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1. INTRODUCTION

VTDIRECT95 is a FORTRAN 95 software package consisting of a dynamic data

structure based serial implementation and a data-distributed massively parallel

implementation of the DIRECT algorithm by Jones et al. [1993]. Jones et al.

[1993] invented DIRECT (DIviding-RECTangles) as a Lipschitzian direct search

algorithm for solving global optimization problems (Horst et al. [2000], Horst and

Tuy [1996], Pinter [1996]) subject to bound constraints of the form

min
x∈D

f(x), (1.1)

where D =
{

x ∈ En | ℓ ≤ x ≤ u
}

is a bounded box in n-dimensional Euclidean

space En, and f : En → E must satisfy a Lipschitz condition

|f(x1) − f(x2)| ≤ L‖x1 − x2‖, ∀x1, x2 ∈ D. (1.2)

Although DIRECT can be used for local optimization, it was designed as an

effective global method that avoids being trapped at local optima and intelligently

explores “potentially optimal” regions to converge globally for Lipschitz continuous

optimization problems. As a direct pattern search method, DIRECT produces

deterministic results and is straightforward to apply without derivative information

or the Lipschitz constant of the objective function. It has been used successfully

in many multidisciplinary design optimization problems such as high speed civil

transport aircraft design (Baker et al. [2000]), pipeline design (Carter et al. [2001]),

aircraft routing (Bartholomew-Biggs et al. [2003]), surface optimization (Zhu et al.

[2002]), wireless communication transmitter placement (He et al. [2004]), molecular

genetic mapping (Ljungberg et al. [2004]), and cell cycle modeling (Zwolak et al.

[2005] and Panning et al. [2006]).

Many global optimization problems require both supercomputing power and a

great amount of memory to store intermediate data. For example, the parameter

estimation problem for the budding yeast cell cycle has 143 parameters with 36 stiff

ordinary differential equations. A reasonable solution entails tens of thousands of

function evaluations, requiring days to weeks of computation on a single proces-

sor. This type of application motivated the massively parallel implementation in

VTDIRECT95, which also distributes data among processors to share the memory

burden imposed by such high dimensional problems.

Previous serial and parallel DIRECT implementations in the public domain in-

clude a FORTRAN 77 implementation by Gablonsky [2001] and a FORTRAN 90

implementation by Watson et al. [2001]. The data structures that they employ are

static, thus inducing inefficiencies in handling an unpredictable memory require-

ment due to different problem structures and the nature of DIRECT’s exploratory

strategy. A pure master-slave paradigm is adopted in Gablonsky [2001] with no fur-

ther enhancement for load balancing. Taking a step forward, Watson et al. [2001]

designed dynamic load balancing schemes for a distributed control version of DI-

RECT. However, other load balancing issues such as a single starting point and a

distributed data structure were not considered by Watson et al. [2001].
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The design considerations absent from these earlier attempts have been addressed

in VTDIRECT95. Advanced features (derived data types, pointers, dynamic mem-

ory allocation, etc.) supplied by FORTRAN 95 were used to design dynamic data

structures that flexibly organize the data on a single machine, effectively reduce the

local data storage, and efficiently share the data across multiple processors. More-

over, a multilevel functional and data parallelism is proposed to produce multiple

starting points, mitigate the data dependency, and improve the load balancing. In

addition, both the serial and parallel programs are equipped with checkpointing

features to provide fault tolerance to power outage or hardware/memory failures,

and enable hot restarts for large runs.

The paper is organized as follows. Section 2 reviews the DIRECT algorithm

and the major algorithmic modifications that increase the program concurrency

for the parallel implementation, tailor execution for different problem properties

and optimization objectives, and offer more choices in stopping conditions. Sec-

tion 3 outlines important design considerations and implementation details that

potential users may be most interested in. Performance results for several artificial

benchmark functions and real-world problems on two different parallel systems are

presented in Section 4. Package organization and usage are explained in detail in

Section 5.

2. DIRECT AND MODIFICATIONS

The DIRECT search is carried out through three essential operations: region se-

lection, point sampling, and space division. Jones et al. [1993] describe the original

algorithm in six detailed steps, which are regrouped and relabeled to highlight the

basic operations as below.

Given an objective function f and the feasible set D, the steps are:

1. Initialization. Normalize the feasible set D to be the unit hypercube.

Sample the center point ci of this hypercube and evaluate f(ci). Initialize

fmin = f(ci), evaluation counter m = 1, and iteration counter t = 0.

2. Selection. Identify the set S of “potentially optimal” boxes that are subre-

gions of D. A box is potentially optimal if, for some Lipschitz constant, the

function value within the box is potentially smaller than that in any other

box (a formal definition with parameter ǫ is given by Jones et al. [1993].)

3. Sampling. For any box j ∈ S, identify the set I of dimensions with the

maximum side length. Let δ equal one-third of this maximum side length.

Sample the function at the points c ± δei for all i ∈ I, where c is the center

of the box and ei is the ith unit vector.

4. Division. Divide the box j containing c into thirds along the dimen-

sions in I, starting with the dimension with the lowest value of wi =

min{f(c+δei), f(c−δei)}, and continuing to the dimension with the highest

wi. Update fmin and m.

5. Iteration. Set S = S − {j}. If S 6= ∅ go to 3.
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6. Termination. Set t = t + 1. If iteration limit or evaluation limit has been

reached, stop. Otherwise, go to 2.

A few modifications were made in VTDIRECT95 to meet the needs of various

applications and improve the performance on large scale parallel systems. For Ini-

tialization, an optional domain decomposition step is added to create multiple

subdomains, each with a starting point for a DIRECT search. Empirical results

have shown that this approach significantly improves load balancing among a large

number of processors, and likely shortens the optimization process for problems

with asymmetric or irregular structures. The second step Selection has two addi-

tions. The first is an “aggressive” switch adopted from Watson et al. [2001], which

generates more function evaluation tasks that may help balance the workload under

the parallel environment. The second is an adjustable ǫ, which is recommended by

Jones et al. [1993] to be within (10−2, 10−7), and “most naturally” 10−4 or the de-

sired solution accuracy. The studies by Gablonsky [2001] show that ǫ = 0.0 speeds

up the convergence for low dimensional problems. In general, smaller ǫ values make

the search more local and generate more function evaluation tasks. On the other

hand, larger ǫ values bias the search toward broader exploration, exhibiting slower

convergence. The value of ǫ is taken as zero by default, but can be specified by the

user depending on problem characteristics and optimization goals.

To produce more tasks in parallel, new points are sampled around all boxes in S

along their longest dimensions during Sampling. This modification also removes

the step Iteration, thus simplifying the loop. In the serial version, Sampling

samples one box at a time to eliminate unnecessary storage for new boxes. Another

modification to Sampling is adding lexicographical order comparison between box

center coordinates in both the serial and parallel versions. Since box center function

values may be the same or very close to each other, the parallel Sampling may

yield a different box sequence in each box column as the parallel scheme varies. As

a consequence, boxes will be subdivided in a different order, thus destroying the de-

terministic property of DIRECT. Hence, lexicographical order comparison is added

to keep the boxes in the same sampling sequence on the same platform. Unfor-

tunately, the deterministic property is hard to preserve across machines/compilers

that produce different numerical values, so the numerical results for the same prob-

lem may vary slightly on different systems.

The last set of modifications, in Termination, is to offer more choices of stopping

conditions. Jones et al. [1993] commented that the original stopping condition on

a limit on iterations MAX ITER or evaluations MAX EVL is not convincing for many

optimization problems. Two new stopping rules proposed in VTDIRECT95 are (1)

minimum diameter MIN DIA (exit when the diameter of the best box has reached

the value specified by the user or the round off level) and (2) objective function

convergence tolerance OBJ CONV (exit when the relative change in the optimum

objective function value has reached the given value).
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3. DESIGN AND IMPLEMENTATION

One of the biggest design challenges of DIRECT is to break the “curse of dimension-

ality” first noted by its creators Jones et al. [1993]. The approach here is to design
dynamic data structures that are easily extensible to store continuously generated

data from point sampling/space division and to share the data storage among mul-

tiple processors. A detailed discussion of data structures for DIRECT appears in
He et al. [2002]. Section 3.1 covers the data structure design at a high level and

illustrates advanced features such as a memory reduction technique. Section 3.2
presents the parallel schemes that focus on Selection and Sampling, which are

dependent on each other, but can proceed as individual steps. As an indispens-
able part of implementation, error handling and recovery features are discussed in

Sections 3.3 and 3.4. Portability issues are discussed in the last section.

3.1 Data Structures

DIRECT keeps subdividing the design space and selects potentially optimal regions
according to the sampling results. The divided subregions are called “boxes”. The

key information for a box is stored in a derived data type HyperBox, containing
an array of center point coordinates c, an array of box sides side, center point

function value val, and box diameter diam. To identify potentially optional boxes,
all the boxes are organized ideally by the center function values and box diameters as

shown in Figure 3.1, where the vertical sequences of boxes are called “box columns”,

which are sorted in the order of box diameters, while the boxes in each box column
are sorted in the order of center function values. Jones et al. [1993] have proved that

the potentially optimal boxes are those on the lower right convex hull of the scatter
plot shown in Figure 3.1, so they are also called “convex hull boxes” in this paper.

When ǫ > 0, a line starting from f∗ = fmin− ǫ|fmin| on the vertical axis of function

values will screen out the boxes that may lead to insignificant improvement.
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Fig. 3.1. An example of a box scatter plot.
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The horizontal strict order for the box diameters must be maintained to facili-

tate the convex hull computation. However, the vertical strict order of box center

function values (implemented in the serial version described in He et al. [2002]) is

unnecessary for each box column, and it also incurs more operational cost such as

shifting and sorting for box removal and insertion. In VTDIRECT95, a min-heap

data structure implements a box column, so that the lowest box owns the smallest

function value and every box has a smaller function value than its left and right

children if they exist. It lays out the potentially optimal box candidate at the bot-

tom of the scatter pattern. Once this candidate box is determined to be potentially

optimal, it will be removed from the heap to be subdivided, and the last box in

the heap will be put to the first position and sifted down, reordering the heap in

O(log n) operations instead of the O(n) shifting operations required by a strictly

increasing order of center function values. Similarly for box insertion, a new box

is inserted at the end of the heap and sifted up in O(log n), reduced from O(n),

comparisons. The complexity is improved considerably, especially for large box

columns.

In addition to HyperBox, BoxMatrix and BoxLink are the other two derived data

types for storing boxes. These three are called “box structures” in He et al. [2002].

BoxMatrix contains the following components:

(1) a two-dimensional array M of type HyperBox,

(2) an array of box counters ind for box columns,

(3) a pointer child that points to the next linked node of BoxMatrix needed

when more box columns with new diameters are generated,

(4) an array sibling of pointers that point to linked nodes of type BoxLink,

which are used to extend box columns beyond the storage afforded in M, and

(5) id to identify this box matrix among others.

Initially, a box matrix is allocated with empty box column structures (called “free

box columns”) according to the problem dimension and optimization scale. When

currently allocated memory for a box column has been filled up, a new box link of

derived type BoxLink is allocated dynamically adding a one-dimensional array of

HyperBoxes and associated components such as counter, pointers, and ID to extend

the box column.

To maintain the strict order of box diameters for box columns, another set of

“linked list structures” organizes box columns and recycles free box columns. The

linked lists setFcol and setInd are of the type int vector, containing a one-

dimensional array elements of integers, an array flags for marking convex hull boxes,

pointers for linking nodes, and the node ID. The array flags is only allocated and

used for setInd. The third linked list setDia is derived from real vector to hold

an array of box diameters (real values), pointers, and ID. When a new box matrix

is allocated, all the global IDs of its free box columns are computed based on its

box matrix ID and inserted in setFcol. When a new box diameter is produced

from Division, a free box column from setFcol is assigned to hold the box. An

appropriate position for this box diameter will be found using a binary search in

setDia, which is sorted in decreasing order. Then, the global ID of the newly
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assigned box column is added in setInd at the corresponding position to that in

setDia. The process is reversed when a box diameter disappears after the last

box with this box diameter has been removed, so this box column becomes free.

Subsequently, its diameter value and the global ID will be taken out from setDia

and setInd, respectively. Finally, the free box column is recycled back to setFcol

for later use.

Another practical issue is the sequence of dividing convex hull boxes. Because

diameters are sorted in decreasing order in setDia, the serial version needs to start

from the end of setDia and subdivide the box with the smallest diameter first, so

that sifting up newly generated boxes would not override any existing convex hull

boxes. Obviously, this potential overriding problem does not exist for the parallel

version, which buffers all new boxes from subdivided convex hull boxes and inserts

them all at one time. Hence, the parallel version starts from the beginning of

setDia, thus avoiding the unnecessary cost of chasing the linked nodes of setDia.

VTDIRECT95 adds a new feature to output multiple best boxes (MBB), which

are found by searching through the box structures that hold all the information on

the space partition. This feature is very useful for global optimization problems

with complex structures, where local optimum points are far away from each other,

thus demanding a large amount of space exploration and slowing convergence. In

such a case, DIRECT is often used as a global starter to find good regions. Then,

a local optimizer is applied to each region to efficiently find multiple local optimum

points. Examples of this are presented in Zwolak et al. [2005] and Panning et al.

[2006]. To activate the MBB option, an empty array BOX SET of type HyperBox

allocated with a user-desired size needs to be specified in the input argument list.

Optionally, two more arguments MIN SEP (minimal separation) and W (weights) can

be given to specify the minimal weighted distance between the center points of the

best boxes returned in BOX SET. By default, MIN SEP is half the diameter of the

design space and W is taken as all ones. When the desired number of best boxes

can not be found conditioned on MIN SEP and W, the output argument NUM BOX is

returned as the actual number of best boxes in BOX SET. The following pseudo code

illustrates the MBB process. For interested readers, it also demonstrates a typical

scenario of VTDIRECT95 manipulating the dynamic data structures.

cc: the current best box center

cb: the counter for best boxes stored in BOX SET

cm: the counter for marked boxes

fmin: minimum function value

fi: the current function value to be compared

i, j, k: loop counters

nb: the desired number of best boxes

nc: the number of columns allocated in M

ne: the number of function evaluations

nr: the number of rows allocated in M

pb: the pointer to a box matrix
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pc: the pointer to a box

pl: the pointer to a box link

sep: weighted separation between cc and a candidate box

x0: minimizing vector scaled in the original design space

x1: normalized x0 in the unit design space

Store the first best box centered at x0 with value fmin;

Initialize cc and fi

cb := 1

BOX SET(cb)%val := fmin

BOX SET(cb)%c := x0

cc := x1

fi := a very large value

OUTER: do k := 1, nb − 1

Initialize pb to point to the head of box matrices

cm := 0

INNER1: do while (pb is not NULL)

INNER2: do i := 1, nc

INNER3: do j := 1, ((pb%ind(i)-1) mod nr) + 1

Locate the best box with x0 and fmin in the first pass.

if (k = 1) then

if (x1 is the same as pb%M(j, i)%c) then

Found the best box and fill in BOX SET;

Assign the first best box with scaled pb%M(j,i);

Mark off the box at pb%M(j,i);

cm := cm + 1

cycle

end if

end if

if (box at pb%M(j,i) is not marked) then

Compute sep

if (sep < MIN SEP) then

mark off the box at pb%M(j,i)

cm := cm + 1

else

if (box at pb%M(j,i)%val< fi)

fi := pb%M(j,i)%val

pc points to the box at pb%M(j,i)

end if

end if

else

cm := cm + 1

end if

end do INNER3
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if (any box link exists for this box column) then

pl points to the first box link

do while (pl is not NULL)

Repeat above steps in INNER3 loop for all boxes in pl

pl points to the next box link

end do

end if

end do INNER2

pb points to the next box matrix

end do INNER1

if (pc is not NULL) then

if (pc is not marked) then

Found the next best box at pc; Scale it back to the original design

space and store it in BOX SET

cb := cb + 1

BOX SET(cb) := scaled box at pc

Mark it off

cm := cm + 1

Update cc

cc := pc%c

end if

else

exit OUTER since the next best box is not available

end if

Exit when all evaluated boxes have been marked

if (cm ≥ ne ) exit OUTER

end do OUTER

Pseudocode 3.1.

The MBB option is available for both serial and parallel versions except for

parallel runs with multiple masters, because the communication and computation

complexity of implementing MBB across multiple processors is fairly high. Also,

the problem scale of locating good regions is usually much smaller than finding the

global optimum, so a single master should be able to hold all the information for

box subdivision.

To reduce the memory requirement, VTDIRECT95 is enhanced with the limiting

box columns (LBC) technique. Recall that every iteration, DIRECT divides at

most one box from each box column, thus each box column only needs to have at

most L = Imax − Ic + 1 boxes with the smallest function values, where Imax is the

iteration limit and Ic is the current iteration number. With LBC, box columns are

scanned to be squeezed to length L after all convex hull boxes are subdivided and

all new boxes are inserted. Although the extra operations of removing boxes with

the largest function values are expensive (deleting the box with the largest value in

a min-heap has O(n) complexity), the memory requirement is reduced greatly as
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a result. Therefore, it is highly recommended to enable LBC for large scale/high

dimensional problems that more likely encounter memory allocation failures than

small scale/low dimensional problems.

LBC is enabled under three conditions: (1) the specified iteration limit Imax

(MAX ITER in the code) is positive, (2) the evaluation limit Le (MAX EVL in the

code) is not specified or is sufficiently large—Le × (2N + 2) > 2× 106, and (3) the

MBB option is off. Without Condition (1), LBC would not be able to decide on

the number of boxes to remove. Condition (2) is to turn off LBC to save operations

for small scale runs with little concern for box storage; 2 × 106 is the threshold

obtained from an empirical study. The last condition is also necessary since the

MBB process demands that all boxes stay in the memory.

3.2 Parallel Schemes

The functional flow of DIRECT exposes its inherent sequential nature as seen in

Section 2. The data dependency among the algorithm steps suggests multilevel

parallelism for Selection and Sampling. The parallel scheme for Selection con-

centrates on distributing data among multiple masters to share the memory burden.

Moreover, the data-distributed scheme naturally parallelizes the convex hull com-

putation by merging multiple local convex hulls to a global one. Differently for

Sampling, functional parallelism distributes function evaluation tasks to workers.

Nevertheless, function evaluations should be computed locally on masters if the

evaluation cost is cheaper than the communication round trip cost. This is called

the “horizontal scheme” (multiple masters, no workers) to contrast with the “ver-

tical scheme” (one master and multiple workers). He et al. [2007a] and He et al.

[2007b] present thorough performance studies on different parallel schemes under

various problem configurations and computing systems. Here, the parallel schemes

for Selection and Sampling are described based on assumed reasonable problem

and system parameters under normal circumstances.

The overall hierarchy of the parallel scheme is shown in Figure 3.2. On the top

level, n subdomain masters (SMs) are grouped for each of m subdomain (SDs) to

collaborate on Selection, update intermediate results, and detect stopping condi-

tions in parallel. On the bottom, k workers (Ws) are shared in a global pool to

request function evaluation tasks from all the subdomain masters to accomplish

Sampling. SDi denotes subdomain i, SMi,j denotes subdomain master j in SDi,

and Wk is the worker k that works for all the SMs in “active” SDs. When a SD

finishes all its work, it becomes inactive. SD1 is called the “root” SD. When a

nonroot SD becomes inactive, and at least one SD is still active, SM1,1 will send a

message to convert all SMs in that inactive SD to workers that are going to perform

function evaluation tasks for the remaining active SDs.

Standard MPI library functions are called to group, synchronize, and communi-

cate between the involved processors in their different roles. Because any MPI-based

execution only needs to be initialized (MPI INIT()) and finalized (MPI FINALIZE())

once, two separate subroutines encapsulate these two MPI function calls, so that

users have an option to exclude the latter to avoid conflicting with existing MPI
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Fig. 3.2. The parallel scheme.

initialization and finalization calls in their local parallel environment. To ease the

required collective communication among SMs in the same SD, sub-communicators

are created at the beginning. Depending on a processor’s global rank and specified

scheme parameters (i.e., n and m), the processor is assigned a role as a master or

a worker and executes the corresponding part of the code. A master has a global

rank that identifies it among all processors, and a local rank that establishes it as

the root or a nonroot SM for that SD.

When multiple SDs (m > 1) are used, the original feasible set delimited by

upper (Ub) and lower (Lb) bounds is decomposed into m parts, each of which will

be normalized to a unit box to start a DIRECT search. Theoretically, the original

unscaled box is subdivided into s =
√

m parts along the longest scaled dimension

D1 = maxi wi(Ub−Lb)i, then each of these s boxes is subdivided into s boxes along

the longest scaled dimension D2 (the second longest overall). The wi > 0 are user

supplied component weights (dimension scalings), all one by default. In practice,

s may not be an integer, so the decomposition needs to determine two reasonable

divisors s1 and s2, where (1) s1 × s2 = m and (2) s1/s2 ≈ D1/D2. The second

condition on the ratio of divisors prevents the resulting subdomains from being out

of proportion. For example, if m = 12, the acceptable divisors are (a) s1 = 12,

s2 = 1, or (b) s1 = 6, s2 = 2, or (c) s1 = 4, s2 = 3. Whichever divisors best satisfy

(2) are chosen, which best preserves the original weights on dimension bounds given

by the user.

When multiple masters (n > 1) are used, the parallel Selection is implemented

as follows in SDi:
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1. SMi,j , j = 1, . . . , n identify local convex hull box sets Si,j, j = 1, . . . , n.

2. SMi,1 gathers the Si,j from all the SMi,j .

3. SMi,1 merges the Si,j by box diameters and finds the global convex hull box

set Si.

4. All the SMi,j receive the global set Si and find their portion of the convex

hull boxes.

The above scheme takes advantage of the geometrical fact that a box on a global

convex hull must be in the union of all the local convex hull box sets. The amount

of communication is greatly reduced since SMi,1 does not gather all the lowest

boxes from each SMi,j . Also, the convex hull computation is shared by all SMs.

However, the costly synchronization and communication involved in such a scheme

still behooves users to use as small a number of masters as possible. Depending

on the potential memory requirement of a run, users can estimate the number of

masters required to achieve a particular stopping condition. If the function evalua-

tion cost is high, but the memory requirement is hard to assess, the checkpointing

feature can be enabled to log evaluations on existing masters and recover the run

with more masters if memory allocation failure occurs.

Following Selection, each master samples new points within its own portion of

convex hull boxes and stores them in a buffer. If workers are not used, function

values are computed locally on each master. Otherwise, parallel Sampling is

carried out in the following manner, assuming k ≥ 2mn workers are in the pool so

that there are at least two workers per master.

1. A worker Wi sends a “nonblocking” request to a randomly selected SMi,j .

(The term “nonblocking” means that the request receiving master will not

block the worker in the queue).

2. SMi,j sends a task (if any) to a worker that is in the queue or that has sent a

“nonblocking” request. Each task contains Nb ≤ BINSIZE number of points,

where BINSIZE is an optional input argument taken as one by default. If

SMi,j has no more tasks, it sends a “no point” message. If it has no more

iterations, it sends an “all done” message.

3. If Wi receives a task to evaluate the objective function at some point(s),

it sends back the function value(s). If it receives a “no point” message, it

marks SMi,j as idle and checks with other masters that may have tasks, and

if none have tasks, sends a “blocking” request and waits. If Wi receives an

“all done” message, it removes SMi,j from the master list and checks with

the remaining masters, if all reply “all done”, it terminates.

4. If SMi,j receives the function values back, it puts them in the buffer and

sends another task. If it has no more tasks, it sends a “no point” message.

If it receives a “blocking” request, when multiple subdomains are involved,

SMi,j tracks the number of “blocking” requests from this worker during this

iteration; it sends a “no point” message again if this is the first “blocking”

request from this worker, or blocks this worker in the queue if the worker

has sent two “blocking” requests during this cycle. For a single domain, the



VTDIRECT95 • 13

feature of tracking “blocking” requests is disabled so that SMi,j queues up

the worker upon each “blocking” request.

The workers are shared by all masters no matter how many subdomains exist.

The random master selection gives every master in each subdomain a fair chance

of being served by workers. If the problem structure in a particular subdomain

yields more tasks than others, workers will be dynamically appointed more often

for that subdomain. Also observe that the masters in different subdomains work

independently, meaning no communication or synchronization is required, except

for result merging and processor termination at the end. The asynchronous prop-

erty of multiple subdomains improves load balancing among workers, who are more

likely to obtain tasks than those with a single subdomain. Therefore, the feature of

tracking “blocking” requests described in (4) is designed to encourage a worker to

seek tasks one more time under the multiple subdomain scenario. The final point

in Sampling concerns choosing a reasonable BINSIZE. It needs to be set greater

than one to pack several points in a single task only if (1) there are an extremely

large number of function evaluations, and (2) each evaluation costs less than the

communication round trip. Otherwise, the load becomes imbalanced and communi-

cation overhead increases, thus degrading the parallel efficiency. It is recommended

to compute function values locally on masters if condition (2) is satisfied, but con-

dition (1) is not. He et al. [2007a] discuss this issue in great detail with convincing

experimental results.

3.3 Error Handling

Program robustness requires error handling that anticipates, detects, and resolves

errors at run time. The highest level of error handling capability is fault tolerance

that attempts to recover from hardware or operating system failures if possible,

and if not, terminates the program gracefully. The tradeoff for fault tolerance is in-

creased program complexity. The errors encountered in using VTDIRECT95 come

from several sources, including input parameters, memory allocation, files, MPI

library, and hardware/power failure, etc. The error handling strategies here aim at

balancing potential computation loss with implementation complexity. Therefore,

simple fault tolerance features are considered only for recovering from some of the

input parameter errors. The remaining errors are regarded as fatal errors, which

are handled by checkpointing to save the computation as much as possible for later

recovery.

Input parameter errors: Input parameter errors—for instance, the given lower

bounds are not less than the upper bounds or none of the four stopping rules

is specified—are recognized in the initialization phase. The function sanitycheck

verifies all input parameters and assigns values to the derived local variables. Some

input parameter errors are recoverable when the parameters are also in the out-

put list. In this case, the default parameter values are set or the desired features

are disabled, and the revised parameter values will be reported to the user upon

return. Examples of such errors include nonpositive values of MAX ITER, MAX EVL,

or MIN DIA for stopping conditions. Also, if the box structures in (the subroutine
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argument) BOX SET are not allocated, the missing pointers are recovered by allo-

cating them with the correct problem dimension. For an irrecoverable error, the

error code is returned in STATUS, which is an integer in the serial version, or an

array of integers to hold return statuses for all subdomains in the parallel version.

All masters and workers will check the sanity of input parameters and handle such

errors in the same way.

MPI errors: The MPI function calls in the parallel version may also return errors

at run time. By default, any error that MPI encounters internally for the global

communicator MPI COMM WORLD is set as MPI ERRORS ARE FATAL whose default ac-

tion aborts the entire program. In VTDIRECT95, MPI ERRORS RETURN is set in

place of the default error handler to notify the user of errors during the initializa-

tion phase, and reset to the default one to reduce the overhead after all processors

have passed the initialization. MPI ALLTOALL is used to collect initialization status

on each processor from all others. If a fatal error occurs on a subset of proces-

sors during initialization, every processor is notified that the initialization failed.

Then, the program terminates gracefully with a defined error code. The fatal er-

rors here include those related to MPI and also all the irrecoverable errors discussed

previously.

Memory allocation errors: The next source of errors is memory allocation that

aborts the program when the virtual memory is exhausted. The behavior of the

program depends on the virtual memory management under a particular operating

system. It may simply quit or may become intolerably slow because of the heavy

disk paging. The ultimate solution for this type of error is checkpointing (see the

next section).

3.4 Checkpointing

VTDIRECT95 adopts a user level and nontransparent checkpointing method that

records/recovers function evaluation logs via file I/O. Plank [1997] categorizes such

a method as “user level” and “nontransparent” because it is visible in the source

code and is implemented outside the operating system without using any system

level utilities. It requires more programming effort than simply applying system

level transparent tools (e.g., MPICH-V by Bouteiller et al. [2006], FT-MPI by

Fagg et al. [2001], LAM-based MPI-FT by Louca et al. [2000], or model based

fault tolerance MPI middleware by Batchu et al. [2004]), but it is flexible and

precise in choosing what to save, instead of dumping all the relevant program

and even system data. Another drawback of using fault tolerance enhanced tools

in a parallel program is the dependence on a particular implementation of the

MPI standard. For MPI based programs, Gropp et al. [2004] also recommend

“user-direct” checkpointing with which it is easier to extract all the necessary state

information than with “system-direct” methods. In the present work, function data

points (x, f(x)) are chosen as the checkpointing state information for both serial

and parallel versions.

The checkpointing switch RESTART can be 0 (“off”), 1 (“saving”), or 2 (“re-

covery”). During checkpointing, the errors are mainly related to the file in the
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process of opening, reading, writing, verifying the file header, or finding checkpoint

logs. For “saving”, the program will report an opening error if the default check-

point file already exists, in order to prevent the saved checkpoint logs from being

overwritten. Hence, an old checkpoint file should be either removed or renamed

before starting another “saving” run. The opening error also occurs when “recov-

ery” can not find the needed checkpoint file. Note that the checkpoint file has a

fixed name (vtdirchkpt.dat) in the serial version, while in the parallel version,

the file name on each master is tagged with its subdomain ID and master ID (i.e.,

pvtdirchkpt.000.001 is saved by SM1,2 in SD1).

Each checkpoint file has a header containing important parameters that must

be validated in the recovery run to ensure that Sampling will produce the same

sequence of logs as in the file. For the serial version, the header includes the problem

dimension, upper and lower bounds, ǫ, and the aggressive switch. Changing any

of these parameters will result in different point sampling. However, other input

parameters such as MAX ITER or BOX SET can be modified for the recovery run.

Some applications may use checkpointing as a convenient probing tool to find a

good stopping condition or a reasonable set of best boxes. In the parallel version,

m (the number of subdomains) and n (the number of masters per subdomain) are

added in the header. m must be the same in the recovery run, but n is permitted

to be changed in order to adjust the number of masters. This makes it possible to

recover a crashed run due to memory allocation failure.

In the serial code, a checkpoint log consists of the current iteration number t, a

vector c of point coordinates, and the function value val at c. The “saving” run

records each evaluation as a checkpoint log in the file. Assuming the computing

platform is the same, the points are sampled in the same sequence for the same

number of iterations/evaluations, because of the deterministic property of DIRECT.

Therefore, the recovery run loads all the checkpoint logs, or those that are within

the iteration limit if specified. These logs are stored in a list in the same order as in

the file, and will be recovered in that order as the program progresses. Recall that

in the serial version, Sampling samples around one convex hull box at a time, but

in the parallel version, it samples around all the convex hull boxes to produce as

much work for the workers as possible. As the serial program generates new points,

Nt (the number of points at iteration t) is unknown. Therefore, t is required for

each checkpoint log in the serial code. However, Nt is known under the parallel

version. Hence, the checkpoint file has a different form for the parallel code—in

addition to a file header, a subheader consisting of t and Nt is followed by Nt logs,

each with c and val.

When the number of masters n is the same as the “saving” run, the recovery

run proceeds on each master similarly as in the serial version. If n is changed, the

masters in the recovery run read in the checkpoint logs from all the files generated

by all the masters during the saving run. Since the total number of logs aggregated

from all masters may become very large, the masters load the logs only for the

current iteration. The original deterministic sequence on a single machine breaks



16 • J. He et al.

into pieces on multiple masters, so it is better to organize the logs for easy search-

ing. In the present work, these logs are sorted in lexicographical order of the point

coordinates, which are looked up using a binary search to retrieve the correspond-

ing function values. When the checkpoint file is corrupted or is from a different

platform, some point coordinates may be missing—a fatal error that aborts the

recovery run.

3.5 Portability Issues

The module REAL PRECISION from HOMPACK90 by Watson et al. [1997] is used

to define real arithmetic for “precision portability” across different systems. In

the REAL PRECISION module, R8 is the selected KIND value corresponding to real

numbers with at least 13 decimal digits of precision, covering 60-bit (Cray) and

64-bit (IEEE 754 Standard) real arithmetic.

Another portability issue arises under the parallel computing environment. Al-

though MPI is well known for its portability across machines, its latest standard

has not proposed a portable way of matching the data types specified with Fortran

95 KIND values. The REAL (KIND=R8) real number may be considered as double

precision on one system but as single precision on another system. This data type

matching problem is addressed here by calling INQUIRE to obtain the byte size for

the R8 type and using MPI BYTE to transfer a buffer holding R8 values, assuming

the same byte ordering on all the involved machines. No performance degradation

has been observed for this approach.

4. PERFORMANCE

In this section, VTDIRECT95 is evaluated in terms of optimization effectiveness,

data structure efficiency, parallel performance, and checkpointing overhead. The

performance tests here focus on practical concerns and new features, summarizing

important test results in the earlier performance studies by He et al. [2002], He et

al. [2007a], and He et al. [2007b] to present the reader with a complete picture.

Five benchmark functions (also provided in the package) and two real-world ap-

plications are listed in Table 4.1. The problem dimension N and function evaluation

cost Te in seconds can be adjusted for benchmark functions to suit the different

test purposes, while N and Te are not adjustable for the real-world problems FE

and BY. The problem FE has 16 parameters (N = 16) and costs about 3 seconds

(Te ≈ 3.0) per function evaluation. For the problem BY, N = 143 and Te ≈ 11.0.

Located at Virginia Tech, an Apple Xserve G5-based system (System X) with 2200

processors and an AMD Opteron-based system (Anantham) with 400 processors

are used in the studies.

4.1 Optimization Effectiveness

The convergence speed is considered here for measuring the optimization effective-

ness. It certainly depends on the problem structure, but the parameter ǫ also

plays an important role as reported by Jones et al. [1993], Finkel et al. [2004], and
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Table 4.1. Test functions.

Name Description

GR Griewank: f = 1 +
∑N

i=1
xi

2/500 − ∏N

i=1
cos(xi/

√
i)),

−20.0 ≤ xi ≤ 30.0, f(0, . . . , 0) = 0.0

QU Quartic: f =
∑N

i=1
2.2 × (xi + 0.3)2 − (xi − 0.3)4,

−2.0 ≤ xi ≤ 3.0, f(3, . . . , 3) = −29.816N

RO Rosenbrock’s Valley: f =
∑N

i=1
100(xi+1 − x2

i )
2 + (1 − xi)

2,
−2.048 ≤ xi ≤ 2.048, f(1, . . . , 1) = 0

SC Schwefel: f = −∑N

i=1
xi sin(

√

|xi|),
−500 ≤ xi ≤ 500, f

(

420.9(1, . . . , 1)
)

≈ −418.9N

MI Michalewicz: f = −∑N

i=1
sin(xi) × sin(

ix2

i

π
)20,

0 ≤ xi ≤ π, f(x̄) = 0 for x̄ ∈ {0, π}N

FE Frog egg parameter estimation (Zwolak et al. [2005])

BY Budding yeast parameter estimation (Panning et al. [2006])

Gablonsky [2001]. The following tests demonstrate how ǫ affects the convergence

speed on the benchmark functions. The convergence is defined as when both the

global optimum value fmin and global optimum solution x0 are achieved within

less than 0.1% error, thus the desired accuracy is α = 1.0E-03. Jones et al. [1993]

recommend ǫ to be the desired solution accuracy to find good optimization results

with a reasonable amount of work. Table 4.2 lists the number of iterations (NI) and

evaluations (Ne) needed to converge to the solution for the benchmark functions

with ǫ values in (0.0, 1.0E-02).

Table 4.2. The number of iterations NI and evaluations Ne required for convergence with ǫ

varying in (0.0, 1.0E-02). An asterisk prefixing certain entries indicates that they are lower

bounds on the actual NI and Ne.

GR QU RO SC MI

ǫ value NI Ne NI Ne NI Ne NI Ne NI Ne

1.0E-02 259 3561 ∗12 · 103 ∗105 151 6567 33 285 892 16771
1.0E-03 25 295 57 563 146 6883 22 151 312 10890
1.0E-04 15 143 57 587 146 7217 21 157 318 14559
1.0E-05 14 135 57 613 146 7423 21 157 319 17629
1.0E-07 14 135 57 637 146 7485 21 157 319 23059
0.0 14 135 57 679 146 7485 21 173 — —

When ǫ is between 1.0E-03 and 1.0E-07, all benchmark function optimizations

converge with a reasonable number of iterations and evaluations. ǫ = α yields the

smallest number of evaluations for QU, SC, and MI, and the second smallest for

RO. The problem GR prefers ǫ as small as possible to minimize the amount of
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work. However, observe that the MI optimization fails to converge when ǫ = 0.0,

because the search is biased to be so local that the search has to stop since the

minimum box diameter 1.26E-15 has been reached after 235 iterations and 25301

evaluations. Moreover, using ǫ = 1.0E-02 > α increases the number of evaluations

a thousand fold for the problem QU. Therefore, the desired accuracy is proved to

be a reasonable choice for ǫ, unless the optimization goal is to find a local solution,

in which case ǫ = 0.0 can improve local convergence, or to broadly explore the

feasible set, when ǫ > α is appropriate.

4.2 Data Structure Efficiency

The dynamic data structures were introduced in the original 2002 version of the

VTDIRECT95 serial code. In terms of the execution time and memory usage, two

other implementations using static data structures were compared empirically with

the serial version described by He et al. [2002], which has demonstrated its strength

in dealing with unpredictable memory requirements. The next improvement on

data structures was constructing box columns as heaps instead of sorted lists. In

addition, lexicographical order of box center coordinates is enforced in the heap

for maintaining determinism. Table 4.3 compares the execution time of an earlier

version with sorted lists (SL), the current version with lexicographically ordered

heaps (HL), and a version (HNL) that was built without the lexicographical order

comparisons. Clearly, using heaps is much more efficient than using sorted lists.

Also, the lexicographical order comparison accounts for a very tiny portion of the

entire operational cost.

Table 4.3. Execution time (in seconds) of the versions with sorted lists (SL), with lexico-

graphically ordered heaps (HL), and heaps without lexicographical order comparison (HNL).

The evaluation limit is 105 for all test functions.

# SL HL HNL

GR 233.21 10.60 10.57
QU 840.43 56.70 56.38
RO 226.52 8.12 7.92
SC 273.58 11.97 11.86
MI 468.65 29.69 29.32

The last important improvement on data structures is limiting box columns

(LBC). The experimental results in He et al. [2007a] show that LBC reduces the

memory usage by 10–70% for selected high dimensional test problems. The fol-

lowing experiments investigate the added computational cost of LBC. Figure 4.1

compares the growth of the execution time with LBC or without LBC (NON-LBC)

as the number of function evaluations Ne increases for the 2-dimensional problem

GR and 4-dimensional problem RO.
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Fig. 4.1. Growth of execution time with LBC or NON-LBC as Ne increases for the 2-

dimensional problem GR and the 4-dimensional problem RO.

Regardless of the different problem structures, LBC performs slower than NON-

LBC until Ne reaches a certain “crossover point”, where NON-LBC begins to run

slower due to depleting memory resources and more expensive operations on the

box columns longer than those in LBC, while LBC keeps the box columns as short

as possible. Observe that the crossover point for the 2-dimensional problem GR is

approximately twice the crossover point for the 4-dimensional problem RO. This

observation inspired the next set of experiments to find the approximate number of

evaluations Nx at the crossover points for all five benchmark functions, and define

a condition to turn off LBC if

Le(2N + 2) < Lx, (4.1)

where N is the problem dimension, 2N + 2 is the number of real values in a Hy-

perbox, Le is the user specified limit on evaluations (MAX EVL in the code), and

Lx ≈ 2× 106 is the average of the five Nx(2N + 2) values shown in Table 4.4. The

condition (4.1) is checked only when the user specifies stopping conditions based

on both MAX ITER and MAX EVL.

Table 4.4. The crossover point Nx and the threshold Lx for all five test functions.

# GR QU RO SC MI

N 2 3 4 2 5
Nx/103 422 190 258 442 129
Lx/106 2.5 1.5 2.5 2.6 1.5

4.3 Parallel Performance

Comprehensive analytical and experimental results in He et al. [2007c], He et al.

[2007a], and He et al. [2007b] regarding the parallel performance are reviewed in



20 • J. He et al.

this section. In addition, several new experiments were conducted to measure the

scalability in terms of the average overhead per function evaluation and the scaled

speedup.

Objective function cost is one of the key parameters that affects the parallel

performance under different parallel schemes. For expensive functions, evaluation

tasks should be distributed in the smallest possible chunks (Nb = 1) for better

load balancing, which is a major reason behind improved parallel efficiency. Much

better load balancing is achieved with Nb = 1 than Nb = 5, 10, or 20 for the 150-

dimensional problem GR with Te = 0.1 in an experiment running on 100 processors

under the vertical scheme (He et al. [2007a]). If the objective function cost is low,

either a vertical scheme with function evaluation stacking (Nb > 1) or a horizontal

scheme with a small number of masters can be used to achieve some speedup. It

has been shown by He et al. [2007b] that a horizontal scheme using three, four, and

five masters yields better parallel efficiency than the corresponding vertical scheme

on the same number of processors for the same problem GR when Te ≤ 2.5E-04 on

System X and Te ≤ 1.0E-03 on Anantham.

As the isoefficiency analysis in He et al. [2007b] concluded, different parallel sys-

tem characteristics (e.g., communication round-trip cost) matter only for cheap

functions. The higher the function cost, the better the scalability of the vertical

scheme, which is more scalable than the horizontal scheme in general. The over-

head due to processor idleness and communication grows faster in the horizontal

scheme when more processors are used. For expensive functions, the biggest per-

formance impact comes from problem-dependent factors such as the number of

evaluation tasks per iteration, which determines the degree of concurrency. Decou-

pling Sampling and Selection is the first step taken in VTDIRECT95 to enhance

the program concurrency. In future research, a promising solution would be to

generate a sufficient number of tasks for idle workers by pre-fetching boxes that

may become potentially optimal in later iterations (speculative evaluation).

Here, new scalability tests were done on all five benchmark functions with a

fixed cost Te = 0.1, a growing problem dimension N = 2i (i = 2, . . ., 6), and an

increasing number of processors p = 10 · 2i−1 (i = 1, . . ., 5). Since Te is maintained

approximately constant by using a microsecond precision utility function gettime-

ofday in C, the increase from 0.1 to the average cost per evaluation Te = pTp/Ne

can be considered as the average overhead per function evaluation as both N and

p increase, where Tp is the parallel execution time with p processors and Ne is the

actual number of evaluations.

Figure 4.2 plots how Te changes as N and p grow. For most problems, Te grows

slowly until N reaches 32 and p reaches 80. The larger increase in overhead for

the QU problem could be related to its special structure that causes more worker

idleness and more computation during Selection and Division. Additionally,

doubling p every time that N doubles is not guaranteed to maintain efficient per-

formance, since the growth in N may not produce more concurrent evaluation tasks

proportionally. On the other hand, load balancing can be improved greatly for a
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Fig. 4.2. The growth of T̄e as N and p increase for all five benchmark functions.

fixed p, when other parameters, such as N , the iteration limit Imax, or the evalua-

tion limit Le, grow. An experiment (He et al. [2007a]) has shown that the parallel

efficiency curves for 100 processors reach more than 90%, 80%, and 70% when

Imax = 30, 20, and 10, respectively, as N increases from 10 to 50, 100, and 150 for

the problem RO with the same cost Te = 0.1.

The next scalability study varies the evaluation limit Le as p grows for the

problems FE and BY. The comparisons are also done with the number of it-

erations/evaluations fixed as p grows. The fixed speedup and scaled speedup

are plotted in Figure 4.3. The fixed speedup follows the conventional definition

Sf = T (W, 1)/T (W,p), where W is the fixed work load, T (W, 1) is the execution

time on a single processor, and T (W,p) is the parallel execution time on p proces-

sors. The scaled speedup is usually calculated as Ss = p T (Ws, 1)/T (pWs, p), where

Ws is the base work for a single processor, T (Ws, 1) is the execution time with a

single processor on the work Ws, and T (pWs, p) is the parallel execution time with

p processors and the linearly increased work pWs. (See, e.g., Quinn [2003] for a

discussion of the relationship between Ss and Sf .) For DIRECT, Ss needs to be

redefined because the stopping condition Ne > Le is checked after all convex hull

boxes have been sampled and subdivided, meaning that the number of evaluations

may not grow exactly linearly as DIRECT iterates. Therefore, define

Ss =
p T (Ws, 1)

T (Wp, p)(pWs/Wp)
,

where Ws represents the base number of evaluations on a single processor and

Wp > Ws is the increased number of evaluations as p grows. Hence, T (pWs, p) is

approximated with T (Wp, p)(pWs/Wp).

In Figure 4.3, the fixed speedup is obtained with W = 3251 for the problem

FE and W = 1699 for the problem BY. For the scaled speedup, Ws = 449 for

the problem FE and Ws = 287 for the problem BY. The evaluation limits with

p processors are listed in the table under the plot for both problems FE and BY.
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Fig. 4.3. Comparison of the fixed and scaled speedups for the problems FE and BY as Le

and p grow. The actual work Wp is shown in the table below the plot.

The scaled speedup is slightly worse than the fixed speedup when p ≤ 24 for the

problem BY and when p ≤ 48 for the problem FE. Note also that the speedup

for the problem BY is better than that for the problem FE, because the problem

dimension and evaluation cost of the problem BY are higher.

When a large number of processors are involved as in some of the experiments

above, domain decomposition should be considered to improve the load balancing

and scalability. Comparison runs between a single domain and four subdomains

using four masters and 196 workers were done on five 150-dimensional benchmark

functions and the problem BY in He et al. [2007a]. The search with four subdomains

gave narrower workload ranges for workers, thus better load balancing than that

with the single domain. Better optimization solutions may also be discovered earlier

with decomposed subdomains than with a single domain for problems with irregular

structures. For the problems FE and BY, the solution found with a single domain

search was worse than that with a four subdomain search, since with the same Imax

more function evaluations were generated across multiple subdomains.

4.4 Checkpointing Overhead

The following experiments measure the checkpointing overhead under the serial and

parallel running environments. The evaluation limit is 105 and the original cost

Te ≈ 0.0 is used for the five test functions. Table 4.5 reports the execution time

without checkpointing Tnc, the time for “saving” Tsv, and the time for “recovery”

Tr. First, note that Tsv is always greater than Tnc, but Tr is sometimes less than

Tnc. This means the recovery overhead is very small even for cheap functions.
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Second, the saving overhead depends heavily on the number of iterations, because

the checkpoint logs are flushed to the file at the end of each iteration. The average

saving overhead per iteration is approximately 0.003 second.

Table 4.5. Comparison of serial checkpointing overhead (in seconds) for five test functions.

I is the number of iterations upon termination with the stopping rule Le = 105, Tnc is the
execution time without checkpointing, Tsv is the execution time with saving, and Tr is the

execution time for recovery.

# I Tnc Tsv Tr

GR 3057 10.58 18.85 11.50
QU 12238 56.70 87.38 57.28
RO 1198 8.12 11.61 9.22
SC 3637 11.97 21.43 12.96
MI 1968 29.69 34.61 24.05

In parallel environments, all processors are masters since the function evaluation

cost is too low to justify distribution to workers. Table 4.6 shows the timing results

of saving and recovering the checkpoint logs saved by a single master and recov-

ered using multiple masters, and both saving and recovery with multiple masters.

The checkpointing overhead on a single master in the parallel version is slightly

more than that in the serial version. Recovering with multiple masters costs more

than that with a single master, but the overhead does not grow dramatically as

the number of masters doubles. In some cases, the recovery overhead even drops

with more masters. The saving and recovery overhead with three masters is also

comparable to that with the single master. In summary, checkpointing overhead

is very insignificant compared to the benefit of saved computation for expensive

function evaluations.

Table 4.6. Comparison of parallel checkpointing overhead (in seconds) when saving with a

single master (m1) and saving with three masters (m3) for five test functions. The stopping

rule is evaluation limit Le = 105. Tnc is the execution time without checkpointing, Tsv is the

execution time with saving, and Tr(m) is the execution time for recovery with m masters.

# Tnc Tsv Tr(1) Tr(2) Tr(3) Tr(4) Tr(5) Tr(7) Tr(8)

GR m1 13.22 21.06 14.43 26.11 – 22.76 – – 27.86
GR m3 11.95 21.07 – – 12.71 – 23.49 27.24 –
QU m1 55.87 109.15 57.42 76.27 – 86.51 – – 104.47
QU m3 68.58 83.04 – – 49.52 – 95.78 107.46 –
RO m1 9.33 12.80 10.70 16.89 – 13.74 – – 14.50
RO m3 6.61 10.47 – – 7.02 – 13.28 13.89 –
SC m1 14.44 23.38 15.37 30.05 – 26.11 – – 30.39
SC m3 14.49 25.59 – – 13.68 – 34.40 29.87 –
MI m1 30.31 35.58 23.30 21.57 – 18.87 – – 20.68
MI m3 14.40 17.84 – – 11.74 – 18.28 20.03 –
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5. ORGANIZATION AND USAGE

The README file distributed with the package describes the physical organization

of the package into files, and includes the basic instructions for compiling, testing,

and running the installed serial and parallel codes. This section describes the

organization and usage of the key modules, driver subroutines, and test programs.

5.1 Package Organization

Figure 5.1 shows the high level organization of VTDIRECT95. The module VTdi-

rect MOD declares the user called driver subroutine VTdirect for the serial code.

Correspondingly, the module pVTdirect MOD declares the user called parallel driver

subroutine pVTdirect, the subroutine pVTdirect init for MPI initialization, the

subroutine pVTdirect finalize for MPI finalization, as well as the data types,

parameters, and auxiliary functions used exclusively in the parallel code.

sample_pmain.f95

VTdirect.f95

VTdirect_MOD pVTdirect_MOD

pVTdirect.f95

sample_main.f95 objfunc.f95 use

include

module

file

REAL_PRECISION VTDIRECT_CHKPT

shared_modules.f95

VTDIRECT_COMMSUBVTDIRECT_GLOBAL

Fig. 5.1. The module/file dependency map.

The two driver subroutines VTdirect and pVTdirect share the modules: (1)

REAL PRECISION from HOMPACK90 (Watson et al. [1997]) for specifying the real

data type, (2) VTDIRECT GLOBAL containing definitions of derived data types, pa-

rameters, and module procedures, (3) VTDIRECT COMMSUB containing the subrou-

tines and functions common to both the serial and parallel versions, and (4) VTDI-

RECT CHKPT defining data types and module procedures for the checkpointing fea-

ture. These shared modules are merged in the file shared modules.f95 as shown

in Figure 5.1. sample main and sample pmain are sample main programs that call

VTdirect and pVTdirect, respectively, to optimize five test objective functions de-

fined in objfunc.f95 and verify the installation. The dependencies between the

package components are depicted in Figure 5.1.

In the sample serial main program sample main each test objective function illus-

trates a different way of calling the driver subroutine VTdirect. The calls illustrate

the four different stopping rules—maximum number of iterations MAX ITER, max-

imum number of function evaluations MAX EVL, minimum box diameter MIN DIA,

and minimum relative decrease in objective function value OBJ CONV. For the last

objective function, a multiple best box (MBB) output is illustrated. Details of the

arguments are in comments at the beginning of the subroutine VTdirect. Different

parallel schemes are used in the test cases for pVTdirect, called by the sample par-

allel main program sample pmain. Both sample main programs print to standard
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out the stopping rule satisfied, the minimum objective function value, the minimum

box diameter, and the number of iterations, function evaluations, and the minimum

vector(s). In addition, the test output for pVTdirect lists the number of masters

per subdomain and the number of subdomains.

Different computation precision and different compiled code on different systems

may require different numbers of iterations or evaluations to reach the desired

solution accuracy (1.0E-03) specified in the test programs. If a test program fails

to locate the optimum value or the optimum point given the stopping conditions in

the supplied namelist input file, the stopping conditions can be adjusted accordingly.

5.2 Using VTDIRECT95

One of the virtues of DIRECT, shared by VTDIRECT95, is that it only has one

tuning parameter (ǫ) beyond the problem definition and stopping condition. Using

VTDIRECT95 basically takes three simple steps. First, define the objective func-

tion with an input argument for the point coordinates (c), an output argument for

evaluation status (iflag), and an output variable for the returned function value

(f). A nonzero return value for iflag is used to indicate that c is infeasible or f

is undefined at c. The user written objective function is a FUNCTION procedure

that must conform to the interface:

INTERFACE

FUNCTION Obj Func(c, iflag) RESULT(f)

USE REAL PRECISION, ONLY: R8

REAL(KIND = R8), DIMENSION(:), INTENT(IN):: c

INTEGER, INTENT(OUT):: iflag

REAL(KIND = R8):: f

END FUNCTION Obj Func

END INTERFACE

Second, allocate the required arrays and specify appropriate input parameters to

call one of the driver subroutines. In the parallel case, the MPI initialization and

finalization subroutines need to be called before and after calling the parallel driver

subroutine (pVTdirect), unless MPI is initialized and finalized elsewhere in the same

application. The required arrays include the input lower (L) and upper (U) bounds,

and an output array for the optimum vector (X). Additionally, in the parallel version,

the return status is also an array, required to be allocated beforehand, to hold

statuses returned from subdomains, even if only one domain exists, in which case

the size of the status array is one. If the user desires to specify the optional input

argument BOX SET, an array of boxes must be allocated and an optional weight

array W for dimensional scaling may also be allocated.

All other input parameters specified in the argument list of the driver subrou-

tine are conveniently read in from a NAMELIST file, as illustrated in the sample

main programs. Using namelist files is an elegant way of varying input parameters

as needed, without recompiling the program. The namelist file pdirectRO.nml

shown below is to test pVTdirect for optimizing the 4-dimensional problem RO.

The parameters are grouped into four categories (NAMELISTs): parallel scheme
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PSCHEME, problem configuration PROBLEM, optimization parameters OPTPARM, and

checkpointing option CHKPTOP. This example uses two subdomains and two mas-

ters per subdomain, and the stopping condition is when the minimum box diameter

reaches 1.0E-05. The checkpointing feature is activated when chkpt start equals

1 (saving) or 2 (recovery). The program will terminate if the checkpoint file errors

occur as explained in the section on error handling (cf. Section 3.4). It is the user’s

responsibility to maintain the checkpoint files, including renaming or removing old

files.

&PSCHEME n subdomains=2 n masters=2 bin=1 /

&PROBLEM N=4

LB(1:4)=-2.048,-2.048,-2.048,-2.048

UB(1:4)=2.048,2.048,2.048,2.048 /

&OPTPARM iter lim=0 eval lim=0 diam lim=1.0E-5 objf conv=0.0

eps fmin=0.0 c switch=1 min sep=0.0 weight(1:4)=1,1,1,1

n optbox=1 /

&CHKPTOP chkpt start=0 /

Finally, the last step is to interpret the return status, collect the results, and

deallocate the arrays as needed. The return status consists of two digits. The tens

digit indicates the general status: 0 for a successful run, 1 for an input parameter

error, 2 for a memory allocation error or failure, and 3 for a checkpoint file error.

The stopping condition for a successful run is further indicated in the units digit,

which also points to the exact source of error if a nonzero status is returned. For

example, a return status of 33 means the checkpoint file header does not match

with the current setting. All the error codes and interpretations can be found in

the source code documentation. A successful run returns the optimum value and

vector(s) in the user-prepared variables and arrays. In order to receive a report

on the actual number of iterations/evaluations, or minimum box diameter, these

optional arguments must be present in the argument list. The final results of calling

pVTdirect are merged on processor 0 (the root master), so proc id is returned

to designate the root to report the results. VTDIRECT95 is designed so that the

optimization results may be directly fed to another procedure or process, the typical

situation in large scale scientific computing.
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