance can stay constant
or even improve because of the better intra-node commu-
nication.

The rest of the paper is organized as follows. Section 2
presents some background on multi-core architectures
and Myrinet. Section 3 explains some of the network-
ing issues in multi-core architectures that are of interest
to us. Our experimental evaluation is presented in sec-
tion 4. In Section!5 we briefly discuss related work and
conclude in section 6.

2 Background
In this section, we present an overview of multi-core ar-
chitectures and the Myri-10G Myrinet network.

2.1 Overview of Multi-core Architectures
For many years, hardware manufacturers have been repli-
cating components on processors to create multiple path-
ways allowing more than one instruction to run concur-
rently with others. Duplicate arithmetic and floating-
point units, coprocessing units, and multiple thread con-
texts on the same processing die are examples of such
replication. Multi-core processors are considered to be
the next step in such hardware replication, where two or
more (mostly) independent execution units are combined
onto the same integrated circuit.

Multi-core architectures are at a high level similar to

multi-processor architectures. The operating system
deals with multiple cores in the same way as multiple
processors, by allocating one process to each core at a
time. Arbitration of shared resources between the cores
happens completely in hardware, with no intervention
from the OS. However, multi-core processors also dif-
fer significantly from multi-processor systems. For ex-
ample, in multi-core processors, both computation units
are integrated on the same die. Thus, communication
between these computation units does not have to go
outside the die and hence is independent of the die pin
overhead. Further, architectures such as the current Intel
multi-cores, as shown in Figure 1, provide a shared cache
between the different cores on the same die. This makes
communication even simpler by eliminating the need for
complicated cache-coherency protocols.

������ ������

����	
�� ����	
��

����	
��

��
�������

������ ������

����	
�� ����	
��

����	
��

��
�������

�	���������

����������

Figure 1: Intel dual-core dual-processor system

However, multi-core processors also have the disadvan-
tage of more shared resources as compared to multi-
processor systems. That is, multi-core processors might
require different cores on a processor die to block wait-
ing for local shared resources to get freed when it is being
used by a different core. Such contention is even higher
when the ratio of the number of cores on the system in-
creases as compared to the other resources (e.g., multi-
core systems with multiple thread contexts). Further, for
architectures such as AMD NUMA, each processor in a
multi-processor system has access to its own memory,
and hence overall memory bandwidth essentially doubles
with the number of processors. For multi-core systems
however, the overall memory bandwidth does not change.

2.2 Overview of Myrinet Network
Myri-10G [11], the latest generation Myrinet developed
by Myricom, is a low-latency wormhole routing based
high-speed interconnect and supporting data transfers at
the rate of 10 Gbps. The Myrinet network interface card
(NIC) has a user-programmable processor and DMA en-

2



gines that eases the design and customization of software
communication stacks. MX (Myrinet Express) is a high-
performance, low-level, message-passing software inter-
face tailored for Myrinet. The Myri-10G NICs, switches,
and associated software support both Ethernet (MXoE)
and Myrinet (MXoM) protocols at the link level. The ba-
sic MX-10G communication primitives are non-blocking
send and receive operations. Our network consists of the
Myri-10G NICs connected by a 24-port Myrinet switch.
The NICs are connected to the host via a 133 MHz/64
bit PCI-X bus. They have a programmable LANai pro-
cessor running at 300 MHz with 2 MB on-board SRAM
memory.

3 Networking Issues in Multi-cores
In this section, we cover some of the challenges faced in
multi-core environments with respect to networking.

3.1 Sharing of Network Resources
One of the important questions when designing high-
end systems based on commodity components is network
scalability, specifically, whether the network can cope up
with the CPU in terms of the network data being sent.
An important advantage of multi-core architectures is the
ability to multiplex network data streams over a single
network hardware medium, which potentially helps in
better use of network resources. Also, latency between
application processes can decrease as more and more
traffic goes over intra-node communication media instead
of over the network. This is good for commodity appli-
cations but may affect performance of scientific applica-
tions because of sharing of network resources. Similarly,
sharing of processor resources can be both beneficial and
harmful. For example, shared caches in multi-core ar-
chitectures can reduce latencies between processes to the
scale of nanoseconds, but at the same time introduce con-
tention for those resources.

3.2 Process Allocation Schemes
In a multi-core cluster, the processes can be arranged
among the nodes in several ways. Applications typi-
cally have fixed communication patterns, and allocation
schemes provide us the flexibility of modifying which
processes get colocated on the same node. Thus, de-
pending on the allocation scheme, the amount of network
sharing might increase or decrease. We look at two com-
mon allocation schemes in this paper: cyclic and blocked
allocation.

Cyclic allocation allocates each subsequent process
cyclically to the next node in the ring of nodes. For ex-

ample, with a total of 16 processes and 8 nodes, process
ranks 0 and 8 will get assigned to node 0, ranks 1 and 9
to node 1, and so on. This allocation ensures good load
balance among all nodes. In blocked allocation, blocks
of processes are assigned to each node in turn. For ex-
ample, with 16 processes, 8 nodes and a block size of 2,
process ranks 0 and 1 get assigned to node 0, ranks 2 and
3 to node 1, and so on.

The process allocation scheme can play an important role
in the kind of communication performed by a process.
For example, for an application that does mostly neigh-
bor communication in a 1-D chain of processes, blocked
allocation will probably turn out to be better. The reason
is that the neighbor processes that a process communi-
cates with are more likely to be on the same node. The
result can be significant reduction in network communi-
cation, thereby potentially improving performance. With
more cores on a node, the situation doesn’t improve fur-
ther, however, since there are only a constant number of
neighbors.

In a 2-D grid of N × N processes performing neighbor
communication with M cores in a node, again blocked
allocation works better than cyclic allocation in localiz-
ing more neighbors when N > M . When M and N are
equal, the same number of neighbors coexist with both
cyclic and blocked allocation. The same holds true for a
3-D grid of processes as well. Thus, for neighbor com-
munication, there are higher chances that more neighbors
will co-exist with blocked allocation.

As another example, for an application which performs
tree-like regular long distance communication, a cyclic
allocation strategy might be a better choice, as it might
localize many of the communicating processes within a
node. For applications running on large clusters with hi-
erarchical layers of switches, allocation schemes that lo-
calize branches of trees within the lowest hierarchy might
be more beneficial.

4 Performance Evaluation
In this section, we present our performance evaluation
results of the NAS Parallel benchmark suite. We follow
two different evaluation methodologies. In Section 4.3,
we analyze the impact of network and processor sharing
in the performance of applications. In Section 4.4, we
show results with different process allocation schemes.
We show results with class B of the NAS benchmarks,
but we note that we got similar results for classes A and
C.

3



4.1 Experimental Setup
Each node in our 16-node cluster setup is a custom-built,
dual-processor, dual-core AMD Opteron 2.55 GHz sys-
tem having 4 GB of DDR2 667 MHz SDRAM. The
four cores in each system are organized as cores 0 and
1 on processor 0 and cores 2 and 3 on processor 1.
Each core has a separate 1 MB L2 cache. All machines
run Ubuntu Fiesty with kernel version 2.6.19 and are
equipped with Myri-10G network interface cards con-
nected to a Myrinet switch. The MPI library used is
MPICH2-MX v1.0.6. All experiments were run at least
three times with the processor affinity of each process set
to a fixed core to remove the impact of operating system
scheduling anomalies.

4.2 Configurations used in experiments
This section describes the configurations on which we ran
our experiments. We use 16 processes for all the NPB
benchmarks because this covers the maximum number
of benchmarks and configurations for our setup. We note
that 16 processes can be run on different configurations
on a multi-core architecture with four cores. Picking only
those with constant number of processes on a node, we
end up with three configurations:
• 16X1 – 16 nodes, one process on one of the four

cores
• 8X2 – 8 nodes, 2 processes, on two of the four cores

• 4X4 – 4 nodes, 4 processes, one on each core
We start by observing that between each of the three con-
figurations there are increased levels of network sharing.
With 16X1, there is no network sharing since each node
runs only one application process. With 8X2, however,
two processes in each node use the same network inter-
face card. Hence there is two times more network shar-
ing than with the 16X1 case. With 4X4, four processes
use the same NIC, thus making the network sharing four
times greater than with the 16X1 case. In our experi-
ments, we ran the 4X4 configuration with cyclic alloca-
tion of processes between nodes.

To consider the effects of processor sharing, we split the
8X2 into two cases again. Our setup consists of a dual-
core dual-processor system and hence the two processes
can be run in two different modes:
• 8X2 co-processor mode: two processes, each run-

ning on a different processor
• 8X2 Virtual processor mode: two processes, both

run on the same processor
In the virtual processor mode, there is increased sharing
of processor resources because both processes are run on

the same processor.

We now briefly describe the NAS benchmarks :

BT and SP: The NAS BT and SP benchmarks are two
simulated computational fluid dynamics (CFD) applica-
tions that solve Navier-Stokes equations [2]. The pro-
grams differ in the factorization method used. In both BT
and SP, the granularity of communications is kept large,
and fewer messages are sent.

CG: The CG kernel benchmark solves an unstructured
sparse linear system by the conjugate gradient method.
The MPI CG code accepts a power of two number of
processors that are mapped onto a grid of row by col-
umn processors. The CG benchmark tests irregular long
distance communication.

FT: The FT benchmark solves a Poisson partial differ-
ential equation using a 3-D discrete Fourier transforma-
tion, which is performed as multiple 1-D FFTs in each
dimension. An array transposition is then performed,
which amounts to an all-to-all exchange, wherein each
processor must send parts of its data to every other pro-
cessor [2].

IS: The IS benchmark performs a sorting operation based
on bucket sort. It performs many all-to-all exchanges.

LU: LU is a simulated CFD application that solves a sys-
tem of Navier-Stokes equations in 3-D by splitting it into
block lower and upper triangular systems. Communica-
tion of partition boundary data occurs after completion
of computation on all diagonals that contact an adjacent
partition. The LU benchmark is sensitive to small mes-
sages.

MG: The MG benchmark uses a multi-grid method to
compute the solution of the 3-D Poisson equation. It per-
forms both short and long-range communications that are
highly structured.

4.3 Impact of Network Sharing
We start by evaluating the impact of network sharing by
running the various NPB benchmarks over each of the
three configurations described above. Figure 2 shows the
impact network resource sharing can have on the per-
formance. As shown in Figure 2(a), as we move from
16X1 to 8X2 co-processor mode, the performance of all
the benchmarks drops (as much as 27% for IS). The rea-
son is the increased network sharing in the 8X2 configu-
ration, where two processes have to share the same net-
work device. Since only one process has been added to
every node, the chances that a process will communicate
predominantly with the process colocated in its node are
slim.

4



0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

BT CG FT IS LU MG SP

To
ta

l M
o

p
/s

16X1 8X2 Co-processor

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

BT CG FT IS LU MG SP

To
ta

l M
o

p
/s

8X2 Virtual processor 4X4

Figure 2: Evaluation of network sharing: (a) 16X1 vs 8X2 co-processor, and (b) 8X2 virtual processor vs 4X4

In Figure 2(b) on the other hand, the performance drop is
seen mainly for CG, FT, and IS, while the other bench-
marks perform similarly or show improved performance
(in the case of MG) between the two configurations. Here
we see that there is mixed benefit in moving to 4X4.

To analyze the level of network sharing in the above
results, we profile the network communication time
in each of these configurations. Since we are using
Myrinet’s MX protocol, we profile the time spent in the
mx isend() and mx test() calls. This time repre-
sents the time spent by the network in sending the data
out and thus is an indicator of the overhead of network
sharing. Figure 3 shows the normalized total time spent
in mx isend() and mx test() calls for the various
configurations. As seen in Figure 3(a), there is an in-
crease in the network communication time for all the
benchmarks between 16X1 and 8X2 co-processor mode.
In other words, moving to the 8X2 co-processor mode
results in more time being spent for network communi-
cation because the network resources are being shared.
Also, the amount of intra-node communication remains
comparatively low, so it is difficult to observe any signif-
icant benefit from the reduced latency. Of 15 other pos-
sible processes with which a process can communicate,
only one results in intra-node communication. Thus,
there is a 93% chance that a process will communicate
over the network with another process. These results
mimic the performance results where all benchmarks ob-
serve a decrease in performance when moving to 8X2
co-processor mode.

In Figure 3(b), however, the network communication in-
creases only for the CG, FT, and IS benchmarks, while
for all others it drops. This again clearly mimics the per-
formance results as seen in Figure 2(b). In this case, mov-
ing from the 8X2 virtual processor mode to 4X4 mode
results in two processes getting added to the same node.

Thus there is increased capability to perform intra-node
communication. Compared to a 93% chance of network
communication with the 8X2 case, there is only 80%
chance with the 4X4 case that a process will communi-
cate over the network with another process.

We analyze our results further by profiling the amount
of data sent over the network as compared to intra-node
communication for all the benchmarks. Figure 4 (a)
shows the ratio of data sent over the network for 16X1
and 8X2 co-processor modes for all the benchmarks. Ex-
cept for FT and IS, where the amount of network commu-
nication drops slightly (6.7%), all the benchmarks have
the same amount of network communication as com-
pared to 16X1. Figure 4(b) shows the same result for 8X2
virtual processor mode and 4X4 configurations. Here we
observe that BT, LU, MG, and SP experience very good
drops in network data communicated (up to 50% in the
case of LU), while CG, FT, and IS show very low reduc-
tions in the amount of network data communicated. In
fact, CG doesn’t observe any drop in network commu-
nication when moving from 16X1 to 8X2 to 4X4. This
result also exactly mimics the network communication
time results we observed in Figure 3 and corroborates the
performance results we get.

To make our analysis of network sharing more compre-
hensive, we also need to analyze the effect of processor
sharing. To do this, we compare the performances of 8X2
co-processor and 8X2 virtual processor modes. For the
co-processor mode, we run the processes in cores 0 and
2, while for the virtual processor mode we run the pro-
cesses on cores 2 and 3.

Figure 5(a) shows the performance of co-processor and
virtual processor modes in the 8X2 configuration for all
the benchmarks. We observe a substantial performance
difference between the two modes for all the benchmarks
(up to 53% as in the case of SP). This shows that sharing

5



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

BT CG FT IS LU MG SP

N
o

rm
al

iz
e

d
 n

et
w

o
rk

 c
o

m
m

u
n

ic
at

io
n

 
ti

m
e

 (
se

co
n

d
s)

16X1 8X2 Co-processor

0

0.5

1

1.5

2

2.5

3

BT CG FT IS LU MG SP

N
o

rm
al

iz
e

d
 n

et
w

o
rk

 c
o

m
m

u
n

ic
at

io
n

 
ti

m
e

 (
se

co
n

d
s)

8X2 Virtual processor 4X4

Figure 3: Network communication time: (a) 16X1 vs 8X2 co-processor, and (b) 8X2 virtual processor vs 4X4

0

0.2

0.4

0.6

0.8

1

1.2

BT CG FT IS LU MG SP

R
at

io
 o

f 
d

at
a 

se
n

t 
o

ve
r 

n
et

w
o

rk

16X1 8X2 Co-processor

0

0.2

0.4

0.6

0.8

1

1.2

BT CG FT IS LU MG SP

R
at

io
 o

f 
d

at
a 

se
n

t 
o

ve
r 

n
et

w
o

rk

8X2 Virtual processor 4X4

Figure 4: Network communication data size: (a) 16X1 vs 8X2 co-processor, and (b) 8X2 virtual processor vs 4X4

of processor resources can be very detrimental for the ap-
plication.

We verify our results with processor sharing by using
PAPI to count various hardware performance counters.
We first measure the number of L2 cache misses. As
shown in Figure 5(b), the virtual processor mode sees in-
creased L2 cache misses ranging from 27% more misses
in the case of FT up to 48% more in the case of MG.

0

2E+10

4E+10

6E+10

8E+10

1E+11

1.2E+11

1.4E+11

1.6E+11

CG (resource) CG (memory) SP (resource) SP (memory)

N
o

rm
al

iz
e

d
 n

u
m

b
e

r 
o

f 
st

al
ls

8X2 Co-processor 8X2 Virtual processor

Figure 6: CPU stall cycles
We profile the benchmarks for two types of CPU stall
cycles as well: those stalling for any resource and those
stalling for memory accesses. Here we show results only

for the CG and SP benchmarks; the results for the other
benchmarks are similar. Figure 6 shows the normal-
ized number of CPU stall cycles waiting for resource and
memory for CG and SP benchmarks. From the graphs,
we can see that the virtual processor mode has more re-
source stalls than does the co-processor mode. SP ob-
serves up to 73% more resource stalls cycles and 66%
more memory stalls, whereas in the case of CG, it is 14%
and 17%, respectively.

4.4 Analysis of Allocation Schemes
In this section, we take a different approach for investi-
gating network sharing impacts, by performing a com-
parative study of using the cyclic and blocked allocation
schemes with the NPB benchmarks. We run the experi-
ments on 64 processes, with four processes on each of the
16 nodes. Figure 7(a) shows the performance of various
NPB benchmarks with cyclic and blocked allocation on
class B data sizes. The results show that the CG bench-
mark sees an improvement in performance (17%) while
for the other benchmarks, performance remains the same
or drops.

To further understand the reasons behind the trends ob-

6



0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

BT CG FT IS LU MG SP

To
ta

l M
o

p
/s

8X2 Co-processor 8X2 Virtual processor

0

5000000

10000000

15000000

20000000

25000000

30000000

FT MG

N
o

rm
al

iz
e

d
 n

u
m

b
e

r 
o

f 
L2

 c
ac

h
e

 
m

is
se

s

8X2 Co-processor 8X2 Virtual processor

Figure 5: Analysis of processor sharing: (a) Performance, and (b) L2 cache misses

0

10000

20000

30000

40000

50000

60000

70000

BT CG FT IS LU MG SP

To
ta

l M
o

p
/s

16X4 Cyclic 16X4 Blocked

0

0.5

1

1.5

2

2.5

3

3.5

BT CG FT IS LU MG SP

N
o

rm
al

iz
e

d
 t

o
ta

l t
im

e
 s

p
e

n
t 

in
 

m
x_

is
e

n
d

()
 a

n
d

 m
x_

te
st

()

16X4 cyclic 16X4 blocked

Figure 7: Cyclic vs Blocked (a) Performance (a) Network communication time

served, we profile the network communication time of
the benchmarks similar to the profiling done in Sec-
tion 4.3. Figure 7(b) shows the normalized total com-
munication time for each of the benchmarks for cyclic
and blocked cases. From the graph, we observe that CG
realizes a substantial reduction in communication time
when running in blocked allocation mode. For all other
benchmarks, there is an increase in network communi-
cation time. We note here that MG observes close to a
ten fold increase in communication time, which explains
why the performance of MG drops heavily when using
blocked allocation.

Figure 8 shows the data size communicated over the net-
work for various benchmarks. With CG, the amount of
data communicated over the network halves when mov-
ing from cyclic to blocked allocation. This result explains
CG’s increased performance with blocked allocation. FT
and IS see no reduction in network data size communi-
cated, whereas MG sees a slight increase. These results
also agree well with our other performance results.

0

0.2

0.4

0.6

0.8

1

1.2

BT CG FT IS LU MG SP

R
at

io
 o

f 
d

at
a 

se
n

t 
o

ve
r 

n
et

w
o

rk

16X4 Cyclic 16X4 Blocked

Figure 8: Cyclic vs Blocked : Network data size

4.5 Application Processing Pattern Analy-
sis

The previous sections evaluated application performance
from the viewpoint of system and network characteris-
tics. In this section, we tie in the analysis developed in
previous sections to the application communication pat-
terns.

The CG benchmark performs communication within
groups of four processes with certain boundary nodes
communicating between the groups. As an example, Fig-

7



ure 9 shows the communication pattern of CG with 16
processes. This pattern clearly shows that any alloca-
tion scheme that localizes the groups of four processes
within a node will have good performance improvement.
For example, if each of the group of four processes are
localized within a node, the only network communica-
tion is between the boundary nodes. Thus any allocation
scheme that optimizes this strategy will get better perfor-
mance. We see this result with blocked allocation in the
16X4 case, which performs better than the cyclic alloca-
tion (see Figure 7).

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

Figure 9: CG pattern

The FT benchmark
performs an all-to-all
exchange within subcom-
municators along the row
and column in a processor
grid. Thus, having more
cores in a node allows
some processes in either
the row or the column
subcommunicators to be
local to a node. But the
communication as part of the other subcommunicator
still has to go through the network. Although some
amount of network communication is saved, there is
still sufficient sharing of network resources. Similarly,
choosing an appropriate allocation scheme might help in
localizing all the nodes of a sub-communicator, but still
there is enough network traffic between the other sub-
communicator to nullify this advantage. In our results,
we see a similar behavior, where the performance drops
for FT when moving from 16X1 to 4X4 because of the
increased sharing of the network but remains the same
for the cyclic and blocked allocation strategies. The IS
benchmark has a similar analysis as FT as it also does
predominantly all-to-all exchanges. This analysis for FT
and IS ties in well with the network data size analysis
results shown in Figures 4 and 8. Designing efficient
network topologies for FT and IS can be a challenging
task given the all-to-all pattern.

MG has an interesting pattern wherein there is some clus-
tered communication in groups of 4, but these clusters
themselves are grouped in clusters of 16. Each process
communicates with another process which is at increas-
ing distances of increasing powers of two from it. Thus,
any process allocation strategy that puts processes at dis-
tances of powers of two on the same node will be bene-
ficial for the application. For example, when the number
of nodes is a power of two, cyclic allocation will put such
processes on the same node. This situation explains why
MG performs better with cyclic allocation than blocked

allocation with 64 processes and also why the 4X4 cyclic
configuration performs better than the 8X2 configuration.

BT, LU, and SP follow complex communication patterns
that make analysis from the processing pattern difficult.
Changes in configurations or allocation schemes may not
significantly affect the amount of network sharing. For
example, our results in previous sections don’t seem to
follow any major trends.

In summary, we saw in Section 4.3 that network shar-
ing does affect the performance of applications, although
the results might pale in comparison with the effects of
processor sharing. Nevertheless, network sharing is an
important concern that has to be addressed. We also saw
that using a different process allocation strategy has the
potential to reduce the effects of network sharing. Fur-
thermore, knowledge of the application pattern can give
better ideas for designing the best possible configuration
to run applications.

5 Related Work
A lot of work has been proposed on optimizing appli-
cation performance on multi-core architectures. In [4],
Curtis-Maury et al. look at OpenMP communication
on multi-core processors. Chai et al., in [3], look at
the performance of applications based on the amount
of intra-CMP, inter-CMP and inter-node communication
performed. We investigate the problem with a different
approach by looking at the amount of sharing of net-
work resources. In [1], Alam et al. perform extensive
characterization of various scientific workloads on the
AMD multi-core processor. But their work looks only
at a single multi-core node, whereas we look at a cluster
of nodes and at the impact of the network as well.

Similarly, many articles and papers have investigated
the communication patterns of various applications and
benchmarks [5, 10, 12, 13]. But none of these papers fo-
cus on multi-core architectures in their evaluation, which
we address here.

6 Conclusions
With the advent of multi-core architectures, designers
of high-end systems are faced with the challenge of en-
suring that the interconnection network scales well with
more processing cores. We analyze this problem by
studying the impact of network sharing on multi-core
architectures. Our results indicate that network sharing
can have a significant impact on performance, although
sharing of processor resources has a much bigger impact.
With a good understanding of the application commu-

8



nication pattern, a different process allocation strategy
could potentially reduce the effects of network sharing.

References
[1] S. R. Alam, R. F. Barrett, J. A. Kuehn, P. C. Roth, and J. S. Vetter.

Characterization of scientific workloads on systems with multi-
core processors. In IISWC, pages 225–236, 2006.

[2] D. Bailey, Tim Harris, William Saphir, Rob van der Wijngaart,
Alex Woo, and Maurice Yarrow. The NAS parallel benchmarks
2.0. Technical Report NAS-95-020, December 1995.

[3] L. Chai, Q. Gao, and D. K. Panda. Understanding the impact of
multi-core architecture in cluster computing: A case study with
intel dual-core system. In Cluster Computing and the Grid, 2007.
CCGRID 2007. Seventh IEEE International Symposium on, pages
471–478, 2007.

[4] M. Curtis-Maury, X. Ding, C. D. Antonopoulos, and D. S.
Nikolopoulos. An Evaluation of OpenMP on Current and Emerg-
ing Multithreaded/Multicore Processors. In First International
Workshop on OpenMP, Eugene, Oregon, June 2005.

[5] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina. Architec-
tural requirements of parallel scientific applications with explicit
communication. 20th Annual International Symposium on Com-
puter Architecture, pages 2–13, May 1993.

[6] D. Dalessandro, P. Wyckoff, and G. Montry. Initial Performance
Evaluation of the NetEffect 10 Gigabit iWARP Adapter. In RAIT
’06, 2006.

[7] W. Feng, P. Balaji, C. Baron, L. N. Bhuyan, and D. K. Panda.
Performance Characterization of a 10-Gigabit Ethernet TOE. In
IEEE HotI, Palo Alto, CA, Aug 17-19 2005.

[8] W. Feng, J. Hurwitz, H. Newman, S. Ravot, L. Cottrell, O. Martin,
F. Coccetti, C. Jin, D. Wei, and S. Low. Optimizing 10-Gigabit
Ethernet for Networks of Workstations, Clusters and Grids: A
Case Study. In SC ’03, 2003.

[9] InfiniBand Trade Association. http://www.infinibandta.org/.

[10] J. Kim and D. J. Lilja. Characterization of communication pat-
terns in message-passing parallel scientific application programs.
In CANPC ’98: Proceedings of the Second International Work-
shop on Network-Based Parallel Computing, pages 202–216,
London, UK, 1998. Springer-Verlag.

[11] Myricom. Myrinet home page. http://www.myri.com/.

[12] R. Riesen. Communication Patterns. In Workshop on Commu-
nication Architecture for Clusters (CSC 2006), Rhodes Island,
Greece, April 2006.

[13] J. S. Vetter and F. Mueller. Communication characteristics of
large-scale scientific applications for contemporary cluster archi-
tectures. J. Parallel Distrib. Comput., 63(9):853–865, 2003.

The submitted manuscript has been created by UChicago Argonne, LLC, Opera-
tor of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of
Energy Office of Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and others acting on its
behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to
reproduce, prepare derivative works, distribute copies to the public, and perform
publicly and display publicly, by or on behalf of the Government.

9


