
Modeling the Goodput of TCP NewReno
in Cellular Environments
Sushant Sharma†‡, Donald W. Gillies‡, Wu-chun Feng†

‡ Corporate R&D, Qualcomm
San Diego, CA

† Synergy Lab, Virginia Tech
Blacksburg, VA

Abstract— In this paper, we present an analytical model that
characterizes TCP NewReno’s goodput as a function of round-
trip time, average time duration between handoffs, average num-
ber of packets reordered during a handoff, and the congestion
window threshold. In cellular networks, the effective packet-loss
probability for a flow experiencing handoffs is not exactly equal
to the physical-layer packet-loss probability; it also depends on
the frequency of handoffs and the number of packets that may
arrive out of order at the receiver due to handoffs.

With the emergence of technologies such as WiMax and Ultra
Mobile Broadband (UMB), understanding the effect of handoffs
and packet reordering on the goodput of TCP becomes very
important for the designers of next generation cellular networks.
Existing TCP throughput models do not capture handoff effects
explicitly. As a result, these models cannot be used to understand
the precise effect of handoffs and the resultant packet reordering
on TCP’s goodput. In this paper, we present a model of TCP
NewReno goodput that captures the effect of handoffs. We
validate the model by performing actual file transfers between
different hosts that are connected by a router which emulates the
wireless environment with handoff events and packet reordering.

I. INTRODUCTION

In next-generation cellular networks, packet-loss rates due
to the physical medium have been reduced to the values as low
as 1 in 106 [?]. If there is any packet loss due to the physical
medium, protocol layers below TCP (such as RLP or Radio
Link Protocol) repair the loss before TCP notices a problem.
In addition to this, the NewReno variant of TCP can recover
from multiple packet losses and rarely times out. Despite all
these improvements, window-limited [?] TCP flows in cellular
networks are usually unable to reach the goodput levels
equivalent to (WindowLimit/AverageRTT ). The reason for
this is handoffs. Handoffs almost always result in some degree
of packet reordering, which TCP infers as effective packet
loss. The real-world traces in several cities for pedestrians
and vehicular users have shown that in a typical ITU traffic
mix, handoffs occur roughly every 6 seconds on average [?].
Next-generation cellular networks aim to provide seamless
Internet connectivity to highly mobile devices carried by
people (e.g. passengers in a moving train or on an aeroplane).
This will result in the mobile devices doing regular handoffs

This is a VT Computer Science Technical Report that was submitted for
review on November 16, 2007 to ACM SIGMETRICS.

between base stations. These handoffs may result in packets
being reordered, as shown in Figure ??. After a handoff, the
sender can have a shorter path to the destination or may have
improved channel conditions for packet transmission. As a
result, the new packets may arrive at the receiver earlier than
the old packets sent just before handoff. That is, the receiver
may sometimes receive packets out of order.

Understanding the effect of handoffs on the goodput of
an individual TCP flow is very important for those who are
designing or will design the next-generation cellular networks
for mobile users. Existing TCP models [?] [?] do not explicitly
capture the effect of handoffs on the throughput, and therefore
cannot be used by next-generation cellular network designers.
Generally, if a TCP flow is window-limited, any packet loss
will not be beacuse of congestion but because of the physical
layer dropping the packet. However, in cellular environments,
where packets may get reordered during handoffs, TCP will
assume packet loss even if the flow is window-limited and
the physical layer and/or routers are not dropping any pack-
ets. Hence, there is a need to explicitly understand TCP
NewReno’s behavior during handoffs and include it in a model
that will explain the obtained goodput correctly. “Goodput”
is defined as the number of unique packets delivered to the
receiver in a given amount of time. We think that an end user
is concerned only with the amount of time it will take to
transfer unique packets and not the total amount of data that
includes retransmissions.

This paper makes the following unique contributions:
• An analytical model to predict TCP NewReno’s goodput

in cellular environments. The model includes the effect
of handoffs and packet reordering on a TCP NewReno
flow in combination with fast recovery and fast retransmit
mechanisms.

• Model validation by providing extensive emulation results
of the data transfer beween various hosts in our lab.
Hosts were connected via a router that emulated a cellular
environment with handoffs and packet reordering.

• Experimental results that show a noticeable drop in
NewReno’s goodput even if one packet gets delayed
(resulting in several packets arriving out of order) during
a handoff. Our model explains this significant drop in the
goodput.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computer Science Technical Reports @Virginia Tech

https://core.ac.uk/display/10676177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. Handoff Description

II. BACKGROUND

This section explains our assumptions and description of
the terms that we will be using throughout the paper. The
operation of TCP NewReno is explained in RFC 3782 [?]. The
RFC for TCP NewReno provides more than one alternative to
respond to certain events. Here we explain the alternatives that
must be considered for our modeling.

To being with, TCP NewReno keeps track of the number
of sender packets sent but not acknowledged, using a variable
called FlightSize. The initial state of the protocol is the slow-
start state.

A. NewReno Behavior

• Slow Start: During slow-start state, the NewReno sender
transmit two packets for every packet acknowledged by
increasing its congestion window (cwnd) by one (i.e.,
exponentially) for every acknowledged packet. This in-
crease goes on until the cwnd becomes greater than or
equal to Slow-Start-Threshold (ssthresh), or a packet
loss in detected. After either event, the NewReno sender
enters the congestion avoidance state state.

• Congestion Avoidance: During congestion avoidance, the
size of cwnd is increased by 1/W for every acknowl-
edgment received (i.e. linearly), where W is the size of
current cwnd in terms of packets. When three duplicate
ACKs are received, the sender enters the fast-retransmit
state.

• Fast Retransmit: FlightSize at any given time instant is
the amount of data that is unacknowledged at that time.
Upon entry, the lost packet (as indicated by the three
duplicate ACKs) is retransmitted and ssthresh is set to
max(FlightSize/2, 2*SMSS), where SMSS is the
Sender’s Maximum Segment Size. cwnd is then reduced
to ssthresh + 3, and the sender enters the fast-recovery
state.

• Fast Recovery: In fast recovery, for every duplicate ac-
knowledgment, cwnd is increased by one and a new
packet is transmitted, if allowed by the cwnd value.
We assume that in the fast-recovery state, the sender

resets the retransmit timer upon receiving a partial ac-
knowledgment. This is also known as Slow-But-Steady
variant of NewReno. We also assume that while in fast-
recovery, if a sender receives a full ACK, it will set
the cwnd to min(ssthresh, Flightsize+SMSS)
and enters congestion avoidance. The sender responds to
a timeout event by reducing the cwnd to 1 and entering
the slow-start state.

Further details about the operation of NewReno can be found
in RFC 3782 [?].

III. NEWRENO’S BEHAVIOR IN CELLULAR
ENVIRONMENTS

We focus on modeling NewReno’s goodput in cellular
environments where handoffs are periodic events that result
in packet reordering. To accomodate our model, we define a
recovery period (RP) as the time at which transmitted packets
are reorderd during a handoff to the time when packets are
reordered again during the next handoff event. In other words,
the RP is the period between two handoffs. We define an
“old channel” as the channel between sender and receiver
before the handoff happens. After the handoff happens, the
new channel formed between sender and receiver is referred
to as the “new channel.” NewReno’s behavior in the event of
packet reordering can be divided into the following two cases:

• Case 1: Delayed Packets Are Lost. The packets that
were sent before the handoff get delayed by a large
amount of time and arrive after fast recovery has finished.
Or, the packets that were sent before the handoff get lost
due to bad channel conditions on the old channel. Both
will result in the same amount of goodput drop.

• Case 2: Delayed Packets Arrive Prior To Fast-Recovery
Completion: The delayed packets arrive at the receiver
before fast recovery is finished. This will also result in
goodput drop in NewReno but in a completely different
manner than in the previous case.

We model each of these cases below.

A. Case 1: Delayed Packets Are Lost
Assume that when a handoff occurs, an average of the

first d transmitted packets in a round-trip time (RTT) are lost



Fig. 2. Sender side behavior of NewReno when d packets in a window of W packets are lost.

Fig. 3. New packets sent by NewReno sender per RTT when d packets in a window of W packets are lost.

due to bad channel conditions on the old channel. This is
equivalent to the case where d packets arrive after the sender
has finished its fast-retransmit phase. Figure ?? shows the
sender-side behavior of NewReno, where W is the limit on the
congestion window. This loss of d packets marks the beginning
of an RP. In the next RTT, there will be no acknowledgements
(ACKs) received by the sender for first d packets and then
there will be three duplicate ACKs. At this point, NewReno
enters fast retransmit and retransmits the sequence number
requested in the duplicate ACK. It also sets ssthresh to
max(FlightSize/2, 2).

Let us assume that the window is large enough so that
ssthresh = FlightSize/2 = W/2. The cwnd at this point

is then reduced to ssthresh + 3, i.e. cwnd =
(

W

2
+ 3

)
.

NewReno will then enter the fast-recovery state, and for every
duplicate ACK received, cwnd is increased by 1. Until the

cwnd value becomes W , which is the current FlightSize,
the sender cannot send any new packets. This implies that for

the next
(

W

2
− 3

)
duplicate ACKs, the sender will not send

any new packets.

For the remaining
(

W

2
− d

)
duplicate ACKs that the

sender is going to receive in that RTT, it will send one new

packet per ACK. So, the sender will send
(

W

2
− d

)
new

packets is the first RTT after handoff. In the next RTT, when
it will receive a partial ACK for the retransmitted packet, it will
retransmit the next unacknowledged packet. At that moment,
the FlightSize will be reduced by one, and the sender can
inject another new packet into the network.

For the remaining
(

W

2
− d

)
duplicate ACKs, it will send

one new packet per duplicate ACK. So, we can see that for



next d RTTs, the number of new packets transmitted will
be incremented by one per RTT. After d RTTs, NewReno
will come out of its fast-recovery state, and the new packets
injected in the network will be incremented by 1/b per
RTT, where b is the number of packets that every ACK is
acknowledging.

The described scenario can again be divided into two cases,
one in which NewReno can recover its window before the
next handoff and the other in which the window cannot be
recovered due to a shortf average handoff duration. The next
two subsections model the goodput in both of these cases.

1) Recoverable Window: Figure ?? shows the growth of
new packets sent in a single RTT after a handoff happens.
We show the growth for the Ah amount of time, which is the
average time duration between two handoffs. So, Ah/RTT
will give us the number of RTTs between two handoffs.
The resulting goodput between these two handoffs will be
representative of the overall goodput. This new data transferred
in Ah amount of time can be calculated by subtracting the
area of Region 1 and Region 2 from the complete area of the
rectangle. The area of Region 1 is

ar1 = d
W

2
+

d2

2
(1)

The area of Region 2 is

ar2 = b
W 2

8
(2)

From the figure, the total area comes out to be W
Ah

RTT
. So,

the total data transferred in Ah amount of time will be

W
Ah

RTT
− b

W 2

8
− d

W

2
− d2

2
(3)

Hence, the obtained goodput will be

B1(W ) =
W

RTT
− 1

Ah

[
b
W 2

8
+ d

W

2
+

d2

2

]
(4)

2) Non-Recoverable Window: Based on Figure ??,
NewReno will not be able to recover the congestion window
if

Ah

RTT
< d + b

W

2
(5)

or by rewriting the above equation and calculating the value
of d above which NewReno will not be able to recover its
congestion window

d >
Ah

RTT
− b

W

2
(6)

Based on this observation, we obtain the following lemma,
which gives the number of RTTs required by NewReno to
recover the congestion window when multiple packets from a
window are lost.

Lemma 3.1: If all the d packets that are lost are not among
the last three packets transmitted in an RTT, then the following
statement will hold true. In an RTT, if d packets from a
window of size W are lost, then it will take NewReno[
d + b

W

2

]
number of RTTs to recover the window.

If the only packets that are lost are among the last three
packets, then the receiver will not receive the triple duplicate
acknowledgments in next RTT. As a result, it will not be able
to reset the retransmit timer and might timeout. Because this
is such an extremely rare case, we opt to leave it out of the
analysis presented here. Figure ?? shows the growth in new
packets sent per RTT when NewReno is unable to recover
its congestion window. In this case, the starting size of the
window will be different at the beginning of every subsequent
RP. Figure ?? shows this behavior. We can calculate the
number of RPs that are required for the congestion window
to drop to the value d + 2. We refer to the combination of all
these RPs as an unrecoverable recovery period (URP). After
a URP, the sender will timeout as it will not receive any triple
duplicate ACKs and then will increase the congestion window
according to slowstart.

Looking at Figure ??, the equation for the new congestion
window after the first RP is given by

Wn =
Wn−1

2
+

1
b

(
Ah

RTT
− d

)
(7)

Solving the above recurrence relation gives us the value of
Wn as

Wn =
W0

2n
+

2
b

(
Ah

RTT
− d

) (
1− 1

2n−1

)
;∀n > 1, (8)

where W0 is the initial value of window before the beginning
of first handoff in a given URP. W1 can be calculated using
equation ??. And the value of n for which Wn comes out to
be p + 2 is

n = log2





W0 −
4
b

(
Ah

RTT
− d

)

d + 2− 2
b

(
Ah

RTT
− d

)



 (9)

We can calculate the data transferred in first RP using Fig-
ure ??. It is given by the sum of the area of Regions 3, 4 and
5 and can be calculated by the following equation for n = 1,

Dn =
d2

2
+ pCn +

(
Ah

RTT
− d

)2





(
Wn−1

2

)

(
Ah

RTT
− d

) +
1
2b



 ,

(10)

where Cn =
(

Wn−1

2
− d

)
.

Now, the goodput obtained during the n RPs after a handoff
can be calculated by

B2(W ) =
1

nAh
Σn

i=1Di, (11)

where Di is calculated by equation ??, n is given by equa-
tion ?? and Wi is given by equation ??.

It can be inferred that in RPn+1, NewReno may or may not
recover its window. It depends on the value of Ah and the
ssthresh at that time. Value of ssthresh at that time will be



Fig. 4. New packets sent by NewReno sender per RTT in first RP when d packets in a window of W packets are lost and NewReno is unable to
recover the congestion window before next handoff.

Fig. 5. Long-term packet growth of NewReno sender when d packets in a window of W packets are lost and NewReno is unable to recover the
congestion window before next handoff.

d/2. And as shown in figure ??, the size of window reached
at the end of (n + 1)th RTT, in terms of packets will be

d

2
+

1
b

(
Ah

RTT
− log2

d

2

)
, (12)

For long-lived flows, we can consider (??) to be the value of
W0. However, for shorter-lived flows, this might be too small.
During the begining of data transfer when TCP is searching
for correct window size using slow-start, W0 can go upto min(
2(Ah/RTT ), W ), where W is the limit on congestion window.
To make the model more accurate, we can include the data
transferred in the very first and (n+1)th RP also into account
while calculating the goodput.

In this section, we have assumed that the first d packets are
lost. It should not be difficult to see that the analysis will hold
even if these packets are not the first ones in the window. We

can treat the first packet lost as the beginning of window, and
the same analysis will hold.

B. Case 2: Delayed Packets Arrive Prior To Fast-Recovery
Completion

This section explains the NewReno behavior and presents
the goodput model when the packets that get delayed after a
handoff arrive before NewReno comes out of its fast-recovery
state. Figure ?? shows the NewReno behavior in this case.

1) ACKs arrive in first RTT after handoff:: In first RTT
after handoff, the sender will not receive ACKs for first p
packets and then it will receive three duplicate ACKs. It will
then retransmit the packet that it thinks is lost. It will also
reduce its ssthresh to W/2 and cwnd to [(W/2)+3]. Now, for
every duplicate ACK received, the sender will increase cwnd
by 1. After the ACK due to first delayed packet is received, it is



Fig. 7. NewReno behavior when acknowledgments due to delayed packets arrive in first RTT after handoff.

(a) Delayed packets arrive in first RTT after handoff. (b) Delayed packets arrive in rth RTT after handoff
(r<d).

Fig. 8. New Packets sent per RTT by NewReno when delayed packets arrive before end of fast-recovery.

going to receive the partial ACKs (due to delayed packets) and
duplicate ACKs mixed with each other. If we assume that the
partial ACKs due to these delayed packets will arrive in regular
intervals, then we can say that in the remaining (W−3) ACKs

that the sender will receive, every
(

W − 3
d

− 1
)

duplicate

ACKs will be followed by one partial acknowledgment.
Every duplicate ACK will increase the congestion window

value by 1 and every partial ACK will reduce the outstanding
packets by

W − 3
d

. So, after calculations, the number of
ACKs (duplicate plus partial) after which the sender can start

transmitting new packets will be
W 2 − 9W + 18
4W − 12− 2d

. Denote this
by L.

So, after L ACKs, the value of the congestion window
will become greater than the number of outstanding packets.
Intuitively, one can see that higher the number of partial ACKs,
the lesser will be the total ACKs that the sender will see before
it can start sending new packets. This is because partial ACKs

reduce the outstanding packets by more than one, whereas
duplicate ACKs increase the congestion window by exactly
one. But, as the number of packets that get delayed increase,
the reduction in window size due to partial ACKs will become
low. So, we can say that delaying 10 packets in a window of
30 packets will cause sender to send more new packets in the
first RTT as compared to the case when only 1 packet was
delayed. But, delaying 15 packets in a window of 30 packets
will cause the sender to send less new packets in the first RTT
as compared to the case when 10 packets were delayed. This
result can be stated in a lemma

Lemma 3.2: If all the delayed packets due to a handoff
are delivered before the end of RTT, then the following
will be true for the first RTT after handoff. The number of
packets transmitted by the sender when exactly one packet
gets delayed will be less than the number of new packets
transmitted when more than one packet gets delayed.
However, in this case, at the end of first RTT after handoff,
when the sender will exit the fast-recovery state, the value of



Fig. 9. New Packets sent by NewReno in first RP after ”d” packets were delayed in a window of ”W” packets.

Fig. 6. Packet growth in (n + 1)th RP

congestion window will become min(flightsize, ssthresh)
which will be ssthresh (i.e. W/2).

Another interesting observation is that it is possible that a
NewReno sender may end up retransmitting up to (W−3) old
packet in the first RTT after handoff. This can be explained as
follows. In case only one packet got delayed and it arrives as
the fourth packet. Then the ACKs due to remaining packets
in this RTT will be considered as partial ACKs, because
they do not cover the last packet transmitted before sender
entered fast-retransmit state. As a result, every partial ACK
will result in retransmission of next unacknowledged packet.
These retransmissions can be avoided by the use of SACK
option in the TCP. However, SACK will still not affect the
goodput obtained in this case.

2) ACKs do not arrive in first RTT after handoff:: On the
other hand, if the ACKs due to “d” delayed packets arrive
in an RTT which is not the first one after the handoff, the

retransmissions of old packets will not happen even in the
absence of selective acknowledgement (SACK).

Until the RTT in which the ACKs due to the delayed
packets arrive, the number of new packets sent will increase by
one per RTT, according to the analysis presented in previous
sections. As soon as all the ACKs due to delayed packets
arrive, NewReno will come out of fast recovery and then the
increase in the number of packets per RTT will be 1/b. The
behavior is shown in Figure ?? and Figure ??.

We are assuming that the duplicate ACKs generated due
to the arrival of delayed and retransmitted packets will not
result in window reduction because these duplicate ACKs will
be mixed with the new ACKs from new packets and three
duplicate ACKs will not arrive in sequence. The enhancements
to TCP, such as SACK, can also remove the possibility of
window reduction in this scenario. If we consider that the
ACKs due to the delayed packets are arriving in the rth

RTT after handoff, the resulting goodput can be calculated
by looking at Figure ??. The analysis is exactly same as the
one in Sections ?? and ??.

3) Summary of Goodput Modeling: The final values of
goodput can be summarized as follows:

• Recoverable Window:

B̂1(W ) =
W

RTT
− 1

Ah

[
b

8
W 2 + rU +

r2

2

]
, (13)

where U =
(

W

2
+ max(0, d− r)

)
.

• Non-Recoverable Window: It is interesting to see that it
is the number of RTTs by which packets are delayed
determine if the window can be recovered. Whether
window can be recovered or not is independent of the
number of packets delayed (d). If following equation is



true window can not be recovered.

r >
Ah

RTT
− b

W

2
(14)

Value of window after nth RTT can be given as

Ŵn =
Ŵn−1

2
+

1
b

(
Ah

RTT
− r

)
(15)

or

Ŵn =
Ŵ0

2n
+

2
b

(
Ah

RTT
− r

) (
1− 1

2n−1

)
;∀n > 1,

(16)
where 0 ≤ r ≤ d and Ŵ1 can be calculated using
equation ??.
The value of n̂ for which Ŵn comes out to be d + 2 is

n̂ = log2





Ŵ0 −
4
b

(
Ah

RTT
− r

)

r + 2− 2
b

(
Ah

RTT
− r

)



 (17)

Here we are again assuming that if d out of (d+2) packets
are delayed, sender will not receive 3 duplicate ACKs so
as to reset its retransmit timer and as a result, will time
out.
Total data transferred in nth RP will be

D̂n =
r2

2
+ rĈn + Q̂

(
Ŵn−1 +

Q̂

b

)
(18)

where Ĉn =

(
Ŵn−1

2
− d

)
, Q̂ =

1
2

(
AH

RTT
− r

)

The total goodput when ACKs for delayed packets come
before end of fast-recovery and the window can not be
recovered will be

B̂2(W ) =
1

n̂Ah
Σn̂

i=1D̂i, (19)

Ŵ0 will be same as W0. For long lasting flows, it can be
given as

Ŵ0 =
d

2
+

1
b

(
Ah

RTT
− log2

d

2

)
(20)

and for shorter flows

Ŵ0 = min(2(Ah/RTT ),W ), (21)

where W is the limit on congestion window.

4) Important Observations: 1. Equation ?? can also be
used as a general purpose model to predict goodput of a TCP
NewReno flow on any network where goodput is congestion
limited. For long lasting flows, the equation is independent of
W which was assumed as the window threshold that can not
be reached. So, equation ?? can be used to predict NewReno
goodput on a network where we can calculate the average
duration between two “drop-events” and average number of
packets lost in one event. r will be equal to d in this case.

2. With SACK, the sender can come out of fast recovery
in the 3rd RTT after the handoff. This is because, it will be
able to detect the hole and retransmit the packets with missing
sequence numbers in 2nd RTT, thereby receiving the complete
ACK in 3rd RTT. Hence, r will be equal to 3 in case of SACK.

3. If d is greater than W/2, i.e. if a flow is loosing/reordering
more than half of its window during every loss event, then

there will be
(

d− W

2

)
RTTs following the handoff (or loss

event) during which sender will not be sending any new data.

After these
(

d− W

2

)
RTTs the number of new packets sent

per RTT will grow with slope 1 for r−
(

d− W

2

)
RTTs and

then with slope 1/b for remaining [(Ah/RTT )− r] RTTs.

IV. DATA TRANSFER RESULTS AND MODEL VALIDATION

Equations ?? and ?? can be used to predict goodput of a
TCP NewReno flow as a function of RTT, window limit, av-
erage time duration between handoffs (or packet drop events)
and the average number of packets reordered (or dropped)
during every event. In this section, we are going to validate
these equations by presenting results of data transfer between
various hosts within our lab setup.

A. Experimental Setup
The experimental setup within our lab is shown in figure ??.

We have one sender and one receiver, both running linux
kernel 2.6.21.

Fig. 10. Experimental setup within our lab.

Inbetween these two machines is a Linux router running our
handoff-emulator (H-E). H-E was written by us so that we can
emulate handoffs and packet-reordering. H-E can also be used
to limit the bandwidth between the sender and receiver.

B. Measurements while Emulating Handoffs
This subsection presents the measurement data collected

while transferring 50 MB files between two hosts that were
connected through the H-E. We used H-E to emulate diffferent
values of RTT , different inter handoff durations (Ah) and
different number of packets getting reordered (d). Several
different limits on window size (W ) were obtained at the end-
hosts by using TCP system control (sysctl) variables within the
linux kernel. We collected data under different combinations of
above values in order to validate the models presented in (??)
and (??).



Figures ?? to ?? presents the comparision of goodput calcu-
lated using (??) or (??), as applicable, and the actual goodput
achieved when only 1 packet gets delayed by a certain amount
of time. x-axis shows the amount of time by which the packet
get delayed and y-axis show the achieved goodput. Window
limit was kept constant at 193 KB in all these three cases
and RTT was increased from 70 to 170 msecs. Time duration
between two handoff events was also kept constant at 2secs
for all these runs. It is important to note here the difference
between the actual goodput and the goodput calculated using
our model is quite large when the delayed packet was received
at the receiver before the RTT finishes. This answer to this
lies in the implementation details of TCP in the Linux kernel.
It is documented in [?] that the Linux fast recovery do not
completely follow the behavior given in RFC 3782. As a result,
when the reordered packets arrive before the end of the RTT,
Linux TCP implementation is overly agressive in increasing
its congestion window size. In order to confirm that, we did
the following. After the actual data transfer was complete,
we counted the total triple duplicate ACKs that the sender
received and the total packets that it had sent and calculated
the packet drop probability. When this packet drop probability
was used in the model presented in [?], the throughput given
by that model confirmed the Linux TCP’s agressive behavior.
Figure ?? shows that when reordered packets arrive before
the end of RTT, similar to our model, throughput calculated
using the model in [?] is much lower than the actual values
of goodput obtained.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 300 250 200 150 100 50 10

G
o
o
d
p
u
t 
M

B
p
s

Handoff Duration (msecs)

Reordered-Pkts=1, RTT=70msecs, CWND=193KB, IHT=2secs

Handoff Model
Experimental Goodput

Throughput using Model by Padhye et al

Fig. 11. Figure confirming the aggressive increase in the Linux TCP
window when reordered packets arrive before the end of RTT.

It should be noted here that the maximum achievable
throughput in any of the experiments can not go beyond
2.33Mbps because our handoff-emulator is restricting the
throughput to that value. So, even if we have a window limit of
1024KB and a RTT of 100msecs between sender and receiver,
the maximum achievable goodput will still be 2.33Mbps and
not 10.24Mbps.

Figures ?? to ?? shows the comparison when RTT, Window
limit and time durations between two handoffs was kept
constant at 100msecs, 193Kbps and 2seconds respectively in
all the cases but the number of packets that get delayed were

increased from 5 to 15. These results show that delaying of
one packet is sufficient to drop the goodput significantly and
the number of subsequent packets that get delayed do not drop
the goodput to a significantly much lower value.

Figures ?? to ?? shows the results when the RTT, the
number of delayed packets and the time duration between
two handoffs (IHT) was kept constant at 100msecs, 10 and
4seconds respectively, but the Window limit was increased
from 64KB to 1024KB. These results show that the increase
in window can result in inproving the goodput but this increase
is very minor if a flow is experiencing regular handoffs that
are resulting in packets being reordered.

Again, looking at figures ?? to ??, it is evident that increas-
ing in the time duration between handoffs is not affecting
the goodput as much. In these experiments, we have kept
everything constant but changed the time duration between
two handoff events. It shows that packet reordering has already
caused the goodput to drop to a significantly low value and
increasing the time duration between two handoffs will not
improve the goodput much.

V. CONCLUSION

We have presented an analytical model to determine TCP
NewReno’s goodput in cellular networks, where user mobility
can result in a flow experiencing regular handoffs between
base stations. The model explains the significant drop in the
goodput of TCP even when the network and intermediate
routers are not dropping any packets. The model can be used
to study the direct impact of packet reordering on the TCP’s
goodput. This model can have significant impact on the way
in which network designers design next-generation cellular
networks aimed at highly mobile users.



 0

 0.5

 1

 1.5

 2

 2.5

 3

 300 250 200 150 100 50 10

G
o

o
d

p
u

t 
M

B
p

s

Handoff Duration (msecs)

Reordered-Pkts=1, RTT=70msecs, CWND=193KB, IHT=2secs

Handoff Model
Experimental Goodput

Maximum Achievable Goodput

(a) RTT=70 msecs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 300 250 200 150 100 50 10

G
o
o
d
p
u
t 
M

B
p
s

Handoff Duration (msecs)

Reordered-Pkts=1, RTT=100msecs, CWND=193KB, IHT=2secs

Handoff Model
Actual Goodput

Maximum Achievable Goodput

(b) RTT=100 msecs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 300 250 200 150 100 50 10

G
o

o
d

p
u

t 
M

B
p

s

Handoff Duration (msecs)

Reordered-Pkts=1, RTT=150msecs, CWND=193KB, IHT=2secs

Handoff Model
Actual Goodput

Maximum Achievable Goodput

(c) RTT=150 msecs

Fig. 12. Comparison of actual goodput and the goodput calculated using our
model at different RTTs.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 300 250 200 150 100 50 10

G
o
o
d
p
u
t 
M

B
p
s

Handoff Duration (msecs)

Reordered-Pkts=5, RTT=100msecs, CWND=193KB, IHT=2secs

Handoff Model
Actual Goodput

Maximum Achievable Goodput

(a) 5 Packet Reordering

 0

 0.5

 1

 1.5

 2

 2.5

 3

 300 250 200 150 100 50 10

G
o
o
d
p
u
t 
M

B
p
s

Handoff Duration (msecs)

Reordered-Pkts=10, RTT=100msecs, CWND=193KB, IHT=2secs

Handoff Model
Actual Goodput

Maximum Achievable Goodput

(b) 10 Packet Reordering

 0

 0.5

 1

 1.5

 2

 2.5

 3

 300 250 200 150 100 50 10

G
o

o
d

p
u

t 
M

B
p

s

Handoff Duration (msecs)

Reordered-Pkts=15, RTT=100msecs, CWND=193KB, IHT=2secs

Handoff Model
Actual Goodput

Maximum Achievable Goodput

(c) 15 Packet Reordering

Fig. 13. Comparison of actual goodput and the goodput calculated using our
model for different number of delayed packets.



 0

 0.5

 1

 1.5

 2

 2.5

 3

 300 250 200 150 100 50 10

G
o
o
d
p
u
t 
M

B
p
s

Handoff Duration (msecs)

Reordered-Pkts=10, RTT=100msecs, CWND=64KB, IHT=4secs

Handoff Model
Actual Goodhput

Maximum Achievable Goodhput

(a) 64K Window Limit

 0

 0.5

 1

 1.5

 2

 2.5

 3

 300 250 200 150 100 50 10

G
o

o
d

p
u

t 
M

B
p

s

Handoff Duration (msecs)

Reordered-Pkts=10, RTT=100msecs, CWND=160KB, IHT=4secs

Handoff Model
Actual Goodput

Maximum Achievable Goodput

(b) 160K Window Limit

 0

 0.5

 1

 1.5

 2

 2.5

 3

 300 250 200 150 100 50 10

G
o
o
d
p
u
t 
M

B
p
s

Handoff Duration (msecs)

Reordered-Pkts=10, RTT=100msecs, CWND=1024KB, IHT=4secs

Handoff Model
Actual Goodput

Maximum Achievable Goodput

(c) 1024K window Limit

Fig. 14. Comparison of actual goodput and the goodput calculated using our
model for window limited flows.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 300 250 200 150 100 50 10

G
o
o
d
p
u
t 
M

B
p
s

Handoff Duration (msecs)

Reordered-Pkts=15, RTT=100msecs, CWND=193KB, IHT=4secs

Handoff Model
Actual Goodput

Maximum Achievable Goodput

(a) 4 second time between two handoffs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 300 250 200 150 100 50 10

G
o

o
d

p
u

t 
M

B
p

s

Handoff Duration (msecs)

Reordered-Pkts=15, RTT=100msecs, CWND=193KB, IHT=6secs

Handoff Model
Actual Goodput

Maximum Achievable Goodput

(b) 6 second time between two handoffs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 300 250 200 150 100 50 10

G
o

o
d

p
u

t 
M

B
p

s

Handoff Duration (msecs)

Reordered-Pkts=15, RTT=100msecs, CWND=193KB, IHT=8secs

Handoff Model
Actual Goodput

Maximum Achievable Goodput

(c) 8 second time between two handoffs

Fig. 15. Comparison of actual goodput and the goodput calculated using our
model for different handoff frequencies.


