
Performance Modeling and Analysis
of a Massively Parallel DIRECT—
Part 1

Jian He 1

Alex Verstak 1

L. T. Watson 2

M. Sosonkina 3

Abstract
Modeling and analysis techniques are used to inves-
tigate the performance of a massively parallel version
of DIRECT, a global search algorithm widely used
in multidisciplinary design optimization applications.
Several high-dimensional benchmark functions and
real world problems are used to test the design ef-
fectiveness under various problem structures. Theo-
retical and experimental results are compared for two
parallel clusters with different system scale and net-
work connectivity. The present work aims at studying
the performance sensitivity to important parame-
ters for problem configurations, parallel schemes,
and system settings. The performance metrics
include the memory usage, load balancing, parallel
efficiency, and scalability. An analytical bounding
model is constructed to measure the load balancing
performance under different schemes. Additionally,
linear regression models are used to characterize
two major overhead sources—interprocessor com-
munication and processor idleness, and also applied
to the isoefficiency functions in scalability analysis.
For a variety of high-dimensional problems and large
scale systems, the massively parallel design has
achieved reasonable performance. The results of
the performance study provide guidance for efficient
problem and scheme configuration. More impor-
tantly, the generalized design considerations and
analysis techniques are beneficial for transforming
many global search algorithms to become effective
large scale parallel optimization tools.
Keywords: DIRECT, global search algorithms, load
balancing, parallel optimization, performance model-
ing, scalability analysis

1 INTRODUCTION

Global search algorithms have been increasingly
applied to large scale optimization problems in
many fields. Compared to local methods, these
global approaches are more likely to discover the
global optimum instead of being trapped at local
minimum points for complex nonconvex or nonlinear
problems with irregular design domain. The DIRECT
algorithm (Jones et al. 1993) is one such global
optimization algorithm that has been applied to
large scale engineering design problems such as
aircraft design (Baker et al. 2000), pipeline design
(Carter et al. 2001), routing (Bartholomew-Biggs et
al. 2003), surface optimization (Zhu et al. 2002),
transmitter placement (He et al. 2004b), molecular
genetic mapping (Ljungberg et al. 2004), and cell
cycle modeling (Zwolak et al. 2005 and Panning et al.
2006). The complexity of these applications ranges
from low dimensional with 3–20 variables to high
dimensional with up to 143 variables.

Compared to local methods, global optimization
methods generally have higher computational cost and
memory requirement, which often lead to solutions
that involve data-distributed parallel computing tech-
niques. Since the birth of the first Beowulf 16-node
cluster (Becker 1995), numerous commodity-based
cluster systems have been developed in academia
and industry to provide cost-effective alternatives to
expensive mainframe supercomputers. With the rapid
expansion of problem scale and system size, adaptive
and dynamic algorithms are being actively proposed to
optimally harness the abundant computing resources.
There are a few such examples in the field of global
optimization algorithms, including parallel versions of
direct search (Dennis et al. 1991), branch-and-bound
(Clausen 1997), Tabu search (Talbi et al. 1998), and
genetic algorithms (McMahon et al. 2000). These
sophisticated parallel schemes take into account both
algorithm characteristics and system attributes, thus
producing reasonable parallel efficiency and scalability.

In the past decade, the parallel schemes of DI-
RECT evolved from a classical master-slave paradigm
(Gablonsky 2001a), to a fully distributed version
with dynamic load balancing (Watson et al. 2001),
and recently to a multilevel scheme combining global
addressing and message passing models (pDIRECT I,

1Departments of Computer Science and 2Mathemat-
ics, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061. (jihe@vt.edu)

3Ames Laboratory, Iowa State University, 236 Wilhelm
Hall, Ames, IA 50011.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computer Science Technical Reports @Virginia Tech

https://core.ac.uk/display/10676136?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

He et al. 2006). To further improve program porta-
bility, execution robustness, and parallel performance,
a massively parallel version (pDIRECT II, He et
al. 2006) has been developed with several dynamic
features, which have been evaluated on System X, a
2200-processor Apple G5 cluster. He et al. (2006)
analyzed its performance in terms of data structure
efficiency and load balancing. The present work
characterizes its performance sensitivity to problem
dimension, task granularity, domain partition, and
computing environment. A 400-processor 64-bit
Opteron Linux cluster (Anantham) is used as the
second computing environment differing from Sys-
tem X in many aspects, some of which, such as
network connectivity, are particularly interesting for
the present study. The goal is to (1) ensure the
design effectiveness of pDIRECT II on a variety of
problems and systems, (2) guide the proper choice
of optimization parameter inputs specified by users,
and (3) describe the design considerations and anal-
ysis techniques that can be generalized to apply
to parallelizing other global optimization algorithms
challenged by large scale applications on massively
parallel systems.

The paper is organized as follows. Section 2
gives an overview of DIRECT, discusses the design
issues for its parallel version, and describes the test
problems used for the present work. In Section 3,
the massively parallel design is briefly discussed
with an overall scheme and high-level implementation
details. Performance modeling and analysis on
selected problem parameters, parallel schemes, and
system characteristics are presented in detail in
Section 4. Section 5 assesses whether the above stated
goals were achieved.

2 OVERVIEW OF DIRECT
DIRECT is a deterministic global search algorithm
for solving optimization problems subject to certain
assumptions. The global convergence is contingent
on the properties of the objective function and the
nature of the constraints (Finkel et al. 2004b). When
the objective function is Lipschitz continuous around
the global optimum point, the global convergence
is guaranteed. The general optimization problem
considered here is to find the point x̄ ∈ D that
minimizes the given objective function f(x) defined

in the N -dimensional domain D =
{

x ∈ EN | ℓ ≤
x ≤ u

}

, where ℓ and u are lower and upper
bounds on x. The computed solution may or may
not approximate a global minimum point depending
on the specified stopping condition—a budget of
computational cost (i.e., the maximum number of

−2

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 2

−3 −2 −1 0 1 2 3

X
2

X1

Six−hump Camel Back Function

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

−6 −4 −2 0 2 4 6 8 10

X
2

X1

Branin rcos Function

(b)
Fig. 2.1 The sample points of DIRECT for (a)
Six-hump Camel Back function (two global solu-
tions) and (b) Branin rcos function (three global
solutions).

iterations or evaluations) or a semi-global optimization

goal (i.e., the relative function value improvement

between iterations or the minimum diameter of the

subregion centered at x̄).

Before the DIRECT search satisfies the stopping

condition, it iterates through a few steps to select

“potentially optimal” subregions (SELECTION), to

sample candidate points in these subregions (SAM-

PLING), and to subdivide D accordingly (DIVISION).

“Potentially optimal” is the key concept defined in

the original paper (Jones et al. 1993). If the

objective function value within a subregion is po-

tentially smaller than that in any other subregions

for some Lipschitz constant, the subregion is deemed

potentially optimal. This unique selection strategy

explores the design space intelligently toward multiple

promising subregions, thus avoiding being trapped by

local minimum points. Figure 2.1 shows the sample

points by DIRECT for the Six-hump Camel Back

(SB) and Branin rcos (BR) two-dimensional functions

2

Table 2.1 Test functions selected from GEATbx
(Pohlheim 1996).

Name Description

GR Griewank

f = 1 +
∑N

i=1
xi

2/500− ∏N

i=1
cos(xi/

√
i)),

−20.0 ≤ xi ≤ 30.0, f(0, . . . , 0) = 0.0

QU Quartic

f =
∑N

i=1
2.2 × (xi + 0.3)2 − (xi − 0.3)4,

−2.0 ≤ xi ≤ 3.0, f(3, . . . , 3) = −29.816N

RO Rosenbrock’s Valley

f =
∑N

i=1
100(xi+1 − x2

i)
2 + (1 − xi)

2,
−2.048 ≤ xi ≤ 2.048, f(1, . . . , 1) = 0

SC Schwefel

f = −∑N

i=1
xi sin(

√

|xi|),
−500 ≤ xi ≤ 500,
f
(

420.9(1, . . . , 1)
)

≈ −418.9N

MI Michalewicz

f = −∑N

i=1
sin(xi) × sin(

ix2

i

π
)20,

0 ≤ xi ≤ π, f(x̄) = 0 for x̄ ∈ {0, π}N

SB Six-hump Camel Back
f = (4 − 2.1 ∗ x2

1 + x4
1/3)x2

1 + x1x2+
(−4 + 4 ∗ x2

2)x
2
2,

−3 ≤ x1 ≤ 3, −2 ≤ x2 ≤ 2,
f(x̄) = −1.0316 at x̄ = (−0.0898, 0.7126)
and (0.0898,−0.7126)

BR Branin rcos
f = (x2 − 5.1

4−π2 x2
1 + 5

π
x1 − 6)2

+10(1 − 1

8−π
) cos(x1) + 10,

−5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15,
f(x̄) = 0.397887 at x̄ = (−π, 12.275),
(π, 2.275), and (9.42478, 2.475)

(see Table 2.1 for a list of artificial test functions used
in the present work).

Ljungberg et al. (2004) report that DIRECT
performs faster and more accurate than exhaustive
grid search and a genetic algorithm. Zhu et al.
(2002) also found that DIRECT converges faster
to a global optimum point than adaptive simulated
annealing. The secret may lie in the parameter
ǫ defined in DIRECT to balance the global and
local search efforts. Nevertheless, DIRECT still
converges slowly compared to local or gradient-based
algorithms, because a significant amount of time is
consumed in exploring the entire design space, which
is a common tradeoff between the search broadness
and the convergence rate. Several modifications
to DIRECT (Nelson et al. 1998, Gablonsky et al.
2001b, Cox et al. 2002, Finkel et al. 2004a, Sergeyev

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.2 0.4 0.6 0.8 1

T
im

e
La

g
(m

in
)

Total Cyclin Concentration / Total Cdc2

Fig. 2.2 An example of matching model predic-
tions (curves) and experimental data (dots) for
the frog egg extract.

et al. 2006) have been proposed to speed up the
convergence. Additionally, combining DIRECT with
other methods has been found to be fairly successful
to address this issue (Nelson et al. 1998, Zwolak et
al. 2005, Panning et al. 2006). The emphasis of the
present work is on the performance analysis of the
parallel design, so the original DIRECT with ǫ = 0
and additional stopping rules is considered.

In addition to the artificial test functions, the
cell cycle parameter estimation problems for frog egg
extracts (FE) by Zwolak et al. (2005) and budding
yeast (BY) by Panning et al. (2006) are used here
as real world applications. The cell cycle modeling
aims at decoding the physiological behavior of a
living cell. The models used here are systems of
ordinary differential equations (ODEs) with unknown
parameters. The parameters are determined by
orthogonal distance regression with the nonlinear
ODE model and experimental data. Figure 2.2 shows
an example of matching model predictions (curves)
with the known experimental data (dots) for the frog
egg extract (He et al. 2004a).

The complexity of solving a parameter estimation
problem depends on the scale of the ODE model,
the size of the parameter space, and the process
of the error function evaluation for experiments.
The FE objective function costs about 3 seconds
per function evaluation with three ODEs containing
16 parameters and the BY objective function takes
approximately 11 seconds per evaluation with 36
ODEs containing 143 parameters. A sequential
DIRECT would require a few days and even a few
weeks to fully explore the parameter space. On
a single machine, DIRECT will eventually fail due
to limited memory capacity for the fast-growing

3

intermediate data. These computationally intensive

and memory demanding applications motivated a

massively parallel design to cope with the memory

and speed demand, and efficiently utilize modern large

scale parallel systems.

3 DESIGN AND IMPLEMENTATION

The main high level steps of DIRECT for each

iteration are:

1. SELECTION identifies a set of “potentially

optimal” boxes that represent subregions

inside a normalized design domain.

2. SAMPLING evaluates new points sampled

around the centers of all “potentially optimal”

boxes along their longest dimensions.

3. DIVISION subdivides “potentially optimal”

boxes according to the function values at the

newly sampled points.

Note that the original DIRECT starts with a

single domain, so there is only one center point for

SAMPLING and DIVISION at the first iteration.

Unavoidably, a load imbalance occurs at the early

stage. To mitigate this problem, an optional step of

domain decomposition can be specified by the user

to create multiple staring points, one per subdomain.

The performance analysis and results in Section 4

show that the multiple subdomain approach not only

improves the load balancing, but also converges faster

for the real world applications FE and BY.

From the second iteration, SELECTION outputs

multiple “potentially optimal” boxes to SAMPLING,

which in turn passes the function values of new sample

points to DIVISION. The inherent concurrency gives

rise to a natural task parallelism. Unfortunately,

the same seemingly advantageous step also comes

with a disadvantage—data dependency, since any step

during an iteration needs to wait for the results of all

the previous steps. This inherently sequential nature

favors a parallel scheme that decouples SELECTION

and SAMPLING into two different roles—master and

worker, respectively.

On a master processor, SELECTION involves

convex hull computations because the “potentially

optimal” boxes are on the convex hull of coordinate

pairs containing box center function values and box

diameters (Jones et al. 1993). The present work also

incorporates an “aggressive” implementation (Watson

and Baker 2001) of SELECTION that bypasses the

convex hull computation to produce more function

SD

SD SD

SD

global worker pool

1

SM

SM

1,1

SM 1,n1,2
2

SM2,1

m

SMm,1

3 SM3,1

masters
subdomain

workers
W1 W2 W3 Wk

Fig. 3.1 The parallel scheme.

evaluation tasks, but similar experiments and analysis
are not repeated for the present work.

When the amount of intermediate data may
potentially grow beyond the memory capacity on
a single machine, multiple masters should be used
to share the data and collaborate on SELECTION
in parallel. Also, the multiple masters update the
intermediate results at the end of each iteration
and check whether the stopping condition is met.
Several studies (Banino et al. 2004 and Aida et al.
2003) have shown that an appropriate configuration of
multiple masters can improve the overall performance.
The present work recommends that masters evaluate
functions locally if the objective function cost is lower
than the communication round trip cost between
two nodes on the parallel system. This forms the
horizontal 1-D scheme described by He et al. (2006),
in contrast with the vertical 1-D scheme with a single
master distributing the function evaluation tasks
to remote workers. Stacking function evaluations
is another approach to reduce the communication
overhead for distributing cheap objective function
evaluations under the vertical scheme. Because an
unpredictable number of boxes and sample points are
generated at each iteration, these two schemes can
be used separately or together to achieve the best
performance under particular circumstances discussed
in Section 4.

The overall parallel scheme is shown in Figure 3.1
with the user configurable m subdomains (SDs), n
subdomain masters (SMs), and k globally shared
workers (Ws) that request tasks from randomly
selected SMs. The above design is implemented purely
in Fortran 95 to support high accuracy computation

4

and dynamic data structures that expand at run

time for rapidly growing intermediate data. It can

be executed on either a single processor or multiple

processors depending on the space and computation

complexity of the optimization problem. If multiple

processors are used, a small set of the MPI library

functions are called to establish the interprocessor

communication and synchronization. In addition,

practical checkpointing methods were implemented to

enhance fault tolerance in case of system failure. The

key contributions of the massively parallel design are

the important techniques developed to reduce the local

memory requirement, minimize the network traffic,

and balance the workload. Section 4 applies a few

modeling and analysis tools to study the performance

impact of these techniques and presents convincing

experimental results to support the theoretical results.

4 PERFORMANCE ANALYSIS

Several optimization parameters and system char-

acteristics listed in Table 4.1 are selected for the

performance sensitivity analysis. In fact, more input

parameters are required to define the optimization

problem. For example, the upper and lower bounds of

the design domain define the search region. Varying

the bounds certainly affects the convergence rate as

well as the total computational cost to reach the solu-

tion, so the proper bounding for a particular problem

deserves a thorough application-oriented study by

researchers in that field. In the present work, upper

and lower bounds are fixed (see Table 2.1) for each

problem.

Table 4.1 Parameters and characteristics under
study.

Description
Nd Problem dimension
Imax maximum iterations
Nb number of evaluations per task
m number of subdomains
n number of masters per subdomain
k number of workers
Tf objective function cost, seconds
Tcp point-to-point round trip cost, microseconds
Tca one-to-all broadcast cost, microseconds

Table 4.2 Comparison of Iout (the number of
iterations before the program halts on a single
processor) without (NON-LBC) and with LBC for
all test problems. Imax = 1000.

NON-LBC LBC

GR 206 467
QU 90 1000
RO 105 122
SC 95 453
MI 82 936
FE 316 316
BY 185 477

The first two parameters Nd and Imax directly
affect the problem scale. Imax is also required to
enable the local memory reduction technique discussed
in Section 4.1. The parallel scheme parameters Nb,
m, n, and k have great impact on both minimization
performance and parallel performance such as load
balancing. In Section 4.2, these performance metrics
are analyzed theoretically and experimentally. The
next subset {Tf , Tcp, Tca} determines the task
granularity defined as the ratio of the computation
time to communication time per task. These
parameters are addressed in Part 2, where detailed
discussions of the influence of these parameters on
overhead and scalability are given.

4.1 Problem Configuration
As Nd grows, the memory requirement imposed by
the intermediate data increases dramatically as shown
in Figure 4.1. A local memory reduction technique—
LBC (limiting box column)—was developed in He et
al. (2006) to take advantage of Imax, which limits
the number of boxes stored in memory for remaining
iterations at run time, thus reducing the box memory
usage. The bar plot in Figure 4.2 compares the
memory allocated for holding boxes with and without
LBC for all test problems. The first five artificial
functions set Nd = 150 to generate an amount of
intermediate data comparable to that for the BY
problem. Memory usage for the FE problem is
the smallest, because it has the lowest Nd. All
tests were run on a single machine until (1) the
stopping condition Imax = 1000 was reached, or (2)
the diameter of the box holding the best solution
became smaller than the problem precision, or (3)
the run crashed due to memory allocation failure.
Table 4.2 compares the number of iterations Iout

for all test problems on a single processor before it
halts due to one of the above three conditions. The
LBC technique reduces the memory usage by 10–70%
for the test problems so that the program can run
longer without memory allocation failure on a single
processor.

5

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 B

ox
es

Number of Iterations

Comparison of the Growth of Boxes for Different Problem Dimensions

N=10
N=50

N=100

N=150

Fig. 4.1 The growth of boxes for the RO test
function. Dimensions Nd = 10, 50, 100, and 150.
Imax = 100.

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

NON−LBC

LBC

GR QU RO SC MI FE BY
 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

B
ox

 M
em

or
y

U
sa

ge
 in

 8
by

te
s

Box Memory Usage Reduction with LBC

Fig. 4.2 Comparison of box memory usage
without (NON-LBC) and with LBC for all the test
problems.

Large scale problems with higher dimensions and
larger Imax are intended to generate more work that
keeps a large number of processors busy. Figure 4.3
shows the comparison of parallel efficiencies with
various Nd and Imax for the RO function using
p = 100 processors. The parallel efficiency E is the
ratio of (algorithmic) speedup S = Ts/Tp to p, where
Ts is the execution time with a single processor and
Tp is the parallel execution time with p processors. E
is improved with both increasing Nd and increasing
Imax, because higher Nd and larger Imax yield more
function evaluations. Better load balancing is the real
reason behind the improved parallel efficiency as the
problem scale grows. A workload model bound is
discussed in Section 4.2 to analyze the performance
influence of the parallel scheme parameters.

4.2 Scheme Configuration

4.2.1 Parameter Nb

He et al. (2006) propose a theoretical lower bound on
the parallel execution time Tt for the parallel scheme

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 20 40 60 80 100 120 140 160

E
ffi

ci
en

cy

Problem Dimension

Parallel Efficiency Results

Imax=10
Imax=20
Imax=30

Fig. 4.3 Parallel efficiency comparison for the
RO function using 100 processors. Nd = 10, 50,
100, and 150. Imax = 10, 20, and 30.

with k workers:

Tt(Nb) =

Imax
∑

i=1

⌈

Fi

k

⌉

(NbTf), (4.1)

where Fi is the number of function evaluation tasks

at iteration i, and Nb is the number of point

evaluations per task. Implicitly, such a lower bound

assumes Tf > Tcp, a necessary condition for achieving

reasonable speedup when distributing tasks to remote

workers. It considers the computation time of function

evaluations and the idle time of workers waiting for

new tasks to become available at the beginning of

each iteration.

With Pi being the number of point evaluations

required at iteration i, the number of tasks Fi =

⌈Pi/Nb⌉, and thus the theoretical lower bound for

iteration i is
⌈

Fi

k

⌉

(NbTf) =

⌈⌈Pi/Nb⌉
k

⌉

(NbTf).

This is clearly minimal when both Nb | Pi and

k | (Pi/Nb), but lacking this divisibility, the minimum

occurs for Nb = 1, since
⌈⌈Pi/Nb⌉

k

⌉

Nb =

(

Pi

Nbk
+

a

Nbk
+

b

k

)

Nb

=
Pi

k
+

a

k
+

bNb

k
,

where 0 ≤ a < Nb and 0 ≤ b < k, is clearly minimal

for Nb = 1. (Note: (4.1) is valid except for the

special case where Fi mod k = 1 and one task has

Nb− = Pi mod Nb < Nb point evaluations. In this

case the optimal choice for Nb is the value that

minimizes
(

(k + 1)Nb− − Nb

)

/k. Since for k ≫ 1,

6

Nb=20
Nb=10
Nb=5
Nb=1

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0 10 20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 W
or

kl
oa

d

Worker ID

Normalized Workload Comparison

Fig. 4.4 Comparison of the normalized workload
on 99 workers with Nb = 1, 5, 10, and 20 for the
150-dimensional GR function.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30

M
in

im
um

 F
un

ct
io

n
V

al
ue

Number of Iterations

Function Minimization for the Frog Egg Model

sub1
sub4_0

sub4_2
sub4_1

sub4_3

 300

 350

 400

 450

 500

 550

 600

 650

 700

 0 5 10 15 20 25 30 35 40

M
in

im
um

 F
un

ct
io

n
V

al
ue

Number of Iterations

Function Minimization for the Budding Yeast Model

sub4_3
sub4_2
sub4_1
sub4_0
sub1

Fig. 4.5 Comparison of function minimization
for a single domain (sub1) and four subdomains
(sub4 i), where i is the subdomain ID.

Fi mod k = 1 is a rare event, this special case is
ignored here.)

Figure 4.4 compares the normalized workload on
99 workers with increasing Nb = 1, 5, 10, and 20.
A better load balance is achieved when Nb = 1, so
Nb > 1 should only be used to stack cheap function
evaluations to achieve NbTf > Tcp. Detailed analysis
for load balancing is given in the following subsection.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

−20 −15 −10 −5 0 5 10 15 20 25 30

F
un

ct
io

n
V

al
ue

x

1−D GR Function

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250

M
in

im
um

 F
un

ct
io

n
V

al
ue

Number of Iterations

Function Minimization for GR

sub4_3
sub4_2
sub4_1
sub4_0
sub1

(b)
Fig. 4.6 (a) The 1-D view of the GR function.
(b) Comparison of function minimization on a
150-dimensional GR function for a single domain
(sub1) and four subdomains (sub4 i), where i is
the subdomain ID.

4.2.2 Subdomain parameter m

The scheme parameter m, the number of subdomains,
is specified according to the computational budget and
optimization goal. With more function evaluations
generated across multiple subdomains, the same
Imax likely yields a better solution than the single
domain search. Figure 4.5 compares the function
minimization progress with a single domain (m = 1)
and four subdomains (m = 4) for FE and BY, the
cell cycle parameter estimation problems discussed
in Section 2. In both cases, the single subdomain
search results in higher minimum function values.
This behavior indicates an irregular or asymmetric
problem structure, a common case for many science
and engineering problems. If the problem structure is
symmetric or the global minimum is near the center,
a single domain DIRECT search may converge to the
target faster than the multiple subdomain search. The
GR function is such an example shown in Figure 4.6.
The single domain search progresses slightly better
than the four subdomain search, since the global
solution is located close to the center of the design
domain.

7

The second advantage of the multiple subdomain
search is improved load balancing among workers.
He et al. (2006) show that function evaluation tasks
are distributed more efficiently to workers with a
multiple subdomain search than a single domain
search, especially when subdomains have unequal
amounts of work. The globally shared workers have
better chance to find work if the subdomain masters
are not synchronized due to the data dependency
in a single domain. An analytical workload model
is constructed here to interpret the experimental
observations. For simplicity, the objective function
cost Tf is assumed to be constant. Again, Tf > Tcp

is assumed so that the workload model can ignore all
the communication overhead.

The model is developed from the simplest case
with one subdomain m = 1, one master n = 1 and
extended to cases with m = 1, n > 1 and m > 1,
n > 1. The potential communication bottleneck at
masters is not considered in this section assuming
the message buffers on master processors are suffi-
ciently long and the service time for each message is
negligible. Due to the variability of workload distri-
bution among workers, a bounding analysis is applied
to capture the lower and upper workload bounds.
Bounding techniques require less computation and
weaker assumptions than exact solution techniques,
but sufficiently characterize the system performance
under variability and uncertainties (Luthi et al. 1997).

At every iteration, each master dispatches function
evaluation tasks to workers upon request during
SAMPLING, each task defined by the coordinates of
Nb points. As before, let Pi be the total number of
point evaluations during iteration i, and Fi = ⌈Pi/Nb⌉
the total number of function evaluation tasks. When
Pi is not exactly a multiple of Nb, the last task
has Nb− = Pi − ⌊Pi/Nb⌋Nb < Nb points, but all
the remaining tasks have Nb points. A task costs
either Tb = NbTf or Tb− = Nb−Tf . At iteration i,
each of k workers obtains either δi− = ⌊Fi/k⌋ or
δi+ = ⌈Fi/k⌉ tasks. The workload on each worker
is defined as the total computation time for function
evaluations. When Fi is a multiple of k and Pi is
not a multiple of Nb, the worker that obtains the
last task with Nb− points reaches the lower bound
WLli = (δi−−1)Tb+Tb−. In other cases, the workload
lower bound is WLli = δi−Tb. Note that δi− = 0
when Fi < k. Summing over all Imax iterations, the
workload lower bound is

WLl =

Imax
∑

i=1

WLli,

where WLli = (δi− − 1)Tb + Tb− if k | Fi and Nb does
not divide Pi; WLli = δi−Tb otherwise.

Model WL
Model WL

Exp WL

Nb

l

u

lExp WL
u

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 W
or

kl
oa

d

Comparison of Experimental and Model Workload Bounds

Fig. 4.7 Comparison of the normalized workload
bounds based on the model and the experiments
with 99 workers and Nb = 1, 5, 10, and 20 for the
150-dimensional GR function.

Following the same reasoning, the workload reaches

the upper bound when a worker obtains δi+ tasks, all

of which have Nb points to compute or one of which

has Nb− > 0 points if the remainder of Fi/k is 1. So

the upper bound

WLu =

Imax
∑

i=1

WLui,

where WLui = (δi+ − 1)Tb + Tb− if Fi − ⌊Fi/k⌋k = 1

and Nb− > 0; otherwise, WLui = δi+Tb.

To compare workload balance for different prob-

lems, the workload is normalized by dividing by

the average workload wl =
∑Imax

i=1
(Pi/k)Tf . Hence,

the normalized workload WLj on worker j (j = 1,

2, . . ., k) is within the range (WLl/wl, WLu/wl).

Let WR = WLu/wl − WLl/wl be the measure of

workload balance, so smaller WR is better. Observe

that WLl would be closer to WLu with Nb = 1,

because then Nb | Pi always, yielding a larger WLl.

Recall that Nb = 1 also gives the smallest possible

WLu =
∑Imax

i=1
⌈Pi/k⌉Tf ≤

∑Imax

i=1
⌈⌈Pi/Nb⌉/k⌉NbTf .

Figure 4.7 plots the workload ranges estimated

with the model and the actual workload ranges

measured from experiments for different Nb values.

All the experimental workload bounds are within

the model estimation, but the difference between

the experimental bounds and the model estimation

becomes larger as Nb increases. The model sums up

the lowest workload among workers over all iterations,

while in reality, the workload on a particular worker

has a fair chance to be the lowest at every iteration.

Therefore, the load balancing measurement is better

8

�
�
�

�
�
�

(a) (b) (c)

N
or

m
al

iz
ed

 W
or

kl
oa

d
Workload Range Comparison

 0.96

 0.92

 0.9

 0.94

 0.98

 1.08

 1.06

 1.04

 1.02

 1

 1.1

 1

 0.975

 0.98

 0.985

 0.99

 0.995

 1.01

 1.005

 1

 1.015

 1.02

 1.025

 0.98

 0.985

 0.99

 0.995

 1.005

 1.01

 1.015

 1.02

Fig. 4.8 Comparison of the workload ranges
based on the model (grey) and the experiments
(black) for (a) a single domain search with 1
master and 99 workers, (b) a single domain
search with 4 masters and 196 workers, and
(c) a four subdomain search with 1 master per
subdomain and totally 196 workers. Nb = 1. The
vertical bars, left to right, correspond respectively
to problems GR, QU, RO, SC, MI, BY. Imax = 90
and Nd = 150 for the artificial problems. Imax = 40
and Nd = 143 for the BY problem.

than the model estimation because of the inherent
randomness of the parallel scheme.

For high dimensional test problems, Figure 4.8(a)
compares the workload ranges based on the model
and the experiments for a single domain search
using one master and 99 workers. Consider only
Nb = 1 for simplicity in the remaining analysis and
discussion. The model estimations in Figure 4.8(a)
are all within 2.1% of the measured workload bounds
from experiments.

The above model can be easily extended to
the case n > 1 with multiple masters sharing the
memory burden and the computation involved in the
parallel SELECTION. Since workers randomly select
masters to request work, each master initially has
an approximately equal number (k/n) of workers to
compute its function evaluation tasks. Although
masters may have different numbers of tasks, the
global shared worker pool balances the workload
by assigning workers to masters with work. A
weight variable wi,j = Fi,j/Fi is introduced, where
Fi,j = wi,jFi is the number of tasks on master j for
iteration i. Master j has wi,jFi tasks, thus wi,jk
workers are assigned to it. Each worker obtains δi− =
⌊wi,jFi/(wi,jk)⌋ or δi+ = ⌈wi,jFi/(wi,jk)⌉ tasks. It
turns out that wi,j is canceled out for the workload
estimation. Hence, the number of masters n in a
single domain search has little impact on the workload
bounds. Table 4.3 shows the experimental results for
the parallel execution time Tk and the normalized

Table 4.3 Comparison of the parallel execution
time Tp and the measured normalized workload
range WRp for the RO function with Nd = 150,
Tf = 0.1 second, and Imax = 90 using 100 and 200
workers.

Number of Masters
k 1 2 4 8

100 Tk 348.56 346.90 351.39 348.04
WRk 0.013 0.015 0.018 0.019

200 Tk 200.30 183.00 184.20 182.59
WRk 0.018 0.026 0.024 0.032

workload range (WRk) using k = 100, 200 workers in
a single domain search with the number of masters
n varying from one to eight. The timing and load
balancing results are very close to each other for all n.

The random worker assignment strategy plays an
important role in balancing the workload among work-
ers. If fixed worker assignment is used instead, each
master would have a fixed number of workers (k/n)
to compute the function evaluations for all iterations.
Workers assigned to master j would obtain either
δ′i+ = ⌈(wi,jFi)/(k/n)⌉ or δ′i− = ⌊(wi,jFi)/(k/n)⌋
tasks. Note that wi,j = 1/n produces the same
assignment as in the case of random worker assign-
ment. With some wi,j < 1/n (implying δ′i− ≤ δi−)

and some wi,j > 1/n (implying δ′i+ ≥ δi+) under
the fixed worker assignment, the lower bound WLl

becomes smaller and the upper bound WLu becomes

greater, but the average workload wl is the same, so

the workload range (WLu −WLl)/wl becomes larger,
indicating a worse balanced workload.

In the previous two cases, the masters in a single
subdomain m = 1 serve as a single work source
for workers. Multiple subdomains m > 1 serve as
multiple work sources, because the masters from
different subdomains are not synchronized to update
intermediate results or to compute the global convex
hull boxes. A similar weight variable w′

j is used in

this case to estimate the number of workers assigned
for the subdomain j:

w′
j =

Imax
∑

i=1

Fi,j

/

m
∑

j=1

Imax
∑

i=1

Fi,j , (4.2)

where Fi,j denotes the number of tasks at iter-
ation i for subdomain j. w′

j is based on the

overall tasks from all iterations because subdo-
mains are asynchronous. In contrast, wi,j in the
single domain case is defined for each iteration
due to the global synchronization inside a sub-
domain. For subdomain j, the average workload is

wlj =
∑Imax

i=1
Fi,j/(w′

jk)Tb. The workload lower bound

9

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35

S
ec

on
ds

Number of Masters

Average SELECTION Cost per Master

GR

QU

RO
SC

MI

Fig. 4.9 The average SELECTION cost per mas-
ter increases as n grows from 1 to 32 for test
problems. Imax = Iout with LBC support listed in
Table 4.2.

in subdomain j is WLlj =
∑Imax

i=1
⌊Fi,j/(w′

jk)⌋Tb,

where Tb = Tf because Nb = 1; the workload upper

bound is WLuj =
∑Imax

i=1
⌈Fi,j/(w′

jk)⌉Tb. Hence, the

overall normalized workload range is
(

min
1≤j≤m

(WLlj/wlj), max
1≤j≤m

(WLuj/wlj)

)

across all m subdomains. Figure 4.8(c) compares
the model estimated workload ranges with the ex-
perimental results for a four subdomain search using
196 workers and four masters, one per subdomain.
All the experimental workload results fall within
the 1.5% ranges estimated by the model. Due to
the randomness of workers’ requests to masters, the
experimental workload is better balanced than the
(worst case) model estimation. For comparison, the
workload ranges based on the model and experiments
for a single domain search using the same number of
masters and workers are shown in Figure 4.8(b). To
keep the problem the same as in the four subdomain
search, the single domain search is applied to each
of the four subdomains sequentially using 49 workers
and one master. The workload is normalized over the
total workload of the four runs. The model estimated
range for the single domain is wider than that for
the four subdomains. This estimation is verified
by the experimental results, which present smaller
ranges for the four subdomain search (dark bars in
Figure 4.8(c)) than for the single domain search (dark
bars in Figure 4.8(b)).

4.2.3 Parameter n

The number n of masters affects the efficiency of
SELECTION and data distribution. Convex hull
computation is the key component in SELECTION
(cf. Section 3). The parallel SELECTION involves
both local and global computation of convex hull

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 0 5 10 15 20 25 30 35

8
B

yt
es

Number of Masters

Average Box Memory Usage per Master

MI

SC

RO

QU

GR

Fig. 4.10 The average box memory size de-
creases as n grows from 1 to 32 for test
problems. Imax = Iout with LBC support listed in
Table 4.2.

boxes. First, each subdomain master computes the
local convex hull boxes. Next, the root subdomain
master gathers all the local convex hulls to find
a global convex hull set of boxes. Finally, each
subdomain master starts SAMPLING on its own
portion of the convex hull boxes.

For the local convex hull computation, the gift-
wrapping algorithm with complexity O(N2) (Manber
1989) is preferred because it requires no extra space.
A faster algorithm, Graham’s scan (Graham 1972), is
used for the global convex hull computation at the root
subdomain master. It takes O(N) operations because
the gathered local convex hull boxes are already
sorted, saving O(N log(N)) operations required for
sorting at the root subdomain master. Although the
Graham’s scan needs a stack for back-tracking, the
buffer for merging local convex hull boxes also serves
as a stack of boxes, which are indexed by integer
pointers for back-tracking. As n increases, the number
of sets of local convex hull boxes grows, and more
boxes are merged at the root subdomain master for
the final global computation. Since the root needs to
gather from all and broadcast to all at each iteration,
the communication overhead may overshadow the
benefit of sharing the memory burden. Therefore, the
value of n should be large enough to accommodate
the intermediate data, yet no larger to minimize the
network traffic for global communication.

To investigate the performance impact of n, other
scheme parameters need to be fixed. The horizontal
scheme with a single domain (m = 1), no workers
(k = 0), and a varying number n of masters is
employed to study the computational complexity of
SELECTION and the balance of data distribution
among masters. The analysis of n’s influence on the
communication overhead is presented in detail in Part
2 of this paper, which discusses parameters related to

10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5 10 15 20 25 30 35
Number of Masters

Conex Hull Boxes Shares Among Masters

GR

QU

RO

SC

MI

C
oe

ffi
ci

en
ts

 o
f V

ar
ia

tio
n

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35
Number of Masters

Function Evaluation Task Shares Among Masters

QU

RO

SC

MI

GR

C
oe

ffi
ci

en
ts

 o
f V

ar
ia

tio
n

(b)
Fig. 4.11 Coefficient of variation of (a) convex
box shares and (b) function evaluation task
shares as p grows from 2 to 32 for the horizontal
scheme for test problems with N = 150.

system settings. Let LDi be the number of different
box diameters and LCi the number of local convex
hull boxes on master i (i = 1, . . ., n). At the root

subdomain master, GD ≤ ∑n

i=1
LCi is the merged

number of distinct box diameters and GC ≤ GD is the
final number of convex hull boxes. The total convex
hull computation includes n local gift-wrappings
(

O
(
∑n

i=1
(LDi)

2
))

, n global merges
(

O
(
∑n

i=1
LCi

))

,

and one global Graham’s scan (O(GD)). Figure 4.9
shows how the average SELECTION cost per master
grows as n increases for five test problems. Here, the
cost includes the communication overhead and the
convex hull computation. The motivation for using
multiple masters is not to reduce the SELECTION
cost, but to share the memory burden. As n grows
from one to 32, the average memory storage for boxes
is decreased significantly (shown in Figure 4.10).

4.2.4 Parameter k

In the previous section, the number of workers k = 0
forming a horizontal scheme of pure masters. In
the vertical scheme, k ≥ 2 workers are used with a

single master. High objective function cost is one
of the factors that favor the vertical scheme, where
a large number of workers can be utilized efficiently.
More importantly, the poor load balancing in the
pure horizontal scheme becomes the major obstacle
to using a large number of masters that compute
function evaluations locally. At each iteration, convex
hull boxes are assigned to masters using a simple
balancing heuristic that apportions the boxes into
approximately equal shares. However, the number of
function evaluation tasks on a master depends on the
number of longest dimensions contained by its share
of the convex hull boxes. So the function evaluation
tasks on masters are still very likely to be unbalanced
even if all masters obtain the same number of convex
hull boxes.

Finding an optimal convex hull box assignment
that minimizes the variance of the combined number
of longest dimensions on all masters is an NP-
complete problem similar to the knapsack or bin
packing problems (Manber, 1989). Although a
polynomial time approximate solution is available
(i.e., dynamic programming), it does not solve all the
balancing problems. Even if a supposedly optimal
box assignment is found, a load imbalance still occurs
when (1) an insufficient number of convex hull boxes
is generated, or (2) Tf varies at different sample
points. The first cause is inevitable in early stages
of the DIRECT search, and it also happens more
often for low dimension problems or problems with
certain structures that produce a small number of
convex hull boxes. The second cause is also common
in many engineering design problems, such as the ray-
tracing technique and WCDMA simulation in wireless
communication system design (He et al. 2004b).

Figure 4.11 shows the coefficient of variation (a)
cb for the convex hull box shares per processor and
(b) cf for the function evaluation task shares per
processor with p = 2, 4, 8, 16, 32 for test problems
with N = 150 and Imax = Iout, the maximum number
of iterations before the program halts on a single
processor with the LBC support (see Table 4.2). The
general trend is that both the convex hull and the
function evaluation shares become less balanced as p
grows except for the problem SC. For cb shown in
Figure 4.11(a), the problems GR, QU, and RO have a
sharp increase, but the problems SC and MI increase
slightly, because a larger number of convex hull boxes
are generated per iteration for the last two problems
(see Table 4.4, a list of the average convex hull boxes

Nbox =
∑Iout

i=1
Ci/Iout and function evaluation tasks

per iteration Nf =
∑Iout

i=1
Fi/Iout, where Ci is the

number of convex hull boxes and Fi is the number of

11

Table 4.4 Comparison of the average number of
convex hull boxes Nbox and function evaluation
tasks Nf per iteration for test problems.

Nbox Nf

GR 13.341 2990.2
QU 10.197 2007.8
RO 16.025 4234.7
SC 103.52 17152.0
MI 26.521 5942.0

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0 5 10 15 20 25 30 35
Number of Workers

Function Evaluation Task Shares Among Workers

S
ta

nd
ar

d
D

ev
ia

tio
n

MI

SC

RO

QU

GR

Fig. 4.12 Coefficient of variation of the function
evaluation task shares as p grows from 4 to 32
for the vertical scheme for test problems with
N = 150.

function evaluation tasks at iteration i). As the only
exception, the problem SC has an improved function
evaluation task balance even though its convex hull
box balance becomes worse as p grows. However,
if more than the necessary number of processors are

used, i.e., p > Nbox, the problem SC will eventually
become unbalanced on convex hull box and function
evaluation task distribution among master processors.

For the vertical scheme, a similar set of experiments
with p ≥ 4 demonstrates a significant improvement
on the function evaluation task balance among worker
processors as shown in Figure 4.12. Not only does cf

decrease by two orders of magnitude, but the narrower
range of values of cf indicates better scalability. The
drawback of the pure vertical scheme is the limited
memory capacity on the single master processor that
is dedicated to dispatching function evaluation tasks
instead of carrying out the actual function evaluations
as the masters do in the horizontal scheme. Therefore,
the ultimate solution is the hybrid scheme that shares
the memory burden on more than one master if
necessary (n ≥ 1), and dynamically assigns k workers
to task-loaded masters. The number k of workers
should be at least twice the number of masters, that
is, k ≥ 2mn.

4.3 System Configuration
All the analysis so far in this paper (Part 1) is
based on an ideal computing environment ignoring
any communication overhead. Part 2 addresses in
detail the system configuration characterized by Tcp,
Tca, and Tf , followed by a scalability analysis.

5 CONCLUSION AND FUTURE WORK
Some performance factors for a massively parallel
version of the global optimization algorithm DIRECT
have been extensively studied using modeling and
analysis tools such as bounding models, linear regres-
sion models, and isoefficiency functions. The analysis
covered a broad range of performance metrics includ-
ing memory usage, parallel efficiency, load balancing,
and scalability.

The crucial factors proved to be the problem
structure and configuration that directly affect the
amount of data dependency overhead and memory
requirement. The next most important factors are
the scheme configuration parameters that determine
four different parallel schemes—pure vertical, pure
horizontal, hybrid single domain, and hybrid multiple
subdomains. The vertical scheme outperforms the
horizontal scheme in most cases, except for a small
number of processors (p < 5) and cheap objective
functions, in which case, stacking function evalua-
tions (Nb > 1) should be considered to reduce the
communication overhead. The hybrid schemes are
recommended for large scale optimization applications
with high computational cost and memory require-
ment. The hybrid scheme with multiple subdomains
has demonstrated its superiority in balancing work-
load, thus reducing overhead and improving the
overall scalability.

Moreover, several important design considerations
for the massively parallel DIRECT can be generalized
for global search algorithms, as follows.
(1) Unnecessary data storage should be released

dynamically to reduce the memory burden.
(2) Tasks should be dynamically distributed in the

smallest possible chunks to ensure the best
possible load balancing.

(3) Point sampling and evaluation can be decoupled
to enhance the program concurrency.

(4) Domain decomposition not only results in better
optimization solutions for problems with irregular
structures, but also improves load balancing and
scalability if using a large number of processors.

The new insights gained from the present work
suggest a fresh research direction for conquering
the biggest challenge—the data dependency of DI-
RECT. Advanced algorithm steps will be designed for

12

SAMPLING to prefetch enough function evaluation
tasks, generated from selected boxes that are not
on the convex hull, so that the current idle worker
cycles would be put to use. The function values
at these extra sampling points may not necessarily
contribute to the optimization process, so an optimal
selection strategy would balance such waste with the
benefit of idle cycle computations that do further the
DIRECT search. Also, the optimal strategy would
preserve the determinism of DIRECT, contrasted
with nondeterministic methods that produce different
solutions on different runs. Of paramount importance
is that the proposed modification does not destroy
DIRECT’s global convergence property. Given the
recent interest in DIRECT both in the mathematics
and computer science communities, the prospects for
significant progress are bright.

ACKNOWLEDGMENTS

This work was supported in part by National Science
Foundation Grant DMI-0355391, Department of En-
ergy Grant DE-FG02-06ER25720, and NIGMS/NIH
Grant 1 R01 GM078989-01. The authors also grate-
fully acknowledge access to System X provided by the
Virginia Tech Terascale Computing Facility.

BIOGRAPHIES

REFERENCES

Aida, K., Natsume, W., and Futakata, Y. 2003.
Distributed computing with hierarchical master-
worker paradigm for parallel branch and bound
algorithm. In Proc. 3rd IEEE/ACM International
Symposium on Cluster Computing and the Grid
(CCGRID’03), Tokyo, Japan.

Baker, C.A., Watson, L.T., Grossman, B., Haftka,
R.T., and Mason, W.H. 2000. Parallel global
aircraft configuration design space exploration.
In Proc. High Performance Computing Sympo-
sium 2000, A. Tentner (Ed.), Soc. for Computer
Simulation Internat, San Diego, CA, pp. 101–106.

Banino, C., Beaumont, O., Carter, L., Ferrante, J.,
Legrand, A., and Robert, Y. 2004. Scheduling
strategies for master-slave tasking on hetero-
geneous processor platforms. IEEE Trans. on
Parallel and Distributed Systems, Vol. 15, No. 4,
pp. 319–330.

Bartholomew-Biggs, M.C., Parkhurst, S.C., and Wil-
son, S.P. 2003. Global optimization approaches to
an aircraft routing problem. EUR J. Operational
Research, Vol. 146, No. 2, pp. 417–431.

Becker, D.J., Sterling, T., Savarese, D., Dorband J.E.,
Ranawake, U.A., and Packer, C.V. 1995. Beowulf:a
parallel workstation for scientific computation.
In Proc. International Conference on Parallel
Processing, pp. 11–14.

Carter, R.G., Gablonsky, J.M., Patrick, A., Kelly,
C.T., and Eslinger, O.J. 2001. Algorithms for noisy
problems in gas transmission pipeline optimization.
Optimization and engineering, Vol. 2, No. 2, pp.
139–157.

Clausen, J. 1997. Parallel branch and bound — princi-
ples and personal experiences. Parallel Computing
in Optimization, Sverre Storoy (Ed.), Kluwer
Academic Publishers, pp. 239–267.

Cox, S.E., Hart, W.E., Haftka, R., and Watson, L.T.
2002. DIRECT algorithm with box penetration
for improved local convergence. In Proc. 9th
AIAA/ISSMO Symposium and Exhibit on Multi-
disciplinary Analysis and Optimization, Atlanta,
GA, AIAA Paper 2002–5581, 15 pp.

Dennis, J.E. and Torczon, V. 1991. Direct search
methods on parallel machines. SIAM J. on Opti-
mization, Vol. 1, pp. 448–474.

Finkel, D.E. and Kelly, C.T. 2004a. An adaptive
restart implementation of DIRECT. Technical
Report CRCS-TR04-30, Center for Research in
Scientific Computation, North Carolina State Uni-
versity, Raleigh, NC, USA, August.

Finkel, D.E. and Kelley, C.T. 2004b. Convergence
analysis of the DIRECT algorithm. Optimization
On-line Digest, August.

Gablonsky, J.M. 2001a. Modifications of the DIRECT
algorithm. Ph.D. thesis, Department of Mathe-
matics, North Carolina State University, Raleigh,
NC.

Gablonsky, J.M. and Kelly, C.T. 2001b. Locally-
biased form of the DIRECT algorithm. J. of
Global Optimization, Vol. 21, No. 1, pp. 27–37.

Graham, R. 1972. An efficient algorithm for deter-
mining the convex hull of a finite planar point set.
Info. Proc. Letters, Vol. 1, pp. 132–133.

He, J., Sosonkina, M., Shaffer, C.A., Tyson, J.J., Wat-
son, L.T., and Zwolak, J.W. 2004a. A hierarchical
parallel scheme for global parameter estimation in
systems biology. In Proc. 18th Internat. Parallel
& Distributed Processing Symp., IEEE Computer
Soc., Los Alamitos, CA, CD-ROM.

He, J., Verstak, A., Watson, L.T., and Sosonkina,
M. 2006. Design and implementation of a mas-
sively parallel version of DIRECT. Computational
Optimization and Applications, to appear.

13

He, J., Verstak, A., Watson, L. T., Stinson, C.A.,
Ramakrishnan, N., Shaffer, C.A., Rappaport, T.S.,
Anderson, C.R., Bae, K., Jiang, J., and Tranter,
W.H. 2004b. Globally optimal transmitter place-
ment for indoor wireless communication systems.
IEEE Transactions on Wireless Communications,
Vol. 3, No. 6, pp. 1906–1911.

He, J., Watson, L. T., Ramakrishnan, N., Shaffer, C.
A., Verstak, A., Jiang, J., Bae, K., and Tranter,
W. H. 2002. Dynamic data structures for a direct
search algorithm. Computational Optimization
and Applications, Vol. 23, No. 1, pp. 5–25.

Jones, D.R., Pertunen, C.D., and Stuckman, B.E.
1993. Lipschitzian optimization without the Lips-
chitz constant. J. Optimization Theory and Appli-
cations, Vol. 79, No. 1, pp. 157–181.

Ljungberg, K., Holmgren, S., and Carlborg, Ö. 2004.
Simultaneous search for multiple QTL using the
global optimization algorithm DIRECT. Bioinfor-
matics (Oxford, England), Vol. 20, No. 12, pp.
1887–1895.

Luthi, J., Majumdar, S., Kotsis, G., and Haring,
G. 1997. Performance bounds for distributed sys-
tems with workload variabilities and uncertainties.
Parallel Computing, Vol 22, No. 13, pp. 1789–1806.

Manber, U. 1989. Introduction to Algorithms: a Cre-
ative Approach. Addison-Wesley, Reading, MA.

McMahon, M.T. and Watson, L.T. 2000. A distributed
genetic algorithm with migration for the design of
composite laminate structures. Parallel Algorithms
and Applications, vol. 14, pp. 329–362.

Nelson, S.A.and Papalambros, P.Y. 1998. A mod-
ification to Jones’ global optimization algo-
rithm for fast local convergence. In Proc. 7th
AIAA/USAF/NASA/ISSMO Symposium on Mul-
tidisciplinary Analysis and Optimization, St.
Louis, MO, 2–4 Sept. 1998, pp. 341–348.

Panning, T.D., Watson, L.T., Allen, N.A., Chen, K.C.,
Shaffer, C.A., and Tyson, J.J. 2006. Deterministic
global parameter estimation for a model of the
budding yeast cell cycle. J. of Global Optimization,
to appear.

Pohlheim, H. 1996. GEATbx: Genetic and Evolu-
tionary Algorithm Toolbox for Use with Matlab–
Documentation. Ph.D. thesis, Technical University
Ilmenau, Germany.

Sergeyev, Ya.D. and Kvasov, D. 2006. Global search
based on efficient diagonal partitions and a set
of Lipschitz constants. SIAM J. on Optimization,
Vol. 16, No. 3, pp. 910–937.

Talbi, E.G., Hafidi, Z. and Geib, J.M. 1998. A
parallel adaptive tabu search approach. Parallel
Computing, Vol. 24, pp. 2003–2019.

Watson, L.T. and Baker, C.A. 2001. A fully-
distributed parallel global search algorithm. En-
gineering Computations, Vol. 18, No. 1/2, pp.
155–169.

Zhu, H. and Bogy, D.B. 2002. DIRECT algorithm
and its application to slider air-bearing surface
optimization. IEEE Transactions on Magnetics,
Vol. 38, No. 5, pp. 2168–2170.

Zwolak, J.W., Tyson, J.J., and Watson, L.T. 2005.
Globally optimised parameters for a model of
mitotic control in frog egg extracts. IEE Systems
Biology, Vol. 152, No. 2, pp. 81–92.

14

