
The Cost of Numerical Integration in

Statistical Decision-theoretic Methods for
Robust Design Optimization

Sean C. Kugele

Department of Computer Science
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

Michael W. Trosset

Department of Statistics
Indiana University

Bloomington, IN 47405

Layne T. Watson

Departments of Computer Science and Mathematics
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

Abstract: The Bayes principle from statistical decision theory provides a conceptual framework
for quantifying uncertainties that arise in robust design optimization. The difficulty with
exploiting this framework is computational, as it leads to objective and constraint functions that
must be evaluated by numerical integration. Using a prototypical robust design optimization
problem, this study explores the computational cost of multidimensional integration (computing
expectation) and its interplay with optimization algorithms. It concludes that straightforward
application of standard off-the-shelf optimization software to robust design is prohibitively
expensive, necessitating adaptive strategies and the use of surrogates.

1. Introduction:

Engineers increasingly rely on computer simulation to develop new products and to
understand emerging technologies. In practice, this process is permeated with uncertainty:
manufactured products deviate from designed products; actual products must perform under a
variety of operating conditions. Most of the computational tools developed for design optimization
ignore or abuse the issue of uncertainty, whereas traditional methods for managing uncertainty
are often prohibitively expensive. The goal of the work described in this paper is the development
of tractable computational tools that address these realities.

This paper addresses the problem of developing rigorous, computationally tractable methods
for robust design, i.e., design optimization of complex, simulation-based engineered systems in
the presence of uncertainty about manufacturing and operating conditions. Statistical decision
theory, specifically the Bayes principle, provides a conceptual framework for quantifying these
uncertainties. The difficulty with exploiting this framework is computational.

Robust design optimization (RDO) requires the simultaneous manipulation of design variables
and noise variables, and is an especially challenging class of multidisciplinary design optimization
(MDO) (Sobieski and Haftka, 1997). Burgee and Watson (1997) state that given the expense
of calculating multiple disciplinary results from high accuracy analyses, obtaining high fidelity
function values for more than 10–100 design points will be prohibitively expensive (regardless
of the dimensionality of the design space). This realization has resulted in a great deal of
MDO research focused on substituting low cost approximations, also known as surrogates, for
the objective function and constraint functions. Various techniques have been explored for this

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computer Science Technical Reports @Virginia Tech

https://core.ac.uk/display/10676134?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

purpose including classical response surface approximations (RS) (Unal et al., 1996), Bayesian
estimators collectively known as DACE (Sacks et al., 1989), and variable-complexity modeling
(VCM) (Unger et al., 1992).

Furthermore, the management of uncertainty using the Bayes principle requires numerical
integration (i.e., calculating expectations), incurring an additional computational expense. Given
an already expensive system, which must be analyzed at various design points, the efficient
calculation of these expectations becomes critical for mitigating computational expense. Rather
than focusing on the asymptotic behavior of various numerical integrators, the focus must be
shifted to what can be obtained on a limited budget. Spanier and Maize (1994) explore this goal
with respect to the quasi-Monte Carlo methods, though what will be considered a “relatively
small” sample size will likely be far more stringent for the present application than Spanier and
Maize envisioned.

The application of statistical decision theory to robust design has been infrequently attempted
and lies at the frontier of current engineering practice; the goal is to extend that frontier by
developing more efficient computational methods. Inspired by the success of surrogate-based
methods for design optimization, the ultimate goal is to develop surrogate-based methods for
integration that use variable fidelity data, adaptive Newton-Cotes formulas, and parallel function
evaluation. By facilitating modern techniques for decision making under uncertainty, this research
should help advance efforts to design robust complex systems using computer simulation. The
potential benefits include increased confidence in analysis tools; reductions in design cycle time,
risk, and cost; increasingly robust designs; and improved system performance with ensured
reliability. This paper is a small first step toward applying statistical decision theory directly to
robust design.

The remainder of this paper is organized as follows. Section 2 provides background on RDO
and explores the application of the Bayes principle for managing uncertainty. Section 3 provides
necessary background in numerical integration, including adaptive quadrature, Monte Carlo and
quasi-Monte Carlo methods. The latter methods will be relevant for problems with greater than
approximately ten noise variables. Section 4 decribes two variants of a prototypical robust design
problem. Section 5 presents results obtained from applying two gradient-based optimization
algorithms to the prototypical robust design problems, using four different numerical integration
schemes. Section 6 contains concluding remarks, including discussion of adaptive optimization
strategies and surrogate-based integration schemes that will be investigated in future work.

2. Robust Design: An example of the class of problems addressed in this work was described
in 1991 by Welch and Sacks, two statisticians who pioneered the design and analysis of computer
experiments (DACE):

“Many products are now routinely designed with the aid of computer models. Given the
inputs—designable engineering parameters and parameters representing manufacturing process
conditions—the model generates the product’s quality characteristics. The quality improvement
problem is to choose the designable engineering parameters such that the quality characteristics
are uniformly good in the presence of variability in processing conditions.”

Although their formulation and proposed solution of the quality improvement problem is
modern, the problem itself predates the engineering community’s use of computer models. To
motivate the present approach to this problem, and the more general robust design problem, it is
useful to briefly summarize the contributions of G. Taguchi (see Roy (1990)).

2.1. Taguchi Methods for Quality Engineering: Taguchi envisioned a three-stage process
whereby engineers could design quality into their products. The first stage, systems design,
determines the feasible region for subsequent optimization. The second stage, parameter design or
robust design, optimizes the objective function that operationalizes one’s notion of quality. This is

2

the stage of particular relevance to the present work. The third stage, tolerance design, fine tunes
the (approximately) optimal design obtained in the second stage.

Taguchi argued that one should design a product in such a way as to make its performance
insensitive to variation in variables beyond the designer’s control. His methods for robust design
distinguish two types of inputs to a system: “control parameters” (or “control factors”) are
the inputs that can be easily controlled or manipulated by the designer, hence the inputs that
constitute optimization variables a; “noise variables” (or “noise factors”) are the inputs that are
difficult or expensive to control, hence the inputs b to whose variation product performance is
desired to be insensitive. For example, a might specify the design of a photocopier and b might
specify the environment in which it must operate.

Although Taguchi’s philosophical contributions to robust design are of fundamental
importance, the efficacy of his methods is extremely controversial. These controversies were
surveyed in the panel discussion edited by Nair (1992); the focus here is on a specific objection
to his method of optimization. This method was inspired by classical experimental design. The
control parameters a are systematically varied according to an orthogonal array, the “control
array” or “inner array.” At each value of a, the noise variables are varied according to a second
orthogonal array, the “noise array” or “outer array,” and data from the “replications” of the
quality characteristic across the noise array are used to estimate a signal-to-noise ratio (SNR).
One obtains an array of estimated SNRs, which is then analyzed by standard analysis of variance
techniques to identify values of a that produce robust performance.

Thus, Taguchi methods attempt to optimize an objective by specifying a priori all of the
values of a at which the objective will be evaluated. (Data analysis is sometimes supplemented
by performing one or more confirmatory experiments, but this is not a fundamental part of
the optimization strategy.) Thus, Taguchi approach violates a fundamental tenet of numerical
optimization—that one should avoid doing too much work until one nears a solution. In his
defense, Taguchi was concerned primarily with situations in which sequential experimentation
may not be possible, as when an entire manufacturing facility must be dedicated to performing the
experiment. In modern engineering design optimization, however, performance is often assessed
by computer simulation and the logistic necessity of one-shot experiments disappears. Hence, the
concern here is not with Taguchi methods, but with formulations of robust design that permit
sequential experimentation.

2.2. Decision-theoretic Formulations of Robust Design: Using ideas from statistical
decision theory, the problem of robust design can be formulated as an optimization problem.
Consider objective functions of the form f : A×B → ℜ, where

• a ∈ A represents decision variables, inputs (designs) controlled by the engineer;

• b ∈ B represents uncertainty, inputs not controlled by the engineer;

• f(a; b) quantifies the loss that accrues from design a when conditions b obtain.

The (unattainable) goal is to find a∗ ∈ A such that, for every b ∈ B,

f (a∗; b) ≤ f(a; b) ∀ a ∈ A.
Example: airfoil shape design. Suppose that f is the drag coefficient of an airfoil, whose shape is
specified by a. Then b might specify:

1. Manufacturing errors ǫ that perturb the design. The desired airfoil shape is a, but the
manufactured airfoil shape is a− ǫ. The problem is to find a design that will minimize the
drag of the manufactured airfoils.

2. Mach numbers M ∈ [0.7, 0.8]. The problem is to design an airfoil that performs well over a
range of different Mach numbers. This problem has been considered by several researchers at
NASA.

3

The unsolvable problem of finding a∗ ∈ A that simultaneously minimizes f(a; b) for each
b ∈ B is the central problem of statistical decision theory: find a decision rule that simultaneously
minimizes risk for every possible state of nature. A standard way of negotiating this problem is
to replace each f(a; ·) with a real valued attribute of it, e.g., a minimax principle

min
a∈A

φ(a), where φ(a) = sup
b∈B

f(a; b),

or a Bayes principle

min
a∈A

φ(a), where φ(a) =

∫

B

f(a; b)p(b) db, (1)

where p denotes a probability density function on B.
The minimax principle is extremely conservative. It seeks to protect the decision maker

against the worst case scenario. This work adopts the Bayes principle, which seeks to minimize
average loss in a sense that can be customized (via the choice of p) to the application. This
formulation of the quality control problem was first proposed by Welch, Yu, Kang, and Sacks
(1990), although their suggestion appears to have had little effect on engineering practice.

Example: airfoil shape design (continued). Let a ∈ A ⊂ ℜk denote the design.

1. Let b = ǫ ∈ ℜk denote the manufacturing error and let f(a; b) = f(a − ǫ) denote the drag
coefficient of the manufactured airfoil. The problem is to minimize

φ(a) =

∫

ℜk

f(a− ǫ)p(ǫ) dǫ = [f ∗ p](a).

In this case, p might be chosen to approximate the probability distribution of the random
manufacturing errors that perturb the design.

2. Let b = M ∈ [0.7, 0.8] denote the Mach number and let f(a;M) denote the drag coefficient
at Mach M . The problem is to minimize

φ(a) =

∫ 0.8

0.7

f(a;M)p(M) dM.

In this case, p is a weight function that quantifies the value placed on performance at different
speeds. This problem was studied by Huyse and Lewis (2001).

2.3. Optimization Under Uncertainty: This work is concerned with solving optimization
problems of the general form (1). Having formulated the quality improvement problem as a
special case of (1), Welch and Sacks (1991) posed the following question: “Why not simply
plug the ultimate objective function into a numerical optimizer?” The answer is computational
expense. In typical engineering applications, each evaluation of f is expensive; it follows that
numerical integration of f is very expensive. Optimization under uncertainty is expensive in the
sense that one cannot afford enough evaluations of the objective function

φ(a) =

∫

B

f(a; b)p(b) db (2)

to rely on traditional methods for numerical optimization. Because of this expense, the following
nontraditional perspectives inform the present work.

• Traditional research in numerical optimization has emphasized convergence analysis.
Performance has been assessed by measuring the expense (number of function evaluations,
CPU time) required to solve the problem to within a specified tolerance. In contrast, ask
the following question: What can be accomplished with a limited budget for evaluating
f? The stance here is that future advances will come from clever heuristics and numerical
experimentation, not convergence analysis.

4

• Practical methods tend to emphasize crude approximations, not exact solutions.

• If a problem is hard to solve in the absence of uncertainty, then it can only be harder to
solve in the presence of uncertainty. For example, consider the rather mundane problem of
measuring a physical quantity µ when the measurements Xi are corrupted by error. Suppose
that Xi ∼ Normal(µ, 1). Then, like it or not, constructing a 0.95-level confidence interval of
length 0.2 requires more than 384 observations.

Believing that (1) could not be solved by traditional algorithms for numerical optimization,
Welch and Sacks (1991) proposed “a system for quality improvement via computer experiments”
to compete with Taguchi methods. Within the engineering community, their system has been
popularized as DACE. As commonly practiced, DACE is the following recipe for minimizing a
computationally expensive function ψ : A→ ℜ.

1. Choose a1, . . . , aN ∈ A at which to evaluate ψ.
2. Compute ψ(a1), . . . , ψ(aN).

3. Construct a surrogate objective function ψ̂. This might be accomplished by regression or
(more often in DACE) by interpolation.

4. Minimize ψ̂.
Welch and Sacks (1991) were concerned with ψ(a) = φ(a). Instead of Taguchi’s inner and

outer arrays, they envisioned a single “combined” array. Sacks and Welch commented that
“the single experimental array for both control and noise factors will usually require far fewer
observations than Taguchi’s crossed arrays, even when interactions between the control factors are
included.” Thus, just like Taguchi methods, DACE relies on a single experiment: all evaluations
of the objective function are made before optimization commences.

Curiously, the engineering community has embraced DACE not as it was intended—as a
formulation of robust design and as an alternative to Taguchi methods—but as an alternative to
iterative methods for the numerical optimization of computationally expensive objective functions.
The introduction of DACE inaugurated a new area of research, surrogate-based optimization,
to which the next phase of this project will be devoted. The initial phase of the project has
concentrated on surrogate-based integration, described in the following sections. DACE was
proposed for the purpose of minimizing ψ(a) = φ(a), but DACE has been used primarily to
minimize expensive ψ(a) = f(a; b) for fixed values of b. The recent surge of interest in optimization
under uncertainty refocuses attention on the original problem for which DACE was proposed.

3. Numerical Integration: If the robust design problem is formulated using the Bayes
principle, then numerical integration is the key to optimization under uncertainty. This section
reviews several important methods for numerical integration.

3.1. Adaptive Quadrature: To approximate the definite integral
∫

S

f(x) dx,

the inner loop of an adaptive quadrature algorithm uses formulas like
∫

T

f(x) dx ≈
n

∑

i=0

cif(xi), (3)

where T ⊂ S, the ci, and the xi may be fixed, adaptively determined, or even stochastic. Gauss
chose the ci and xi so that (3) is exact when h is a polynomial of as high a degree as possible
(Natanson, 1965). Such formulas are optimal in many different regards and are ideally suited to
automatic computation. In the context of large scale engineering design, however, they have two
significant drawbacks. First, the error in (3) is not easily estimated or controlled, especially when

5

f(xi) is replaced by a surrogate or when f is only piecewise smooth. Second, the points xi are
extremely special and not easily reused in nested or adaptive formulas.

A different type of formula, also of form (3), is somewhat better than the Gaussian type with
respect to the aforementioned drawbacks. These Newton-Cotes formulas fix the xi, then choose
the ci to make (3) exact over some vector space of dimension n + 1 (Hildebrand, 1956). Good
choices for the xi and the matching subspace result in practical error estimates that are amenable
to nested and adaptive integration algorithms. These adaptive strategies (Kahaner et al., 1989;
Piessens, 1983) permit efficient reuse of the xi and the f(xi), and directly support analysis of the
effect of replacing f with a surrogate. The latter feature is crucial: the ability to control the
quality of the integral estimate directly supports the use of variable fidelity data values.

While the Newton-Cotes formulas provide a clear advantages over Gaussian formulas
with respect to error control and ease of node selection, they also suffer from a number of
disadvantages when applied to problems of higher dimension. In particular, the computational
expense associated with using multivariate Newton-Cotes formulas becomes prohibitive as the
dimensionality d increases. To illustrate this, consider the iterated integral

∫ bd

ad

∫ bd−1

ad−1

· · ·
∫ b1

a1

f(x1, . . . , xd)dx1, . . . , dxd.

A multivariate numerical integration formula for an integral of this form can be derived by
applying univariate quadrature in an iterative fashion over each dimension of the multivariate
integral. This method of derivation is referred to in the literature as a product rule and results in
a cubature formula of the form

Nd
∑

id=1

Nd−1
∑

id−1=1

· · ·
N1
∑

i1=1

Ai1Ai2 · · ·Aid
f(xi1 , . . . , xid

),

where the Aij
are coefficients from the univariate formulas, typically chosen so that the formula

will be exact over some class of functions.
From this construction it is immediately seen that the resulting cubature formula will require

N∗ =
d

∏

i=1

Ni

function evaluations, where Ni is the number of nodes sampled in the ith univariate quadrature
formula. In other words, Newton-Cotes cubature formulas require the construction of a grid of
N∗ nodes. An immediate consequence of this grid structure is that refining the grid by doubling
the number of nodes in each dimension will increase the number of required function evaluations

by a factor of 2d. More importantly, as d increases, the corresponding increase in computational
effort will render this method infeasible. Therefore, in practice, stochastic integration methods
called Monte Carlo methods are often employed to overcome this curse of dimensionality.

3.2. Monte Carlo Integration: Given a Lebesgue integrable function f(x), the integral of
f(x) can be viewed as an average or expectation of f(x). Specifically, the value of the definite
integral of a function f(x) is equal to the product of the expected value E[f(x)] (with respect to
a uniformly distributed random variable x) and the volume of the region of integration.

Given a sequence of points {xn} sampled from a uniform random distribution in a region

R ⊂ ℜd, approximate E[f(x)] by

EN [f(x)] =
1

N

N
∑

n=1

f(xn).

6

Furthermore, with V (R) denoting the volume of R, the integral

I[f(x)] =

∫

R

f(x) dx = E[f(x)]V (R)

can be approximated by

IN [f(x)] = EN [f(x)]V (R).

From the strong law of large numbers,

lim
N→∞

EN [f(x)] = E[f(x)],

therefore

lim
N→∞

IN [f(x)] = I[f(x)].

For simplicity, henceforth assume that R = Id = [0, 1]d (the d-dimensional unit cube). The value

of the integral becomes E[f(x)].

The rate at which the Monte Carlo method converges to the true integral value can be

derived by utilizing the Central Limit Theorem, as suggested by several authors including Caflisch

(1998) and Krommer and Überhuber (1998). Take d = 1, let ǫN [f(x)] denote the Monte Carlo

integration error, where

ǫN [f(x)] = IN [f(x)]− I[f(x)],

and let σ2 = σ[f(x)]2 denote the variance of f , where

σ2 =

∫

Id

(f(x)− I[f(x)])2dx.

The Central Limit Theorem states that if X1, X2, . . ., XN is a sequence of independent and

identically distributed random variables each having mean µ and variance σ2, then the distribution

of
X1 + · · ·+XN −Nµ

σ
√
N

tends to the standard normal as N →∞. That is, for −∞ < a <∞,

P

{

−a ≤ X1 + · · ·+XN −Nµ
σ
√
N

≤ a
}

→ 1√
2π

∫ a

−a

e−x2/2dx

as N →∞.
In the case of Monte Carlo integration, f(X1), f(X2), . . ., f(XN) is a sequence of independent

identically distributed random variables with mean E[f(x)]. Moreover, notice that
√
N

σ
ǫN [f(x)] =

√
N(IN [f(x)]− I[f(x)])

σ

=

√
N

(

f(X1)+···+f(XN)
N

)

σ
− NI[f(x)]

σ
√
N

=
f(X1) + · · ·+ f(XN)−NI[f(x)]

σ
√
N

.

7

Letting R = Id = [0, 1]d, µ = E[f(x)] = I[f(x)]. Therefore,
√
N

σ
ǫN [f(x)] =

f(X1) + · · ·+ f(XN)−Nµ
σ
√
N

,

and applying the Central Limit Theorem to the above equation gives

P

{

∣

∣ǫN [f(x)]
∣

∣ ≤ σa√
N

}

→ 1√
2π

∫ a

−a

e−x2/2dx

as N →∞.
In other words, the Monte Carlo method converges at the rate O(N−1/2) — known as the

“n−1/2 law” — where the constant affecting this term is the variance of the function f(x) from its
expected value I[f(x)]. Furthermore, since this error is probabilistically distributed as a normal
random variable, one can bound the error to a particular range, with some probability that the
error will exceed that bound.

One can use the converse of the Central Limit Theorem to determine the number of function
evaluations needed to arrive at a particular error estimate for a given confidence level c. Let s(c)
be a confidence function that maps a confidence level to a value of a, then for confidence level

c =
1√
2π

∫ s(c)

−s(c)

e−x2/2dx,

at least N = ǫ−2
N

(

σs(c)
)2

function evaluations are required. Since the variance σ of the function

will likely be unknown in practice, somehow it must be estimated (see, e.g., Caflisch (1998)).
How does the convergence rate for Monte Carlo compare to the convergence rate of the

Newton-Cotes cubature formulas? Caflisch (1998) states that grid-based cubature methods

converge to the true integral value at a rate of O(N−k/d), where k is the order of the method and

d is the number of dimensions. In contrast to the “n−1/2 law” that characterizes the convergence
rate of the Monte Carlo method, the dimensional dependence of the Newton-Cotes methods is
clear. (While the Monte Carlo method appears to operate independently of dimension, Davis and
Rabinowitz (1984) make the observation that the variance seems to increase with the number
of dimensions.) However, the Monte Carlo method is extremely slow to converge for all d, and
worse than this, the efficacy of additional points in reducing the error diminishes as N increases:
reducing the error by a factor of ten requires one hundred times as many function evaluations.
Nevertheless, due to the curse of dimensionality, for each Newton-Cotes formula of finite order k
there will exist dimension d for which the Monte Carlo method will be superior.

Consider a Newton-Cotes product rule formula constructed from repeated application of the
one-dimensional composite Simpson’s rule. The one-dimensional composite Simpson’s rule has
order k = 4 since its error term is O(h4) = O(N−4), where h = (b−a)/N and the one-dimensional
region of integration is the interval [a, b]. Therefore, for arbitrary dimension d the product

Simpson’s rule has convergence rate O(N−4/d), which suggests that for d > 8 the Monte Carlo
method will converge more rapidly.

From the probabilistic error formula demonstrated previously, the convergence rate depends
on the number of function evaluations N and on a constant determined by the variance. As a
result, efforts to improve the Monte Carlo method have focused on reducing the variance of the
function by modifying the way in which the sampling points are chosen. Numerous techniques
exist for reducing the variance. Among these, a technique known as importance sampling is one
of the most widely used in practice. Importance sampling reduces the variance by rewriting the
integral to include a probability density function p(x) > 0, where

∫

Id

p(x)dx = 1,

8

so that
∫

Id

f(x)

p(x)
p(x)dx = I[f(x)] ≈ IN [f(x)] = Êp

[

f(x)

p(x)

]

,

where

Êp

[

f(x)

p(x)

]

=
1

N

N
∑

n=1

f(xn)

p(xn)
.

The function is evaluated at points chosen with respect to the probability density function
p(x), instead of with respect to the uniform random distribution used in the basic Monte Carlo
method, and the resulting variance is given by

σp[f(x)]2 =

∫

Id

(

f(x)

p(x)
− I[f(x)]

)2

p(x)dx.

Ideally, p(x) ≈ f(x)/I[f(x)] so that σp[f(x)]2 ≈ 0; however, this requires the value I[f(x)] of

the integral (the original problem). Instead, p(x) is chosen so that p(x)/f(x) is approximately
constant. O’Leary (2004) states that the intuition behind importance sampling is to evaluate
the function in regions where |f(x)| is largest and waste less time sampling from regions that
contribute little to the value of the integral.

In practice, it is nontrivial to choose an appropriate p(x). If a probability density function is
included in the original integral, then choose p(x) to be the original probability density function.
Using this approach, the modified integral will take less computational resources than the original

integral (Krommer and Überhuber, 1998). On the other hand, if a probability density function
is not included in the original integral, one method for determining p(x) would be to divide
the region of integration R into smaller regions, sample f(x) at the center xi of each of these
subregions (mesh point), and then set p(x) to be constant over each of these subregions with a
value proportional to the magnitude of the sampled function value at the mesh point. With a
probability p(xi) for each mesh point xi, sample Np(xi) points from region i, where N is the total
number of points to be sampled (O’Leary, 2004).

The Monte Carlo method is robust in its simplicity. It allows for simple implementations,
provides dimensional independence, and places no continuity requirements on the integrand. On
the other hand, the asymptotic error bounds are probabilistic, introducing a small probability
that the error bounds will be grossly inaccurate, convergence is slow and decreasing, and the
method does not take advantage of smoothness when the integrand is smooth (improvements
on the basic Monte Carlo method such as stratified sampling and antithetic variates do take
advantage of integrand smoothness). The quasi-Monte Carlo method, which will be considered
next, attempts to address some of these fundamental difficulties.

3.3. Quasi-Monte Carlo Integration: Traditional Monte Carlo integration techniques
use pseudo-random sequences to generate the needed sampling points. A side effect of this
stochastic sampling mechanism is that the sampled points tend to conglomerate, leaving some
regions unsampled while oversampling in others; this has the undesirable consequence of slowing
convergence. Deterministic sequences, called quasi-random sequences, can be substituted for the
pseudo-random sequences used in Monte Carlo integration, forming the basis for the quasi-Monte
Carlo integration techniques.

In contrast to pseudo-random sequences, quasi-random sequences have the desirable property
of correlating the sampled points with the goal of maximizing the “uniformity” of the sampled
points. The uniformity of a particular sequence can be quantified by its discrepancy, where

9

sequences with low discrepancies are closer to uniformity than sequences with high discrepancies.
For this reason, quasi-random sequences are often referred to as low-discrepancy sequences.

Let B denote a family of Lebesgue measurable subsets of [0, 1]d. Let SN =
{

x
(N)
i

}N

i=1
be a

sequence of points in [0, 1]d. The discrepancy of SN with respect to B, or the general discrepancy,
is defined as

D(B;SN) = sup
B∈B

∣

∣

∣

A(B;SN)

N
− λd(B)

∣

∣

∣
,

where A(B;SN) is the number of points from SN that are also elements of B and λd(B) is the
d-dimensional Lebesgue measure of B. Note that A(B;SN)/N ∈ [0, 1] and λd(B) ∈ [0, 1], which
implies D(B;SN) ∈ [0, 1].

For theoretical reasons, it is useful to define two variations of the general discrepancy. Let

J denote the family of Lebesgue measurable subsets of [0, 1)d of the form
∏d

i=1[ui, vi), and let

J ∗ denote the family of Lebesgue measurable subsets of [0, 1)d of the form
∏d

i=1[0, vi). The
discrepancy of the sequence SN is defined as

DN (SN) = D(J ;SN),

and the star discrepancy of the sequence SN is defined as

D∗
N (SN) = D(J ∗;SN).

A sequence SN =
{

x
(N)
i

}∞

i=1
is considered uniformly distributed, or equidistributed, if and only if

lim
N→∞

DN (SN) = 0,

or equivalently

lim
N→∞

D∗
N (SN) = 0.

It can be shown (see Niederreiter (1992)) that for any SN =
{

x
(N)
i

}N

i=1
in [0, 1]d,

D∗
N (SN) ≤ DN (SN) ≤ 2dD∗

N (SN).

Using the star discrepancy and the Koksma-Hlawka Theorem, it is possible to obtain an
upper bound on the quasi-Monte Carlo integration error. The Koksma-Hlawka Theorem states

that for any sequence of points SN =
{

x
(N)
i

}N

i=1
in [0, 1)d and any function f with bounded

variation Var[f] in the sense of Hardy-Krause (see Niederreiter (1992)) on [0, 1]d, the integration
error ǫ[f] = |IN [f(x)]− I[f(x)]| satisfies the bound

ǫ[f] ≤ Var[f]D∗
N .

Following the convention of Caflisch (Caflisch, 1998), quasi-random will denote sequences SN that
satisfy

D∗
N (SN) ≤ DN (SN) ≤ c (logN)k

N
,

where c and k are independent of N but may depend on the dimension d. In particular, sequences
have been constructed (e.g., Halton, Hammersley, Sobol) that satisfy

D∗
N (SN) = O

(

(logN)d

N

)

.

Therefore, using the attained discrepancies, a conservative upper bound on the integration error

is O
(

(logN)dN−1
)

.

10

There is an open, though widely believed, conjecture that

D∗
N (SN) = Ω

(

(logN)d−1

N

)

,

where the constant depends only on the dimensionality. Several of the sequence constructions to
date have attained this order for the star discrepancy.

It is worth emphasizing that the difference between the Monte Carlo and quasi-Monte
Carlo methods lies in the way the points are sampled, not in the way the integral estimate
is calculated. Substituting low-discrepancy sequences for pseudo-random sequences produces a
more rapid asymptotic convergence rate, as was shown above, but at the cost of introducing an
explicit dimensional dependence reflected in the constant cd and the exponent in the error bound.
In addition, not only does quasi-Monte Carlo fail to take advantage of smooth integrands, but
may actually lose some of its effectiveness when faced with discontinuous integrands (see Caflisch
(1998) for a more detailed treatment of the topic of quasi-Monte Carlo and smoothness).

4. Examples: The purpose of this paper is to consider how standard methods perform when
applied to problems of robust design. Toward that end, this section formulates two variants of a
prototypical problem.

4.1. Prototype Robust Design Problem 1: Let d = (d1, d2)
t denote the design variables,

with design bounds d1 ∈ [−10, 10] and d2 ∈ [0, 10]. Let X = (X1,X2)
t denote a random vector

representing uncertain physical parameters or operating conditions, and assume that X1 ∼
Uniform(−1, 1) and X2 ∼ Uniform(−3/4, 3/4). Define a “coupled analysis” y(d,X) by the
following algorithm:

y2 ← 5
Do until convergence:
{y1 ← d2

1 + d2 − y2/5 +X1;

y2 ← d1 − d2
2 + (1/2)e−y2

1 +X2}
Return (y1, y2)

Let

f(d,X) =

{

1, if product d fails under X,
0, otherwise,

where failure means y1(d,X) < 8 or y2(d,X) > 5. The probability of failure is E[f(d,X)], and
τ > 0 denotes the probability of failure that is tolerable.

Ignoring the possibility of failure, let

L(d,X) = (d1 + 1)2 + 10d2
2 + y1(d,X)

denote the loss incurred from successfully operating product (design) d under condition X. The
corresponding risk of operating d is given by

R(d) = E[L(d,X)] = (d1 + 1)2 + 10d2
2 + E[y1(d,X)].

The optimization problem is

min
d
R(d) subject to E[f(d,X)] ≤ τ,

d1 ∈ [−10, 10],

d2 ∈ [0, 10].

Figure 1 shows the contours for the objective function R(d) (increasing upward), and the
contours for the expected value E[f(d,X)] in the stochastic constraint (white is zero).

11

-10 0 10
0

10
-10 0 10

0

10

-10 0 10
0

10
-10 0 10

0

10

Figure 1. For Problem 1, R(d) contours (left) and E[f(d,X)] contours (right, white is zero).

Observe that the constraint contains large flat regions where all designs fail with probability
one or succeed with probability one. As a consequence, gradient based optimizers will generally
fail given an infeasible design in these flat regions due to a zero constraint gradient. A further
consequence is that within these flat regions all Monte Carlo based integrators will be exact
after only one function evaluation; therefore, for these regions, Monte Carlo will outperform its
Newton-Cotes counterparts in terms of cost. Problem 1 contains two local minima: 25.861 at
d ≈ (3.104, 0)t, and 12.642 at d ≈ (−2.904, 0)t.

4.2. Prototype Robust Design Problem 2: Motivated by the difficulties encountered with
Problem 1, a second robust design problem was developed with a modified constraint that has
no flat regions. This was accomplished by changing the distribution of the noise variables from
uniform to normal, which removes the problematic flat regions of Problem 1, though at the
expense of introducing more difficult integrands.

Let d = (d1, d2)
t denote the design variables, with design bounds d1 ∈ [−10, 10] and

d2 ∈ [0, 10]. Let X = (X1,X2)
t denote a random vector representing uncertain physical

parameters or operating conditions, and assume that X1 ∼ N(0, 1) and X2 ∼ N(0, 1). Define a
“coupled analysis” y(d,X) by the following algorithm:

y2 ← 5
Do until convergence:
{y1 ← d2

1 + d2 − y2/5 +X1;

y2 ← d1 − d2
2 + (1/2)e−y2

1 + 40X2}
Return (y1, y2)

Let

f(d,X) =

{

1, if product d fails under X,
0, otherwise,

where failure means y1(d,X) > 30 and y2(d,X) < −80. The probability of failure is E[f(d,X)],
and τ > 0 denotes the probability of failure that is tolerable.

Ignoring the possibility of failure, let

L(d,X) = d2
1 + 10(d2 − 7)2 + y1(d,X)

12

-10 0 10
0

10
-10 0 10

0

10

-10 0 10
0

10
-10 0 10

0

10

Figure 2. Problem 2, R(d) contours (left) and E[f(d,X)] contours (right, white is zero).

denote the loss incurred from successfully operating product (design) d under condition X. The
corresponding risk of operating d is given by

R(d) = E[L(d,X)] = d2
1 + 10(d2 − 7)2 + E[y1(d,X)].

The optimization problem is

min
d
R(d) subject to E[f(d,X)] ≤ τ,

d1 ∈ [−10, 10],

d2 ∈ [0, 10].

Figure 2 shows the contours for the objective function R(d) (increasing upward), and the
contours for the expected value E[f(d,X)] in the stochastic constraint (white is zero). Problem 2

has two local minima: 25.240 at d ≈ (0.055, 5.881)t , and 416.669 at d ≈ (8.024, 1.636)t .

5. Numerical Results: In this section, the accuracy, efficiency, and suitability of various
well known numerical integration techniques for solving Problems 1 and 2 will be examined.
Section 5.1 examines the performance of these numerical integration techniques when used to
evaluate the integrands contained in the test problems. Section 5.2 examines the interaction
between the output of the numerical integrators and several standard optimization algorithms.
Experiments were performed using a Sun Blade 2000 workstation running Sun OS 5.8, and all
programs were compiled using the Sun WorkShop 6 update 2 Fortran 95 compiler.

5.1. Experimental Comparison Of Numerical Integrators: Four integration subroutines
were programmed for the purpose of determining their empirical rate of asymptotic convergence
as well as their accuracy using a small number of function evaluations (≤ 103). Two of the
integration subroutines were chosen to be stochastic and two deterministic.

The stochastic integration subroutines used were a basic Monte Carlo implementation and
an importance sampling Monte Carlo implementation. The probability density function for the
importance sampling subroutine was constructed using the techniques described in O’Leary (2004)
and Beichl and Sullivan (1999).

The deterministic integration subroutines used in this paper were a quasi-Monte Carlo
implementation based on the multidimensional Sobol’ deterministic sequence (ACM TOMS

13

10 100 1000

6

8

10

12

14

Imp. Samp.
Quasi-MC
MC

1E3 1E4 1E5 1E6 1E7 1E8

9.92

9.94

9.96

9.98

10

Imp. Samp.
Quasi-MC
MC

Figure 3. Comparison of Monte Carlo, importance sampling, and quasi-Monte
Carlo integrators. The horizontal axis represents the number of function
evaluations used to compute the expected value E[y1(d,X)] from Problem 2
given a fixed design d = (0, 5)t, and the vertical axis represents the computed
value of E[y1(d,X)] from Problem 2.

10 100 1000

0.1

0.2

0.3

0.4

0.5

Imp. Samp.
Quasi-MC
MC

1E3 1E4 1E5

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Imp. Samp.
Quasi-MC
MC

Figure 4. Error comparison of Monte Carlo, importance sampling, and
quasi-Monte Carlo integrators. The horizontal axis represents the number
of function evaluations used to compute the expected value E[y1(d,X)] from
Problem 2 given a fixed design d = (0, 5)t, and the vertical axis represents the
relative error of the computed expectation from the “true” value of E[y1(d,X)],
which is 9.9420.

Algorithm 659) and a Newton-Cotes integrator based on a product rule of one dimensional

adaptive Newton-Cotes integrators. (The Newton-Cotes integrator actually contains two separate

product rule integrators. The first, which is used to integrate the continuous function y1(d,X) in

the objective function, is based on an eight panel (nine point) adaptive Newton-Cotes rule, and

the second, which is used to evaluate the discontinuous function f(d,X), is based on a two panel

(three point) adaptive Newton-Cotes rule.

Figures 3 and 4 compare the accuracy of the Monte Carlo, quasi-Monte Carlo, and importance

sampling integrators when used to evaluate E[y1(d,X)] from Problem 2 for fixed d = (0, 5)t.

The asymptotic convergence rates of the three Monte Carlo based methods, shown in Figure 3,

coincide with the theoretical expectations of their relative performances considered in Section 3.

The unpredictability of the basic Monte Carlo method is apparent in Figures 3 and 4, since its

relative error is three times greater for 105 function evaluations than for 104 function evaluations.

Importance sampling and quasi-Monte Carlo obtain a relative error less than 10−3 after 104

function evaluations, whereas Monte Carlo requires 107 function evaluations for the same level

of accuracy. By contrast, the Newton-Cotes eight panel integrator obtains a relative error less

14

10 100 1000

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

Imp. Samp.
Quasi-MC
MC

1E3 1E4 1E5 1E6 1E7 1E8
0.0045

0.005

0.0055

0.006

0.0065

Imp. Samp.
Quasi-MC
MC

Figure 5. Comparison of Monte Carlo, importance sampling, and quasi-Monte
Carlo integrators. The horizontal axis represents the number of function
evaluations used to compute the expected value E[f(d,X)] from Problem 2
given a fixed design d = (0, 5)t, and the vertical axis represents the computed
value of E[f(d,X)] from Problem 2.

10 100 1000

0.2

0.4

0.6

0.8

1
Imp. Samp.
Quasi-MC
MC

1E3 1E4 1E5

0.05

0.1

0.15

0.2

0.25
Imp. Samp.
Quasi-MC
MC

Figure 6. Error comparison of Monte Carlo, importance sampling, and
quasi-Monte Carlo integrators. The horizontal axis represents the number
of function evaluations used to compute the expected value E[f(d,X)] from
Problem 2 given a fixed design d = (0, 5)t, and the vertical axis represents the
relative error of the computed expectation from the “true” value of E[f(d,X)],

which is 5.1828 · 10−3.

than 10−4 after only 1089 function evaluations. A systematic study of eight panel Newton-Cotes
accuracy is summarized in Table A of the appendix.

Figure 5 and Figure 6 compare the accuracy of the Monte Carlo, quasi-Monte Carlo, and
importance sampling integrators when used to evaluate E[f(d,X)] from Problem 2 given an initial

design of d = (0, 5)t. The discontinuous nature of f(d,X) introduces the theoretical possibility
that the quasi-Monte Carlo and Newton-Cotes integrators will perform poorly; however, the
empirical evidence suggests that quasi-Monte Carlo and the two panel Newton-Cotes integrators
continue to perform at least as well as the simple Monte Carlo approach in spite of discontinuities
present in f(d,X). Caflisch (1998) makes a similar observation regarding the loss of quasi-Monte
Carlo effectiveness, stating that computational experience almost always demonstrates the
superiority of the quasi-Monte Carlo method relative to stochastic Monte Carlo. All methods
converged more slowly to the true value of E[f(d,X)] than to the true value of E[y1(d,X)];
however, the disparity between the convergence rate of Monte Carlo and the other methods was
also smaller. In this case, Monte Carlo actually outperformed importance sampling when between
105 and 107 function evaluations were used. A systematic study of two panel Newton-Cotes
accuracy is summarized in Table B of the appendix.

15

5.2. Experimental Comparison Of Gradient Based Optimizers: Two optimizers, a
sequential quadratic programming (SQP) algorithm and a modified method of feasible directions
(MMFD) algorithm, were used in the experiments. Implementations of both algorithms are
included in version 4.0 of the Design Optimization Tools (DOT) software distributed by
Vanderplaats Research & Development, Inc. See Bazaraa et al. (1993) for a description of SQP
and MMFD. See Haim et al. (1999) for a comparison of DOT to other optimizers for solving MDO
problems. DOT’s default parameters were adjusted to facilitate optimization runs using crude
expected value calculations. The relative and absolute finite difference step sizes were increased
from their default values to 0.05, since experience with Problems 1 and 2 demonstrated the need
for a larger finite difference step size when low accuracy expected value calculations are used. The
number of consecutive iterations for which the convergence criteria must be met was increased
from two to three, decreasing the chances of spurious convergence when crude objective function
values are used.

The results of the optimizer trials can be seen in Tables C–F of the appendix. For the
stochastic integrators (Monte Carlo and importance sampling) each row represents the average of
ten separate optimizer trials. A positive number in the failure column indicates that one or more
of the trials terminated due to a failure condition reported by DOT. Failure resulted either from
an inability to produce a feasible design or from a zero constraint gradient in the infeasible region.
Statistics from a failed trial were not used in the calculated row averages. The feasibility of a
given final design was evaluated using a Newton-Cotes integrator with a requested error of 10−12

and a constraint tolerance of 10−3.

5.2.1. Problem 1 Optimizer Results: The SQP optimizer was completely unable to cope with
the flat infeasible regions of Problem 1 regardless of the supplied initial design. Ironically, the
only SQP trials that did not fail were those corresponding to low accuracy, stochastic expected
value calculations. In these cases, the SQP optimizer tended to be less ambitious around the
boundary between feasibility and infeasibility (perhaps due to the extreme variability in the low
accuracy stochastic results), so the optimizer was less likely to jump into the infeasible region and
get trapped by a zero gradient condition.

By contrast, the MMFD optimizer never terminated on a failure condition given a feasible
initial design, though given an infeasible initial design the MMFD optimizer also failed due to a
zero constraint gradient. Furthermore, due to the mostly flat feasible region, all of the integrators
resulted in termination a small distance from a local optimum point; however, when the final
designs were evaluated for feasibility using a high accuracy integrator, it was found that the
stochastic methods produced infeasible designs with a high probability. It is interesting to note
that increasing the number of function evaluations did not translate into a proportional increase
in the number of feasible designs produced by a stochastic method; on the contrary, after a certain
threshold number of function evaluations, the additional accuracy seemed to actually hinder the
ability of the optimizer to produce feasible designs. A summary of the optimizer results for
Problem 1 given the initial designs d = (−10, 10)t and d = (10, 6) appear in Tables C and D of
the appendix.

5.2.2. Problem 2 Optimizer Results: Tables E and F clearly show the superiority of the
deterministic integrators for solving Problem 2 when combined with either optimizer, with respect
to avoiding failure and returning feasible designs near a locally optimal point.

The majority of failures occurred due to an inability to find the feasible region, perhaps
resulting from premature convergence in the infeasible region or some other reason that prevented
the optimizers from making progress. It is interesting to note that even though the constraint was
designed to have no flat regions, and thus prevent failures due to zero constraint gradients, this
failure condition was not completely eliminated in Problem 2 when using Monte Carlo methods

16

-10 0 10
0

10
-10 0 10

0

10

-10 0 10
0

10
-10 0 10

0

10

Figure 7. Intermediate designs visited by the DOT SQP optimizer for Problem

2 using Monte Carlo with 105 function evaluations (left) and importance

sampling with 103 function evaluations (right).

with a small number of function evaluations (≤ 100). Given N sampling points x1, . . ., xN and
function values f(d, x) ∈ {0, 1}, then for

EN [f(d, ·)] =
1

N

N
∑

n=1

f(d, xn),

the possibility exists that if the optimizer tries to approximate a gradient based upon some

EN [f(d1, ·)] and EN [f(d2, ·)] where d1 6= d2 and |E[f(d1, ·)]−E[f(d2, ·)]| ≤ .5 · 10−⌈log
10

(N)⌉, then
EN [f(d1, ·)] = EN [f(d2, ·)]. Therefore, the danger of failing due to a zero constraint gradient in
the infeasible region may be considerable using Monte Carlo methods with a small number of
function evaluations and a constraint based on the expected value of a binary function.

When combined with stochastic integrators, the SQP optimizer often exhibited extraordinarily
erratic behavior, which can be seen in Figure 7. Increasing the number of function evaluations
did not eliminate the erratic intermediate designs; however, it did reduce the area over which
the intermediate designs exhibited erratic jumps. The MMFD optimizer did not exhibit similar
behavior.

Spurious local convergence was also a problem for the optimizers when using stochastic
integrators, especially when the integrators were restricted to small numbers of function
evaluations. For example, for the MMFD optimizer using Monte Carlo with 10 function
evaluations or importance sampling with 10 function evaluations, the optimizer returned what it
believed to be a feasible optimal design of d ≈ (10, 6)t for all of these trials. Figures C and G of
the appendix show this phenomena in more detail. This spurious convergence disappeared as the
number of function evaluations increased.

6. Discussion: The uncertainties that arise in robust design optimization can be managed by the
tools of statistical decision theory, specifically the Bayes principle. While conceptually elegant,
this formulation of robust design optimization leads to objective and constraint functions that are
difficult to evaluate because they involve numerical integration. An engineer who is confronted
with such a problem may attempt an obvious solution: use off-the-shelf optimization software that
calls user written objective and constraint functions that utilize a standard numerical integration

17

technique. This work explored what an engineer might expect to accomplish with such an
approach.

Two prototype robust design problems that include two design variables (d) and two uncertain
quantities (X) are considered here. Algorithm performance is defined in terms of a “coupled
analysis” y(d,X). In actual design problems, the coupled analysis is expensive to compute; hence,
quantities that depend on y should be considered expensive and the number of times that y must
be evaluated is a reasonable measure of total expense.

Robust design optimization is inherently expensive. Numerical optimization requires
evaluation of the objective and constraint functions at multiple designs. Each evaluation involves
numerical integration. As illustrated in Section 5.1, a single accurate evaluation may require
thousands of coupled analyses, far too expensive for a typical application. Thus, in specifying an
optimization strategy, the engineer should anticipate that searches will be based on inaccurate
information. This reality has two important implications. First, one should not expect to obtain
precise solutions to robust design optimization problems. Second, to whatever extent may be
possible, searches should be insensitive to errors in function evaluation.

The Design Optimization Tools (DOT) software distributed by Vanderplaats Research &
Development, Inc. is widely used by engineers. In this study, DOT plays the role of canonical
off-the-shelf optimization software, developed for deterministic nonlinear programming and used
in circumstances (inaccurate function values) for which it was not intended. Perceived failures of
DOT to solve the prototype robust design problems should be attributed to the inherent difficulty
of robust design optimization, without inferring that DOT is deficient for its intended purpose.

When using DOT for robust design optimization, one should endeavor to choose code input
parameters for which DOT is relatively insensitive to inaccurate function values. Assuming
that derivative information is not available, DOT will attempt to approximate derivatives by
finite differencing. DOT is designed to accommodate inaccurate function values, basing its finite
difference step size on an input parameter specifying the function noise level. In the context of
Monte Carlo integration, this noise level is difficult to estimate accurately. Finite difference step
sizes below the noise level result in useless search directions.

It is not clear a priori whether reliability constraints are better managed by sequential
quadratic programming (DOT’s SQP implementation) or by a feasible direction method (DOT’s
MMFD implementation). Reliability constraints are likely to induce flat infeasible regions
(corresponding to designs that certainly fail) and flat feasible regions (corresponding to designs
that certainly do not fail). The results suggest that MMFD outperforms SQP in such situations.

Beyond choosing code parameters that correctly account for inaccurate function values, it
may be possible to adopt numerical integration strategies that facilitate optimization. By fixing
the points at which the integrands are evaluated, deterministic integrators regularize the robust
design problem, effectively replacing integrals with sums. Indeed, significantly better results
were obtained with deterministic integrators than with stochastic integrators. However, as noted
by Huyse and Lewis (2001), the potential difficulty with this approach is that solutions to the
regularized problem may be unsatisfying. Huyse and Lewis recommend varying the points used
by the deterministic integrator, which is in fact done here since all the integration algorithms are
adaptive.

The results beg numerous questions. Supposing that an engineer can afford only a fixed
number of coupled analyses, which ones should be performed? Is it better to spend one’s limited
budget obtaining relatively accurate function values and rely on a relatively small number of
optimization iterations, or is it better to rely on relatively inaccurate function values, thereby
purchasing a larger number of optimization iterations? The results suggest that a simple answer
is impossible. Performance improves as the number of coupled analyses per numerical integration
increases, but relatively small numbers are sometimes adequate to obtain good approximate
solutions. Such tradeoffs are problem and algorithm specific. It seems natural to pursue an

18

adaptive search strategy, starting with a small number of analyses per integration, then restarting
the search with a larger number after the initial search terminates, and so on, ideally reusing
all the earlier obtained coupled analyses (via surrogates, e.g.). Subsequent work will study the
efficacy of such strategies.

A common feature of all numerical integration schemes is that more work is required for more
accurate approximations of (2). Thus, numerical integration schemes provide models of varying
fidelity, suggesting that certain ideas useful in surrogate-based optimization might be adapted for
the purpose of surrogate-based integration.

Because of the expense of high fidelity simulation, surrogates are playing an increasingly
prominent role in engineering design optimization. Unlike the problems addressed by classical
approximation theory, modern large scale engineering design problems are typified by a large
number of dimensions and a relative paucity of exact/accurate function values. In this context,
most of the work on surrogate construction has been motivated by the concerns of optimization.
Consider a surrogate construction with a different goal: that a definite integral of the surrogate
approximate a definite integral of the true underlying function. This goal may dictate radically
different surrogate construction strategies than do more traditional goals of pointwise function
approximation and optimization. This paper concludes with descriptions of two plausible
approaches to surrogate-based integration, to be studied in subsequent work.

6.1. Surrogate-based Adaptive Quadrature: The first approach attempts to modify
traditional strategies for adaptive quadrature in order to exploit information about the integrand
provided by surrogates. Suppose that h : S → ℜ and that s : S → ℜ is a surrogate for h. Consider
the approximation

∫

S

h(x) dx ≈
∫

S

s(x) dx.

This problem does not arise in traditional numerical integration: if evaluating h is no more
expensive than evaluating s, then computational resources dedicated to integrating h are better
spent evaluating h than constructing and evaluating s. But what if evaluating s is substantially
less expensive than evaluating h?

A natural challenge is to modify adaptive quadrature algorithms based on Newton-Cotes and
Gauss-Kronrod formulas to obtain new adaptive quadrature algorithms that are exact for various
families of surrogate functions, rather than for polynomials. To exploit these algorithms, it will
be necessary to develop new optimization methods that adaptively sample the design parameters
with the goal of efficient optimization and the noise variables with the goal of efficient integration.
Recent work (Pérez et al., 2002) indicates that adaptive sampling is more efficient than static
sampling for optimization. Respecting both goals poses interesting theoretical challenges and
potentially offers greatly improved robust design strategies.

6.2. Taylor Approximations: Whatever the reduction in computational expense from
using surrogate-based adaptive quadrature schemes, some robust design problems will remain
prohibitively expensive. Such problems require crude approximations of the objective function
(2). A thorough study of what can be accomplished with Taylor approximations—the second
approach—is indicated.

Given g : ℜk → ℜ, let x̂ = argmin g(x) and H = ∇2g(x̂). Laplace’s approximation is
∫

ℜk

exp [−g(x)] dx ≈ exp [−g (x̂)]
√

det(H/2π)
.

To approximate (2), let g(a; b) = − log f(a; b) − log p(b). Laplace’s approximation applies if one
can minimize g in b and estimate H.

19

Laplace’s approximation has made tractable certain integrations that arise in Bayesian
statistics (see Tierney and Kadane, 1986; Kass et al., 1989; Wong and Li, 1992), but it has
not yet been applied to robust design. The difficulty of minimizing g in b and estimating H
may render Laplace’s approximation unsuitable for engineering problems. However, Huyse and
Lewis (2001) obtained promising results for the problem of designing an airfoil that performs well
over a range of different Mach numbers by replacing f with its second order Taylor polynomial,
expanded about

b̄ =

∫

B

bp(b) db.

This leads to the approximation

φ(a) ≈ f
(

a; b̄
)

+ c∇2f
(

a; b̄
)

,

where

c =
1

2

∫

B

∥

∥b− b̄
∥

∥

2
p(b) db.

This approach deserves greater scrutiny.

9. Acknowledgments: This work was supported in part by NSF Grants DMI-0422719 and
DMI-0355391, and DOE Grant DE-FG02-06ER25720.

10. References:

[1] N. M. Alexandrov, “On managing the use of surrogates in general nonlinear optimization,”
Paper 98-4798, AIAA, September 1998.

[2] N. M. Alexandrov and R. M. Lewis, “A trust region framework for managing approximation
models in engineering optimization,” Papers 96-4101 and 96-4102, AIAA, September 1996.

[3] N. M. Alexandrov, R. M. Lewis, C. R. Gumbert, L. L. Green, and P. A. Newman,
“Optimization with variable-fidelity models applied to wing design,” Paper 2000-0841, AIAA,
January 2000.

[4] N. M. Alexandrov, E. J. Nielsen, R. M. Lewis, and W. K. Anderson, “First-order model
management with variable-fidelity physics applied to multi-element airfoil optimization,”
Paper 2000-4886, AIAA, September 2000.

[5] R. Arvind, S. Nikhil, and K. Pingali, “I-structures: Data structure for parallel computing,”
ACM Transactions on Programming Languages and Systems, vol. 11, pp. 589–632, 1989.

[6] C. A. Baker, L. T. Watson, B. Grossman, R. T. Haftka, and W. H. Mason, “Parallel global
aircraft configuration design space exploration,” in High Performance Computing Symposium
2000, A. Tentner, editor, pp. 101–106. Society for Computer Simulation International, 2000.

[7] V. Balabanov, A. A. Giunta, O. Golovidov, B. Grossman, W. H. Mason, L. T Watson, and R.
T. Haftka, “Reasonable design space approach to response surface approximation,” Journal
of Aircraft, vol. 36, pp. 308–315, 1999.

[8] J.-F. M. Barthelemy and R. T. Haftka, “Approximation concepts for optimum structural
design—a review,” Structural Optimization, vol. 5, pp. 129–144, 1993.

[9] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming: Theory and
Algorithms, John Wiley & Sons, Inc., 1993.

[10] I. Beichl and F. Sullivan, “The Importance of Importance Sampling,” Computing in Science
and Engineering, vol. 1, no. 2, pp. 71–73, 1999.

[11] A. J. Booker, “Case studies in design and analysis of computer experiments,” in Proceedings
of the Section on Physical and Engineering Sciences, pp. 244–248. American Statistical
Association, 1996.

20

[12] A. J. Booker, J. E. Dennis, P. D. Frank, D. B. Serafini, V. Torczon, and M. W Trosset,
“A rigorous framework for optimization of expensive functions by surrogates,” Structural
Optimization, vol. 17(1), pp. 1–13, 1999.

[13] S. Burgee, A. Giunta, V. Balabanov, B. Grossman, W. Mason, R. Narducci, R. Haftka,
and L. Watson, “A coarse-grained parallel variable-complexity multidisciplinary optimization
problem,” International Journal of Supercomputing Applications and High Performance
Computing, vol. 10, pp. 269–299, 1996.

[14] S. Burgee and L. Watson, “The promise (and reality) of multidisciplinary design optimization”,
in Large-Scale Optimization with Applications, Part II: Optimal Design and Control L. T.
Biegler, T. F. Coleman, A. R. Conn, and F. N. Santosa (eds.), Springer-Verlag, New York,
1997, 301–324.

[15] R. E. Caflisch, “Monte Carlo and quasi-Monte Carlo methods,” Acta Numerica, vol. 7, pp.
1–49, 1998.

[16] W. Cheney and D. Kincaid, Numerical Analysis: Mathematics of Scientific Computing, 3rd
ed. Brooks/Cole, 2002.

[17] D. D. Cox and S. John, “SDO: A statistical method for global optimization,” in
Multidisciplinary Design Optimization: State of the Art, N. Alexandrov and M. Y. Hussaini,
editors, pp. 315–329. SIAM, Philadelphia, 1997.

[18] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, 2nd ed., New York:
Academic Press Inc., 1984.

[19] J. E. Dennis and V. Torczon, “Managing approximation models in optimization,” in
Multidisciplinary Design Optimization: State of the Art, N. Alexandrov and M. Y. Hussaini,
editors, pp. 330–347. SIAM, Philadelphia, 1997.

[20] T. S. Ferguson, Mathematical Statistics: A Decision Theoretic Approach, Academic Press,
New York, 1967.

[21] F. Feshet and S. Miguet, “Parlist: A parallel data structure for dynamic load balancing,”
Journal of Parallel and Distributed Computing, vol. 51, pp. 114–135, 1998.

[22] P. D. Frank, “Global modeling for optimization,” SIAG/OPT Views-and-News, vol. 7, pp.
9–12, 1995.

[23] J. M. Gablonsky, “Modifications of the DIRECT Algorithm,” PhD thesis, Department of
Mathematics, North Carolina State University, Raleigh, NC, 2001.

[24] A. Giunta, “Aircraft Multidisciplinary Optimization Using Design of Experiments Theory
and Response Surface Modeling Methods,” PhD thesis, Department of Aerospace & Ocean
Engineering, Virginia Polytechnic Institute & State University, Blacksburg, VA, 1997.

[25] A. A. Giunta, V. Balabanov, D. Haim, B. Grossman, W. H. Mason, L. T. Watson, and R. T.
Haftka, “Multidisciplinary optimisation of a supersonic transport using design of experiments
theory and response surface modelling,” Aeronautical Journal, vol. 101(1008), pp. 347–356,
1997.

[26] A. A. Giunta, M. S. Eldred, T. G. Trucano, and S. F. Wojtkiewicz, “Optimization under
uncertainty for computational shock physics applications,” in Proceedings of the 43rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
2002.

[27] P. Goger, “Computational Experiments with Stochastic Approximation,” Senior Honors
Thesis, College of William & Mary, 2001.

[28] D. Haim, A. A. Giunta, M. M. Hozwarth, W. H. Mason, L. T. Watson, and R. T. Haftka,
“Comparison of optimization software packages for an aircraft multidisciplinary design
optimization problem,” Design Optim., vol. 1, pp. 9–23, 1999.

[29] J. He, L. T. Watson, N. Ramakrishnan, C. A. Shaffer, A. Verstak, J. Jiang, K. Bae, and
W. H. Tranter, “Dynamic data structures for a direct search algorithm,” Computational
Optimization and Applications, vol. 23, pp. 5–25, 2002.

21

[30] F. B. Hildebrand, Introduction to Numerical Analysis, McGraw 5A Hill, New York, 1956.
[31] R. V. Hogg and A. T. Craig, Introduction to Mathematical Statistics, Fifth ed., Prentice

Hall, 1995.
[32] L. Huyse, “Free-form airfoil shape optimization under uncertainty using maximum expected

value and second-order second-moment strategies,” Technical Report 01-18, Institute for
Computer Applications in Science & Engineering, NASA Langley Research Center, Hampton,
VA 23681-0001, 2001.

[33] L. Huyse and R. M. Lewis, “Aerodynamic shape optimization of two-dimensional airfoils
under uncertain conditions,” Technical Report 01-01, Institute for Computer Applications in
Science & Engineering, NASA Langley Research Center, Hampton, VA 23681-0001, 2001.

[34] D. Jones, M. Schonlau, and W. Welch, “Efficient global optimization of expensive black-box
functions,” Journal of Global Optimization, vol. 13, pp. 455 – 492, 1998.

[35] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian optimization without the
Lipschitz constant,” Journal of Optimization Theory and Applications, vol. 79, pp. 157–181,
1993.

[36] D. Kahaner, C. Moler, and S. Nash, Numerical Methods and Software, Prentice-Hall,
Englewood Cliffs, NJ, 1989.

[37] R. E. Kass, L. Tierney, and J. B. Kadane, “Approximate methods for assessing influence and
sensitivity in Bayesian analysis,” Biometrika, vol. 76, pp. 663–674, 1989.

[38] M. Kaufman, V. Balabanov, S. L. Burgee, A. A. Giunta, B. Grossman, R. T Haftka, W. H.
Mason, and L. T. Watson, “Variable-complexity response surface approximations for wing
structural weight in HSCT design,” Computational Mechanics, vol. 18, pp. 112–126, 1996.

[39] D. L. Knill, A. A. Giunta, C. A. Baker, B. Grossman, W. H. Mason, R. T. Haftka, and L. T.
Watson, “Response surface models combining linear and Euler aerodynamics for supersonic
transport design,” Journal of Aircraft, vol. 36, pp. 75–86, 1999.

[40] D. T. Krasteva, L. T. Watson, C. Baker, B. Grossman, W. H. Mason, and R. T Haftka,
“Distributed control parallelism in multidisciplinary aircraft design,” Concurrency: Practice
and Experience, vol. 11, pp. 435–459, 1999.

[41] A. R. Krommer and C. W. Überhuber, Computational Integration, Philadelphia: SIAM, 1998.
[42] S. Kusakabe, T. Najai, K. Inenaga, and M. Amamiya, “Reducing overhead in implementing

fine-grain parallel data-structures of a dataflow language on off-the-shelf distributed-memory
parallel computers,” International Conference on System Sciences, vol. 1, pp. 234–243, 1997.

[43] G. P. Lepage, “A New Algorithm for Adaptive Multidimensional Integration,” Journal of
Computational Physics, vol, 27, pp. 192–203, 1978.

[44] R. M. Lewis and V. Torczon, “Pattern search algorithms for bound constrained minimization,”
SIAM Journal on Optimization, vol. 9, pp. 1082–1099, 1999.

[45] R. M. Lewis, V. Torczon, and M. W. Trosset, “Why pattern search works,” Optima, vol. 59,
pp. 1–7, October 1998.

[46] D. Mustard, J. N. Lyness, and J. M. Blatt, “Numerical quadrature in n dimensions,” The
Computer Journal, vol. 6(1), 1963.

[47] V. N. Nair, “Taguchi’s parameter design: A panel discussion,” Technometrics, vol. 34, pp.
127–161, 1992.

[48] I. P. Natanson, Constructive Function Theory. Volume III: Interpolation and Approximation
Quadratures, Ungar, New York, 1965.

[49] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, Society for
Industrial and Applied Mathematics, 1992.

[50] J. C. Newman, III, A. C. Taylor, III, R. W. Barnwell, P. A. Newman, and G. J.-W.
Hou, “Overview of sensitivity analysis and shape optimization for complex aerodynamic
configurations,” Journal of Aircraft, vol. 36, pp. 87–96, 1999.

22

[51] D. P. O’Leary, “Multidimensional Integration: Partition and Conquer,” Computing in Science
and Engineering, vol. 6, Number 6, pp. 58–62, 2004.

[52] V. M. Pérez, J. E. Renaud, and L. T. Watson, “Adaptive experimental design for construction
of response surface approximations,” AIAA Journal, vol. 40, pp. 2495–2503, 2002.

[53] R. Piessens, “QUADPACK: A Subroutine Package for Automatic Integration,” Springer-
Verlag, Berlin, 1983.

[54] J. J. Pombo, J. C. Cabaleiro, and T. F. Pena, “Parallel complete remeshing for adaptive
schemes,” in International Conference on Parallel Processing Workshops, pp. 73–78, 2001.

[55] S. Ross, A First Course in Probability, 6th ed. Prentice Hall, New Jersey.
2002

[56] R. K. Roy, A Primer on the Taguchi Method, Competitive Manufacturing. Van Nostrand
Reinhold, New York, 1990.

[57] J. Sacks, W. J. Welch, T. J. Mitchell, H. P. Wynn, “Design and analysis of computer
experiments,” Statistical Science, vol. 4, 409–435, 1989.

[58] M. Schonlau and W. J. Welch, “Global optimization with nonparametric function fitting,”
in Proceedings of the Section on Physical and Engineering Sciences, pp. 183–186. American
Statistical Association, 1996.

[59] M. Schonlau, W. J. Welch, and D. R. Jones, “A data-analytic approach to Bayesian global
optimization,” in Proceedings of the Section on Physical and Engineering Sciences, pp.
186–191. American Statistical Association, 1997.

[60] M. Schonlau, W. J. Welch, and D. R. Jones, “Global versus local search in constrained
optimization of computer models,” in New Developments and Applications in Experimental
Design, N. Flournoy, W. F. Rosenberger, and W. K. Wong, editors, Institute of Mathematical
Statistics, Hayward, CA, 1999.

[61] C. M. Siefert, “Model-assisted pattern search,” Senior honors thesis, Department of Computer
Science, College of William & Mary, Williamsburg, VA, May 2000.

[62] C. M. Siefert, V. Torczon, and M. W. Trosset, “Model-assisted pattern search methods for
optimizing expensive computer simulations,” in Proceedings of the Section on Physical and
Engineering Sciences, American Statistical Association, 2002.

[63] I. M. Sobol’, A Primer for the Monte Carlo Method, CRC Press, 1994.
[64] J. Spanier and E. Maize, “Quasi-Random methods for estimating integrals using relatively

small samples,” SIAM Review, vol. 36, no. 1, pp. 18–44, March 1994.
[65] L. Tierney and J. B. Kadane, “Accurate approximations for posterior moments and marginal

densities,” Journal of the American Statistical Association, vol. 81, pp. 82–86, 1986.
[66] V. Torczon, “On the convergence of pattern search methods,” SIAM Journal on Optimization,

vol. 7, pp. 1–26, 1997.
[67] V. Torczon and M. W. Trosset, “From evolutionary operation to parallel direct search:

Pattern search algorithms for numerical optimization,” Computing Science and Statistics, vol.
29(1), pp. 396–401, 1997.

[68] V. Torczon and M. W. Trosset, “Using approximations to accelerate engineering design
optimization,” in 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis
and Optimization: A Collection of Technical Papers, Part 2, pp. 738–748. American Institute
of Aeronautics and Astronautics, 1998.

[69] M. W. Trosset, “Taguchi and robust design,” Technical Report 96-31, Department of
Computational & Applied Mathematics, Rice University, 6100 Main Street, Houston, TX
77005-1892, 1996.

[70] M. W. Trosset, “Optimization on a limited budget,” in Proceedings of the Section on Physical
and Engineering Sciences, American Statistical Association, pp. 210–215, 1998.

23

[71] M. W. Trosset and V. Torczon, “Numerical optimization using computer experiments,”
Technical Report 97-38, Institute for Computer Applications in Science & Engineering, NASA
Langley Research Center, Hampton, VA 23681-0001, August 1997.

[72] R. Unal, R. Lepsch, W. Engelund, D. Stanley, “Approximation model building and
multidisciplinary design optimization using response surface methods,” in Proc. 6th
AIAA/NASA/ISSMO Symp. on Multidisciplinary Analysis and Optimization, Part I, 1996.

[73] E. R. Unger, M. G. Hutchison, M. Rais-Rohani, R. T. Haftka, B. Grossman, “Variable-
complexity multidisciplinary design of a transport wing,” Int. J. System Automation: Research
and Applications (SARA), vol. 2, pp. 87–113, 1992.

[74] Y. Wardi, “A stochastic steepest-descent algorithm,” J. Optimization Theory and Applica-
tions, vol. 59, pp. 307–323, 1988.

[75] L. T. Watson and C. A. Baker, “A fully-distributed parallel global search algorithm,”
Engineering Computations, vol. 18, pp. 155–169, 2001.

[76] W. J. Welch and J. Sacks, “A system for quality improvement via computer experiments,”
Communications in Statistics—Theory and Methods, vol. 20, pp. 477–495, 1991.

[77] W. J. Welch, T. K. Yu, S. M. Kang, and J. Sacks, “Computer experiments for quality control
by parameter design,” Journal of Quality Technology, vol. 22, pp. 15–22, 1990.

[78] W. H. Wong and B. Li, “Laplace expansion for posterior densities of nonlinear functions of
parameters,” Biometrika, vol. 79, pp. 393–398, 1992.

[79] T. A. Zang, M. J. Hemsch, M. W. Hilburger, S. P. Kenny, J. M. Luckring, P. Maghami, S. L.
Padula, and W. J. Stroud, “Needs and opportunities for uncertainty-based multidisciplinary
design methods for aerospace vehicles,” Technical Report NASA/TM-2002-211462, NASA
Langley Research Center, Hampton, VA 23681-0001, 2002.

24

Appendix

Table A

Newton-Cotes integrator results using an eight panel adaptive product rule

to evaluate E[y1(d,X)] from Problem 2 given an initial design d = (0, 5)t. The
two dimensional error estimate was obtained using the one dimensional error
estimates and a technique described in Kahaner et. al. (1989).

Requested Estimated System E[y1(d, X)]

Error Error Analyses

1E-2 3.66E-5 1089 9.9425029

1E-4 3.66E-5 1089 9.9425029

1E-6 5.17E-6 1617 9.9419921
1E-8 2.55E-8 4113 9.9419941

Table C

Optimizer statistics for Problem 1 given an initial design d = (−10, 10)t

for DOT MMFD and DOT SQP. DOT SQP failed in all cases except Monte
Carlo with less than or equal to 1000 evaluations per integrand and importance
sampling with 10 evaluations per integrand, so its rows will be omitted. All
optimizer reported failures resulted from a zero gradient value calculated for
the reliability constraint when its value was infeasible.

DOT (MMFD)

Integrator Failures Reported System Optimizer Percentage

Optimum Analyses Calls Feasible

Mean(σ) Mean(σ) Mean(σ)

Monte Carlo 1E+01 0 25.05(0.39) 1.01E+03(2.81E+02) 49.50(14.03) 0.00%

Monte Carlo 1E+02 0 25.76(0.11) 1.05E+04(1.98E+03) 51.40(9.91) 20.00%

Monte Carlo 1E+03 0 25.83(0.04) 9.70E+04(1.90E+04) 47.50(9.48) 30.00%

Monte Carlo 1E+04 0 25.86(0.01) 9.12E+05(2.18E+05) 44.60(10.90) 80.00%

Monte Carlo 1E+05 0 25.86(0.00) 7.84E+06(8.00E+04) 38.20(0.40) 40.00%

MC Imp. Samp. 1E+01 0 25.50(0.65) 1.18E+03(1.80E+02) 57.90(9.02) 10.00%

MC Imp. Samp. 1E+02 0 25.79(0.08) 1.05E+04(2.90E+03) 51.30(14.48) 20.00%

MC Imp. Samp. 1E+03 0 25.81(0.00) 9.70E+04(1.20E+04) 47.50(6.02) 0.00%

MC Imp. Samp. 1E+04 0 25.85(0.00) 7.80E+05(0.00E+00) 38.00(0.00) 0.00%

MC Imp. Samp. 1E+05 0 25.86(0.00) 8.06E+06(2.37E+05) 39.30(1.19) 0.00%

Quasi-MC 1E+01 0 25.39 8.80E+02 43.00 0.00%

Quasi-MC 1E+02 0 25.87 8.80E+03 43.00 100.00%

Quasi-MC 1E+03 0 25.86 7.60E+04 37.00 100.00%

Quasi-MC 1E+04 0 25.86 7.80E+05 38.00 100.00%

Quasi-MC 1E+05 0 25.86 7.40E+06 36.00 100.00%

Newton-Cotes 1E-02 0 25.86 6.08E+04 38.00 100.00%

Newton-Cotes 1E-04 0 25.86 7.93E+04 38.00 100.00%

Newton-Cotes 1E-06 0 25.86 9.47E+04 38.00 100.00%

Newton-Cotes 1E-08 0 25.86 1.21E+05 38.00 100.00%

25

Table B

Newton-Cotes integrator results using a two panel (Simpson’s) adaptive

product rule to evaluate E[f(d,X)] from Problem 2 given an initial design
d = (0, 5)t. The two dimensional error estimate was obtained using the one
dimensional error estimates and a technique described in Kahaner et. al. (1989).

Requested Estimated System E[f]

Error Error Analyses

1E-2 -4.46E-6 1413 5.1834225E-3

1E-4 -9.96E-9 7741 5.1828158E-3

1E-6 3.80E-10 35841 5.1828190E-3

1E-8 -3.57E-12 204069 5.1828190E-3

Table D

Optimizer statistics for Problem 1 given an initial design d = (10, 6)t for
DOT MMFD. DOT SQP failed in all cases except Monte Carlo equal to 100
evaluations per integrand and importance sampling with 1000 evaluations per
integrand; however, even for these cases, only one of the ten optimizer trials did
not fail, so the DOT SQP rows will be omitted. All optimizer reported failures
resulted from a zero gradient value calculated for the reliability constraint when
its value was infeasible.

DOT (MMFD)

Integrator Failures Reported System Optimizer Percentage

Optimum Analyses Calls Feasible

Mean(σ) Mean(σ) Mean(σ)

Monte Carlo 1E+01 0 22.63(5.26) 1.10E+03(1.89E+02) 54.10(9.45) 10.00%

Monte Carlo 1E+02 0 25.79(0.04) 1.18E+04(1.51E+03) 58.00(7.56) 40.00%

Monte Carlo 1E+03 0 25.84(0.04) 1.16E+05(1.89E+04) 57.20(9.43) 40.00%

Monte Carlo 1E+04 0 25.85(0.01) 1.10E+06(1.35E+05) 54.00(6.74) 20.00%

Monte Carlo 1E+05 0 25.86(0.00) 1.11E+07(8.35E+05) 54.30(4.17) 20.00%

MC Imp. Samp. 1E+01 0 25.34(0.16) 1.00E+03(9.75E+01) 49.20(4.87) 0.00%

MC Imp. Samp. 1E+02 0 25.77(0.06) 1.10E+04(1.58E+03) 54.20(7.90) 10.00%

MC Imp. Samp. 1E+03 0 25.81(0.00) 1.02E+05(6.92E+03) 49.80(3.46) 0.00%

MC Imp. Samp. 1E+04 0 25.85(0.00) 1.18E+06(4.80E+04) 58.20(2.40) 0.00%

MC Imp. Samp. 1E+05 0 25.86(0.00) 1.11E+07(1.83E+05) 54.60(0.92) 0.00%

Quasi-MC 1E+01 0 25.39 1.16E+03 57.00 0.00%

Quasi-MC 1E+02 0 25.87 1.08E+04 53.00 100.00%

Quasi-MC 1E+03 0 25.86 1.10E+05 54.00 100.00%

Quasi-MC 1E+04 0 25.86 1.18E+06 58.00 100.00%

Quasi-MC 1E+05 0 25.86 1.14E+07 56.00 100.00%

Newton-Cotes 1E-02 0 25.86 8.07E+04 55.00 100.00%

Newton-Cotes 1E-04 0 25.86 1.07E+05 58.00 100.00%

Newton-Cotes 1E-06 0 25.86 1.26E+05 58.00 100.00%

Newton-Cotes 1E-08 0 25.86 1.66E+05 58.00 100.00%

26

Table E

Optimizer statistics for Problem 2 given an initial design d = (−10, 10)t

and using DOT MMFD and DOT SQP optimizers.

DOT (MMFD)

Integrator Failures Reported System Optimizer Percentage

Optimum Analyses Calls Feasible

Mean(σ) Mean(σ) Mean(σ)

Monte Carlo 1E+01 8 66.89(21.36) 8.80E+02(3.20E+02) 43.00(16.00) 0.00%

Monte Carlo 1E+02 4 418.45(205.64) 7.23E+03(3.62E+03) 35.17(18.09) 66.67%

Monte Carlo 1E+03 7 241.90(247.35) 1.09E+05(1.88E+04) 53.67(9.39) 66.67%

Monte Carlo 1E+04 2 108.04(162.28) 1.45E+06(4.55E+05) 71.62(22.74) 0.00%

Monte Carlo 1E+05 1 114.13(165.75) 1.88E+07(5.41E+06) 93.11(27.07) 11.11%

MC Imp. Samp. 1E+01 8 216.28(102.72) 6.30E+02(7.00E+01) 30.50(3.50) 0.00%

MC Imp. Samp. 1E+02 7 164.79(197.34) 9.60E+03(7.48E+02) 47.00(3.74) 0.00%

MC Imp. Samp. 1E+03 4 107.76(174.32) 1.63E+05(4.41E+04) 80.33(22.04) 0.00%
MC Imp. Samp. 1E+04 4 90.00(146.16) 1.77E+06(3.57E+05) 87.33(17.83) 16.67%

MC Imp. Samp. 1E+05 0 64.59(118.72) 1.88E+07(5.21E+06) 93.10(26.05) 10.00%

Quasi-MC 1E+01 1 — — — —

Quasi-MC 1E+02 0 59.70 1.60E+04 79.00 100.00%

Quasi-MC 1E+03 0 25.69 1.12E+05 55.00 100.00%

Quasi-MC 1E+04 0 25.12 1.58E+06 78.00 0.00%

Quasi-MC 1E+05 0 25.20 1.54E+07 76.00 100.00%

Newton-Cotes 1E-02 0 25.18 1.93E+05 73.00 100.00%

Newton-Cotes 1E-04 0 25.19 6.66E+05 77.00 100.00%

Newton-Cotes 1E-06 0 25.19 2.87E+06 77.00 100.00%

Newton-Cotes 1E-08 0 25.19 1.53E+07 77.00 100.00%

DOT (SQP)

Monte Carlo 1E+01 8 255.27(217.06) 1.22E+03(6.00E+02) 60.00(30.00) 50.00%

Monte Carlo 1E+02 9 39.42(0.00) 3.60E+04(0.00E+00) 179.00(0.00) 100.00%

Monte Carlo 1E+03 7 29.38(3.89) 2.56E+05(1.68E+05) 127.00(84.22) 66.67%

Monte Carlo 1E+04 9 29.68(0.00) 1.02E+06(0.00E+00) 50.00(0.00) 100.00%

Monte Carlo 1E+05 7 293.75(186.21) 1.35E+07(3.92E+06) 66.67(19.62) 66.67%

MC Imp. Samp. 1E+01 9 31.80(0.00) 4.44E+03(0.00E+00) 221.00(0.00) 0.00%
MC Imp. Samp. 1E+02 8 37.79(11.60) 2.10E+04(1.56E+04) 104.00(78.00) 100.00%

MC Imp. Samp. 1E+03 8 210.16(186.50) 1.27E+05(9.00E+03) 62.50(4.50) 0.00%

MC Imp. Samp. 1E+04 5 103.53(157.31) 1.30E+06(4.42E+05) 64.20(22.12) 40.00%

MC Imp. Samp. 1E+05 3 25.01(0.01) 2.47E+07(9.46E+06) 122.43(47.30) 0.00%

Quasi-MC 1E+01 1 — — — —

Quasi-MC 1E+02 1 — — — —

Quasi-MC 1E+03 0 25.63 1.22E+05 60.00 100.00%

Quasi-MC 1E+04 0 25.24 9.20E+05 45.00 100.00%

Quasi-MC 1E+05 0 25.25 9.20E+06 45.00 100.00%

Newton-Cotes 1E-02 0 25.23 8.77E+04 34.00 100.00%

Newton-Cotes 1E-04 0 25.23 3.75E+05 38.00 100.00%
Newton-Cotes 1E-06 0 25.24 1.47E+06 36.00 100.00%

Newton-Cotes 1E-08 0 25.24 7.70E+06 36.00 100.00%

27

Table F

Optimizer statistics for Problem 2 given an initial design d = (10, 6)t for
DOT MMFD and DOT SQP optimizers.

DOT (MMFD)

Integrator Failures Reported System Optimizer Percentage

Optimum Analyses Calls Feasible

Mean(σ) Mean(σ) Mean(σ)

Monte Carlo 1E+01 0 191.75(31.04) 5.58E+02(2.02E+02) 26.90(10.08) 0.00%

Monte Carlo 1E+02 8 384.41(2.73) 6.60E+03(1.40E+03) 32.00(7.00) 0.00%

Monte Carlo 1E+03 1 111.52(151.49) 1.09E+05(1.51E+04) 53.67(7.56) 11.11%

Monte Carlo 1E+04 0 414.68(9.50) 1.14E+06(2.18E+05) 55.90(10.89) 40.00%

Monte Carlo 1E+05 0 419.10(5.77) 1.23E+07(1.91E+06) 60.40(9.53) 0.00%

MC Imp. Samp. 1E+01 1 208.50(42.66) 7.24E+02(1.21E+02) 35.22(6.07) 0.00%

MC Imp. Samp. 1E+02 4 155.85(166.48) 1.13E+04(2.30E+03) 55.33(11.51) 0.00%

MC Imp. Samp. 1E+03 0 413.49(6.99) 9.54E+04(3.10E+04) 46.70(15.48) 0.00%
MC Imp. Samp. 1E+04 0 377.70(117.66) 1.05E+06(2.69E+05) 51.50(13.47) 40.00%

MC Imp. Samp. 1E+05 0 418.74(4.71) 1.17E+07(1.66E+06) 57.60(8.30) 60.00%

Quasi-MC 1E+01 1 — — — —

Quasi-MC 1E+02 0 451.24 1.16E+04 57.00 100.00%

Quasi-MC 1E+03 0 446.76 1.00E+05 49.00 100.00%

Quasi-MC 1E+04 0 415.70 1.60E+06 79.00 0.00%

Quasi-MC 1E+05 0 416.61 9.20E+06 45.00 0.00%

Newton-Cotes 1E-02 0 416.71 9.28E+04 45.00 100.00%

Newton-Cotes 1E-04 0 416.67 3.70E+05 45.00 100.00%

Newton-Cotes 1E-06 0 416.67 1.10E+06 45.00 100.00%

Newton-Cotes 1E-08 0 416.67 5.03E+06 45.00 100.00%

DOT (SQP)

Monte Carlo 1E+01 5 76.88(96.19) 2.76E+03(1.34E+03) 136.80(66.81) 40.00%

Monte Carlo 1E+02 8 151.99(127.36) 8.40E+03(3.00E+03) 41.00(15.00) 0.00%

Monte Carlo 1E+03 5 30.48(4.17) 2.92E+05(6.58E+04) 144.80(32.90) 100.00%

Monte Carlo 1E+04 7 28.40(2.95) 2.95E+06(1.57E+06) 146.67(78.53) 33.33%

Monte Carlo 1E+05 6 25.37(0.26) 1.24E+07(1.77E+06) 61.00(8.86) 75.00%

MC Imp. Samp. 1E+01 8 53.79(16.11) 1.27E+03(3.50E+02) 62.50(17.50) 0.00%
MC Imp. Samp. 1E+02 5 33.88(6.59) 1.98E+04(1.39E+04) 98.20(69.34) 80.00%

MC Imp. Samp. 1E+03 10 — — — —

MC Imp. Samp. 1E+04 6 24.74(0.05) 7.75E+05(2.37E+05) 37.75(11.84) 0.00%

MC Imp. Samp. 1E+05 3 25.01(0.01) 2.98E+07(4.29E+06) 148.00(21.46) 0.00%

Quasi-MC 1E+01 1 — — — —

Quasi-MC 1E+02 0 35.89 4.42E+04 220.00 100.00%

Quasi-MC 1E+03 0 25.74 6.20E+04 30.00 100.00%

Quasi-MC 1E+04 1 — — — —

Quasi-MC 1E+05 0 25.24 2.68E+07 133.00 100.00%

Newton-Cotes 1E-02 0 25.23 3.39E+05 133.00 100.00%

Newton-Cotes 1E-04 0 25.23 1.14E+06 128.00 100.00%
Newton-Cotes 1E-06 0 25.23 5.43E+06 128.00 100.00%

Newton-Cotes 1E-08 0 25.23 2.82E+07 128.00 100.00%

28

-10 0 10
0

10
-10 0 10

0

10

-10 0 10
0

10
-10 0 10

0

10

Figure A. Monte Carlo optimizer returned final designs for Problem 2 given an

initial design d = (−10, 10)t and using DOT(MMFD) optimizer. Samples per
integrand: red, 10; green, 1000; blue, 100000.

-10 0 10
0

10
-10 0 10

0

10

-10 0 10
0

10
-10 0 10

0

10

Figure B. Monte Carlo optimizer returned final designs for Problem 2 given

an initial design d = (−10, 10)t and using DOT(SQP) optimizer. Samples per
integrand: red, 10; green, 1000; blue, 100000.

29

-10 0 10
0

10
-10 0 10

0

10

-10 0 10
0

10
-10 0 10

0

10

Figure C. Monte Carlo optimizer returned final designs for Problem 2 given

an initial design d = (10, 6)t and using DOT(MMFD) optimizer. Samples per
integrand: red, 10; green, 1000; blue, 100000.

-10 0 10
0

10
-10 0 10

0

10

-10 0 10
0

10
-10 0 10

0

10

Figure D. Monte Carlo optimizer returned final designs for Problem 2 given

an initial design d = (10, 6)t and using DOT(SQP) optimizer. Samples per
integrand: red, 10; green, 1000; blue, 100000.

30

-10 0 10
0

10
-10 0 10

0

10

-10 0 10
0

10
-10 0 10

0

10

Figure E. Importance sampling optimizer returned final designs for Problem

2 given an initial design d = (−10, 10)t and using DOT(MMFD) optimizer.
Samples per integrand: red, 10; green, 1000; blue, 100000.

-10 0 10
0

10
-10 0 10

0

10

-10 0 10
0

10
-10 0 10

0

10

Figure F. Importance sampling optimizer returned final designs for Problem 2

given an initial design d = (−10, 10)t and using DOT(SQP) optimizer. Samples
per integrand: red, 10; green, 1000; blue, 100000.

31

-10 0 10
0

10
-10 0 10

0

10

-10 0 10
0

10
-10 0 10

0

10

Figure G. Importance sampling optimizer returned final designs for Problem 2

given an initial design d = (10, 6)t and using DOT(MMFD) optimizer. Samples
per integrand: red, 10; green, 1000; blue, 100000.

-10 0 10
0

10
-10 0 10

0

10

-10 0 10
0

10
-10 0 10

0

10

Figure H. Importance sampling optimizer returned final designs for Problem 2

given an initial design d = (10, 6)t and using DOT(SQP) optimizer. Samples
per integrand: red, 10; green, 1000; blue, 100000.

32

