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UPDATE ONMULTIRATE TIMESTEPPINGMETHODS FOR HYPERBOLIC
CONSERVATION LAWS ∗

EMIL M. CONSTANTINESCU† AND ADRIAN SANDU †‡

Abstract. This paper constructs multirate time discretizations for hyperbolic conservation laws that
allow different timesteps to be used in different parts of the spatial domain. The proposed family of
discretizations is second order accurate in time and has conservation and linear and nonlinear stability
properties under local CFL conditions. Multirate timestepping avoids the necessity to take small global
timesteps (restricted by the largest value of the Courant number on the grid) and therefore results in more
efficient algorithms. Numerical results obtained for the advection and Burgers equations confirm the
theoretical findings.

Key words. multirate time integration, hyperbolic conservation laws, nonlinear stability, strong
stability preserving (SSP), Runge-Kutta

AMS subject classifications. 35L65, 65M12, 65M20, 65M50

1. Introduction. Hyperbolic conservation laws are of great practical importance
as they model diverse physical phenomena that appear in mechanical and chemi-
cal engineering, aeronautics, astrophysics, meteorology and oceanography, financial
modeling, environmental sciences, etc. Representative examples are gas dynamics,
shallowwater flow, groundwater flow, non-Newtonian flows, traffic flows, advection
and dispersion of contaminants, etc.
Conservative high resolution methods with explicit time discretization have

gained widespread popularity to numerically solve these problems [33]. Stability
requirements limit the temporal step size, with the upper bound being determined
by the ratio of the temporal and spatialmeshes and themagnitude of thewave speed.
Local spatial mesh refinement reduces the allowable timestep for the explicit time
discretizations. The timestep for the entire domain is restricted by the finest mesh
patch or by the highest wave velocity, and is typically (much) smaller than necessary
for other variables in the computational domain.
One possibility to circumvent this restriction is to use implicit, unconditionally

stable timestepping algorithms which allow large global timesteps. However, this
approach requires the solution of large (nonlinear) systems of equations. Moreover,
the quality of the solution, as given by a maximum principle, may not be conserved
with high order implicit schemes unless the timestep is also restricted by a CFL-like
condition.
In this work we develop multirate time integration schemes for the simulation

of PDEs. In this approach the timestep can vary across the spatial domain and has to
satisfy the CFL condition only locally, resulting in substantially more efficient overall
computations. We follow themethod of lines (MOL) framework, where the temporal
and spatial discretizations are independent.
The development of multirate integration is challenging due to the conservation

and stability constraints that need to be satisfied by the timestepping schemes. The
algorithms used in the solution of conservation laws need to preserve the system
invariants. Moreover, the solutions to hyperbolic PDEs may be non-smooth: shock
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2 Constantinescu and Sandu

waves or other discontinuous behavior can develop even from smooth initial data. In
such cases, strong-stability-preserving (SSP) numerical methods which satisfy non-
linear stability requirements are necessary to avoid nonphysical behavior (spurious
oscillations, etc.)
A zooming technique for wind transport of air pollution discussed in [4] is a

positive, conservative finite volume discretization that allows the use of smaller
timesteps in the region of fine grid resolution. The flux at the coarse-to-fine interface
is applied in the very first fine sub-step in order to preserve positivity.
Dawson and Kirby [8, 30] developed second order local timestepping. The max-

imum principle, TVD property, and entropy condition are all fulfilled by the second
order finite volume method with two level timestepping; however, the timestepping
accuracy of the overall method is first order. Tang and Warnecke [50] reformulated
Dawson and Kirby’s algorithm in terms of solution increments to obtain second or-
der consistency in time for two-rate integration. Savcenco et al. [42, 43] develop a
multirate approach for parabolic equations using a locally self-adjusting multirate
timestepping.
In this paper we develop a general systematic approach to extend strongly stable

Runge-Kutta (RK)methods [13, 17, 26] tomultirate Runge-Kuttamethods that inherit
the strong stability properties of the corresponding single rate integrators. The
second order of accuracy of the overall scheme is preserved,unlike previousmultirate
approaches that lead to first order accuracy due to the interface treatment [4, 30].
Moreover, for conservative laws, this multirate approach is conservative (preserves
the system invariants).
This paper is structured as follows: in Section 2 we review the main properties

and issues with the simulation of hyperbolic conservation laws. Section 3 presents
the construction of the multirate time integrators from single rate integrators. Our
numerical results with two types of conservation laws are shown and discussed in
Section 4. Conclusions and future research directions are given in Section 5.

2. Hyperbolic Conservation Laws. We consider the one-dimensional scalar hy-
perbolic equation

∂y(t, x)

∂t
+
∂ f

(
y(t, x)

)

∂x
= 0, with y(0, x) = y0(x), (2.1)

on x ∈ Ψ ⊂ (−∞, ∞), t > 0 .

Conservative space discretizations of (2.1) are considered in this work. In the one-
dimensional finite volume approach, the change in the mean quantity in the ith cell
depends on the fluxes through the cell boundaries at i ± 12 . The semi-discrete (MOL)
finite volume approximation can be written as

y′i = −
1

∆x

(
Fi+ 12
− Fi− 12

)
, yi(t) =

1

∆xi

∫ x
i+ 1
2

x
i− 1
2

y(t, x) dx , y′i =
∂yi
∂t
, (2.2)

where yi(t) is the numerical solution at time t and grid point xi, ∆xi = xi+ 12
−xi− 12

is the

grid spacing, and Fi+ 12
= F(yi+k−1, . . . , yi−k) is the numerical flux at the control volume

face. The following notation will be used to denote the discrete solution yn
i
= y(tn, xi),

with n > 0 and xi ∈ Ω (the discrete domain).
To provide physically meaningful solutions and avoid weak nonlinear instabili-

ties (spurious oscillations), the numerical solution has to satisfy a stability condition.



Multirate Timestepping for PDEs 3

Next we review some stability properties of the numerical solution which are used
throughout this paper.
Maximumprinciple. Exact solutionsofhyperbolicproblemshavea range-diminishing

property that prevents the increase of existing maxima, the decrease of existing min-
ima, and the formation of new maxima or minima. Formally, it can be written as

max
i

(
yn
i

)
≤ max

i

(
y0
i

)
and min

i

(
yn
i

)
≥ min

i

(
y0
i

)
. (2.3)

TVD. The total variation (TV) of the numerical solution is defined as

TV
({
yn

})
=

∑

i∈Ω

|yni+1 − y
n
i | , (2.4)

whereTV ({•}) is the total variationnorm. Anumericalmethod is called total variation
diminishing (TVD) [25] if

TV
({
yn

})
≤ TV

({
y0

})
. (2.5)

No spurious spatial oscillations are introduced during timestepping with TVDmeth-
ods.
TVB. A numerical method is called total variation bounded (TVB) (see [45]) if

TV
({
yn

})
≤ B , ∀t, 0 ≤ n ≤ T , B > 0 . (2.6)

In this case some bounded total variation increase is allowed. TVDmethods are also
TVB.
Monotonicity-preservation. Monotonic schemes have the property that if y0

i
=

y(t = 0, xi) is monotonically increasing or decreasing in i, then so is
{
yi(t)

}
i for all t. A

TVD scheme is monotonicity-preserving.
Positivity. Solution positivity is a typical requirement in various applications

(e.g., chemical engineering, meteorology, financial modeling, etc.). The semi-discrete
scheme (2.2) is positive if, whenever the initial condition is non-negative, the solution
at all future times t > 0 remains non-negative. A sufficient condition for the positivity
of the semi-discrete system (2.2) [27] is

yi(t) = 0 and y j(t) > 0 for ∀ j , i⇒ y
′
i ≥ 0. (2.7)

Typically, the above properties are established for different spatial discretizations
in conjunction with the forward Euler timestepping method [33]. The forward Euler
method has strong CFL restrictions and is only first order accurate. Following [18],
in this paper we use convex combinations of forward Euler steps in order to preserve
the stability properties while increasing the order of accuracy and alleviating the CFL
restrictions.
Several methods to approximate the fluxes in (2.2) have been developed in the

past decades. Godunov’s method [15] is based on the exact solution of Riemann
problems. The flux-corrected transport method proposed by Boris and Book [5]
and further developed by Zalesak [52] and Roe [40] established the basic principles
for the construction of high resolution methods. Upwind biased interpolation is
coupled with limiters [49] which reduce the order of accuracy of the scheme near
discontinuities (e.g., reducing a high order interpolant to first order, and further
limiting its slope). Limiters allow the construction of TVD schemes [25] for nonlinear
scalar one-dimensional problems.
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All these spatial discretizationmethods satisfy some of the above stability proper-
ties (maximumprinciple, TVD, TVB, monotonicity-preservation, or positivity). High
order timestepping methods based on convex combinations of explicit Euler steps
[18] are typically used to solve the semi-discrete form (2.2), which under a CFL-like
condition maintains the stability properties of the spatial discretization. One can
construct implicit timestepping methods which are unconditionally linearly stable;
however, the nonlinear stability properties restrict the integration timestep to a CFL-
like condition [18]. Moreover, the implicit methods require the solution of (non)linear
systems at each step. Considering these aspects, explicit discretization methods are
preferred for the solution of (2.2). In the next section we briefly review explicit
Runge-Kutta methods and relevant stability properties.

2.1. Explicit Runge-Kutta Methods. The MOL approach applied to (2.1) yields
the semi-discrete problem (2.2) which needs to be solved forward in time. An s
stage explicit Runge-Kutta method [23] computes the next step solution yn+1 (at time
tn+1 = tn + ∆t) from the current solution yn at tn using the formula:

yn+1 = yn + ∆t

s∑

i=1

bi Ki,

Ki = f


t + ci ∆t, y

n + ∆t

i−1∑

j=1

ai, j K j


 .

(2.8)

The method is defined by its coefficients A = {ai j}, b = {bi}, and c = {ci}, which can be
conveniently represented in the form of the Butcher tableau [23]

RK = [A, b, c] :=
c A
bT

c1 = 0 0
c2 a21
c3 a31 a32
...

...
...
. . .

cs as1 as2 · · · as,s−1
b1 b2 · · · bs−1 bs

. (2.9)

All RK methods in this paper have the property that ci =
∑i−1
j=1 ai, j. The order

conditions for these methods are

Order I :

s∑

i=1

bi = 1 (2.10)

Order II :

s∑

i=1

s−1∑

j=1

bi ai, j =

s∑

i=1

bi ci =
1

2
(2.11)

2.2. Strong Stability Preservation. Strong stability preserving (SSP) integrators
are timestepping schemes that ensure that a certain norm of the solution does not
increase:

‖ yn+1 ‖ ≤ ‖ yn ‖ , (2.12)

where ‖ • ‖ is some norm (e.g., for ∞ norm we have the maximum principle condi-
tion, for TV norm we have the TVD property, etc). Spurious oscillations (nonlinear
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instabilities) can occur in a numerical solution obtained with a TVD or MUSCL
spatial discretization scheme, when time discretization is done with a linearly sta-
ble timestepping scheme [18]. When TVD discretizations are combined with SSP
timestepping, the numerical solution does not exhibit nonlinear instabilities. Hence,
SSP timestepping schemes are a critical part of the overall solution strategy.
The favorable properties of SSP schemes derive from convexity arguments. In

particular, if the forward Euler method is strongly stable (under a certain CFL
timestep restriction), higher-order methods can be constructed as convex combi-
nations of forward Euler steps with various step sizes [46, 47]. SSPmethods preserve
the strong stability of the forward Euler scheme under specific timestep restrictions.
Gottlieb et al. [18] discuss in detail Runge-Kutta and linear multistep SSP

schemes. They derive optimal SSP methods with minimal number of function eval-
uations, high order, low storage, and establish that implicit Runge-Kutta or linear
multistep SSP methods are of order one at most. Hundsdorfer et al. [28] provide
an analysis of monotonicity properties for linear multistep methods, and Spiteri and
Ruuth [48] extend the SSP Runge-Kutta class of methods by removing the constraint
that the order and the number of RK stages be equal.
Several examples of SSP Runge-Kutta are given by Shu and Osher [46]. Here we

consider their second order method RK2a defined by the Butcher tableau below

0 0 0
1 1 0
1/2 1/2

K1 = f (y
n), y(1) = yn + ∆t K1

K2 = f (y
(1))

yn+1 = yn +
∆t

2
(K1 + K2)

. (2.13)

We use the following compact notation for explicit Euler steps

E
(
∆t, y

)
:= y(t) + ∆t · f (t, y), (2.14)

The method (2.13) can be written as convex combinations of Euler steps [46] and
therefore is SSP:

yn+1 = yn +
∆t

2
(K1 + K2) , y(1) = yn + ∆t f (yn) = E

(
∆t, yn

)

=
1

2
yn +

1

2

(
y(1) + ∆t K2

)
, y(1∗) = y(1) + ∆t f (y(1)) = E

(
∆t, y(1)

)

=
1

2
yn +

1

2
y(1∗), yn+1 =

1

2

(
yn + y(1∗)

)
(2.15)

=
1

2
E

(
0, yn

)
+
1

2
E

(
∆t, y(1)

)

3. Multirate Time Integration. The idea of multirate timestepping is to take
different timesteps for different components to achieve the target accuracy. Slower
components are integrated using larger step sizes. The large step sizes are integer
multiple of the small step sizes: ∆tslow = m∆tfast. All steps are synchronized every
largest timestep ∆tslow in order to obtain the desired overall accuracy. Conditions for
high orders of accuracy for the multirate integrators (at the synchronization times)
are derived in the literature [22, 24].
Early efforts to develop multirate Runge-Kutta methods are due to Rice [39] and

Andrus [1, 2]. Multirate versions of many of the traditional timestepping schemes
have been proposed in the literature, including linearmultistep [14, 29], extrapolation
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[11], Runge-Kutta [20, 31, 32], Rosenbrock-Wanner [3, 21], waveform relaxation [41],
Galerkin [34, 35, 36], and combined multiscale [10] approaches.
KværnøandP.Rentrop [31, 32] developedmultirateRungeKutta (MRK)methods

where the coupling between slow and fast components is done by intermediate
stage values. Günther et al. [20] developed multirate partitioned Runge-Kutta
(MPRK) schemeswhich generalize both partitionedRunge-Kutta andmultirate ROW
methods [19], and Sand and Burrage [41] developed the Jacobi waveform relaxation
approach.
For the purpose of simplicity (andwithout the loss of generality), in the following

sections we restrict our discussion to scalar one-dimensional equations. Multidimen-
sional/multivariable extensions follow by the same arguments.
Consider the system of ordinary differential equations in (2.2) resulting from the

application of MOL to (2.1). Variables are partitioned according to their characteristic
times:

y =
[
yτ(1), · · · , yτ(M)

]T
, y′i = fi

(
t, yτ(1), · · · , yτ(M)

)
, i = τ (1), · · · , τ (M) . (3.1)

The M subsystems have different characteristic time scales with yτ(1) being the slow-
est and yτ(M) the fastest components. Typically, a small number of fast changing
components (or a small number of grid points on the fine grids) restrict the overall
timestep of the integration.

3.1. Domain Partitioning. The domain is partitioned into subdomains, with
each subdomain being characterized by a specific time scale. In multirate time inte-
gration, different steps are taken on each subsystem such that the numerical method
satisfies global accuracy and stability properties. In this context, the transition among
subdomains needs special attention to preserve these properties. Consequently, in
this study we consider a nested domain decomposition of y defined in (3.1). First,
we split the domain into two partitions: a slow partition and a fast partition that
are separated by a fast buffer region to accommodate the transition. Formally, the
domain Ω is decomposed as

Ω = Ω0 = Ω0F ∪ Ω
0
FB ∪ Ω

0
S , (3.2)

where we consider an associated “slow” (S) characteristic time for the slow subdo-
main (ΩS), a “fast” (F) characteristic time for the fast subdomain (ΩF), and a fast
buffer (ΩFB) that bridges the transition between them. The need for this buffer region
will become apparent when the SSP properties are analyzed later in the paper. We
refer toΩ’s superscript as the “level” of the grid and denote with m the ratio between
the timesteps associated with the fast subdomain and the slow subdomain on the
same level (e.g., j). The timestep on the next level (i.e., j+ 1) associated with the slow
subdomain is the same as the one associated with the fast subdomain on the current
level.
Each solution component in (3.1) corresponds to variables in a particular sub-

domain. Adjacent subdomains have adjacent time scales and the subdomains have
buffers between them to accommodate the time scale transition. The characteristic
time scale on the fast buffer region corresponds to the time scale of the slow domain;
however, the solution is obtained with the small timestep used in the fast region:

y′
τ( j)

=
(
yS

)′
= f

(
t, y(x)

)
, x ∈

{
Ω
j

S

}
,

y′
τ( j+1)

=
(
yF

)′
= f

(
t, y(x)

)
, x ∈

{
Ω
j

F
∪ Ω

j

FB

}
, j ≥ 0 .

(3.3)
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In Figure 3.1.a we illustrate this aspect. The variables yF on Ω
j

F
∪ Ω

j

FB
are fast

(evolving) and integrated with a small timestep. The variables yS onΩ
j

S
are slow and

are integrated with a large timestep.

The partitioning procedure can be extended recursively withΩ
j

F
= Ω j+1 until the

solution characteristic time requirements for each component yτ(1)···τ(M) are met:

Ω
j

F
= Ω j+1 = Ω

j+1

F
∪ Ω

j+1

FB
∪ Ω

j+1

S
. (3.4)

An illustration of the nested domain decomposition is shown in Fig. 3.1.b.

We note that the nested partitioning (3.4) decouples the estimation of f exempli-
fied in (3.1) in

(
yS

)′
= f

(
t, yFB, yS

)
,

(
yF

)′
= f

(
t, yF, yFB

)
, j ≥ 0 .

(3.5)

In this manner, an efficient domain partitioning with an associated characteristic
time that satisfies the accuracy and stability requirements of the solution in the
corresponding partition is achieved.

Next, we discuss the time integration method applied on different partitions in
detail.

Fast solution Slow solution

yS

Ω
j

S
Ω
j

F
∪ Ω

j

FB

yF

(a) Fast and slow solution partitioning

�
�
�
�

�
�
�
�
����
����
����
����

����
����
����
����
�
�
�
�

�����������
�����������
�����������
�����������
������
������
������
������

Ω
j+1

FB

Ω
j

F

Ω
j+1

F

Ω
j

S

Ω
j

FB
Ω
j+1

S

Ω
j

FB

Ω j+1

Ω j

(b) The layout of the nested domain decomposition

F. 3.1. Illustration of the nested domain decomposition into subdomains that are characterized by different
timescales.

3.2. Partitioned Runge-Kutta Methods. Consider a system of ODEs which al-
lows an explicit separation of the fast and the slow components

(
yF
yS

)′
=

(
fF

(
yF, yS

)

fS
(
yF, yS

)
)

(3.6)

Partitioned Runge-Kutta (PRK) schemes [22, 24] are used to solve the problem

(3.6) with two different methods, RKF =
[
AF, bF, cF

]
for the fast part, and RKS =
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[
AS, bS, cS

]
for the slow part. The PRK solution method reads

yn+1F = ynF + ∆t

S∑

i=1

bFi K
j

F
, yn+1S = ynS + ∆t

S∑

i=1

bSi K
j

S

YiF = y
n
F + ∆t

S∑

j=1

aFijK
j

F
, YiS = y

n
S + ∆t

S∑

j=1

aSijK
j

S

KiF = fF
(
YiF ,Y

i
S

)
, KiS = fS

(
YiF ,Y

i
S

)
.

(3.7)

The order of the coupled method is the minimum among the orders of the fast and
slow methods and the order of their “coupling”. The first order coupling conditions
are implicitly satisfied. The second order coupling conditions are

s∑

i=1

bFi c
S
i =
1

2

s∑

i=1

bSi c
F
i =
1

2
. (3.8)

3.3. Strong Stability Preservation and PRK. We seek to construct PRKmethods
with the SSP property applied to a partitioning of type (3.5). In this section we infer
intuitively some conditions for SSP PRK methods, while a rigorous treatment of this
property is addressed later in the paper. A necessary condition for PRK to be SSP

is that both RKF and RKS are SSP methods. A natural question is how to treat the
interface region,ΩFB.
Equation (3.5) shows the inter-dependency of the flux function on the solution in

adjacent partitions. By construction, the flux function f evaluated onΩS depends on
part of the solution on ΩS and on part on the fast buffer ΩFB. Also by construction,

RKS applied onΩS ∪ ΩFB is SSP and RK
F is SSP with the solution onΩFB ∪ ΩF. In

the next section we investigate the properties of a proposed PRK method formed by

RKS and RKF, and rigorously analyze the interface between them.
To summarize, we consider the partitioned Runge-Kutta method applied in our

context (3.5) with both methods (RKS and RKF) being SSP on their respective parti-

tion. RKS is applied on ΩS and RK
F is applied on ΩFB ∪ ΩF.

Additional requirements (linear stability, TVD, TVB, positivity) of the fullmethod
need to be satisfied by each pair of spatial and temporal discretization. Our experi-
ments indicate that multirate schemes constructed based on SSP time discretizations
preserve the particular stability features of the spatial discretization. We shall further
discuss this in the following sections.

3.4. A Second Order Multirate PRK Family. Based on the PRK setting and
discussion from Sec. 3.2-3.3, we propose the following generic family of second
order multirate partitioned Runge-Kutta (MPRK) scheme. We denote this scheme
with MPRK-2. Consider a second order accurate SSP RK “base” method (RK2a, for
instance) RKB = [A, b, c] (Table 3.1.a). Using this base method, we extend RKB to

the fast (RKF) and slow (RKS) methods in the manner shown in Table 3.1. Here we
denote a vector of ones with 1. Note that the fast and slow methods have the same
weight coefficients b, bF = bS (1/m b repeated m times). The reason for this choice will
become clear when we discuss the conservation properties of the full method.
Note that the slow method repeats the same stages m times. The fast method

takes m successive steps of length ∆t/m with RKB. The slow method takes one step

of length ∆t with RKB; this step is formally repeated m times in the Butcher tableau.
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c A
bT

(a) Base (RKB)

1
m
c 1

m
A

1
m
1 + 1

m
c 1

m
1 bT 1

m
A

...
...

. . .

m−1
m

1 + 1
m
c 1

m
1 bT · · · 1

m
1 bT 1

m
A

1
m
bT 1

m
bT . . . 1

m
bT

c A

c A

...
. . .

c A

1
m
bT 1

m
bT . . . 1

m
bT

(b) Fast method (RKF) (c) Slow method (RKS)
T 3.1

Order two multirate partitioned Runge-Kutta method (MPRK-2)

The method presented in this section represents a truly multirate approach since
the fast method takes m successive steps of the base method with a timestep of ∆t/m .
This method can be easily extended from m = 2 to arbitrary m’s. In Appendix A we
present the same method for m = 3.

P 3.1 (MPRK-2). The partitioned Runge-Kutta methods defined by the
Butcher tableau in Table 3.1
a) are second order accurate if the base method (Table 3.1.a) is at least second order accurate,
and
b) have at most second order accurate coupling regardless of the order of the base method.

Proof. a) First, we check the order conditions for each method separately, con-
sidering that the s-stage base method is second order. The first order conditions for

(RKS and RKF) are verified since by (2.10) we have

m×s∑

i=1

bSi = m

s∑

j=1

bi
m

= 1

m×s∑

i=1

bFi = m

s∑

j=1

bi
m

= 1.

The second order conditions (2.11) are also satisfied for the slow method (RKS)

m×s∑

i=1

bSi c
S
i =

s∑

i=1

bi
T

m

ci =
1

m

m

2
=
1

2
,
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and for the fast method (RKF)

m×s∑

i=1

bFi c
F
i =

1

m
2

(
bTc + bT (1 + c) + · · · + bT ((m − 1)1 + c))

=
1

m
2
bT


mc +



m−1∑

i=0

i


1 = 1

m
2

(
m bT c +

m(m − 1)

2
bT 1)

=
1

m
2

(
m

2
+
m(m − 1)

2

)
=
1

2

Since bF = bS, the second order coupling conditions (3.8) are satisfied directly by the
above. Hence, MPRK-2 is at least second order accurate.
b) There are over 20 third order coupling conditions that can be found in [24]. Here
we list two that are contradicted by MPRK-2-like schemes

s∑

i=1

bFi c
F
i c
S
i =
1

6

s∑

i=1

bSi c
S
i c
F
i =
1

6
. (3.9)

Consider that RKB satisfies the third order accuracy conditions. The third order
coupling condition (3.9) requires the following

bTFcFcS = b
T
F

[ 1
2c
2

1
2

(
c + c2

)
]
=
1

4
bTc2 +

1

4

(
bTc + bTc2

)

=
1

4
·
1

3
+
1

4

(
1

2
+
1

3
=
7

24

)
,
1

6
,

and thus, (at the interface) the coupling reduces to second order accuracy.

To increase the coupling order we need to investigate other schemes that use
different base methods for the fast and for the slow subsystems and have different
couplings. Such methods will be investigated in future studies.

P 3.2 (Conservation). Any partitioned Runge-Kutta method with the same
fast and slow weights (bF = bS) is conservative. In particular MPRK-2 (described by the
Butcher tableau 3.1) is conservative.

Proof. a) First we consider the preservation of linear invariants. This is a direct
consequence of having chosen equal weights for the fast and for the slow methods,
bF = bS and of the fact that the slow and fast functions are evaluated with the same
arguments. Consider the system (3.6) with a linear invariant of the form

eTF fF
(
yF, yS

)
+ eTS fS

(
yF, yS

)
= 0 ∀yF, yS ⇒ eTF yF(t) + e

T
S yS(t) = const ∀t , (3.10)

where eF, eS are fixed weight vectors.

From the method (3.7) with bF = bS = b∗ we have that

yn+1F = ynF + ∆t

S∑

i=1

b∗i fF
(
YiF ,Y

i
S

)
, yn+1S = ynS + ∆t

S∑

i=1

b∗i fS
(
YiF ,Y

i
S

)
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and therefore

eTF y
n+1
F + eTS y

n+1
S = eTF y

n
F + e

T
S y
n
S + ∆t

S∑

i=1

b∗i

(
eTF fF

(
YiF ,Y

i
S

)
+ eTS fS

(
YiF ,Y

i
S

)

︸                               ︷︷                               ︸
0

)

= eTF y
n
F + e

T
S y
n
S .

b) Next we consider the conservation for hyperbolic PDEs. This property is
important because multirate Runge-Kutta methods, used in conjunction with con-
servative space discretizations, lead to conservative full discretizations of the PDE.
Consider a one-dimensional finite volume scheme (in the conservative formulation):

y′i =
1

∆xi

(
Fi− 12
(y) − Fi+ 12

(y)
)
, 1 ≤ i ≤ N .

where Fi+ 12
is the numerical flux through the i + 12 interface. Assuming no fluxes

through the leftmost and the rightmost boundaries (F 1
2
= FN+ 12

= 0), the finite volume

discretization is conservative in the sense that


N∑

i=1

∆xi yi




′

=

N∑

i=1

∆xi y
′
i =

∑

i

(
Fi− 12
(y) − Fi+ 12

(y)
)
= 0 ⇒

N∑

i=1

∆xi yi = const .

The time discretization with a classical (single-rate) Runge Kutta method gives a
conservative fully discrete method. We want to show that the multirate method
is also conservative. For this, assume that the leftmost ℓ − 1 grid cells are the fast
domain, and the remaining cells are the slow domain:

yF = {y1, · · · , yℓ−1} yS = {yℓ, · · · , yN} . (3.11)

The ℓ − 1 interface separates the fast and the slow domains. Each subdomain is ad-
vanced in time with a classical Runge-Kutta method, therefore the fluxes exchanged
between the boundaries of same domain cells are conserved. The question remains
whether the fluxes crossing the fast-slow interface are conserved. We now show that
the total flux lost by the fast domain through the fast-slow interface is exactly the total
flux received by the slow domain through the same interface. From the multirate
Runge-Kutta formula it follows that

ynℓ−1 = y
n
ℓ−1 +

∆t

∆xℓ−1

S∑

i=1

bFi

(
Fℓ− 32
(Yi) − Fℓ− 12

(Yi)
)
, (3.12)

the total flux lost by the fast domain during one full timestep through the fast-slow
interface is

∆t

S∑

i=1

bFi Fℓ− 12
(Yi) . (3.13)

Similarly,

yn+1ℓ = ynℓ +
∆t

∆xℓ

S∑

i=1

bSi

(
Fℓ− 12
(Yi) − Fℓ+ 12

(Yi)
)
, (3.14)
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0 0 0
1 1 0
1/2 1/2

0 0
1/2 1/2 0
1/2 1/4 1/4 0
1 1/4 1/4 1/2 0

1/4 1/4 1/4 1/4

0 0
1 1 0
0 0 0 0
1 0 0 1 0
1/4 1/4 1/4 1/4

(a) Base method (b) Fast method (c) Slow method
T 3.2

Order 2 Butcher tableau for the (a) RK2a base method and the (b) fast and (c) slow methods for m = 2.

and the total flux received by the slow domain during one timestep through the
fast-slow interface is

∆t

S∑

i=1

bSi Fℓ− 12
(Yi) . (3.15)

At each stage i of the multirate formula the flux functions are evaluated at the same
argument values,Yi. Therefore, a sufficient condition to have conservation of the flux
through the fast-slow interface is that the fast and slow method weights are equal to
each other, bS

i
= bF
i
.

Finally, MPRK-2 has the same coefficients (bS
i
= bF

i
) by construction and hence is

conservative.

We note that conservation is achieved without explicitly storing fluxes at the
fast-slow interface, as it was proposed in earlier works [30].

3.5. A Second Order SSP PRKMethod with m = 2. In this section we consider
the SSP Runge-Kutta RK2a [46] as the base method in Table 3.2.a, and extend it to a
multiratemethodwithm = 2using the approachdescribed inSection 3.4. TheButcher
tableau for the fast and slow methods for m = 2 are shown in Table 3.2; together they
form a partitioned RK method. The RK stages are computed as follows:

K1F = fF(y
n
F, y

n
S) K1S = fS(y

n
F, y

n
S)

y
(1)
F
= ynF +

∆t

2
K1F y

(1)
S
= ynS + ∆tK

1
S

K2F = fF(y
(1)
F
, y(1)
S
) K2S = fS(y

(1)
F
, y(1)
S
)

y
(2)
F
= ynF +

∆t

4
K1F +

∆t

4
K2F y

(2)

S
= ynS

K3F = fF(y
(2)
F
, ynS) K3S = fS(y

(2)
F
, ynS) (3.16)

y
(3)
F
= y

(2)
F
+
∆t

2
K3F y

(3)
S
= ynS + ∆tK

3
S

K4F = fF(y
(3)
F
, y(3)
S
) K4S = fS(y

(3)
F
, y(3)
S
)

yn+1F = ynF +
∆t

4

(
K1F + K

2
F + K

3
F + K

4
F

)
yn+1S = ynS +

∆t

4

(
K1S + K

2
S + K

3
S + K

4
S

)

Using the following notation to compactly denote Euler steps

E{F,S}
(
∆t, yF, yS

)
:= y{F,S}(t) + ∆t · f{F,S}(t, yF, yS), (3.17)
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Fast method
(
RKF

)
Slow method

(
RKS

)
Slow method

(
RKB

)

in slow buffer in slow region

yn
F

yn
S

yn
S

y
(1)
F
= EF

(
∆t
2 , y

n
F
, yn
S

)
y
(1)
S
= ES

(
∆t, yn

F
, yn
S

)
y
(1)
S
= E

(
∆t, yn

S

)

y(1∗)
F
= EF

(
∆t
2 , y

(1)
F
, y(1)
S

)
y(1∗)
S
= ES

(
∆t, y(1)

F
, y(1)
S

)
y(1∗)
S
= E

(
∆t, y(1)

S

)

y
(2)
F
= 12

(
ynF + y

(1∗)
F

)
y
(2)
S
= yn

S

y
(3)
F
= EF

(
∆t
2 , y

(2)
F
, yn
S

)
y
(3)
S
= ES

(
∆t, y(2)

F
, yn
S

)
y
(3)
S
= y

(1)
S

y(3∗)
F
= EF

(
∆t
2 , y

(3)
F
, y(3)
S

)
y(3∗)
S
= ES

(
∆t, y(3)

F
, y(3)
S

)
y(3∗)
S
= y(1∗)

S

yn+1
F
= 12

(
y
(2)
F
+ y

(3∗)
F

)
yn+1
S
= 12 y

n
S
+ 14 y

(1∗)
S
+ 14 y

(3∗)
S

yn+1
S
= 12

(
yn
S
+ y

(1∗)
S

)

T 3.3
MPRK-2 Euler steps for the fast and slow methods for m = 2. The slow buffer represents a small region where

the solution depends on both fast and slow partitions.

the MPRK-2 scheme can be written as convex combinations of Euler steps in the
following way:

yn+1F =
1

2

(
ynF + y

n
F +
∆t

2
K1F +

∆t

2
K2F +

∆t

2
K3F +

∆t

2
K4F

)
, y(1)

F
= EF

(
∆t

2
, ynF, y

n
S

)

=
1

2

(
ynF + y

n
F +
∆t

2
K2F +

∆t

2
K3F +

∆t

2
K4F

)
, y(1∗)

F
= EF

(
∆t

2
, y(1)
F
, y(1)
S

)

=
1

2

(
ynF + y

(1∗)
F
+
∆t

2
K3F +

∆t

2
K4F

)
, y(2)

F
=
1

2

(
ynF + y

(1∗)
F

)

=
1

2

(
y
(2)
F
+ y

(3)
F
+
∆t

2
K4F

)
, y

(3)
F
= EF

(
∆t

2
, y(2)
F
, ynS

)

=
1

2

(
y
(2)
F
+ y

(3∗)
F

)
, y

(3∗)
F
= EF

(
∆t

2
, y(3)
F
, y(3)
S

)
(3.18)

and

yn+1S =
1

4

(
2ynS + y

n
S + ∆tK

1
S + ∆tK

2
S + y

n
S + ∆tK

3
S + ∆tK

4
S

)
, y{(1),(3)}

S
= ES

(
∆t, y{n,(2)}

F
, ynS

)

=
1

4

(
2ynS + y

(1)
S
+ ∆tK2S + y

(3)
S
+ ∆tK4S

)
, y{(1∗),(3∗)}

S
= ES

(
∆t, y{(1),(3)}

F
, y{(1),(3)}
S

)

=
1

4

(
2ynS + y

(1∗)
S
+ y

(3∗)
S

)
. (3.19)

The sequence of fast and slow Euler steps and their convex combination that consti-
tute MPRK-2 are summarized in Table 3.3.
We now show that this timestepping method preserves the maximum principle

and nonlinear stability properties of the discretization. Kirby [30] has carried out a
similar analysis for the multirate explicit Euler method.
P 3.3 (Positivity). If each fast multirate Euler step

y
(n+ ∆t

m
)

F
= EF

(
∆t

m

, y(n)
F
, y(n)
S

)

and each slow multirate Euler step

y
(n+∆t)
S

= ES
(
∆t, y(n)

F
, y(n)
S

)
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preserves positivity properties under a local CFL condition, then the multirate solution also
preserves the positivity.
Proof. The method is constructed using convex combinations of forward Euler

solutions. Each Euler step is positivity preserving. More precisely, if we have yn
F
≥ 0

and yn
S
≥ 0, by applying Euler steps, it follows that the first macrostep of MPRK-2

(see Table 3.3) is positivity preserving:

{
y
(1)
F
, y(1)
S

}
≥ 0⇒

{
y
(1∗)
F
, y(1∗)
S

}
≥ 0

y
(2)
F
= 12

(
yn
F
+ y

(1∗)
F

)
≥ 0

⇒
{
y(2)
F
, ynS

}
≥ 0 . (3.20)

Using (3.20) and following the same rationale, we have that all intermediate solution
components are positive:

{
y
(3)
F
, y(3)
S

}
≥ 0⇒

{
y
(3∗)
F
, y(3∗)
S

}
≥ 0

yn+1
F
= 12

(
y
(2)
F
+ y

(3∗)
F

)
≥ 0

yn+1
S
= 14

(
yn
S
+ y

(1∗)

S

)
+ 14

(
yn
S
+ y

(3∗)

S

)


⇒

{
yn+1F , y

n+1
S

}
≥ 0 , (3.21)

and hence the full method is positivity preserving.

Note that intermediate stage solutions of mixed forward Euler steps are not con-
sistent solutions of the PDE, since the fast subsystem and the slow subsystem are
advanced with different timesteps, and the intermediate solutions are at different in-

termediate times. For example
{
y(1)
F
, y(1)
S

}
are solutions at ∆t/2 for the fast component

and ∆t for the slow one. We call such a step a “mixed Euler step”.
P 3.4 (Maximum principle). If each fast and each slow multirate Euler

step satisfies the maximum principle then MPRK-2 also satisfies the maximum principle.
Proof. Based again on the properties of the forward Euler method, a quick

inspection of Table 3.3 shows the following

max{y
(1)
F
, y(1)
S
} ≤ max{ynF, y

n
S}, max{y

(1∗)
F
, y(1∗)
S
} ≤ max{y

(1)
F
, y(1)
S
},

max{y(2)
F
, ynS} ≤ max{y

n
F, y

n
S},

max{y
(3)
F
, y(3)
S
} ≤ max{y

(2)
F
, ynS}, max{y

(3∗)
F
, y(3∗)
S
} ≤ max{y

(3)
F
, y(3)
S
},

and thus, clearly max{yn+1
F
, yn+1
S
} ≤ max{yn

F
, yn
S
}. Similarly, using the forward Euler

properties we have min{yn+1
F
, yn+1
S
} ≥ min{yn

F
, yn
S
}

For the next properties we consider finite volume (conservative) spatial dis-
cretizations (2.2). Specifically, we consider discretizations which assume the follow-
ing form (when forward Euler timesteps are used)

yn+∆tj = ynj +
∆t

∆x

(
F j+ 1

2
− F j− 1

2

)
= ynj +

∆t

∆x

(
C j+ 1

2
∆+y

n
j −D j− 12

∆−y
n
j

)
, (3.22)

∆+y
n
j = y

n
j+1 − y

n
j , ∆−y

n
j = y

n
j − y

n
j−1 ,

where C, D are the spatial discretization coefficients that depend on y. This is the
framework in which most of the total variation related properties are studied [7, 38].
The following lemma is due to Harten [25].
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L 3.5 (Harten [25] (2.1)). If coefficients C and D satisfy the following inequalities

C j+ 12
≥ 0 , D j+ 12 ≥ 0 and (3.23)

1 −
∆t

∆x

(
C j+ 12

+D j+ 12

)
≥ 0 (3.24)

then scheme (3.22) is TV non increasing or TVD.
Now consider a discrete solution yn on a bounded domain,Ω, partitioned in two

subdomains (3.11), and assume that the scheme (3.22) with a grid ratio of ∆t/(m ∆x),
m ≥ 1 (“fast” method) satisfies the TVD conditions (3.23)-(3.24) for every point in Ω.
Moreover, consider that the same scheme verifies the TVD conditions for a grid ratio
of ∆t/∆x (“slow” method) for every point of the domain Ω that has the index larger
or equal to ℓ − L, where L > 1 is the spatial domain of dependency (stencil). More
precisely, the TVD conditions (3.23)-(3.24) are satisfied by the scheme (3.22) for the
following timesteps:

∆t

m

for j ≤ ℓ − L − 1 , (3.25)

∆t for j ≥ ℓ − L . (3.26)

These are essentially the local CFL conditions.
The solution is advanced in time using scheme (3.22) with a timestep ∆t on the

slow domain ( j ≥ ℓ), and with ∆t/m on the fast domain ( j ≤ ℓ − 1):

yn+∆tj = ynj +
∆t

∆x

(
C j+ 12
∆+y

n
j −D j− 12

∆−y
n
j

)
, j ≥ ℓ , (slow) , (3.27)

y
n+ ∆t

m

j
= ynj +

∆t

m ∆x

(
C j+ 12
∆+y

n
j −D j− 12

∆−y
n
j

)
, j ≤ ℓ − 1 , (fast) . (3.28)

Obviously, the TVD conditions (3.23)-(3.24) are satisfied under the local CFL restric-
tion. In this case, we consider the region between ℓ and ℓ−L as the “fast buffer”where
even if the TVD conditions hold for a large timestep∆t, the solution is advancedwith
the small step ∆t/m .
The following lemma states that mixed forward Euler steps (3.27-3.28) do not

increase the TV of the solution.
L 3.6 (TV for mixed Euler step). Consider the scheme (3.22) that satisfies

the TVD conditions (3.23)-(3.24) for timesteps restricted by (3.25)-(3.26). Then the mixed
forward Euler timesteps defined by (3.27)-(3.28) do not increase the total variation of the
solution.
Proof. The forward Euler steps (3.27) and (3.28) can be written as

yn+∆t/ξ
j

= ynj +
∆t

m ∆x

(
C̃ j+ 12
∆+y

n
j − D̃ j− 12

∆−y
n
j

)
, j ∈ Ω , (3.29)

where

C̃ j+ 12
=

{
C j+ 12

if j ≤ ℓ − 1

m C j+ 12
if j ≥ ℓ

, D̃ j+ 12
=

{
D j+ 12

if j ≤ ℓ − 2

m D j+ 12
if j ≥ ℓ − 1

,

ξ =

{
m if j ≤ ℓ − 1
1 if j ≥ ℓ

.
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Since the TVD conditions are satisfied under (3.25)-(3.26), the TVD condition (3.23)
is also satisfied:

C j+ 12
, D j+ 12 ≥ 0 , j ∈ Ω ⇒ C̃ j+ 12 , D̃ j+ 12 ≥ 0 , ∀ j ∈ Ω. (3.30)

The TVD condition (3.24) for (3.29) is

1 −
∆t

m ∆x

(
C̃ j+ 12

+ D̃ j+ 12

)
≥ 0 , j ∈ Ω , (3.31)

and in detail we have

1 −
∆t

m ∆x

(
C j+ 12

+D j+ 12

)
≥ 0 , j ≤ ℓ − 2 , (3.32)

1 −
∆t

m ∆x

(
C j+ 12

+ m D j+ 12

)
≥ 0 , j = ℓ − 1 , (3.33)

1 −
∆t

m ∆x

(
m C j+ 12

+ m D j+ 12

)
≥ 0 , j ≥ ℓ . (3.34)

The TVD condition (3.32) applies to the fastmethod in the fast domain and is satisfied
for a grid ratio of ∆t/ (m ∆x) by (3.25). Condition (3.34) applies strictly to the slow
method and is locally satisfied for ∆t/∆x by (3.26).
The condition (3.33) involves the mixed slow/fast flux approximations on the

interface region. By the fact that the slowmethod satisfies the TVD conditions on the
fast buffer region (3.26), the following condition

1 −
∆t

m ∆x

(
m C j+ 12

+ m D j+ 12

)
≥ 0 , y j=ℓ−L , (3.35)

holds. It follows that condition (3.33) is also satisfied due to the fact that C j+ 12
and

D j+ 12
are positive and m ≥ 1:

1 −
∆t

m ∆x

(
C j+ 12

+ m D j+ 12

)
≥1 −

∆t

m ∆x

(
m C j+ 12

+ m D j+ 12

)
≥ 0 ,

≥1 −
∆t

∆x

(
C j+ 12

+D j+ 12

)
≥ 0 , j = ℓ − 1 . (3.36)

Therefore all TVD conditions (3.30)-(3.31) are satisfied for the mixed scheme (3.27)-
(3.28).

TheMPRK-2 schemeuses convex combinationsofmixed forwardEuler timesteps.
We showed that the total variation of solutions of mixed Euler steps is not increased.
Nowwe investigate the total variation of convex combinations of solutions of forward
Euler steps.
We continue by following the traditional framework for the stability analysis of

hyperbolic conservation laws [44, 45, 46]. Let yn ∈ Ω be a smooth initial solution
and yA, yB ∈ Ω two solutions obtained through a finite sequence (of O(∆t)) time
integrations startingwith y0 using the forwardEulermethod. Moreover, consider that
all the steps satisfy the CFL condition and the solution remains smooth throughout its
integration steps. Using the forwardEulermethod properties, we have the following:


TV

({
yA

})
≤ TV

({
y0

})

TV
({
yB

})
≤ TV

({
y0

}) and

{
‖yA − y0‖∞ ≈ O(∆t)
‖yB − y0‖∞ ≈ O(∆t)

(3.37)
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Consider the mixed convex combinations of solutions yA and yB:

{
αyAj≤ℓ−1 + βy

B
j≤ℓ−1, γy

A
j≥ℓ + δy

B
j≥ℓ

}
, (3.38)

where 0 ≤ α, β, γ, δ ≤ 1, and α + β = 1, γ + δ = 1. Note that different combinations
of coefficients are allowed on different subdomains. This situation corresponds to
some of the MPRK-2 steps. The next lemma quantifies the TV increase of (3.38) from
TV

({
y0

})
.

L 3.7 (TV for convex combinations of solutions). Convex combinations of
TVD forward Euler steps of smooth solutions defined by (3.38) with the TVD and smoothness
conditions (3.37) satisfied have at most a bounded TV increase of O(∆t):

TV
({
αyAj≤ℓ−1 + βy

B
j≤ℓ−1, γy

A
j≥ℓ + δy

B
j≥ℓ

})
≤ TV

({
y0

})
+ O(∆t) . (3.39)

Proof. The TV norm satisfies the triangle inequality, and in particular

TV
({
νyA + ωyB

})
≤ νTV

({
yA

})
+ ωTV

({
yB

})
,

where yA and yB are solutions defined on the same domain, and ν, ω ∈ R+.
We can expand (3.38) as follows

TV = TV
({
αyAj<ℓ + βy

B
j<ℓ, γy

A
j≥ℓ + δy

B
j≥ℓ

})
= (3.40)

=
∑

j≤ℓ−1

∣∣∣∣αyAj+1 + βyBj+1 −
(
αyAj + βy

B
j

)∣∣∣∣+

+

∣∣∣∣γyAℓ + δyBℓ −
(
αyAℓ−1 + βy

B
ℓ−1

)∣∣∣∣ +
∑

j≥ℓ

∣∣∣∣γyAj+1 + δyBj+1 −
(
γyAj + δy

B
j

)∣∣∣∣ ,

≤ α
∑

j≤ℓ−1

∣∣∣∣yAj+1 − yAj
∣∣∣∣ +

∣∣∣γyAℓ − αyAℓ−1
∣∣∣ + γ

∑

j≥ℓ

∣∣∣∣yAj+1 − yAj
∣∣∣∣+ (3.41)

+ β
∑

j≤ℓ−1

∣∣∣∣yBj+1 − yBj
∣∣∣∣ +

∣∣∣δyBℓ − βyBℓ−1
∣∣∣ + δ

∑

j≥ℓ

∣∣∣∣δyBj+1 − yBj
∣∣∣∣ .

In (3.41)we regrouped the terms and factored out the linear combination coefficients.
We also have that the coefficients are positive and β = 1 − α and δ = 1 − γ:

∣∣∣γyAℓ − αyAℓ−1
∣∣∣ =

∣∣∣γyAℓ − γyAℓ−1 + γyAℓ−1 − αyAℓ−1
∣∣∣

≤ γ
∣∣∣yAℓ − yAℓ−1

∣∣∣ +
∣∣∣γ − α

∣∣∣
∣∣∣yAℓ−1

∣∣∣ , (3.42)
∣∣∣δyBℓ − βyBℓ−1

∣∣∣ =
∣∣∣δyBℓ − δyBℓ−1 + δyBℓ−1 − βyBℓ−1

∣∣∣
≤ δ

∣∣∣yBℓ − yBℓ−1
∣∣∣ +

∣∣∣δ − β
∣∣∣
∣∣∣yBℓ−1

∣∣∣ . (3.43)

We introduce (3.42) and (3.43) in (3.41), and substitute δ − βwith α − γ:

TV ≤ α
∑

j≤ℓ−1

∣∣∣∣yAj+1 − yAj
∣∣∣∣ + β

∑

j≤ℓ−1

∣∣∣∣yBj+1 − yBj
∣∣∣∣+ (3.44)

+ γ
∑

j≥ℓ−1

∣∣∣∣yAj+1 − yAj
∣∣∣∣ + δ

∑

j≥ℓ−1

∣∣∣∣δyBj+1 − yBj
∣∣∣∣ +

∣∣∣γ − α
∣∣∣
∣∣∣yAℓ−1 − yBℓ−1

∣∣∣ .
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Since each solution is obtained through a TVD method (3.37), and the linear combi-
nation is convex, we have that

TV ≤ TV
({
y0

})
+

∣∣∣γ − α
∣∣∣
∣∣∣yAℓ−1 − yBℓ−1

∣∣∣ , (3.45)

and thus, by using the assumptions in (3.37), we have that the maximum total varia-
tion increase is of order ∆t.

Next we use Lemmas 3.6 and 3.7 to show that MPRK-2 is TVB if each Euler step
is TVD.
P 3.8 (TVB). If each fast and each slow multirate Euler steps are TVD under

the local CFL condition and if the solution is smooth then MPRK-2 is TVB.
Proof. We consider MPRK-2 (see Table 3.3) applied to a bounded domain that

has one fast region, a fast buffer, and one slow region (Ω = ΩF ∪ ΩFB ∪ ΩS). Since
each Euler step is considered to be TVD, the TVD conditions assumed in Lemma 3.6
are satisfied by the MPRK-2 construction (i.e., we allow for a buffer between the fast
and the slow regions, in which the fast method is used, albeit the slowmethod is also
TVD). In what follows we find an upper bound to the additional total variation that
may be introduced by MPRK-2 in one (full) timestep. We consider each step in Table
3.3 and quantify the TV increase.

By Lemma 3.6, the first two steps (
{
y
{(1),(1∗)}
F

, y{(1),(1∗)}
S

}
) do not increase the TV of

the initial solution (yn):

TV
({
y
(1∗)
F
, y(1∗)
S

})
≤ TV

({
y
(1)
F
, y(1)
S

})
≤ TV

({
ynF, y

n
S

})
. (3.46)

The third step,
{
y(2)
F
, y(2)=n
S

}
, represents a convex combination of Euler steps, and by

using Lemma 3.7 together with the previous relations (3.46), we have that

TV
({
y
(2)
F
=
1

2
ynF +

1

2
y
(1∗)
F
, y(2)
S
= 1 ynF + 0 y

(1∗)
F
)
})
≤ TV

({
ynF, y

n
S

})
+O(∆t) . (3.47)

The first two steps of the second macro step
{
y
{(3),(3∗)}
F

, y{(3),(3)∗}
S

}
do not increase

the TV. Using Lemma 3.6 and the results from the previous Euler steps, we have the
following TV bounds:

TV
({
y
(3)
F
, y(3)
S

})
≤ TV

({
y
(2)
F
, ynS

})
≤ TV

({
ynF, y

n
S

})
+ O(∆t) , and

TV
({
y
(3∗)
F
, y(3∗)
S

})
≤ TV

({
y
(3)
F
, y(3)
S

})
≤ TV

({
ynF, y

n
S

})
+ O(∆t) .

The last step,
{
yn+1
F
, yn+1
S

}
, is a convex combination of previous Euler steps, and hence,

using Lemma 3.7 we have an increase in the TV of at most O(∆t).

TV
({
yn+1F =

1

2

(
y
(2)
F
+ y

(3∗)
F

)
, yn+1S =

1

2

(
ynS + y

(1∗)
S

)
+
1

2

(
ynS + y

(3∗)
S

})

≤ TV
({
ynF, y

n
S

})
+ O(∆t). (3.48)

The last relation proves the TVB result for MPRK-2

TV
({
yn+1F , y

n+1
S

})
≤ TV

({
ynF, y

n
S

})
+ O(∆t) .
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This proof can be extended to multiple subdomains and interfaces, and to arbi-
trary step size ratios.

Note that the assumption that all individual Euler steps are TVD is very strong,
and it may not be necessary. For analogy, consider the linear stability of the combi-
nation of forward Euler timesteps that form RK2a method (2.15). The CFL condition
number for each of the Euler steps is smaller than the one for the RK2a method,
and thus RK2a is linearly stable for CFL numbers for which its stage Euler steps
are unstable. In our case, if we consider the base method for our MPRK-2 example,
RK2a (2.15), we notice that the individual Euler steps may not need to be nonlinearly
stable (TVD) in order for the entiremethod to be stable. Experimentally, this property
seems to be verified and extended to MPRK-2; however, we do not have a proof for
this result.

Forms (3.18)-(3.19) represent a convex combination of Euler steps using the
MPRK-2 construction “algorithm” presented in Section 3.4. The method (3.18)-(3.19)
with partitioning (3.5) is second order accurate in time and SSP (i.e., preserves the
stability properties of the spatial method).

3.6. Other Multirate Explicit Methods. In this section we present other mul-
tirate forward Euler methods. First, we show the first order multirate Euler steps
method proposed by Kirby [30] written in our framework and second, we construct
other second order PRK configurations.

3.6.1. First OrderMultirate ExplicitMethods. Kirby [30] proposed a first order
multirate method based on Euler steps. Using our notation this method can be
written in the following way

y
ηk
F
= EF

(
σk∆t, y

ηk−1
F
, ynS

)
, k = 1, 2, . . . ,m − 1 ,

yn+1F = EF
(
σm∆t, y

η
m−1

F
, ynS

)
,

yn+1S = ES
(
∆t, ynF, y

n
S

)
,

where

m∑

k=1

σk = 1, 0 < σk ≤ 1 , 1 ≤ k ≤ m ; ηk =
m−1∑

k=1

σk, η0 = 0 .

Kirby [30] proves that the above scheme is TVD (i.e., TV
({
yn+1
F
, yn+1
S

})
≤ TV

({
yn
F
, yn
S

})
),

satisfies the maximum principle and the entropy condition; however, it is only first
order accurate. A Butcher tableau representation of this method is shown in Table
3.4.

3.6.2. Other Second Order PRK Configurations. Other second order PRK con-
figurations are possible. Using the fast method from our MPRK-2 example for m = 2,
we define another family of second order PRK methods. The Butcher tableau is
shown in Table 3.5. These methods can be written in convex combinations of Euler
steps for 0 ≤ µ ≤ 1. The slow method is further discussed in Appendix B where
we show that the Euler steps that form the method are in convex combinations. The
properties proved for MPRK-2 also extend to this family.
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0 0
1

0 0
η1 σ1 0
η2 σ1 σ2 0
...

...
...
. . .

. . .
ηm−1 σ1 σ2 · · · σm−1 0

σ1 σ2 · · · σm−1 σm

0 0
0 0 0
0 0 0 0
...
...

...
. . .

. . .
0 0 0 · · · 0 0
σ1 σ2 · · · σm−1 σm

(a) Base (b) Fast method (c) Slow method
method

T 3.4
The Butcher tableau for the two, slow and fast methods for Kirby’s [30] first order multirate forward Euler step

method.

0 0
1/2 1/2 0
1/2 1/4 1/4 0
1 1/4 1/4 1/2 0

1/4 1/4 1/4 1/4

0 0
0 0 0
1 µ 1 − µ 0
1 1 − µ µ 0 0

1/4 1/4 1/4 1/4
(a) Fast method (b) Slow method

T 3.5
The Butcher tableau for the two, slow and fast methods for another family of second order PRK for m = 2. Here

we consider 0 ≤ µ ≤ 1.

3.7. Order TwoMPRKMethods for Multiple Partitions. The MPRK-2 method
described in a previous section (3.5) along with its properties can be extended to
multiple levels of refinement. The procedure is illustrated in Table 3.6 for three levels
of partitioning (S - slow, M - medium, and F - fast). The construction is as follows.

Start with the base method for level zero, RKB (in Table 3.1.a). Then construct the
slow method with A’s on the diagonal. The top left quadrant in Table 3.6.c becomes
the base method for the medium partition, and so on.
For multiple levels, each method depends on its corresponding partition and

only on the neighboring partitions. The neighboring partitions are characterized
by adjacent time scales (there is no direct transition between the fast and the slow
subdomains). In this case, the dependency of f{F,M,S} on y{F,M,S} is the following

y′F = fF(yF, yM)

y′
M
= fM(yF, yM, yS)

y′
S
= fS(yM, yS)

.

We note that there is no direct dependency between flux functions fF and fS. The
transition between the fast and the slowmethods is smoothly resolved in this context.
The order conditions for eachmethod and for the coupling are satisfied pairwise:

(F,M) and (M, S). This is sufficient to guarantee the global accuracy of the method.

Moreover, on level zero, RKS0 reduces to the base method on Ω
0
S
(away from the

interface), and in turn, RKS1 reduces to the top left quadrant of RK
S
0 on Ω

(1)
S
, which

becomes the base method for the medium partition. Thus, we have a systematic way
to extend methods to increasingly faster partitions.

3.8. Implementation aspects. We describe the implementation of MPRK-2 in a
general framework. For simplicity, we consider a solution that has two characteristic
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Medium

Slow

Fast

(c) Slow method (m = 1) (d) Nested partitioning example
T 3.6

Multirate partitioned Runge-Kutta method (MPRK-2) with 3 levels of refinement and an example for the
nested domain decomposition.

time scales that require two integration timestep lengths: large (for slow) and small
(for fast). The domain is partitioned as follows: the fast solution together with the fast
buffer form the fast domain (recall that variables in the fast buffer are characterizedby
a slow timescale, but are resolved with a small timestep). An additional slow buffer
at the fast-slow interface is considered as illustrated in Figure 3.2 to computationally
decouple the fast and slow solutions. The rest of the slow solution forms the slow
domain. The size of the slow buffer is the “largest” half of the maximum stencil size
(denoted with ∆) times the ratio between the fast-slow subdomains m . For instance,
in our experiments the spatial stencil has five points, and in this case we choose
the slow buffer to be two grid points (∆ = 2). It is easy to see that this condition
guarantees sufficient solution decoupling between the fast and the slow such that
the base method can be applied for the slow partition. The size of the fast buffer is ∆
according to Proposition 3.8.

To illustrate the implementation we consider the MPRK-2 (RKa) method de-

scribed in Table 3.3. The fast method
(
RKF

)
is applied in the fast domain (with step

size ∆t/m), the slow (buffer) method
(
RKS

)
is applied in the slow buffer, and the

base method
(
RKB

)
in the slow domain. Note that inside the slow buffer m large

steps are taken with a step size ∆t; but since the slow buffer is narrow the associated
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Fast domain Characteristics

Slow

Fast

Slow domainSlow
buffer

Fast buffer

RKF RKS RKS → RKB

F. 3.2. The efficient implementation of MPRK treats separately the variables in the slow buffer.

computational cost is only O (m∆). Outside the slow buffer a single large step of
length ∆t is taken with the base method to advance the slow solution in the large
slow domain. A representation of the procedure described above is shown in Figure
3.2. This analysis can be extended to any MPRK-2 setting.
Optimal (in terms of CFL) single rate SSP Runge-Kutta methods expressed di-

rectly in forward Euler steps can be found in [18] and are very good candidates for
the basemethod in themultirate approach. Themultirate sequence of Euler steps can
be inferred directly from the base method as the multirate (m × base method stages)
stages have a repetitive pattern. An example is shown in Appendix A for m = 3.
In practice the timestep refinement criterion is imposed by stability restrictions

(CFL) due to the fact that the spatial discretization errors typically dominate the
temporal discretization errors (i.e., the time step is restricted by stability and not by
accuracy requirements). It is nevertheless possible to choose an adaptive timestep
for the time integration based on temporal error control [12, 43].

3.9. Computational efficiency. There is no additional computational overhead
away from the interface regions which are typically very small (narrow) compared
to the fast and slow partitions. Even if the slow method has formally as many stages
as the fast method, these stages are identical away from the interface, and thus no
additional calculations are necessary. This means that the slow method really uses
large steps.
We now estimate the efficiency of the multirate method under the assumption

that the Euler steps (and in particular the flux function evaluations) carry the bulk
of the computational cost. We define the multirate integration speedup as the ratio
of the workload for single rate scheme with fast steps used throughout the domain,
to the workload of the multirate scheme. Consider the multirate scheme applied on
a fast domain with LF grid points, a slow domain with LS grid points, and with b
interfaces among them. The speedup of the MPRK-2 is

S =
m (LF + LS)

m (LF + bm∆) + LS − bm∆
. (3.49)

The speedup depreciates as m grows; however, this is not of concern in practical
applications since large m can be avoided through the nested partitioning. In practice
we have that bm∆≪ min(LS, LF) and therefore

S ≈
m (LF + LS)

mLF + LS
.

The speedup is close to the ideal value of m if LF ≪ LS. For k nested grids the ideal
speedup is mk. We expect the speedup to be considerable formulti-dimensional prob-
lems. A numerical experiment that validates this theoretical speedup considerations
for Burger’s equation is shown in Section 4.2.3.
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4. Numerical Results. We illustrate the theoretical findings using two standard
test problems: the advection equation and the inviscid Burgers’ equation. Since
TVD methods in multiple dimensions are at most first order accurate [16], we look
at one-dimensional problems. Accurate multiple dimension problems can be solved
using dimension splitting. The solutions are computed using the method of lines
approach. The linear advection spatial discretization is a second order limited finite
volume schemeonnonuniformgrids that is both conservative andpositive (described
in Section 4.1). Burgers’ equation, presented in Section 4.2, is implemented on a fixed
grid, using the third order scheme of Osher and Chakravarthy [38].

4.1. The Advection Equation. The one-dimensional advection equation (4.1)
models the transport of a tracer y with the constant velocity u along the x axis

∂y(t, x)

∂t
+ u ·

∂y(t, x)

∂x
= 0 .

4.1.1. Positive Spatial Discretization. In what follows, we describe the positive
(2.7) flux limited spatial discretization scheme [27, 51]. We start by introducing the
flux limited formulation of Hundsdorfer et al. [27] on uniform grids, and extend the
scheme to nonuniform grids.
The numerical flux is defined as

Fi+ 12
= fi +

1

2
φi+ 12

(
fi − fi−1

)
, (4.1)

where φ is a nonlinear limiter function. The scheme (2.2) becomes

y′i = −

(
1 + 12φi+ 12

) (
fi − fi−1

)
− 12φi− 12

(
fi−1 − fi−2

)

∆x
. (4.2)

Define the flux slope ratio as

ri− 12
=
fi − fi−1

fi−1 − fi−2
. (4.3)

If ri− 1
2
, 0, from (4.2) and (4.3) we have

y′i = −
1

∆x



(
1 +
1

2
φi+ 12

)
−

1
2φi− 12
ri− 12



(
fi − fi−1

)
. (4.4)

The positivity requirement (2.7) applied to the scheme (4.4) yields the following
condition

φi− 12
ri− 12

− φi+ 12 ≤ 2 . (4.5)

This condition is used to impose bounds on the limiter φ for the numerical flux
defined by (4.1) in order to preserve positivity for the scheme (2.2).
Nextwe extend the scheme to a nonuniform grid by redefining the numerical flux

(and the limiter). Consider a quadratic (spatial) flux interpolant for the numerical
flux function F at i+ 12 , using the flux function f , evaluated at gridpoints i− 1, i, i+ 1,
and a nonuniform spatial grid spacing, ∆x[•], in the following form:

Fi+ 12
= fi + αi fi−1 + βi fi + γi fi+1,
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where

αi = −
∆xi ∆xi+1

(∆xi−1 + ∆xi) (∆xi+1 + 2∆xi + ∆xi−1)
,

βi = −
∆xi (∆xi−1 + ∆xi − ∆xi+1)

(∆xi−1 + ∆xi) (∆xi + ∆xi+1)
,

γi =
∆xi (∆xi−1 + 2∆xi)

(∆xi + ∆xi+1) (∆xi+1 + 2∆xi + ∆xi−1)
.

The flux can be written in terms of
(
fi − fi−1

)
and ri+ 12

as

Fi+ 12
= fi +

(
−αi + γi ri+ 12

) (
fi − fi−1

)
. (4.6)

Define K as

K (r) = 2
(
−αi + γi r

)
. (4.7)

Then, the numerical flux can be expressed as

Fi+ 12
= fi +

1

2
K

(
ri+ 12

) (
fi − fi−1

)
. (4.8)

Define the following flux limiter [27, 49]

φ(r) = max (0, min (2 r, min (2, K (r)))) . (4.9)

The semi-discrete form (2.2)with the limiter (4.9) using thenumerical fluxdefined
by (4.8) is a positive, second order (wherever the limiter is set to one) semi-discrete
scheme on a nonuniform grid. The proofs follow immediately from [27, 49] with
the extension of the nonuniform mesh. In addition, if the timestepping scheme is
positivity preserving, then the entire method (each multirate step, in our case) is
positivity preserving as discussed in Section 3.5.
Figure 4.1 shows that the leading order truncation error of the spatial discretiza-

tion using the unlimited numerical flux (4.6), i.e., the coefficient that multiplies
∂ f

′′′
/∂3x, increases with increased mesh ratio.

4.1.2. Numerical Experiments. In this section we apply the MPRK-2 time inte-
gration for the linear advection equation. The spatial discretization is positive and
the time integration scheme is SSP, which results in an overall positive scheme.
Our test cases include three different initial conditions (of different regularity): a

step function, a triangular shape, and an exponential shape.
The computational domain has three distinct regions. The middle region is

discretized using a fine grid with spacing ∆x/m , while the left and right regions are
covered by a coarse mesh with spacing ∆x. For simplicity we consider periodic
boundary conditions. The timestepping interval is proportional with the grid size in
order to satisfy the CFL restriction, i.e., we take ∆twherever we have ∆x grid spacing
and ∆t/m wherever we have ∆x/m .
Figures 4.2 show the advection numerical solutionwith the three functionprofiles

that pass through a fixed fine (∆x/m) region (located between x = 1 and x = 2). The
dashed line represents the exact solution and solid line corresponds to the solution
evolved with unit wave speed (u = 1) in time (at two different times). The solution
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F. 4.1. Representation of the discretization leading order error term for two instances of m as the wave passes
through the interfaces.

Type

m = 1 m = 2 m = 3
ℓ1 ℓ1 ℓ1

mass final mass final mass final
min all min all min all
max all max all max all

Step

0.1085 0.1069 0.1021
9.9999999e-01 1.0e+00 9.99999999e-01
1.4966e-17 4.4738e-19 9.3703e-20
0.9938 0.9999 1

Triangular

0.0401 0.0224 0.0154
1 1 9.99999999e-01

1.2242e-17 9.2255e-19 3.3607e-19
0.8272 0.8969 0.9209

Exponential

0.0466 0.0344 0.0270
9.99999999e-01 9.99999999e-01 9.99999999e-01
1.0845e-17 5.7082e-19 1.489e-19
0.9659 0.9880 0.9904

T 4.1
The moving grid advection experiment values for: ℓ1 error norm, the ratio between the initial and final mass,

and the solution minimum andmaximum over all timesteps (all). The initial solution minimum is zero andmaximum
is one.

is not qualitatively affected by the interface. Moreover, with the higher spatial res-
olution, the solution improves qualitatively (as m is increased), and the wave is not
distorted by passing through the fast-slow interface.

To further quantify the benefits of having a finer region in this setting, we in-
vestigate a moving fine mesh that is centered around the “interesting region,” where
the large gradients occur in the solution. Figures 4.3 show the advection solution for
the three corresponding initial profiles (marked with dashed lines). The fine (∆x/m)
mesh travels with the solution from the left to the right part of the domain with con-
stant speed. The Figures show the final state of the solution with the exact solution
superimposed (marked with dotted lines), and vertical dotted lines that delimit the
fine domain. Table 4.1 shows the ℓ1 error norm at the the final time, minimum, max-
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F. 4.2. Fixed grid advection solution with three function profiles that pass through a fixed fine (∆x/m , ∆t/m)
region (between 1 and 2). The initial profile (dashed line) is advected from the left to right part of the domain.

imum, and the total mass ratio for the profiles shown in Figures 4.3 at the initial and
final time. Clearly, the solution is improved both qualitatively and quantitatively
with higher spatial resolution. Moreover, every timestep is conservative, and the
solutions are positive, obey the maximum principle, and are wiggle free.
All the results for the advection equation presented in this section show that this

specific finite volume approach and MPRK-2 yield a conservative multirate solution
on a nonuniform grid that is positive and non-oscillatory as discussed in Section 3.5.

4.1.3. Numerical ErrorAnalysis. In this sectionwe analyze the effective (numer-
ical) order of accuracyof themultirate time integrationmethod. For this investigation
we use the experiment setting (i.e., space discretization, grid, etc.) described above
and consider the following elements.
Given the reference (or exact) solution yref, ℓq error norms of the numerical

solution y, on a variable (or fixed) grid are computed as

ℓq
(
y
)
=



∑

i

∆xi
∣∣∣y (xi) − yref (xi)

∣∣∣q



1
q

.

The effective order of thediscretizationEOq in qnorm is estimated from twonumerical
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(d) RK2a (m = 1) (e) MPRK-2, m = 2 (f) MPRK-2, m = 3
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F. 4.3. Moving grid advection solution with three initial profiles (marked with dashed lines). The solution is
advected to the right part of the domain. The fine grid (∆x/m , ∆t/m) delimited by two vertical dotted thin lines (at
the final time) follows the profile. The dotted line represents the exact solution at the final time.

solutions with different time resolutions: h and h/γ, γ > 1, as follows:

EOq = log



ℓq

(
y[h/γ]

)

ℓq
(
y[h]

)




/
log

(
1

γ

)
,

In our numerical experiments, we use the ℓ1 and ℓ2 norms and consider the sine
initial solution shown in Figure 4.4.a that is advected half of its period (i.e., 1.5 units
in the spatial dimension).
For the numerical order validation we use two space-time grids. In the first

case, we consider space-time refinement for the fine region and compute the error
norms ℓ1 and ℓ2 with respect to the exact solution. They are used to determine the
corresponding effective order of the (space/time) method EO1 and EO2, respectively.
In the second case, we consider only time refinement while keeping the space grid
fixed and compute the error norms ℓODE

1
and ℓODE

2
. The reference solution in the

fixed grid is obtained with respect to a high order numerical approximation, RK45.
RK45 is obtained using explicit Runge-Kutta (4,5) with RelErr=AbsErr=1E-08 [9].
The spatial discretization is the same in bothMPRK-2 and RK45. The error norms are

used to approximate directly the time accuracy order EOODE1 and EOODE2 for MPRK-2,
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Space and time refinement Time refinement only (ODE coarse)

Level ℓ1 ℓ2 EO1 EO2 ℓODE
1

ℓODE
2

EOODE1 EOODE2

1 8.10e-02 5.62e-02 2.04e-03 1.33e-03
2 2.00e-02 1.64e-02 2.018 1.775 4.88e-04 3.21e-04 2.063 2.056
4 4.00e-03 4.31e-03 2.322 1.929 1.22e-04 8.21e-05 1.992 1.968
8 8.21e-04 1.13e-03 2.284 1.933 3.09e-05 2.06e-05 1.991 1.991
16 1.66e-04 2.99e-04 2.303 1.915 7.68e-06 5.18e-06 2.008 1.995
32 3.00e-05 7.25e-05 2.471 2.048 1.92e-06 1.30e-06 2.001 1.994
64 5.77e-06 1.81e-05 2.379 2.002 4.78e-07 3.20e-07 2.005 2.023

T 4.2
Effective order for RK2a (i.e., MPRK-2 with m = 1) in time for the advection equation with respect to (left

columns) the exact solution and (right columns) a high order time discretization method.

Space and time refinement Time refinement only (ODE coarse)

Level ℓ1 ℓ2 EO1 EO2 ℓODE
1

ℓODE
2

EOODE1 EOODE2

1 6.49e-02 4.75e-02 1.62e-03 1.12e-03
2 1.57e-02 1.41e-02 2.047 1.753 3.91e-04 2.70e-04 2.052 2.061
4 3.27e-03 3.61e-03 2.264 1.963 9.76e-05 6.84e-05 2.003 1.982
8 7.12e-04 9.37e-04 2.201 1.948 2.43e-05 1.71e-05 2.003 1.995
16 1.52e-04 2.47e-04 2.221 1.924 6.11e-06 4.31e-06 1.994 1.990
32 3.04e-05 6.14e-05 2.326 2.008 1.53e-06 1.08e-06 1.994 1.993
64 6.24e-06 1.55e-05 2.287 1.980 3.74e-07 2.64e-07 2.037 2.034

T 4.3
Effective order for MPRK-2 (RK2a) with m = 2 in time for the advection equation with respect to (left columns)

the exact solution and space-time refinement and (right columns) a single rate high order time discretization method
with time refinement for MPRK-2.

masking the spatial errors.
First, we consider the single rate RK2a method (Table 4.2). The results subscribe

to the well-known second order of accuracy. Next, we show the order estimation for
MPRK-2 with m = 2 in Table 4.3 and with m = 3 in Table 4.4. The second order of
accuracy is not affected by the time refinement in the MPRK-2 method and confirms
the theoretical findings.
We remark that the errors (in norm) decrease as we increase m . Moreover, the

errors with respect to the exact solution (left columns) that also include the spatial
discretization errors are orders of magnitude larger than the “ODE” errors (right
columns). This shows that the spatial discretization errors dominate, as expected.

4.2. Burgers’ Equation. The simplified (inviscid) Burgers equation is

∂y(t, x)

∂t
+
∂

∂x

(
1

2
y(t, x)2

)
= 0 . (4.10)

Burgers’ equation numerical experiments are based on the third order upwind-biased
TVD flux limited scheme described below for the spatial discretization, andMPRK-2
for the time integration.

4.2.1. TVD Spatial Discretization. This section is based on the work of Osher
and Chakravarthy [6, 37, 38]. A generic recipe for high order TVD finite volume
schemes can be found in [7]. In what follows, we briefly present their method.
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Space and time refinement Time refinement only (ODE coarse)

Level ℓ1 ℓ2 EO1 EO2 ℓODE
1

ℓODE
2

EOODE1 EOODE2

1 4.12e-02 3.40e-02 1.61e-03 1.13e-03
2 1.00e-02 9.79e-03 2.041 1.795 3.87e-04 2.70e-04 2.059 2.068
4 2.23e-03 2.49e-03 2.165 1.973 9.59e-05 6.81e-05 2.013 1.987
8 5.05e-04 6.58e-04 2.144 1.922 2.39e-05 1.70e-05 2.006 1.996
16 1.08e-04 1.73e-04 2.220 1.927 6.00e-06 4.30e-06 1.993 1.990
32 2.24e-05 4.41e-05 2.269 1.973 1.50e-06 1.08e-06 1.995 1.993
64 4.75e-06 1.16e-05 2.241 1.919 3.67e-07 2.63e-07 2.037 2.035

T 4.4
Effective order for MPRK-2 (RK2a) with m = 3 in time for the advection equation with respect to (left columns)

the exact solution and space-time refinement and (right columns) a single rate high order time discretization method
with time refinement for MPRK-2.
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(a) Solution for accuracy results (b) Solution for efficiency results

F. 4.4. Representation of the initial (dashed) and final (solid) solutions for: (a) the advection equation used
in the numerical accuracy analysis, and (b) Burgers’ equation used in the numerical efficiency experiments. The
dashed vertical lines denote the fast-slow interface.

Consider the flux F(y j+1, y j) to be a scalar numerical flux defined for an E-scheme
[7]. The following

d f−
j+ 12
= F(y j+1, y j) − f (y j), and (4.11)

d f+
j+ 12
= f (y j+1) − F(y j+1, y j), (4.12)

represent the positive and negative flux difference on the cell face.
With (4.11)-(4.12), consider the following numerical flux

F j+ 12
= F(y j+1, y j) −

[
1 − κ

4
d̃ f−
j+ 32
+
1 + κ

4
d f−
j+ 12

]
+

[
1 + κ

4
d̃ f+
j+ 12
+
1 − κ

4
d f+
j− 12

]
, (4.13)

F(y j+1, y j) =
1

2

(
f (y j+1) + f (y j)

)
−
1

2

(
d f+
j+ 12
+ d f−

j+ 12

)
, (4.14)

where f± are the negative and positive flux contributions, d̃ f± and d f± show that
they are in flux limited form and are defined below. The scheme defined by (4.13) is
called a κ-scheme. If κ = 1/3, (4.13) becomes the limited third order upwind-biased
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scheme. If we consider d f± = d f± and d̃ f± = d f±, we have the unlimited scheme.
The limited fluxes are defined as follows

d̃ f−
j+ 32
= minmod

[
d f−
j+ 32
, b d f−

j+ 12

]
, d f−

j+ 12
= minmod

[
d f−
j+ 12
, b d f−

j+ 32

]
, (4.15)

d̃ f+
j+ 12
= minmod

[
d f+
j+ 12
, b d f+

j− 12

]
, d f+

j− 12
= minmod

[
d f+
j− 12
, b d f+

j+ 12

]
, (4.16)

where

minmod
[
x, y

]
= sign(x) ·max

[
0, min

[
|x|, y sign(x)

]]
, 1 ≤ b ≤

3 − κ

1 − κ
. (4.17)

The semi-discrete form (2.2) using the numerical flux defined by (4.15) is a TVD, third
order accurate scheme for κ = 1/3 (when the limiter is not “active”, otherwise the
order is degraded). Additional information can be found in [7].

4.2.2. Numerical Experiments. The computational domain has three distinct
regions. The middle region (x ∈ [1, 2]) is discretized using a fast method with the
timestep of ∆t/m , while the left (x ∈ [0, 1]) and right (x ∈ [2, 3]) form the slow regions
and are solved with a time step of ∆t. Again, for simplicity, we consider periodic
boundary conditions. The time integration is done with MPRK-2.
Results for MPRK-2 that use smaller local timesteps for Burgers’ equation are

presented in Figures 4.5. The local CFL condition is violated for 4.5.(a,c), and in
these cases the solution becomes unstable. In Figures 4.5.(b,d). the CFL condition is
locally satisfied, and the solution is stable. More exactly: The solution in Fig. 4.5.(a)
uses the same timestep everywhere (m = 1); however, in the fast region (x = [1, 2]),
the CFL condition is violated (for y > 1.11) and the method becomes unstable. In
Fig. 4.5.(b) we use a smaller timestep in the fast region (m = 2) and the local CFL
condition is now satisfied, and the oscillations present in Fig. 4.5.(a) are avoided.
Similarly, the solution in Fig. 4.5.(c) is oscillatory for m = 2 due to a violation of the
CFL condition. Increasing the time ratio to m = 3 stabilizes the solution, and hence,
the solution (shown in Fig. 4.5.(d)) is non-oscillatory. This approach with different
m can be employed in order to dynamically stabilize the schemes by choosing step
sizes that locally satisfy the CFL condition.
Figures 4.6.(a,b) show the Burgers’ solution obtained using two initial profiles

that pass through the fine (∆t/2) region at different times. In both cases the solution
is not qualitatively affected by the wave passing through the interfaces.
The spatial discretization scheme is TVD and stable under a CFL-like condition.

The time integration scheme, MPRK-2, with m = 2, 3 keeps a bounded total variation.
Figures 4.6.(c,d) show the TV difference (between successive steps), i.e., TV(y(t = ti))
- TV(y(t = ti−1)), for the solutions presented in Figure 4.6.(a,b). This difference is
always negative, and thus the scheme is TVD on this particular example.

4.2.3. ComputationalEfficiency. In this sectionwevalidate the theoretical speedup
results computed in Section 3.9. We consider Burgers’ equation (4.10) with the solu-
tion shown in Figure 4.4.b using the Osher-Chakravarthy spatial discretization (4.13)
described above.
We consider a fast region with ratios m = 2 or 3 that covers 10% of the entire

grid in order to preserve the stability of the method for the given initial solution.
We choose: LF = 100, LS = 900, ∆ = 2 with CFL (fine) = 0.75 and two interfaces
(b = 2): fast-slow and slow-fast. In Table 4.5 we show the CPU time for 45 integration
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(a) RK2a (m = 1), t=0.135s (b) MPKR2, m = 2, t=0.135s
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(c) MPKR2, m = 2, t=0.225s (d) MPKR2, m = 3, t=0.225s

F. 4.5. Burgers’ solution with the initial profile (dashed), dx = 0.025, dtcoarse = 0.022 (CFL=0.9) and (a)
m = 1, using RK2a; (b) m = 2, solved with MPRK-2. Second row shows the solution at t=0.225s solved with
MPKR2 and same grid with (c) m = 2; (d) m = 3. CFL condition is violated in (a) and (c) and are unstable. Figures
(b) and (d) satisfy the CFL condition and are stable.

Time Single rate Multirate Experimental Theoretical
ratio time [sec] time [sec] speedup speedup
m = 2 25.28 13.71 1.84 1.80
m = 3 36.73 15.07 2.43 2.45

T 4.5
Effective and theoretical computational speedup for MPRK-2 with (m = 2 and 3). The fast region covers 10%

of the entire domain. A considerable speedup increase can be obtained for multidimensional applications.

timesteps and compare the multirate solutions with m = 2 and 3 with the single rate
solutions. The experimental results confirm a speedup of about 1.8 for m = 2 and
2.43 for m = 3, as predicted by the theoretical calculation.

We note that in 2-D and 3-D applications the speedup is expected to be consid-
erably larger, as discussed in Section 3.9. Similarly, more impressive speedups are
expected for nested grids.

5. Conclusions and Future Work. Adaptive simulations of hyperbolic conser-
vation laws refine the spatial grid to obtain the target accuracy. Due to the CFL
restrictions, finer local grids lead to smaller global timesteps for the entire simula-
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(c) TV difference for step (d) TV difference for exponential

F. 4.6. Burgers’ solution with the initial profile (dashed), dx = 0.025, dtfine = 0.019 (CFL=0.75) and solved
with MPRK-2 for (a) the step profile and (b) exponential profile, for m = 2 at different time locations. For each profile
we show the TV variation of the solution: in (c) for the (a) setting, and in (d) for the (b) setting.

tion. Therefore mesh refinement is accompanied by a considerable increase in the
computational time. Moreover, even for fixed grid simulations, thewave speedsmay
vary considerably across the entire domain and the global timestep is restricted by
the fastest wave speed. In both cases, the majority of the variables are solved with a
timestep much smaller than necessary.

Multirate integration schemes use different timesteps for distinct components of
the solution; in particular, they allow to use different timesteps in different parts of the
domain when simulating hyperbolic systems. In this paper we present a multirate
approach that allows to solve each subdomain with a timestep that matches the local
characteristic time scale of the solution. The proposed multirate schemes have high
order of accuracy and have nonlinear stability properties

We have developed a systematic way to extend SSP Runge-Kutta schemes to
multirate integration methods. Our approach is rooted in the theory of partitioned
Runge-Kutta methods. The proposed time discretizations are (1) second order accu-
rate, (2) conservative, and (3) nonlinearly stable under local CFL timestep restrictions.
Nonlinear stability properties include positivity, maximumprinciple preserving, and
TVB. Note that currentmultiratemethods with these properties, available in the liter-
ature, are at most first order accurate. The proposed multirate family of schemes can
be extended to accommodate an arbitrary number of partitions (time scales), with
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arbitrary step size ratios between partitions.
Two test problems are used to illustrate the theory. In both problems we used

MPRK-2 with different timestep ratios. The first test is the linear advection equation
with mesh refinement. Distinct timesteps are used in areas of different mesh sizes.
Under local CFL conditions, the integration is linearly stable and conservative, and
the solution remains positive and free of spurious oscillations. The second test is
the inviscid Burgers’ equation. The grid size is fixed but the wave speed varies
significantly in different parts of the domain. Different timesteps that obey the local
CFL conditions are used. The numerical solution is conserved and its total variation
decreases with time.
A check for the entropy inequality in the multirate context will be addressed in

future studies. We plan to extend the proposed framework to construct methods of
third or higher order. Further, we plan to develop multirate SSP time integrators
based on linear multistep methods. We shall apply these multirate timestepping
algorithms to the solution of large scale 3-D PDEs arising in air quality modeling.
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(b) Fast method (c) Slow method
T A.1

MPRK order 2 Butcher tableau for m = 3.

Appendix A. An Order Two MPRK with m = 3. Here we present the MPRK-2
using a factor of three (m = 3) between the fast and slow partitions using the same
construction algorithm described for m = 2 (see Sec. 3.5). The method showed here
takes advantage of the repetition pattern which is inherent for MPRK-2. Note that
the base method is repeated in various combinations. The Butcher tableau for this
method is shown in Table A.1. The method can be written as follows (k = 0, 1, 2):

K1+2kF = fF(y
n+2k
F , ynS) K1+2kS = fS(y

n+2k
F , ynS)

y
(1+2k)
F

= yn+2kF +
∆t

3
K1+2kF y

(1+2k)
S

= ynS + ∆tK
1+2k
S

K2+2kF = fF(y
(1+2k)
F
, y(1+2k)
S
) K2+2kS = fS(y

(1+2k)
F
, y(1+2k)
S
) (A.1)

y
(2+2k)
F

= yn+2kF +
∆t

6
K1+2kF +

∆t

6
K2+2kF y

(2+2k)

S
= ynS

yn+1F = ynF +
∆t

6

6∑

j=1

K
j

F
yn+1S = ynS +

∆t

6

6∑

j=1

K
j

S

The above MPRK-2 can be written in Euler steps in the following way (k = 0, 1, 2):

y
(1+2k)
F

= EF

(
∆t

3
, yn(+2k)
F

, yn(+2k)
S

)
, y

((1+2k)∗)
F

= EF

(
∆t

3
, y(1+2k)
F
, y(1+2k)
S

)
,

y
(2+2k)
F

=
1

2
y
n(+2k)
F

+
1

2
y
((1+2k)∗)
F

,

yn+1F =
1

2

(
ynF + y

n
F +
∆t

3
K1F +

∆t

3
K2F +

∆t

3
K3F +

∆t

3
K4F +

∆t

3
K5F +

∆t

3
K6F

)
,

=
1

2

(
ynF + y

(1)
F
+
∆t

2
K2F +

∆t

3
K3F +

∆t

3
K4F +

∆t

3
K5F +

∆t

3
K6F

)
,

=
1

2

(
ynF + y

(1∗)
F
+
∆t

3
K3F +

∆t

3
K4F +

∆t

3
K5F +

∆t

3
K6F

)
,
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Fast method
(
RKF

)
Slow method

(
RKS

)
Slow method

(
RKB

)

in slow buffer in slow region

yn
F

yn
S

yn
S

y
(1)
F
= EF

(
∆t
3 , y

n
F
, yn
S

)
y
(1)
S
= ES

(
∆t, yn

F
, yn
S

)
y
(1)
S
= ES

(
∆t, yn

F
, yn
S

)

y(1∗)
F
= EF

(
∆t
3 , y

(1)
F
, y(1)
S

)
y(1∗)
S
= ES

(
∆t, y(1)

F
, y(1)
S

)
y(1∗)
S
= ES

(
∆t, y(1)

F
, y(1)
S

)

y
(2)
F
= 12

(
ynF + y

(1∗)
F

)
yn+1
S
= 12

(
yn
S
+ y

(1∗)
S

)

y
(3)
F
= EF

(
∆t
3 , y

(2)
F
, yn
S

)
y
(3)
S
= ES

(
∆t, y(2)

F
, yn
S

)

y(3∗)
F
= EF

(
∆t
3 , y

(3)
F
, y(3)
S

)
y(3∗)
S
= ES

(
∆t, y(3)

F
, y(3)
S

)

y
(4)
F
= 12

(
y
(2)
F
+ y

(3∗)
F

)

y
(5)
F
= EF

(
∆t
3 , y

(4)
F
, yn
S

)
y
(5)

S
= ES

(
∆t, y(4)

F
, yn
S

)

y(5∗)
F
= EF

(
∆t
3 , y

(5)
F
, y(5)
S

)
y(5∗)
S
= ES

(
∆t, y(5)

F
, y(5)
S

)

yn+1
F
= 12

(
y
(4)
F
+ y

(5∗)
F

)
yn+1
S
= 16

(
3yn
S
+ y

(1∗)
S
+ y

(3∗)
S
+ y

(5∗)
S

)

T A.2
MPRK-2 Euler steps for the fast and slow methods for m = 3.

=
1

2

(
y
(2)
F
+ y

(2)
F
+
∆t

3
K3F +

∆t

3
K4F +

∆t

3
K5F +

∆t

3
K6F

)
,

=
1

2

(
y(2)
F
+ y(3)

F
+
∆t

3
K4F +

∆t

3
K5F +

∆t

3
K6F

)
,

=
1

2

(
y
(2)
F
+ y

(3∗)
F
+
∆t

3
K5F +

∆t

3
K6F

)
,

=
1

2

(
y
(4)
F
+ y

(4)
F
+
∆t

3
K5F +

∆t

3
K6F

)
,

=
1

2

(
y
(4)
F
+ y

(5∗)
F

)
, (A.2)

and

yn+1S =
1

6

(
6ynS + ∆tK

1
S + ∆tK

2
S + ∆tK

3
S + ∆tK

4
S + ∆tK

5
S + ∆tK

6
S

)
,

y(1+2k)
S

= ES
(
∆t, yn(+2k)

F
, ynS

)
,

=
1

6

(
3ynS + y

(1)

S
+ ∆tK2S + y

(3)

S
+ ∆tK4S + y

(5)

S
+ ∆tK6S

)
,

y
(1+2k)∗
S

= ES
(
∆t, y(1+2k)

F
, y(1+2k)
S

)

=
1

6

(
3ynS + y

(1∗)
S
+ y

(3∗)
S
+ y

(5∗)
S

)
. (A.3)

The Euler steps for the fast and the slow methods are summarized in Table A.2.

Appendix B. The SlowMethod as Convex Combination of Euler Steps.

In Section 3.6.2 we showed a multirate PRK method family and argued that it
can be expressed as convex combinations of Euler steps. The sequence of forward
Euler steps of the fast method has already been presented in Section 3.5. Here we
show that the slow method described in Table 3.5 can also be represented as convex
combinations of Euler steps. The RK stages for the slow method in Table B.1(b) are
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0 0
0 0 0
1 µ 1 − µ 0
1 1 − µ µ 0 0

1/4 1/4 1/4 1/4

0 0
0 0 0

1 a3,1
S

a3,2
S

0

1 a4,1
S

a4,2
S

0 0

1/4 1/4 1/4 1/4
(a) Slow method in Table 3.5 (b) Slow method (in generic terms)

T B.1
The Butcher tableau for the slow methods for another family of second order PRK for m = 2. Here we consider

0 ≤ µ ≤ 1.

as follows:

K1S = fS(y
n
F, y

n
S) y

(1)
S
= ynS

K2S = fS(y
(1)
F
, ynS) y

(2)
S
= ynS + a

3,1
S
∆tK1S + a

3,2
S
∆tK2S

K3S = fS(y
(2)
F
, y(2)
S
) y(3)

S
= ynS + a

4,1
S
∆tK1S + a

4,2
S
∆tK2S (B.1)

K4S = fS(y
(3)
F
, y(3)
S
) yn+1S = ynS +

∆t

4

(
K1S + K

2
S + K

3
S + K

4
S

)

The above RK stages can be expressed in the following way:

yn+1S =
1

4

(
4ynS + ∆tK

1
S + ∆tK

2
S + ∆tK

3
S + ∆tK

4
S

)

=
1

4

( (
ynS + a

3,1
S
∆tK1S + y

n
S + a

3,2
S
∆tK2S

)
+ (B.2)

+
(
ynS + a

4,1
S
∆tK1S + y

n
S + a

4,2
S
∆tK2S

)
+ ∆tK3S + ∆tK

4
S

)
.

From (B.2), by convexity we have that

a3,1
S
+ a4,1
S
≤ 1 and a3,2

S
+ a4,2
S
≤ 1 (B.3)

By construction we have

0 ≤ a3,1
S
, a3,2
S
, a4,1
S
, a4,2
S
≤ 1 and a3,1

S
+ a3,2
S
= 1 , a4,1

S
+ a4,2
S
= 1 . (B.4)

Note that the second order (coupling) conditions:

a3,1
S
+ a3,2
S
+ a4,1
S
+ a4,2
S
= 2

are satisfied automatically.
Using (B.3)-(B.4) the scheme in Table B.1(b) can be written as in Table B.1(a), and

using 0 ≤ µ ≤ 1, it can be expressed as convex combinations of Euler steps.
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