
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

1

Abstract—This paper documents the domain engineering process for much of the conflation algorithms domain.

Empirical data on the process and products of domain engineering were collected. Six conflation algorithms of four

different types: three affix removal, one successor variety, one table lookup, and one n-gram were analyzed. Products of

the analysis include a generic architecture, reusable components, a little language and an application generator that

extends the scope of the domain analysis beyond previous generators. The application generator produces source code for

not only affix removal type but also successor variety, table lookup, and n-gram stemmers. The performance of the

stemmers generated automatically was compared with the stemmers developed manually in terms of stem similarity,

source and executable sizes, and development and execution times. All five stemmers generated by the application

generator produced more than 99.9% identical stems with the manually developed stemmers. Some of the generated

stemmers were as efficient as their manual equivalents and some were not.

Index Terms-- Software reuse, domain analysis, conflation algorithms, stemmers, application generator.

I. INTRODUCTION

A. Conflation Algorithms Domain

Conflation algorithms are used in Information Retrieval (IR) systems for matching the

morphological variants of terms for efficient indexing and faster retrieval operations. The

conflation process can be done either manually or automatically. The automatic conflation

operation is also called stemming. Frakes [1] categorizes stemming methods into four groups:

Manuscript received July 9, 2007.

Okan Yilmaz, Student Member, IEEE, William Frakes, Member, IEEE

A Case Study of Using Domain Analysis for the

Conflation Algorithms Domain

IN the early 1980s software companies started the systematic reuse process through domain

engineering to improve software productivity and quality. There has been insufficient empirical

study of the domain engineering process and domain products such as reusable components and

generators. This paper addresses this problem by documenting and empirically evaluating a

domain engineering project for the conflation algorithms domain. This domain is important for

many types of systems such as information retrieval systems, search engines, and word

processors. The application generator developed for this study extends the domain scope

compared to previous ones.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computer Science Technical Reports @Virginia Tech

https://core.ac.uk/display/10676168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

2

affix removal, successor variety, n-gram and table lookup. Affix removal is the most intuitive

and commonly used of these algorithm types. In order to determine the stem, affix removal

algorithms remove suffixes and sometimes also prefixes of terms. Successor variety and n-gram

methods analyze a word corpus to determine the stems of terms. Successor variety bases its

analysis on the frequency of letter sequences in terms, while n-gram conflates terms into groups

based on the ratio of common letter sequences, called n-grams. Table lookup based methods use

tables which map terms to their stems.

We did a domain analysis for the semantic automatic conflation algorithms domain. We analyzed

3 affix removal stemmers, a successor variety stemmer, an n-gram stemmer, and a table lookup

stemmer. Based on this analysis, we created a generic architecture, determined reusable

components, and designed and developed a little language and an application generator for this

domain. We compared the performance of the automatically generated algorithms with their

original versions and found that automatically generated versions of the algorithms are nearly as

precise as the original versions.

 This paper is organized as follows. We present the research in the next section. We describe

the domain analysis method we used in this work in Section III. In Section IV, Section V, and

Section VI, we present our domain analysis process, products, and process logs. In the next

section we analyze the time spent in each step of domain analysis. Section VII shows the

evaluation results of the automatically generated stemmers and Section VIII summarizes results

and proposes some future research directions.

II. RELATED WORK

Recently several domain engineering approaches and domain analysis methods have been

O. Yilmaz and W. Frakes are with the Computer Science Department, Virginia Tech, 7054 Haycock Road, Falls Church, VA 22043, USA,

(e-mail: {oyilmaz, frakes}@vt.edu).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

3

proposed [2]-[9] and surveyed [10]. In this study, we use the DARE: Domain analysis and reuse

environment [4]. Using DARE, domain related information is collected in a domain book for the

conflation algorithms domain.

In information retrieval systems there is a need for finding related words to improve retrieval

effectiveness. This is usually done by grouping words based on their stems. Stems are found by

removing derivational and inflectional suffixes via stemming algorithms. The first affix removal

stemming algorithm was developed by Lovins [12]. This algorithm did stemming by iteratively

removing longest suffixes satisfying predefined suffix rules. Several other longest match affix

removal algorithms have been developed since [13]-[17]. Porter algorithm [15],[16] is most

commonly used because of its simplicity of implementation and compactness. Later Paice [17]

proposed another compact algorithm. Hafer and Weiss [18] took a different approach in their

successor variety stemming algorithm and proposed a word segmentation algorithm which used

successor and predecessor varieties to determine fragmentation points for suffixes. Successor and

predecessor varieties are the numbers of unique letters after and before a substring in a corpus.

Their algorithm applied several rules to identify the stem from the substrings of each word that

appeared in a corpus. The successor variety algorithm has the advantage of not requiring affix

removal rules that are based the on the morphological structure of a language. However, the

effectiveness of this algorithm depends on the corpus and on threshold values used in word

segmentation. Adamson and Boreham [19] developed the N-gram algorithm that uses the

number of distinct and common n-character substrings to determine if two or more corpus words

can be conflated into the same group. Similar to successor variety, the strength of this algorithm

depends on the corpus and the cutoff similarity value chosen. More recently, Krovetz [20]

developed the K-stem algorithm that does a dictionary lookup after applying affix removal rules

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

4

removing inflectional suffixes.

Conflation algorithms have been analyzed and evaluated in several studies [21]-[24]. Lennon et

al. [21] compared a number of conflation algorithms used in text-based information retrieval

systems in terms of compression percentage and retrieval effectiveness. They found relatively

small differences among the conflation methods in terms of these measures. Hull [22] examined

the strength of average precision and recall metrics in evaluation of stemming algorithms and

proposed several novel approaches for evaluation of stemming algorithms. He did a detailed

statistical analysis to better understand the characteristics of stemming algorithms. Frakes et al.

[23] analyzed four stemming algorithms in terms of their strength and similarities. They used the

Hamming distance measure as well as other commonly used measures. Fox et al. [24] reported an

application generator using finite state machines for longest match stemming algorithms. They

generated computationally efficient stemmers for Porter [15], Paice [17], Lovins [12] and S-

removal [25] stemming algorithms and compared their performance with the developed versions

of these algorithms. This paper extends the scope of analysis to other sub-domains of conflation

algorithms by analyzing not only affix removal but also successor variety, n-gram, and dictionary

lookup types of algorithms.

For this paper we analyzed Lovins, Porter, and Paice as examples of longest match affix

removal, and Successor Variety [18], N-gram [19], and K-stem [20] as instances of the remaining

three types of conflation algorithms. As the result of the domain analysis we developed an

application generator and generated stemmers for Porter, Paice, Lovins, successor variety, S-

removal[25], and K-stem algorithms and compared generated algorithms with the corresponding

algorithms developed by humans.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

5

III. DARE DOMAIN ANALYSIS METHOD

In this study we used the DARE domain analysis method and organized the domain

information of conflation algorithms in a DARE domain book. This book holds all the domain

information that was analyzed and generated. The major sections of the domain book were as

follows:

- Source information subsection included documents related to the conflation

algorithms domain: source code, system descriptions, system architectures, system

feature tables, and source notes of the six conflation algorithms that we analyzed

- Domain scope subsection contained inputs, outputs, functional diagrams of

conflation algorithms that were analyzed as well as a generic functional diagram

that we developed as a result of domain analysis

- Vocabulary analysis subsection had basic vocabulary information, a facet table for

the domain, a synonym table, a domain template, domain thesaurus document, and

vocabulary notes

- Code analysis subsection showed source code analysis results for conflation

algorithms that were analyzed

- Architecture analysis subsection contained a generic architecture diagram

- Reusable components subsection contained the components that were determined as

reusable as the result of domain analysis process

- Little language subsection proposed a domain specific language created in Backus-

Naur form

- Application generator subsection included application generator notes and the

source code produced as a product of the conflation algorithms domain analysis

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

6

IV. DOMAIN ANALYSIS PROCESS

We started the domain analysis process by gathering source information. We collected

published papers in the conflation algorithms subject area as domain documents and the source

code of conflation algorithms for system architecture analysis. After building expertise about the

conflation algorithms domain we filled out system description questionnaires for each one of

these algorithms. Important components of our domain analysis process are in the following

subsections.

A. Feature Table

We summarized key features of the conflation algorithms in a generic feature table as shown in

Table IV-1. Among these algorithms only successor variety and N-gram used a corpus. K-stem

was the only algorithm that used a dictionary, and the N-gram was the only algorithm that did not

generate stems. Instead of generating stems, the N-gram conflated words into word clusters.

Since the successor variety and the N-gram algorithms did not use the morphological properties

of the English language, they could be used for conflating words in other natural languages as

well.

A stronger stemmer tends to conflate more words into a single class than a weaker stemmer.

TABLE IV-1 SYSTEM FEATURE TABLES FOR THE CONFLATION ALGORITHMS

Algorithm

Name

Corpus

Usage

Dictionary

Usage

Natural

Language

Type Stem

Generation

Strength

Porter No No English Longest Match

Affix Removal

Yes Medium

Paice No No English Longest Match

Affix Removal

Yes High

Lovins No No English Longest Match

Affix Removal

Yes Medium

Successor

Variety

Yes No Any Successor

Variety

Yes Low

N-Gram Yes No Any N-Gram No N/A

K-Stem No Yes English Dictionary based

Inflectional

Yes Medium

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

7

Paice has been found to be the strongest algorithm, whereas successor variety was the weakest

[23].

B. Functional Diagrams

To determine the scope of our analysis we categorized the conflation algorithms into four

categories and developed a generic functional diagram which combined the functional diagrams

of all algorithms analyzed into a generic diagram. Figure IV-1 shows four types of functional

diagrams that the analyzed conflation algorithms have.

WORD
CONFLATION
ALGORITHMS

STEM
Case 1:

DICTIONARY

Case 2:

CORPUS

Case 3:

WORD
CONFLATION
ALGORITHMS

STEM

WORD
CONFLATION
ALGORITHMS

STEM

CORPUS
CONFLATION
ALGORITHMS

WORD
CLUSTER

Case 4:

Figure IV-1: Functional diagrams for conflation algorithms

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

8

On the other hand, Figure IV-3 presents a generic functional diagram which represents all the

algorithms that were analyzed. In this generic architecture diagram dashed lines indicate optional

components. As shown in this figure none of these inputs or outputs was common in all

algorithms.

C. Scope

Domain scoping was a crucial step in the domain analysis process [11]. In scoping, we

determined the functional representation of the domain and bounded the extent of the domain

analysis and domain implementation process. The following was the scope of our domain

analysis:

- GT�CA(T)

where

- T represents a set of terms.

- GT represents a set of related terms.

- CA is the function that maps T to GT.

In other words, conflation algorithms do a mapping from a set of terms to a set of clusters of

generic terms representing common concepts.

GENERIC

TERM
TERM

DICTIONARY

WORD
CONFLATION
ALGORITHMS

STEM

CORPUS

Generic Functional Diagram

WORD
CLUSTER

Figure IV-2: Generic functional diagram for conflation

algorithms

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

9

The scope of the domain implementation was set to conflation algorithms that determine the

stems of words; namely affix removal, successor variety, and table lookup type conflation

algorithms.

TABLE IV-2 FACET TABLE FOR CONFLATION ALGORITHMS

Operations Word parts Morpheme

relations

Document

types

Rule Type Performance

Match

Longest Match

Shortest Match

Partial Match

Conflation/Conflate

Removal/Remove

Recode

Compare

Append

Retrieve

Search

Lookup

Right truncation

Internal truncation

Cut

Dictionary

Compression

Cutoff

Clustering

Measure

Intact

Double

Length

Word

Morpheme

Phoneme

Letter

Prefix

Suffix

Infix

Affix

Substring

Segment

Stem

Di-gram

N-gram

Character

Root

Term

Utterance

Vowel

Consonant

Vowel

sequence

Consonant

sequence

A, e, i, o, u, y

Successor

Consecutive

Similarity

Unique

Equivalent

Entropy

Double

Substring

Dice

coefficient

Abstract

Document

Corpus

Information

Title

Description

Identifier

Vocabulary

Dictionary

Manual

Stoplist

Exception list

Inflectional

Derivational

Affix removal

Successor

variety

Common n-gram

Cutoff Method

Peak and Plateau

Method

Complete word

method

Entropy method

Storage-overhead

Under-stemming

Over-stemming

Weak stemming

Strong stemming

Effectiveness

Correctness

Recall

Precision

Performance

Outperform

Experimental

evaluation

Evaluation

Measurement

Equivalent

Sign-test

T-test

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

10

No

No

Yes

UserUserUserUser

I

N

T

E

R

F

A

C

E

Corpus,
Dictionary,

Rule,
Words to Stem

File Name

For each input file as rule,

corpus, or dictionary file

START

If Dictionary

Read & Store Input File

No

Input File

For each rule/rule set or prefix

Process Corpus File
Based on rules

Apply the Rule/rule set

Determine the stem

Yes

If Corpus File

No

Verify the word

Invalid

If Word File

Yes

EXIT

For each word in Word

File

Input the word Word File

Lowercase the word

Word exists
Yes

Stem found

Yes

Stem
No

EXIT

Stem

Invalid

Stem

Stem

Stem

Iterate word not changed

Figure IV-3 Generic System Architecture

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

11

D. Vocabulary Analysis

We did a manual vocabulary analysis as well as an automatic analysis by using a web based text

analysis tool [27]. We created a facet table from the basic vocabulary generated by vocabulary

analysis. Table IV-2 presents the facet table grouping the basic vocabulary into six categories.

The facet categories were later used in the little language development process as operations,

operands, etc.

E. System Architectures

C and C++ source code of algorithms was analyzed manually and by using cflow and the source

navigator programs on the HP-Unix environment. The system architectures were created on the

basis of source code analysis. After analyzing the system architectures of each conflation

algorithm we created the generic system architecture. Figure IV-3 shows the generic system

architecture. In the generic system architecture diagram optional components are shown with

dashes.

V. DOMAIN ANALYSIS PRODUCTS

After creating the facet table and the generic system architecture, we identified the reusable

components, created a little language, and developed an application generator. These three

products of our domain analysis are presented in the following subsections.

A. Reusable Components

The reusable components are summarized in Table V-1. These components can be classified

into two groups: file processing operations and word part processing operations. All these

operations are used as operations in the little language.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

12

B. A Little Language

Using the generic system architecture and reusable components, we represented the operations

in Backus–Naur Form. See appendix A for the little language.

C. Application Generator

After creating the little language for conflation algorithms, we developed an application

generator that implemented the operations formally defined in the little language. In order to test

the application generator, we generated the source code for Porter, Paice, Lovins, Successor

Variety, S-removal and K-stem algorithms by using the application generator.

The application generator was developed to generate code in object oriented fashion from a rule

file, where each file consisted of three parts: rules, steps, and main routine. Each rule started with

a rule name and specified an operation after the name. For example, the following line from

Porter algorithm specified a rule named 1a-r1 which replaced suffix “-sses” with “-ss”:

1a-r1 replace suffix sses ss

TABLE V-1 REUSABLE COMPONENTS OF CONFLATION ALGORITHMS DOMAIN

Reusable Component Category Operations

Hash Table operations initialize, search and retrieve, add, delete

Text file operations open, close, read line

String manipulation operations substring, string comparison, lowercase,

uppercase, string length

String/character validation operations is AlphaNumeric, is Vowel, is Consonant,

shorter than, longer than

File processing/storage operation Read & store each word from in an input

file (e.g. corpus, dictionary)

Word verification operations check the size, check if it is alphanumeric,

etc.

Suffix removal rules remove a suffix if it is equal to a

morpheme

Suffix recode rules replace a suffix if it is equal to a morpheme

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

13

After the rules part, steps of the algorithm were defined. Each step defined the order of rules to

be applied as well as the operations to be performed as a result. For example, the following step

from Porter algorithm applied rules 1a-r1, 1a-r2, 1a-r3, 1a-r4 and in case of

success it updated the stem of the word analyzed.

BEGIN step 1a

if 1a-r1

then set word stem

else if 1a-r2

then set word stem

else if 1a-r3

then set word stem

else if 1a-r4

then set word stem

END step 1a

The last section in a rule file was the main routine which specified the steps that would be

executed:

BEGIN stem

call step 1a

call step 1b

call step 1c

call step 2

call step 3

call step 4

call step 5a

call step 5b

END stem

VI. DOMAIN ANALYSIS LOGS

During the domain analysis process we recorded the time for each step in a log file. Table VI-1

summarizes the times spent for each step of domain analysis process. In the upper part of the table each

step is presented in detail while in the lower part these steps are classified in higher level categories.

Most of the time was spent developing the application generator. This took approximately 80 hours. We

spent approximately half of our domain analysis time on the application generator development step. The

second and third most time consuming processes were the source collection and analysis, and generic

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

14

architecture development steps that took about 17 and 15 hours, respectively. Software analysis and

development were the most time consuming steps. These results are consistent with the main reason for

domain engineering, since an application generator is an investment to save time in the future conflation

algorithm development.

The times for the various domain engineering activities were as follows.

VII. EVALUATION OF GENERATED STEMMERS

In this section, we evaluated the application generator we developed by comparing the

stemmers generated by the application generator with the stemmers developed by humans in

TABLE VI-1 TIME SPENT IN EACH STEP OF DOMAIN ANALYSIS PROCESS.

Step Name
Time Spent

(hours)
Source collection 13

Learning the concepts 3

Manual code analysis 5

Facet table 2

Expert forms 0.5

Domain book maintenance 2

System architectures 8

System feature tables 0.5

Generic architecture 4

Automatic code analysis 1

Source notes 3

Vocabulary notes 1

Domain scoping 3

Generic feature table 1

Architecture notes 3

Application generator notes 0.5

Glossary 5

Little language 8

Application generator development 80
Review and corrections 4

Category Name
Time Spent

(hours)

Vocabulary analysis 11

Source collection and analysis 17
Architecture analysis and generic architecture
development 15

Domain scoping 4.5

Little language development 8

Application generator development 80.5
Other (domain book generation, etc) 11.5

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

15

terms of the following characteristics of stemmers:

• Similarity of stems produced

• Time spent during development

• Size of the executable of the stemmer

• Number of lines of code (LOC)

• Total execution time

We also compared the box plots of elapsed stemming times of each word in the test set for each

version of analyzed stemmers.

A. Evaluation Method

To evaluate the performance of stemmers we needed a test data set. We created a corpus

containing 1.15 million words by combining about 500 articles from Harper’s Magazine [28],

Washington Post Newspaper [29], and The New Yorker [30] with a sample corpus of spoken,

professional American-English [31]. We generated a test file with about 45000 unique entries of

this corpus by using the text analysis functionality of the application generator. We evaluated,

developed, and generated versions of Porter, Paice, Lovins, S-removal, and K-stem stemmers.

All these algorithms were in the Perl programming language except for the developed version of

the K-stem algorithm which was in C. While the code generated by the application generator was

object oriented, the developed versions of these algorithms were not. During the evaluation

process we verified the stems generated by these stemmers and fixed bugs in the developed code

and in rule files for the application generator.

B. Evaluation Criteria

We tested the performance of our application generator by comparing the generated stemmers

to the stemmers developed by humans in terms of stem similarity, development time, executable

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

16

size, number of LOC, and total execution time.

C. Evaluation Results

TABLE VII-1 COMPARISON RESULTS FOR DEVELOPED AND GENERATED STEMMERS

Algorithm
Name

Porter Lovins Paice S-removal K-stem

Identical Different Identical Different Identical Different Identical Different Identical Different Stem
Similarity 45006 1 45006 1 45007 0 45007 0 44970 37

Generated Developed Generated Developed Generated Developed Generated Developed Generated Developed Developm
ent Time
(hours)

4 12 3 NA 6 NA 0.5 0.5 6 NA

Generated Developed Generated Developed Generated Developed Generated Developed Generated Developed Executabl
e Size
(bytes)

849247 390778 900851 398528 874039 393640 839315 387443 856334 334689

Generated Developed Generated Developed Generated Developed Generated Developed Generated Developed Number of
LOC 453 126 1180 555 1069 1039 142 36 719 2035

Generated Developed Generated Developed Generated Developed Generated Developed Generated Developed Execution
Time

(seconds)
3.03 1.52 6.58 1.73 2.72 6.66 0.70 0.44 3.41 1.02

We used a test file of 45007 unique entries in our experiments. Table VII-1 summarizes the

evaluation results. All five stemmers generated by the application generator produced more than

99.9% identical stems with the developed stemmers. Preparing the rule file for Porter algorithm

took 4 hours while developing the same algorithms took 12 hours. Since the S-removal is a very

simple stemming algorithm, both developing it and generating rule files for it took about half an

hour. For the rest of the algorithms we report the rule file generation time since we did not have

information about their actual development time. Executables generated from the Perl scripts of

all generated stemmers were at least twice as big as the developed stemmers. Among all

algorithms developed K-stem had the smallest executable. This was partly because it was

developed in C rather than Perl. On the other hand, for the same reason developed K-stem had

highest LOC among all stemmers. The generated stemmers were slower than the developed ones

except for the Paice algorithm. We did not find a statistically significant difference between the

generated and developed stemmers in terms of LOC and execution time due to the limited

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

17

number of algorithms tested.

Figure VII-1 Box Plot Diagrams for Elapsed Stemming Times of Stemmers in Log. Scale.

D. Analysis of Elapsed Stemming Times of Generated and Developed Stemmers

Stemming times per word stemmed is reported in the box plot for each stemmer in Figure

VII-1. Developed K-Stem and Developed Paice had the lowest and highest average elapsed

stemming times respectively. Generated stemmers for Paice and S-removal performed a little

better than developed ones. On the other hand, developed Porter, Lovins, and K-stem performed

much better than the generated versions of these algorithms. Although the total time spent by

developed K-Stem was more than the developed and generated versions of S-removal stemmers,

the average elapsed time for each word stemmed turned out to be much shorter. This was because

the time spent during the dictionary reading was not included in the elapsed time for stemming

each word. Figure VII-1 shows many outliers for each stemmer. We stemmed the data set several

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

18

times and compared the outliers in each case to determine the characteristics of these outliers.

We saw that in each run we had different outliers and concluded that the outliers were not caused

by the stemming algorithms or stemmers. Stemming operations were normally very fast

operations taking less than 100 microseconds on the average. When the test was running, the

other operations done by the windows operating system were affecting our result by causing

several outliers.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a case study of using domain analysis for the semantic conflation

algorithms domain. We analyzed Porter, Lovins, Paice, Successor variety, N-gram, and K-stem

algorithms and as products of our domain analysis we determined the reusable components,

created a little language in Backus–Naur Form, and developed an application generator in the

Perl language. Using the application generator, we generated Perl code for Porter, Paice, Lovins,

S-removal, and K-stem algorithms. We compared the performance of stemmers generated by the

application generator with the corresponding stemmers developed by humans in terms of

identical stem generation, development times, size of executables, number of LOC, and the total

time spent to stem all terms in our test set. We created and used a corpus with about 45000 words

to test stemmers. Our results indicated that the stems produced by the generated and developed

stemmers produced identical results for more than 99.9% of evaluations. We also determined that

stemmers produced by application generators have bigger executables than the stemmers

developed by humans. We did not find a statistically significant difference between the generated

and developed stemmers in terms of LOC and the total time spent to stem all terms in the test set

due to the limited number of algorithms tested. We also analyzed elapsed stemming times of

these developed and generated stemmers. We presented a box plot diagram for each stemmer in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

19

terms of the elapsed stemming times. We determined that generated stemmers performed better

for some cases and worse in some other cases.

In this study we have done a domain engineering project for affix removal, successor variety, n-

gram, and table lookup types of stemming algorithms and generated code for all types other than

the N-gram algorithm. In future work, we plan to generate a stemmer for N-gram as well. Also

we did not compare the successor variety stemmer with a successor variety stemmer developed

by humans, but hope to do this in the future.

APPENDIX

A. The Little Language

TABLE VIII-1 THE LITTLE LANGUAGE DEVELOPED FOR CONFLATION ALGORITHMS DOMAIN

Little Language Rules

letter = "a".."z";

digit = "0".."9";

number = digit {digit};

char = letter | digit | “-“;

morpheme = letter {letter};

morph_name = "word" | "stem";

succ_name = "pred" | "succ" | "this";

place = "suffix" | "prefix";

any_place = place | "any";

some_place = any_place | "all";

margin_place = "first" | "last";

any_margin_place = margin_place | "any";

comparison = "=" | ">" | ">=";

all_comparison = comparison | "<" | "<=" | "==";

alpha_char = "consonant" | "consonantny" | "vowel" | "vowelny" | letter;

double_char = ["double"] alpha_char | "or" double_char;

name = char {char};

rule_name = name;

step_name = name;

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

20

rule = rule_name "append" place morpheme |

 rule_name "replace" some_place morpheme morpheme |

 rule_name "remove" (some_place morpheme | margin_place) |

 rule_name "isVowel" morph_name any_margin_place |

 rule_name "isConsonant" morph_name any_margin_place |

 rule_name "isMeasure" morph_name comparison number |

 rule_name ("isa" | "match") any_place double_char |

 rule_name "length" morpheme all_comparison number;

segment_opr = "add" name | "get" | "reset";

succ_var_rules = "cutoff" |

 "successor" succ_name all_comparison succ_name |

 "entropy" succ_name all_comparison number;

sys_rule = "lookup" morph_name | "intact" | succ_var_rules;

CR = "\n";

rules = rule CR {rule CR};

if_rules = rule_name |

 sys_rule |

 if_rules "or" if_rules |

 if_rules "and" if_rules |

 "not" if_rules;

sys_oper = "set" morph_name morph_name |

 "set" "stop" number |

 "set" name "length" morph_name |

 "call step" step_name |

 "break" |

 "segment" segment_opr |

 sys_oper "and" sys_oper;

then_oper = sys_oper | "if" if_rules CR "then" sys_oper;

else_oper = sys_oper | if_oper;

if_oper = "if" if_rules CR "then" then_oper CR ["else" else_oper CR];

step = if_oper | sys_oper CR | if_oper step;

iterate = "BEGIN iterate" CR step CR "END" "iterate";

for_each = "BEGIN for-each prefix" CR step CR "END" "for-each prefix";

stem_body = iterate | for_each | step;

all_rules = "BEGIN rules" CR rules CR "END" "rules" CR;

each_step = "BEGIN step" step_name CR step "END step" step_name CR;

all_steps = each_step {each_step};

stem_steps = "BEGIN stem" CR stem_body "END stem" CR;

rule file is a sequence of all_rules all_steps and stem_steps

rule_file = all_rules all_steps stem_steps;

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

21

REFERENCES

[1] Frakes, W. B. “Stemming algorithms.” In: Frakes, W.B. and R. Baeza-Yates, (editors): Information Retrieval: Data Structures and

Algorithms, Englewood Cliffs, NJ: Prentice-Hall, 1992.

[2] Prieto-Diaz, R., “Reuse Library Process Model. Final Report,” Technical Report Start Reuse Library Program, Contract F19628–88-D-

0032, Task IS40, Electronic Systems Division, Air Force Command, USAF, Hanscomb AFB, MA, 1991.

[3] Simos, M., R. Creps, C. Klingler, and L. Lavine, “Organization Domain Modeling (ODM) Guidebook, Version 1.0,” Unisys STARS

Technical Report No. STARS-VC-A023/011/00, STARS Technology Center, Arlington, VA, 1995.

[4] Frakes, W., Prieto-Diaz, R. & Fox, C. J. “DARE: Domain analysis and reuse environment.” Annals of Software Engineering, Vol. 5, 125-

141, 1998.

[5] D.M. Weiss and C.T. R. Lai, Software Product-Line Engineering: A Family-Based Software Development Process. Addison-Wesley,

1999.

[6] K.C. Kang, J. Lee, and P. Donohoe, "Feature-Oriented Product Line Engineering," IEEE Software, vol. 19, no. 4, pp. 58-65, July/Aug.

2002.

[7] C. Atkinson et al., Component-Based Product Line Engineering with UML. Addison-Wesley, 2002.

[8] H. Gomaa, Designing Software Product Lines with UML: From Use Cases to Pattern-Based Software Architectures. Addison-Wesley,

2004.

[9] R. Ommering et al., “The Koala Component Model for Consumer Electronics Software,” Computer, vol. 33, no. 3, pp. 78-85, Mar. 2000.

[10] Frakes, W. and Kang, Kyo, Software Reuse Research: Status and Future, IEEE Transactions on Software Engineering, vol. 31, no. 7, pp

529-536, July 2005.

[11] Frakes, W. "A Method for Bounding Domains". Proceedings of the IASTED International Conference Software Engineering and

Applications, Las Vegas, NV, Nov, 2000.

[12] Lovins, J. B. "Development of a stemming algorithm." Mechanical Translation and Computational Linguistics, Vol. 11, 22-31, 1968.

[13] G. Salton, “Automatic information organization and retrieval”, Mc Graw Hill, New York, 1968.

[14] Dawson, J. L. “Suffix removal and word conflation,” ALLC Bulletin, Vol. 2(3), 33-46, 1974.

[15] Porter, M. “An algorithm for suffix stripping.” Program, Vol. 14, Number 3, 130-137, 1980.

[16] http://www.tartarus.org/~martin/PorterStemmer/

[17] Paice, Chris D. "Another stemmer." SIGIR Forum, Vol. 24 (3), 56-61, 1990.

[18] Hafer, M., and Weiss, S. “Word segmentation by letter successor varieties,” Information Storage and Retrieval, Vol. 10, 371-85, 1974.

[19] Adamson, G. and Boreham J. “The use of an association measure based on character structure to identify semantically related pairs of

words and document titles, “ Information Storage and Retrieval, Vol. 10, 253-60, 1974.

[20] Krovetz, R., 1993: “Viewing morphology as an inference process”, in R. Korfhage, E. Rasmussen & P. Willett (eds.), Proceedings of the

16th ACM SIGIR conference, Pittsburgh, PA, pp.191-202, June-July, 1993.

[21] Lennon, J. B., Pierce, D. S., Tarry, B. D., and Willet, P. “An evaluation of some conflation algorithms for information retrieval”, Journal of

information Science, Vol. 3, 177-183, 1981.

[22] Hull, D. A. “Stemming algorithms: A case study for detailed evaluation.” Journal of the American Society for Information Science, Vol.

47(1), 70-84, 1996.

[23] Frakes, W.B. and Fox, C. J. “Strength and similarity of affix removal stemming algorithms” SIGIR Forum, Vol. 37, 26-30, Spring 2003.

[24] Fox, B. and Fox, C. J. “Efficient Stemmer generation” Information Processing and Management: an International Journal, Vol. 38 , Issue

4, 547–558, 2002.

[25] Harman, D. “How Effective is Suffixing?” Journal of the American Society for Information Science, 42(1), 7-15, 1991.

[26] Kang, K., Cohen S., Hess J., Novak, W. and Peterson S., “Feature-Oriented Domain Analysis (FODA) feasibility study,” Technical Report

CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, PA, 1990.

[27] http://textalyser.net

[28] http://www.harpers.org

[29] http://www.washingtonpost.com

[30] http://www.newyorker.com

[31] http://www.athel.com/sample.html

[32] Downloaded from http://www.cmcrossroads.com/bradapp/clearperl/sclc-cdiff.html

Okan Yilmaz (M’05) received his Bachelor of Science and Master of Science

degrees in computer engineering and information science from Bilkent University,

Ankara, Turkey. He is currently a Ph.D. student at Virginia Tech. His research

interests include software engineering, wireless communications, multimedia, and

mobile computing.

William B. Frakes received the BLS degree from the University of Louisville, the

MS degree from the University of Illinois at Urbana-Champaign, and the MS and

PhD degrees from Syracuse University. He is an associate professor in the computer

science department at Virginia Tech. He chairs the IEEE TCSE committee on

software reuse, and is an associate editor of IEEE Transactions on Software

Engineering.

