View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Computer Science Technical Reports @Virginia Tech

Modeling Multigrain Parallelism
on Heterogeneous Multi-core Processors

Filip Blagojevic, Xizhou Feng,

Kirk W. Cameron and Dimitrios S. Nikolopoulos
Center for High-End Computing Systems
Department of Computer Science
Virginia Tech
{filip,fengx,cameron,dsf@cs.vt.edu

Abstract

Heterogeneous multi-core processors integrate convaitocessing cores with computational accelerators. To
maximize performance on these systems, programs mustierpltiiple dimensions of parallelism simultaneously,
including task-level and data-level parallelism. Unfoiditely, parallel program designs with multiple dimensiohs
parallelism today are ad hoc, resulting in performancediegends heavily on the intuition and skill of the program-
mer. Formal techniques are needed to optimize parallelrpmglesigns. We propose a parallel computational model
for steering multi-grain parallelization in heterogensoaulti-core processors. Our model accurately predictexhe
ecution time and scalability of a program using multiplexantional processors and accelerators. The model reveals
optimal degrees of multi-dimensional, task-level and detal concurrency in parallel programs. We use the model
to derive mappings of two full computational phylogenetggplications on multi-processors featuring the IBM Cell
Broadband Engine.

1 Introduction

To overcome limitations of conventional general-purposeroprocessors, many high-performance systems are ca-
pable of offloading computations to special-purpose hardwshese computational accelerators now come in many
forms from SIMD co-processors to FPGA boards to chips withtiple specialized cores. We consider a computa-
tional accelerator as any programmable device that is dapdlspeeding up a computation. These devices accelerate
important scientific computing operations [1, 2]. Exampéproducts utilizing computational accelerators are the
Cell Broadband Engine from IBM [3], Cray’s XD1 [4], the Staidge Hypercomputer [5], and SGI's FPGA-based
NUMA node [6].

Research is currently exploring the integration of acedtes with more conventional parallel programming
paradigms and tools [7, 8, 9]. However, the migration patiparfallel programming models to accelerator-based
architectures is not without obstacles. Acceleratorsrofegjuire platform-specific programming interfaces and for
mulation of new parallel algorithms to fully exploit the @danal hardware. Furthermore, scheduling code on accel-
erators and orchestrating parallel execution and datafeesmbetween host processors and accelerators is a n@l-tri
exercise [8].

Consider the problem of identifying the most appropriategpamming model and accelerator configuration for a

https://core.ac.uk/display/10676162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

given parallel application. The simplest way to identife test combination is to exhaustively measure the execution
time of all of the possible combinations of programming meded mappings of the application to the hardware.
Unfortunately, this technique is not scalable to large, plexsystems or large applications. The execution time of a
complex application is the function of many parameters. Vegiparallel application may consist Hfphases where
each phase is affected differently by accelerators. Eaelseolan exploit levels of multi-grain parallelism or any
combination thereof such as ILP, TLP, or both. Each phaseval kan use any oh different programming models
such as message passing, shared memory, and SIMD, or anynatioib thereof. Accelerator availability or use may
consist ofc possible configurations. Exhaustive analysis of the ekectime for all combinations requires at least

N x | x mx ctrials.

Computational models allow algorithm design and compariadependent of the underlying hardware. Models
of parallel computation have been instrumental in the ada@nd use of parallel systems. Unfortunately, commonly
used models of parallel computation [10, 11, 12, 13] are ivectly applicable to accelerator-based systems. First,
the heterogeneous processing common to these systems igflected in typical computational models. Second,
current models do not capture the effects of multi-grairafl@lism. Third, few models account for the effects of
using multiple programming models in the same program. Mwaless, heterogeneity, multi-grain parallelism, and
hybrid programming consume both enormous amounts of pnogiag effort, and significant amounts of execution
time, if not handled with care. To overcome these deficitspresent a model for multi-grain parallel computation on
heterogeneous multi-core processors, built from host acdlarator processing units. We name the model MMGP,
for M odel of M ulti-Grain Parallelism.

The term multi-grain parallelism refers to applicationdéparallelism that is nested and encapsulated by procedu-
ral and basic block boundaries. For example, an applicatiase could include parallel tasks where each task contains
vectorized and/or parallelized loops. Such an applicdtesmulti-grain task and data parallelism at the granylafit
procedures and loops. For each layer and source of pasati@iithe application, on a given parallel architecturerghe
is an optimal combination of parallel execution vehiclethia hardware, which best exploits the available paraitelis
These execution vehicles may be homogeneous, heterogeméysically nested, or disjoint. MMGP decides on how
to best map the application parallelism to the entire suifgaoallel execution vehicles available in the hardware.

Typically, applications and architecture parallelism ao¢ aligned ideally. For illustration of our techniques and
simplicity, we consider architectures with just two levefgarallel execution vehicles. The first level of para#eii
corresponds to the computational abilities of Host Praongsdnits (or HPUs). HPUs are organized as conventional
multi-processors, multi-core processors, or a combimatieereof, and support coarse-grain parallelism. A single
HPU may serve as a gateway to one or more Accelerator Progesisiits (or APUs), which comprise the second
layer of parallel execution vehicles. APUs support finekgdata parallelism in tasks assigned to their HPUs. These
concepts easily extend to multiple HPUs and additionallée@€hardware parallelism. For example, the IBM Cell
Broadband Engine [3] contains a front-end multithreadextessor (or HPU) and up to 8 accelerator processors (or
APUSs). Each APU is capable of SIMD parallelism. A second gxanrgiven our definition of accelerators, is a front-
end processor (HPU) which offloads work to an FPGA [6] (APW)docelerated processing of specific numerical
functions in hardware. More than one of these hybrid HPU-ARIdes can be interconnected to form a scalable
parallel architecture. Figure 1 illustrates an abstractiehof the parallel architectures targeted by MMGP.

MMGP is an analytical model which formalizes the processrofjpamming accelerator-based systems and re-
duces the need for exhaustive measurements. The input to RIIid@n explicitly parallel application, where paral-
lelism is expressed in a machine-independent manner, esimgnon programming libraries and constructs. Upon
identification of some key parameters of the applicatiorveerfrom microbenchmarking and profiling of a sequen-
tial run, MMGP predicts with reasonable accuracy the exeautme with all feasible mappings of the application to

HPU/LM -coe HPU/LM
#1 #Npp

1
|
1
|
1
1
|
Shared Memory / Message Interface ‘ :
1
1
|
1
|
1
1
|

APU/LM APU/LM -coe APU/LM
#1 #2 #Npp

Figure 1: A hardware abstraction of an accelerator-basgtutacture with two levels of parallelism. Host processing

units (HPUs) support coarse grain parallelism. Accelerptocessing units (APUs) support finer grain parallelism.

Both HPUs and APUs have local memories and communicatedhrshiared-memory or message-passing. Additional
levels of parallelism can be expressed hierarchicallyrinilai fashion.

host processors and accelerators. MMGP is fast and redyaadurate, therefore it can be used to quickly identify
optimal operating points, in terms of the exposed layersavaltelism and the degree of parallelism in each layer,
on accelerator-based systems. More importantly, MMGP dasp@int the most appropriate programming model to
employ for a given parallel application, thereby simplifgisubstantially the programming effort. Experiments with
two complete applications from the field of computationaylphenetics on a shared-memory multiprocessor with
Cell BEs, show that MMGP models parallel execution time ahptex parallel codes with multiple layers of task
and data parallelism, with mean error in the range of 1%—5%@ss the feasible program configurations on the target
system. In addition to good accuracy in execution time mtézti, MMGP identifies with perfect accuracy the best
programming model and operating point for each of the coestetl. The codes have contradicting operating points
and optimal programming models, thus demonstrating theéevaf MMGP in speeding up their optimization process.

In the rest of this paper, we establish preliminary backgrband terminology for introducing MMGP (Section 2),
we develop MMGP (Section 3), and we validate MMGP using twamgotational phylogenetics applications (Sec-
tion 4). We discuss related work in Section 5 and conclude#per in Section 6.

2 Modeling Abstractions

Performance can be dramatically affected by the assignofaatks to resources on a complex parallel architecture
with multiple types of parallel execution vehicles. We imieto create a model of performance that captures the
important costs of parallel task assignment at multipleleof granularity, while maintaining simplicity. Additally,

we want our techniques to be independent of both programmingels and the underlying hardware. Thus, in this

section we identify abstractions necessary to allow us fmée simple, accurate model of parallel computation for

accelerator-based architectures.

2.1 Hardware Abstraction

Figure 1 shows our abstraction for accelerator-basedtaatires. In this abstraction, each node consists of nheiltip
host processing units (HPU) and multiple accelerator @siog units (APU). Both the HPUs and APUs have local and
shared memory. Multiple HPU-APU nodes form a cluster. We ehtite communication cost feand j, wherei and

j are HPUs, APUs, and/or HPU-APU nodes, using a variant of tig model [10] of point-to-point communication:

G j=0+L+0j (1)

WhereG; j is the communication cos@; and Oj is the overhead of sender and receiver respectively,Laisdthe
communication latency.

In this hardware abstraction, we model an HPU, APU, or HPWAi®de as a sequential device with streaming
memory accesses. For simplicity, we assume that additlewels of parallelism in HPUs or APUs, such as ILP and
SIMD, can be reflected with a parameter that represents ctingpcapacity. We could alternatively express multi-
grain parallelism hierarchically, but this complicatesdebdescriptions without much added value. Assumption of
streaming memory accesses, allows inclusion of the eftdaemmunication and computation overlap.

2.2 Application Abstraction

Figure 2 provides an illustrative view of the succeedingdssion. We model the workload of a parallel application
using a version of the Hierarchical Task Graph (HTG [14]). ARG represents multiple levels of concurrency with
progressively finer granularity when moving from outermtosinnermost layers. We use a phased HTG, in which we
partition the application into multiple phases of executimd split each phase into nested sub-phases, each modeled
as a single, potentially parallel task. Each subtask magrparate one or more layers of data or sub-task parallelism.
The degree of concurrency may vary between tasks and wibkkst

timeline

Figure 2: Our application abstraction of two parallel taskwo tasks are spawned by the main process. Each task
exhibits phased, multi-level parallelism of varying gréarity. In this paper, we address the problem of mappingdask
and subtasks to accelerator-based systems.

Mapping a workload with nested parallelism as shown in Fégito an accelerator-based multi-core architecture
can be challenging. In the general case, any applicatidotaany granularity could map to any type combination of
HPUs and APUs. The solution space under these conditionseeanmanageable.

In this work, we confine the solution space by making somerapions about the application and hardware. First,
we assume that the amount and type of parallelism is knowiod far all phases in the application. In other words, we
assume that the application is explicitly parallelizedaimachine-independent fashion. More specifically, we assum
that the application exposes all available layers of inhigparallelism to the runtime environment, without however
specifying how to map this parallelism to parallel execatiehicles in hardware. In other words, we assume that the
application’s parallelism is expressed independenthhefiumber and the layout of processors in the architecture.
The parallelism of the application is represented by a ph&BEG graph. The intent of our work is to improve and
formalize programming of accelerator-based multicorehiectures. We believe it is not unreasonable to assume
those interested in porting code and algorithms to suclesystwould have detailed knowledge about the inherent
parallelism of their application. Furthermore, expliptocessor-independent parallel programming is consitleye
many as a means to simplify parallel programming models.[15]

Second, we prune the number and type of hardware configneati/e assume hardware configurations consist
of a hierarchy of nested resources, even though the act@lirees may not be physically nested in the architecture.
Each resource is assigned to an arbitrary level of parafteln the application and resources are grouped by level of
parallelism in the application. For instance, the Cell Boand Engine can be considered as 2 HPUs and 8 APUs,
where the two HPUs correspond to the PowerPC dual-thread &veTand APUs to the synergistic (SPE) accelerator
cores. HPUs support parallelism of any granularity, howéMeUs support the same or finer, not coarser, granular-
ity. This assumption is reasonable since it representsfédiy all current accelerator architectures, where frentl
processors offload computation and data to accelerators afhumption simplifies modeling of both communication
and computation.

=

HPU_1 HPU_2

APU_1 APU2 APU3 APU4 APU5 APU_6 APU_7 APU_8

Figure 3: An example mapping of two tasks (see Figure 2) tacaelarator-based system composed of 2 HPUs and 8
APUs. Note the APUs are a shared resource of the HPUs. Thgnassnt problem involves determining how many
HPUs and APUs to assign and use for tasks and phases of aepapgilication.

3 Mode of Multi-grain Parallelism

This section provides theoretical rigor to our approach. pesent MMGP, a model which predicts execution time
on accelerator-based system configurations and applisatioder the assumptions described in the previous section.
Readers familiar with point-to-point models of parallelngoutation may want to skim this section and continue
directly to the results of our execution time predictionhteitjues discussed in Section 4.

We follow a bottom-up approach. We begin by modeling seqakskecution on the HPU, with part of the
computation off-loaded to a single APU. Next, we incorperatultiple APUs in the model, followed by multiple
HPUs. We end up with a general model of execution time, whgahott particularly practical. Hence, we reduce the
general model to reflect different uses of HPUs and APUs drsystems. More specifically, we specialize the model
to capture the scheduling policy of threads on the HPUs amdtimate execution times under different mappings of
multi-grain parallelism across HPUs and APUs. Lastly, weadibe the methodology we use to apply MMGP to real
systems.

3.1 Modeling sequential execution

As the starting point, we consider the mapping of the progiaem accelerator-based architecture that consists of one
HPU and one APU, and an application with one phase decompuotsethree sub-phases, a prologue and epilogue
running on the HPU, and a main accelerated phase runningeofRbJ, as illustrated in Figure 4.

Offloading computation incurs additional communicatiostcéor loading code and data on the APU, and saving
results calculated from the APU. We model each of these compation costs with a latency and an overhead at the
end-points, as in Equation 1. We assume that APU’s accasslesa during the execution of a procedure are streamed
and overlapped with APU computation. This assumption refléee capability of current streaming architectures,
such as the Cell and Merrimac, to aggressively overlap mgnadency with computation, using multiple buffers.
Due to overlapped memory latency, communication overheasgsumed to be visible only during loading the code

Phase_1

HPU_1

shared Memory Phase_2

N
& APU_L Phase_3
(a) an architecture with one HPU and one APU (b) an application with three phases

Figure 4. The sub-phases of a sequential application atklyaaapped to HPUs and APUs. In this example, sub-
phases 1 and 3 execute on the HPU and sub-phase 2 executesfdtithHPUs and APUs are assumed to communi-
cate via shared memory.

and arguments of a procedure on the APU and during returhiagesult of a procedure from the APU to the HPU.
We combine the communication overhead for offloading theecartd arguments of a procedure and signaling the
execution of that procedure on the APU in one te@g)(and the overhead for returning the result of a proceduma fr
the APU to the HPU in another terrdy).

We can model the execution time for the offloaded sequent&dgion for sub-phase 2 in Figure 4 as:

Tot fload(W2) = Tapu (W2) + Or + Os (2

whereTapy (W2) is the time needed to complete sub-phase 2 without additaveahead. Further, we can write
the total execution time of all three sub-phases as:

T = Thpu (Wa) + Tapu (W2) + Or + Os + Thpy (Ws) (3)

To reduce complexity, we replackipy (W1) + Tupu (W3) With Tupy, Tapu(We) with Tapy, and Os+ O; with
Ooftload- Therefore, we can rewrite Equation 3 as:

T = Tupu + Taru + Oof fload 4)

The application model in Figure 4 is representative of ongadéntially many phases in an application. We further
modify Equation 4 for a generic application wikhphases, where each phas#floads a part of its computation on
one APU:

N
T= Zl (Thpu,i + Tapu,i + Oof fload) %)
i=

3.2 Moddling parallel execution on APUs

Each offloaded part of a phase may contain fine-grain pasatiebuch as task-level parallelism at the sub-procedural
level or data-level parallelism in loops. This parallelisan be exploited by using multiple APUs for the offloaded
workload. Figure 5 shows the execution time decompositioexecution using one APU and two APUs. We assume
that the code off-loaded to an APU during phaskas a part which can be further parallelized across APUs,aan
part executed sequentially on the APU. We deffafe) i(1,1) as the execution time of the further parallelized part of
the APU code during thé" phase. The first index 1 refers to the use of one HPU threackiexbcution. We denote
Tapui(1, p) as the execution time of the same part wipshPUs are used to execute this part duringitA@hase. We
denote a€apy ; the non-parallelized part of APU code in phasg&herefore, we obtain:

Tapu,i(1,1)
Taru,i(1,p) = T’ +Capu,i (6)
1 THPU,\ 1 I THPU K I
¥, ol
”J[Eoufﬂoad o v EOO”‘W
'y o
T (2)
T)
TAPU‘\ (1) x TAPU“ (2)
M 4L
l] IEOW\DM v
. A
a 1 loofﬂoad
H v 2
\4
time time
(a) offload to one APU (b) offload to two APU

Figure 5: Parallel APU execution. The HPU (leftmost bar inga and b) offloads computations to one APU (part a)
and two APUs (part b). The single point-to-point transfepaft a is modeled as overhead plus computation time on
the APU. For multiple transfers, there is additional ovethég), but also benefits due to parallelization.

Given that the HPU offloads to APUs sequentially, there sxastatency gap between consecutive offloads on
APUs. Similarly, there exists a gap between receiving retatues from two consecutive offloaded procedures on the
HPU. We denote witly the larger of the two gaps. On a system witiAPUs, parallel APU execution will incur an
additional overhead as large psg. Thus, we can model the execution time in phiaas:

Taru,i(1,1)

Ti(1,p) = THpu,i + +Capu,i + Oofflcad + P-0 (7)

3.3 Modding parallel execution on HPUs

An accelerator-based architecture can support parallel efecution in several ways, by providing a multi-core HPU,
an SMT HPU or combinations thereof. As a point of referena¢wonsider an architecture with one SMT HPU, which
is representative of the Cell BE.

Since the compute intensive parts of an application arefflyi offloaded to APUs, the HPUs are expected to be
in idle state for extended intervals. Therefore, multipleeads can be used to reduce idle time on the HPU and provide
more sources of work for APUs, so that APUs are better utllizi¢ is also possible to oversubscribe the HPU with
more threads than the number of available hardware contextsder to expose more parallelism via offloading on
APUs.

Figure 6 illustrates the execution timeline when two theesldare the same HPU, and each thread offloads paral-
lelized code on two APUs. We use different shade patternsgresent the workload of different threads.

Form concurrent HPU threads, where each thread ps&BUs for distributing a single APU task, the execution
time of a single off-loading phase can be represented as:

T(m, p) = Tpu i (M,) + TApy (M, P) + Oofficad + P+ g (8)

whereT.X(m, p) is the completion time of the" HPU thread during thé" phase.

s R

V

T (22)

] SRR

SR
SRRSRRRY

SRR X Y
w E1o)
SR 2 offload

A

T

»
o SR
S

o
AR A

APU, APU; HPU APU, APU2

Figure 6: Parallel HPU execution. The HPU (center bar) offtoaomputations to 4 APUs (2 on the right and 2 on
the left). The first thread on the HPU offloads computation RIUA and APU2 then idles. The second HPU thread is
switched in, offloads code to APU3 and APU4, and then idlesUABnd APU2 complete and return data followed

by APU3 and APU4.

3.3.1 Maodeling the APU time

Similarly to Equation 6, we can write the APU time of tk¢h thread in phaskein Equation 8 as:

TApu (M, p) = Tapyi(m 1) +Caruj (9)
Different parallel implementations may result in diffetéiapy j(m, 1) terms and a different number of offloading
phases. For example, the implementation could paralleléémi phase among HPU threads and then offload the
work of each HPU thread tp APUs, resulting in the same number of offloading phases amtlaced APU time
during each phase, i.@3pyi(m 1) = T’*Puir;fll) As another example, the HPU threads can be used to execliiglenu
identical tasks, resulting in a reduced number of offloagihgses (i.e.N/m, whereN is the number of offloading

phases when there is only one HPU thread) and the same APUntieaeh phase, i.€Tapy j(M,1) = Tapy,i(1,1).

3.3.2 Maodeling the HPU time

The execution time of each HPU thread is affected by thret@fsic
1. Contention between HPU threads for shared resources.
2. Context switch overhead related to resource scheduling.
3. Global synchronization between dependent HPU threads.

Considering all three factors, we can model the executioe tof an HPU thread in phasas:
Tipui (M P) = am- Thpu,i(L, p) +1 - Tesw + OcoL (10)

In this equation, the parametetdlenotes the number of processes sharing a single execotitext on the HPUTcgy

is context switching time on the HPU, a@¢o, is the time needed for collective communication. We assurat t
can be greater than 1, if the program oversubscribes the Hfekat it can find more sources of parallelism to offload
to APUs. The parameter, is introduced to account for contention between threadssthare resources on the HPU.
On SMT and CMP HPUs, such resources typically include one arentevels of the on-chip cache memory. On
SMT HPUs in particular, shared resources include also TlbBanch predictors and instruction slots in the pipeline.

Contention between threads often introduces artificiadl lmabalance due to occasional unfair hardware policies of
allocating resources between threads.
3.3.3 Synthesis

Combining Equation (8)-(10) and summarizing all phasescarewrite the execution time for MMGP as:

Tau (1,1
+APU()

T(m,p) = am-Thpu(1,1) +Capu + N (Oof fioad + ! - Tcsw +OcoL + p- 9) (11)
Due to limited hardware resources (i.e. number of HPUs and#Pwe further constrain this equationrtox p <
Napu, WhereNapy is the number of available APUs. As described later in thisgpawe can either measure or

approximate all parameters in Equation 11 from microberafiisiand profiles of sequential runs of the program.

34 UsingMMGP
Given a parallel application, MMGP can be applied using theWwing process:
1. Calculate parameters includi@gf f10ad, Om, Tcaw andOcor using micro-benchmarks for the target platform.

2. Profile a short run of the sequential execution without A#fflbading to decide the phases needed to be of-
floaded and estimafgpy (1) andTapy (1,1).

3. Solve a special case of Equation 11 (e.g. 7) to find the @btinapping between application concurrency and
HPUs and APUs available on the target platform.

3.5 MMGP Extensions

We note that the concepts and assumptions mentioned iretttisl do not preclude further specialization of MMGP
for higher accuracy. For example, in Section 3.1 we assumgpatation and data communication overlap. This
assumption reflects the fact that streaming processorsamgroften overlap completely memory access latency with
computation. For non-overlapped memory accesses, we cplogaDMA model as a specialization of the overhead
factors in MMGP. Also, in Sections 3.2 and 3.3 we assume amy¢vels of parallelism. MMGP is easily extensible
to additional levels but the terms of the equations grow kjyiwithout conceptual additions. Furthermore, MMGP
can be easily extended to reflect specific scheduling pslfoiethreads on HPUs and APUs, as well as load imbalance
in the distribution of tasks between HPUs and APUs. We cldiat bur equations and concepts are general. To
illustrate the usefulness of our techniques we apply them teal system. We next present results from applying
MMGP to Cell.

4 Experimental Validation and Results

We use MMGP to derive multi-grain parallelization schenmstfvo bioinformatics applications, RAXML and PBPI,
on a shared-memory multiprocessor with two Cell BEs. RAxMid &BPI construct evolutionary trees from DNA
or AA sequences, using different optimality criteria forpapximating the existentially best trees. RAXML is based
on the Maximum Likelihood criterion and uses hill-climbihguristics and bootstrap analyses to search for the best
tree, while PBPI generates tree samples from their posterabability distribution using Markov chain Monte Carlo
methods. Although we are using only two applications in aypegimental evaluation, we should point out that

SPE (1 of 8)

PPU (PowerPC SPU (Synergistic
Process Unit) Process Unit)

Figure 7: The IBM Cell Broadband Engine architecture.

these are complete applications used for real-world bioklglata analyses, and that they are fully optimized for the
Cell BE using an arsenal of optimizations, including veiz@ation, loop unrolling, double buffering, if-conversion
and dynamic scheduling [16]. Furthermore, these apptioathave inherent multi-grain concurrency and non-trivial
scaling properties in their phases, therefore scheduliegitoptimally on Cell is a challenging exercise for MMGP.
Lastly, in the absence of comprehensive suites of benchsauich as NAS or SPEC HPC) ported on Cell, optimized,
and made available to the community by experts, we optedd@odes on which we could verify that enough effort
has been invested towards Cell-specific parallelizatiahaptimization. We provide a more detailed discussion of the
applications later in this section.

4.1 Experimental Platform

Figure 7 illustrates the organization of Cell, which is tleeecof our hardware platform. The Cell is a heterogeneous
multi-core processor, with accelerator cores used for Stfion of numerical computation. The processor integrate
one Power Processing Element (PPE) and eight SynergistieBsing Elements (SPEs). The PPE and SPEs are inter-
connected with a coherent Element Interconnect Bus (EIB§. FPE is a 64-bit dual-thread SMT processor running
the PowerPC ISA, with 32 KB L1 data cache, 32 KB L1 instructi@ache, and a 512 KB unified L2 cache. Each
SPE is a 128-bit pipelined vector processor with two majanponents: a Synergistic Processor Unit (SPU) and a
Memory Flow Controller (MFC). The SPU has 128 128-bit regiistand 256 KB of software-controlled local storage.
The SPU implements a Cell-specific SIMD ISA. All single-gséan floating point vector instructions on the SPU
are fully pipelined, and the SPU can issue one single-dmctifoating point vector instruction per cycle. Double
precision floating point operations are partially pipetireand the processor can execute double precision floatimg poi
vector instructions at a maximum throughput of one vectsirirction per three cycles. With all eight SPUs active, the
Cellis capable of a peak performance of 21 Gflops. With sipgézision floating-point arithmetic, the Cell is capable
of a peak performance of over 230 Gflops.

The SPEs serve as computation accelerators on Cell andgpnggre expected to off-load the bulk of their numer-
ical computations on SPEs. An unusual characteristic ofsS®PEe software-managed local storage, which enables
optimal software-controlled caching, at the expense akiased programming effort. On each SPE, the SPU can fetch
instructions and data only from its local storage and wragadnly to its local storage. The SPEs access main mem-
ory through direct memory access (DMA) requests. The DMAdfars are handled by the MFC. Data transferred
between local storage and main memory must be 128-bit aligfibe size of each DMA transfer can be at most 16
KB. DMA lists can be used for transferring larger amounts afad(more than 16 KB). A list can have up to 2,048
DMA requests, each for up to 16 KB. The MFC supports only DM&nsfer sizes that are 1, 2, 4, 8 or multiples of

10

16 bytes long. All communications between the PPE, SPE, maimory, and I/O devices are serviced by the EIB, a
4-ring structure that can transmit 96 bytes per cycle anieael a peak bandwidth of 204.8 Gigabytes/second.

For the experiments presented in this paper, we used a @elkblith two Cell processors clocked at 3.2 GHz and
512 MB of XDR RAM. The system runs Linux Fedora Core 5 (kerraision 2.6.16), with Cell-specific patches. We
compiled our code using GNU Toolchain 4.0.2 and GDB for thé SRE/PPE.

4.2 MM GP Parameter approximation

MMGP has six free parameteiSapy, Ooffioad: U: Tcaw, OcoL andam. We estimate four of the parameters using
micro-benchmarks.

O captures contention between processes or threads runmihg & PE. This contention depends on the schedul-
ing algorithm on the PPE. We estimatg under an event-driven scheduling model which oversubsstitre PPE with
more processes than the number of hardware threads sugparmultaneous execution on the PPE, and switches
between processes upon each off-loading event on the PPE [8]

To estimatean,, we use a parallel micro-benchmark that computes the ptoafusvo M x M square matrices
consisting of double-precision floating point elements tiamatrix multiplication involvesO(n®) computation and
O(n?) data transfers, thus stressing the impact of sharing exectesources and the L1 and L2 caches between
processes on the PPE. We used several different matrix, sizeging from 100< 100 to 500x 500, to exercise
different levels of pressure on the thread-shared cachéiseoPPE. In the MMGP model, we use the meamwgf
obtained from these experiments, which is 1.28.

PPE-SPE communication is optimally implemented throughA3Nn Cell. We devised a ping-pong micro-
benchmark using DMAs to send a single word from the PPE to &tesd backwards. We measured PPEPE-PPE
round-trip communication overhea®4; j0ag) t0 70 ns. To measure the overhead caused by various celexim-
munications we usethpptest [17] on the PPE. Using a micro-benchmark that repeatedlguers thesched_yield()
system call, we estimate the overhead caused by the comigghig (Tcgy) on the PPE to be @s.

Capu and the gap between consecutive DMASs on the PPE are application-depgadd cannot be approximated
easily with a micro-benchmark. To estimate these parameter use a profile of a sequential run of the code, with
tasks off-loaded on one SPE.

4.3 CaseStudy I: Using MM GP to parallelize PBPI
4.3.1 PBPI Implementation

PBPI [18, 19] is a parallel Bayesian phylogenetic infereingglementation, which constructs phylogenetic trees from
DNA or AA sequences using the Markov chain Monte Carlo sangptnethod. The method exploits multi-grain
parallelism, which is available in Bayesian phylogenatiieience, to achieve scalability on large-scale distadut
memory systems, such as the IBM BlueGene/L [20]. The algoribf PBPI can be summarized as follows:

1. Partition the Markov chains into chains groups; and $ipéitdata set into segments along the sequences.

2. Organize the virtual processors that execute the codaitwo-dimensional grid; map each chain group to each
row on the grid, and map each segment to one column on the grid.

3. During each generation, compute the partial likelihoodss all columns, and then use all-to-all communication
to collect the complete likelihood values to all virtual pessors on the same row.

4. When there are multiple chains, randomly choose two aHfairswapping using point-to-point communication.

11

400

62

" MMPG model £zzzz

7 ‘ ‘ ‘ " MMPG model tzzz2
Execution Time | 61 L

Execution Time i
350

300 - 601
59
250 |
58
200 |
57 |

150 6 |

Execution time in seconds
Execution time in seconds

100 - 55 L

50

54

Degree of HPU parallelism Degree of HPU parallelism

() (b)

Figure 8: MMGP predictions and actual execution times of PBfen the code uses one dimension of PPE (HPU)
parallelism, when number of SPEs is between 1 and 8 (a), ambeuof SPEs is between 9 and 16 (b)

PBPI is implemented in MPI. The approach that we follow tat[®BPI to Cell, is to offload the computationally
expensive functions (i.e. the likelihood calculation) e ISPE and apply a sequence of Cell-specific optimizations
on the off-loaded code, more specifically loop unrolling amdtorization, double buffering for maximum overlap
of computation with DMA accesses, and if-conversion to elate or parallelize the execution branches wherever
possible, to avoid the heavy branch penalties on the SPEIelaveloped a custom scheduler for the code running
on the PPE.

4.3.2 PBPI with One Dimension of Parallelism

We compare the PBPI execution times predicted by MMGP to th@ahexecution times obtained on real hardware,
using various degrees of PPE and SPE parallelism, i.e. thigadgnts of HPU and APU parallelism on Cell. These
experiments illustrate the accuracy of MMGP, in a sampléefiéasible program configurations. The sample includes
one-dimensional decompositions of the program betweentRi&ds, with simultaneous off-loading of code to one
SPE from each PPE thread, one-dimensional decomposititims program between SPE threads, where the execution
of tasks on the PPE is sequential and each task off-loads/daidl is data-parallel across SPEs, and two-dimensional
decompositions of the program, where multiple tasks runh@nRPE threads concurrently and each task off-loads
code which is data-parallel across SPEs. In all cases, thecB&e is SIMDized in the innermost loops, to exploit the
vector units of the SPEs. We believe that this sample of mmgronfigurations is representative of what a user would
reasonably experiment with while trying to optimize the esan the Cell.

For these experiments, we used the archlLO@000 input data set. This data set consists of 107 seqsgaaeh
with 10000 characters. We run PBPI with one Markov chain fa®d@0 generations. Using the time base register on
the PPE and the decrementer register on one SPE, we obthafdiowing model parameters for PBHlipy = 1.3s,
Tapu = 370s,g=0.85s andO = 1.72s.

Figure 8 compares MMGP and actual execution times for PBREnAPBPI only exploits one-dimensional PPE
(HPU) parallelism in which each PPE thread uses one SPE fidoading. We execute the code with up to 16 MPI
processes, which off-load code to up to 16 SPEs on two Cell BEferring to Equation 11, we spt= 1 and vary the
value ofmbetween 1 to 8. The X-axis shows the number of processesrmgionithe PPE (i.e. HPU parallelism), and
the Y-axis shows the predicted and measured execution tilffes maximum prediction error of MMGP is 5%. The
arithmetic mean of the error is 2.3% and the standard deviasi 1.4.

Figure 9 illustrates predicted and actual execution timesmPBPI uses one dimension of SPE (APU) parallelism.
Referring to Equation 11, we spt= 1 and varymfrom 1 to 8. MMGP remains accurate, the mean prediction error

12

400

MMPG model ——
350 - Execution Time

300 -

250

200

150

Execution time in seconds

100

50

.
0 2 4 6 8 10 12 14 16
Degree of APU parallelism

Figure 9: MMGP predictions and actual execution times of PBRen the code uses one dimension of SPE (APU)
parallelism, with a data-parallel implementation of theximaum likelihood calculation.

is 4.1% and the standard deviation is 3.2. The maximum ptiedierror in this case is higher (approaching 10%)
when the APU parallelism increases and the code uses SPEstlorCbll processors. A closer inspection of this
result reveals that the data-parallel implementation sisan PBPI stops scaling beyond the 8 SPEs confined in one
Cell processor, because of DMA bottlenecks and non-unitgrim the latency of memory accesses by the two Cell
processors on the blade. Capturing the DMA bottlenecksiregjthe introduction of a model of DMA contention in
MMGP, while capturing the NUMA bottleneck would require accarate memory hierarchy model integrated with
MMGP. The NUMA bottleneck can be resolved by a better pagegneent policy implemented in the operating
system. We intend to examine these issues in our future vikankthe purposes of this paper, it suffices to observe that
MMGP is accurate enough despite its generality. As we shtax, IRIMGP predicts accurately the optimal mapping of
the program to the Cell multi-processor, regardless ofdéneacies in execution time prediction in certain edge cases

4.3.3 PBPI with Two Dimensions of Parallelism

Multi-grain parallelization aims at exploiting simultamesly task-level and data-level parallelism in PBPI. Weyonl
consider multi-grain parallelization schemes in whitdgHPU- degAPU < 186, i.e. the total number of SPEs (APUSs)
on the dual-processor Cell Blade we used in this stuilg() denotes the degree of a layer of parallelism, which
corresponds to the number of SPE or PPE threads used to rwotlee Table 1 shows the predicted and actual
execution times of PBPI for all feasible combinations of tingtain parallelism under the aforementioned constraint
Each entry in the table shows actual and predicted exectitotm MMGP’s mean prediction error is 3.2%, the
standard deviation of the error is 2.6 and the maximum ptedierror is 10%. The important observation in these
results is that MMGP agrees with the experimental outconterims of the mix of PPE and SPE parallelism to use
in PBPI for maximum performance. In a real program developiseenario, MMGP would point the programmer to
the direction of using both task-level and data-level paliam with a balanced allocation of PPE contexts and SPEs
between the two layers.

4.4 CaseStudy Il: Usng MMGP to Parallelize RAXM L
441 RAXML Implementation

RAXML uses an embarrassingly parallel master-worker pgogning paradigm, implemented with MPI. In RAXML,
workers perform two tasks:

1. calculation of multiple inferences on the initial aligant in order to determine the best known Maximum
Likelihood tree;

13

| PPE\SPE | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

1 3738/3/4.4] 1885/1004] 127.47/129.7] 97.4/99.0] 79.3/825] 67.6/71.1] 59.3/63.4] 53.4/57.8
2 189.9/190.4] 98.6/99 68.0/60.2 | 54.6/54.8| 46.6/465| 43.6/41.4| 40.1/38 | 39.7/35.7
3 128.2/1290| 67.7/69.2 | 48.4/49.7 | 39/40.4 | 343/353
4 98.2/100 53/54.8 3857404 | 342/33.7
5 81.9/859 | 47.6/51 38.3/40.7
6 72173.7 445144.9
7 64765.7 20.8741.4
8 585/60.1 | 40.6/39.1
PPE-SPE 9 10 11 12 13 14 15 16
1 49.1/53.7| 467/50.6 | 44.47/48.2| 435/465| 42.7/451| 42.1/44.1| 41.6/43.4| 41.6/42.8
SPEWPPE 9 10 11 12 13 14 15 16
1 50.2/608| 58.7/61.7| 555/57.7| 55.8/543| 57.7/55.8| 58.3/556.4] 57/55 | 57/565

Table 1: MMGP predictions and actual execution times of RPBPkn the code uses two dimensions of SPE (APU)
and PPE (HPU) parallelism. The mix of degrees of paralleligmth optimizes performance is shown in bold. The
second and third tables illustrate the results when SPHIglsen is scaled to two Cell processors, i.e. the code uses
one PPE thread and more than 8 SPE threads (second tabl®P¶llelism is scaled to two Cell processors, i.e.
the code uses more than 8 PPE threads, each offloading to &g table). In each entry, the first figure is actual
execution time and the second figure is predicted execuitiva t

2. bootstrap analyses to determine how well supported ane garts of the Maximum Likelihood tree.

From a computational point of view, inferences and boogpstere identical. We use an optimized port of RAXML
on Cell, described in further detail in [16].

442 RAXML with a Single Layer of Parallelism

The units of work (bootstraps) in RAXML are distributed elyebhetween MPI processes, therefore the degree of
PPE (HPU) concurrency is bound by the number of MPI processesliscussed in Section 3.3, the degree of HPU
concurrency may exceed the number of HPUs, so that on anectime with more APUs than HPUs, the program can
expose more concurrency to APUs. The degree of SPE (APULcm1cy may vary per MPI process. In practice, the
degree of PPE concurrency can not meaningfully exceed thertomber of SPEs available on the system, since as
many MPI processes can utilize all available SPEs via samebus off-loading. Similarly to PBPI, each MPI process
in RAXML can exploit multiple SPEs via data-level parallgleeution of off-loaded tasks across SPEs. To enable
maximal PPE and SPE concurrency in RAXML, we use a versioh@tbde scheduled by a Cell BE event-driven
scheduler [8], in which context switches on the PPE are fbrqeon task off-loading and PPE processes are served
with a fair-share scheduler, so as to have even chancesfftwaafing on SPEs.

We evaluate the performance of RAXML when each process pesgfthe same amount of work, i.e. the number
of distributed bootstraps is divisible by the number of msges. The case of unbalanced distribution of bootstraps
between MPI processes can be handled with a minor modificagi&quation 11, to scale the MMGP parameters by
a factor of@, whereB is the number of bootstraps (tasks) avds the number of MPI processes used to execute
the code.

We compare the execution time of RAXML to the time predictgdMMGP, using two input data sets. The first
data set contains 10 organisms, each represented by a DMArseejof 20,000 nucleotides. We refer to this data set as
DS1. The second data set (DS2) contains 10 organisms, gaeseated by a DNA sequence of 50,000 nucleotides.
For both data sets, we set RAXML to perform a total of 16 boapst using different parallel configurations.

14

1600

300

MMPG mode| =—e— MMPG model e
1400 Execution Time —»— | Execution Time ——
250 -

1200 ~

200 -
1000 ~

150

100 -

Execution time in seconds
©
o
o

Execution time in seconds

50

.
1 2 3 4 5 6 7 8 0 2 4 6 8 10 12 14 16

Degree of HPU parallelism Degree of HPU parallelism
(@) (b)

Figure 10: MMGP predictions and actual execution times okRA, when the code uses one dimension of PPE
(HPU) parallelism: (a) with DS1, (b) with DS2.

1500

300

MMPG mode] =t MMPG model =—s—
1450 P Execution Time —»— Execution Time —»—

1400 280
1350
1300
1250
1200 +
1150
1100 +
1050
1000

950 1 1 1 1 1 1 180 1 1 1 1 1 i
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

260

240 -

220

Execution time in seconds
Execution time in seconds

200 -

Degree of APU parallelism Degree of APU parallelism
(@) (b)

Figure 11: MMGP predictions and actual execution times okRA, when the code uses one dimension of SPE
(APU) parallelism: (a) with DS1, (b) with DS2.

The MMGP parameters for RAXML, obtained from profiling a seqtial run of the code arypy = 3.3 Tapy =
635Capy = 104s for DS1, andypy = 8.85 Tapy = 1185Capy = 157s for DS2. The values of other MMGP pa-
rameters are negligible comparedTgy, Thpy, andCapy, therefore we disregard them for RAXML. Note that the
off-loaded code that cannot be paralleliz€dH) takes 57-62% of the execution time of a task on the SPE. Eigjdr
illustrates the estimated and actual execution times of RlAwith up to 16 bootstraps, using one dimension of PPE
(HPU) parallelism. In this case, each MPI process offloaslstto one SPE and SPEs are utilized by oversubscribing
the PPE with more processes than the number of hardwarelthasailable on the PPEs. For DS1, the mean MMGP
prediction error is 7.1%, the standard deviation is 6.4. dredmaximum error is 18%. For DS2, the mean MMGP
prediction error is 3.4%, the standard deviation is 1.9 &edhaximum error is 5%.

Figure 11 illustrates estimated and actual execution tiofeRAXML, when the code uses one dimension of
SPE (APU) parallelism, with a data-parallel implementatid the maximum likelihood calculation functions across
SPEs. We should point out that although both RAXML and PBPiop@ maximum likelihood calculations in their
computational cores, RAXML's loops have loop-carried defsncies that prevent scalability and parallelization in
many cases [16], whereas PBPI's core computation loopaudlyepfarallel and coarse enough to achieve scalability.
The limited scalability of data-level parallelization oARML is the reason why we confine the executions with data-
level parallelism on at most 8 SPEs. As shown in Figure 11d#ia-level parallel implementation of RAXML does
not scale substantially beyond 4 SPEs. When only APU péisaids extracted from RAxXML, for DS1 the mean
MMGP prediction error is 0.9%, the standard deviation is (Ga8d the maximum error is 2%. For DS2, the mean
MMGP prediction error is 2%, the standard deviation is 1.8 e maximum error is 4%.

15

443 RAXML with Two Dimensions of Parallelism

Table 2 shows the actual and predicted execution times inNRAxvhen the code exposes two dimensions of paral-
lelism to the system. Once again, regardless of executioa firediction accuracy, MMGP is able to pin-point the
optimal parallelization model, which in the case of RAXxMLtésk-level parallelization with no further data-parallel
decompositions of tasks between SPEs, as the opportunggétable data-level parallelization in the code is limhite
Innermost loops in tasks are still SIMDized within each SRBIGP remains accurate, with mean execution time
prediction error of 4.3%, standard deviation of 4, and maximprediction error of 18% for DS1, and mean execution
time prediction error of 2.8%, standard deviation of 1.9 amaximum prediction error of 7% for DS2. It is worth
noting that although the two codes tested are fundamerdiatiifar in their computational core, their optimal paral-
lelization model is radically different. MMGP accuratebflects this disparity, using a small number of parameters
and rapid prediction of execution times across a large nuwitfeasible program configurations.

PPE\ SPE 1 2 3 4 5 6 7 8
1 172/170.3| 139.2/138.8| 128.3/128.3| 123.4/123| 121.5/119.9| 119.4/117.8| 119.4/116.3| 118.5/115.1
2 97.4/90.1 | 78.7/74.36 73/69.1 69.8/66.4 68.2/64.9 67.8/63.8 67.5/63.1 67.8/62.5
4 53.2/49.5 44.6/41.6 41.7139 40.7/37.7
8 28/29.2 23.6/25.3
16 16.1/19.1
PPE\ SPE 1 2 3 4 5 6 7 8
1 285.6/286 | 236.2/227.8| 215.6/208.1| 203.3/198.3| 197.1/192.4| 196.3/188.4| 183.6/185.6| 181.5/183.5
2 166.2/158.1| 127.2/128.6| 115.2/118.7| 114.7/113.8| 113.8/110.9| 112/108.9 | 109.1/107.5| 108.6/106.5
4 88.8/92.5 731777 67.5/72.8 65.9/70.4
8 57.1/59.7 51.9/52.4
16 45.8/43.3

Table 2: MMGP predictions and actual execution times of RAxMhen the code uses two dimensions of SPE (APU)
and PPE (HPU) parallelism. The mix of degrees of paralleligrith optimizes performance is shown in bold. In each
entry, the first figure is actual execution time and the sedmude is predicted execution time. The table on the top
illustrates predicted and actual execution times for D3ilerthe table at the bottom illustrates predicted and dctua
execution times in DS2.

5 Related Work

In this section we review related work in programming enmireents and models for parallel computation on conven-
tional homogeneous parallel systems and programming stfggaested parallelization. The list of related work in
models for parallel computation is by no means completewaubelieve it provides adequate context for the model
presented in this paper.

Traditional parallel programming models, such as BSP [LagP [10], PRAM [12] and derived models [21, 22,
23, 24] developed to respond to changes in the relative itnpfaarchitectural components on the performance of
parallel systems, are based on a minimal set of parameteaptare the impact of communication overhead on com-
putation running across a homogeneous collection of interected processors. MMGP borrows elements from LogP
and its derivatives, to estimate performance of parallehjgotations on heterogeneous parallel systems with multi-
ple dimensions of parallelism implemented in hardware. Baten of LogP, HLogP [13], considers heterogeneous
clusters with variability in the computational power anteirtonnection network latencies and bandwidths between
the nodes. Although HLogP is applicable to heterogeneous-oare architectures, it does not consider nested par-
allelism. It should be noted that although MMGP has beeruatatl on architectures with heterogeneous processors,
it can readily support architectures with heterogeneityhieir communication substrates as well (e.g. architesture
providing both shared-memory and message-passing corneatiom).

16

Several parallel programming models have been developagtport nested parallelism, including nested parallel
languages such as NESL [25], task-level parallelism ext@sto data-parallel languages such as HPF [26], extesision
of common parallel programming libraries such as MPI andrdfifé to support nested parallel constructs [27, 28],
and techniques for combining constructs from parallel progming libraries, typically MPI and OpenMP, to better
exploit nested parallelism [29, 30, 31]. Prior work on laagas and libraries for nested parallelism based on MPI and
OpenMP is largely based on empirical observations on ttsivel speed of data communication via cache-coherent
shared memory, versus communication with message passimggh switching networks. Our work attempts to for-
malize these observations into a model which seeks optiragt allocation between layers of parallelism in the ap-
plication and optimal mapping of these layers to heterogesgarallel execution hardware. NESL [25] and Cilk [32]
are languages based on formal algorithmic models of pedopa that guarantee tight bounds on estimating perfor-
mance of multithreaded computations and enable nestetlgliaation. Both NESL and Cilk assume homogeneous
machines.

Subhlok and Vondran [33] present a model for estimating titémal number of homogeneous processors to as-
sign to each parallel task in a chain of tasks that form a pipeMMGP has a similar goal of assigning co-processors
to simultaneously active tasks originating from the hosicpssors, however it also searches for the optimal number
of tasks to activate in host processors, in order to achidadance between supply from host processors and demand
from co-processors. Sharapov et. al [34] use a combinafigueuing theory and cycle-accurate simulation of pro-
cessors and interconnection networks, to predict the pedace of hybrid parallel codes written in MP1/OpenMP on
ccNUMA architectures. MMGP uses a simpler model, desigoegktimate scalability along more than one dimen-
sions of parallelism on heterogeneous parallel architestu

Research on optimizing compilers for novel microprocesssuch tiled and streaming processors, has contributed
methods for multi-grain parallelization of scientific anedia computations. Gordon et. al [35] present a compilation
framework for exploiting three layers of parallelism (datsk and pipelined) on streaming microprocessors running
DSP applications. The framework uses a combination of fuaitd fission transformations on data-parallel compu-
tations, to "right-size” the degree of task and data palaitein a program running on a homogeneous multi-core
microprocessor. Eichenberger et. al [36] and Zhao and Kéynfi&/] present several compiler optimizations that
expose nested parallelism on the Cell Broadband Engingopdsic et. al [8] present runtime scheduling algorithms
for exploiting nested parallelism, also on the Cell. MMGRaisomplementary tool which can assist both compile-
time and runtime optimization on heterogeneous multi-goa¢forms. The development of MMGP coincides with
several related efforts on measuring, modeling and opiimgiperformance on the Cell Broadband Engine [38, 39].
An analytical model of the Cell presented by Williams et.Z4f], considers execution of floating point code and DMA
accesses on the Cell SPE for scientific kernels paralleleshe level across SPEs and vectorized further within
SPEs. MMGP models the use of both the PPE and SPEs and hasgmeenstrated to work effectively with complete
application codes. In particular, MMGP factors the effaft®PE thread scheduling, PPE-SPE communication and
SPE-SPE communication into the Cell performance model.

6 Conclusions

The introduction of accelerator-based parallel architexs complicates the problem of mapping algorithms to sys-
tems, since parallelism can no longer be considered as diamsional abstraction of processors and memory. We
presented a new model of multi-dimensional parallel coraarn, MMGP, which we introduced to relieve users from
the arduous task of mapping parallelism to acceleratoedbaschitectures. We have demonstrated that the model is
fairly accurate, albeit simple, and that it is extensibld aasy to specialize for a given architecture. We envisicgeth

17

uses of MMGP: i) As a rapid prototyping tool for porting algbms to accelerator-based architectures. More specifi-
cally, MMGP can help users derive not only a decompositicatety, but also an actual mix of programming models
to use in the application in order to best utilize the arddtitee, while using architecture-independent programming
techniques. ii) As a compiler tool for assisting compilergeriving efficient mappings of programs to accelerator-
based architectures automatically. iii) As a runtime tawldynamic control of parallelism in applications, whereby
the runtime system searches for optimal program configumaiin the neighborhood of optimal configurations derived
by MMGP, using execution time sampling or prediction-bassthniques. Extensions of MMGP which we will ex-
plore in future research include accurate modeling of needapped communication and memory accesses, accurate
modeling of SIMD and instruction-level parallelism withdiccelerators, integration of the model with runtime perfor
mance prediction and optimization techniques, and apmicaf the model to both conventional and unconventional
accelerator-based parallel systems, including systemmpusing FPGAs.

Acknowledgments

This research is supported by the National Science Fownd@irant CCR-0346867), the U.S. Department of Energy
(Grants DE-FG02-05ER25689, DE-FG02-06ER25751), andpeggmt funds from the College of Engineering at
Virginia Tech.

References

[1] S. Craven and P. Athanas. Examining the Viability of FPGéApercomputing.EURAS P Journal on Embedded Systems,
2007.

[2] J. Tripp, A. Hanson, M. Gokhale, and H. Mortveit. Paditing Hardware and Software for Reconfigurable Supercomgut
Applications. InProc. of Supercomputing’ 2005, Seattle, WA, November 2005.

[3] IBM Corporation. Cell Broadband Engine Architecturesrsion 1.01. Technical report, October 2006.

[4] M. Fahey, S. Alam, T. Dunigan, J. Vetter, and P. Worleyrl§{e&valuation of the Cray XD1. IfProc. of the 2005 Cray Users
Group Meeting, 2005.

[5] Starbridge Systems. A Reconfigurable Computing ModeBiological Research: Application of Smith-Waterman Arsas
to Bacterial Genomes. Technical report, 2005.

[6] R. Chamberlain, S. Miller, J. White, and D. Gall. HighBealable Recondigurable Computing.Rroc. of the 2005 MAPLD
International Conference, Washington, DC, September 2005.

[7] P. Bellens, J. Perez, R. Badia, and J. Labarta. CellSsro§rBmming Model for the Cell BE Architecture. Proc. of
Supercomputing’ 2006, Tampa, FL, November 2006.

[8] F.Blagojevic, D. Nikolopoulos, A. Stamatakis, and C.tAmopoulos. Dynamic Multigrain Parallelization on the I&road-
band Engine. IrProc. of the 2007 ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages
90-100, San Jose, CA, March 2007.

[9] K. Fatahalian, T. Knight, M. Houston, M. Erez, D. Horn, Leem, J. Park, M. Ren, A. Aiken, W. Dally, and P. Hanrahan.
Sequoia: Programming the Memory Hierarchy.Piroc. of Supercomputing’ 2006, Tampa, FL, November 2006.

[10] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Scausersantos, R. Subramonian, and T. Von Eicken. LogP: Towards
a Realistic Model of Parallel Computation. Rroc. of the 4th ACM SGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP’ 93), pages 1-12, San Diego, California, May 1993.

[11] L. Valiant. A bridging model for parallel computatio@ommunications of the ACM, 22(8):103-111, August 1990.

[12] P. Gibbons. A More Practical PRAM Model. Proc. of the First Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 158-168, Santa Fe, NM, June 1989.

[13] J. Bosque and L. Pastor. A Parallel Computational MddeHeterogeneous Cluster$EEE Transactions on Parallel and
Distributed Systems, 17(12):1390-1400, December 2006.

18

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

M. Girkar and C. Polychronopoulos. The HierarchicatR&raph as a Universal Intermediate Representatiwexnational
Journal of Parallel Programming, 22(5):519-551, October 1994.

K. Asanovic, R. Bodik, C. Catanzaro, J. Gebis, P. HugbaK. Keutzer, D. Patterson, W. Plishker, J. Shalf, S. fitis, and
K. Yelick. The Landscape of Parallel Computing Research:iédwrom Berkeley. Technical Report UCB/EECS-2006-183,
EECS Department, University of California—Berkeley, Dexter 2006.

F. Blagojevic, A. Stamatakis, C. Antonopoulos, and Okdibpoulos. Raxml-cell: Parallel phylogenetic tree ifiece on the
cell broadband engine. IAroc. of the 21st International Parallel and Distributed Processing Symposium, Long Beach, CA,
March 2007.

W. Gropp and E. Lusk. Reproducible Measurements of M&fdPmance Characteristics. Proc. of the 6th European
PVM/MPI User’s Group Meeting, pages 11-18, Barcelona, Spain, September 1999.

X. Feng, K. Cameron, and D. Buell. PBPI: a high perforoeimplementation of Bayesian Phylogenetic Inferencdrbr.
of Supercomputing’ 2006, Tampa, FL, November 2006.

X. Feng, D. Buell, J. Rose, and P. Waddell. Parallel edgms for bayesian phylogenetic inferencdournal of Parallel
Distributed Computing, 63(7-8):707—718, 2003.

X. Feng, K. Cameron, B. Smith, and C. Sosa. Building treef Life on Terascale Systems.Rroc. of the 21st International
Parallel and Distributed Processing Symposium, Long Beach, CA, March 2007.

K. Cameron and X. Sun. Quantifying Locality Effect infagAccess Delay: Memory LogP. Froc. of the 17th International
Parallel and Distributed Processing Symposium, Nice, France, April 2003.

A. Alexandrov, M. lonescu, C. Schauser, and C. ScheirhagGP: Incorporating Long Messages into the LogP Modele On
Step Closer towards a Realistic Model for Parallel Companat In Proc. of the 7th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 95-105, Santa Barbara, CA, June 1995.

C. Moritz and M. Frank. LoGPC: Modeling Network Contiemt in Message Passing Programs.Phoc. of the 1998 ACM
S GMETRICS Conference on Measurement and Modeling of Computer Systems, pages 254-263, Madison, WI, June 1998.

F. Ino, N. Fujimoto, and K. Hagihara. LogGPS: A Paralleimputational Model for Synchronization Analysis. Rroc. of
the 8th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 133-142, Snowbird, UT, June
2001.

G. Blelloch, S. Chatterjee, J. Harwick, J. Sipelsteand M. Zagha. Implementation of a Portable Nested Data IBkaral
Language. IrProc. of the 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’ 93),
pages 102-112, San Diego, CA, June 1993.

J. Subhlok and B. Yang. A New Model for Integrated Nestadk and Data Parallelism. Froc. of the 6th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 1-12, Las Vegas, NV, June 1997.

F. Cappello and D. Etiemble. MPI vs. MPI+OpenMP on th#IBP for the NAS Benchmarks. IRroc. of the IEEE/ACM
Supercomputing’ 2000: High Performance Networ king and Computing Conference (SC’ 2000), Dallas, Texas, November 2000.

G. Krawezik. Performance Comparison of MPI and three@yP Programming Styles on Shared Memory Multiprocessors.
In Proc. of the 15th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 118-127, San Diego, CA, June
2003.

E. Ayguadé, X. Martorell, J. Labarta, M. Gonzalezdax. Navarro. Exploiting Multiple Levels of Parallelism inpenMP: A

Case Study. IfProc. of the 1999 International Conference on Parallel Processing (ICPP’99), pages 172-180, Aizu, Japan,
August 1999.

A. Gerndt, S. Sarholz, M. Wolter, D. An Mey, C. BischofidhT. Kuhlen. Particles and Continuum — Nested OpenMP for
Efficient Computation of 3D Critical Points in Multiblock RaSets. IrProc. of Supercomputing’ 2006, Tampa, FL, November
2006.

T. Rauber and G. Ruenger. Library Support for HieratehMultiprocessor Tasks. IRroc. of Supercomputing’ 2002, Balti-
more, MD, November 2002.

R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Rdlhdnd Y. Zhou. Cilk: an Efficient Multithreaded Runtimes$gm.
In Proc. of the 5th ACM Symposium on Principles and Practices of Parallel Programming (PPoPP’ 95), pages 207-216, Santa
Barbara, California, August 1995.

J. Subhlok and G. Vondran. Optimal Use of Mixed Task atielParallelism for Pipelined Computatiodsurnal of Parallel
and Distributed Computing, 60(3):297-319, March 2000.

I. Sharapov, R. Kroeger, G. Delamater, R. CheveresathMy Ramsay. A Case Study in Top-Down Performance Estimatio
for a Large-Scale Parallel Application. Rroc. of the 11th ACM SIGPLAN Symposium on Pronciples and Practice of Parallel
Programming, pages 81-89, New York, NY, March 2006.

19

[35]

[36]

[37]

[38]

[39]

[40]

M. Gordon, W. Thies, and S. Amarasinghe. Exploiting GeaGrained Task, Data and Pipelined Parallelism in Stream
Programs. IrProc. of the 12th International Conference on Architectural Support for Programming Languages and Operating
Systems, pages 151-162, San Jose, CA, October 2006.

A. Eichenberger, Z. Sura, A. Wang, T. Zhang, P. Zhao, Mci@vind, K. O'Brien, K. O’'Brien, P. Wu, T. Chen, P. Oden,
D. Prener, J. Shepherd, and B. So. Optimizing Compiler f@lGELL Processor. IRroc. of the 14th International Conference

on Parallel Architectures and Compilation Techniques, pages 161-172, Saint Louis, MO, September 2005.

Y. Zhao and K. Kennedy. Dependence-based Code Gemeriti a Cell Processor. [Rroc. of the 19th International
Workshop on Languages and Compilers for Parallel Computing, New Orleans, LA, November 2006.

F. Petrini, G. Fossum, J. Fernandez, A. Varbanescu, istléf, and M. Perrone. Multicore Surprises: Lessons Ledifirom
Optimizing Sweep3D on the Cell Broadband EnginePioc. of the 21st International Parallel and Distributed Processing
Symposium, Long Beach, CA, March 2007.

T. Chen, Z. Sura, K. O’Brien, and K. O’Brien. Optimizitige Use of Static Buffers for DMA on a Cell Chip. RFroc. of the
19th International Workshop on Languages and Compilers for Parallel Computing, New Orleans, LA, November 2006.

S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands)d K. Yelick. The Potential of the Cell Processor for Sdfent
Computing. InProc. of the 3rd Conference on Computing Frontiers, pages 9-20, Ischia, Italy, June 2006.

20

