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Abstract

Bioinformaticists use the Basic Local Alignment Search
Tool (BLAST) to characterize an unknown sequence by
comparing it against a database of known sequences, thus
detecting evolutionary relationships and biological proper-
ties. mpiBLAST is a widely-used, high-performance, open-
source parallelization of BLAST that runs on a computer
cluster delivering super-linear speedups. However, the
Achilles heel of mpiBLAST is its lack of modularity, ad-
versely affecting maintainability and extensibility; an effec-
tive architectural refactoring will benefit both users and de-
velopers.

This paper describes our experiences in the architectural
refactoring of mpiBLAST into a modular, high-performance
software package. Our evaluation of five component-
oriented designs culminated in a design that enables mod-
ularity while retaining high-performance. Furthermore, we
achieved this refactoring effectively and efficiently using
eXtreme Programming techniques. These experiences will
be of value to software engineers faced with the challenge
of creating maintainable and extensible, high-performance,
bioinformatics software.

1. Introduction

At the start of the summer of 2006, we set upon the
formidable task of refactoring mpiBLAST, a popular, par-
allel, bioinformatics package that runs on a parallel com-
puting cluster [12, 14]. Bioinformaticists have been using
mpiBLAST for their research activities ever since we first
released the package over three years ago. mpiBLAST has
proven to be a very useful scientific discovery tool with
more than 40,000 downloads across five major releases.
Due to its proven utility, mpiBLAST has become an inte-
gral component of several, major, high-performance, cluster
distributions [6, 10, 19, 20, 25, 26, 28, 30].

tilevich@cs.vt.edu

feng@cs.vt.edu

One of the reasons for the widespread popularity of mpi-
BLAST is its open-source development model, which fu-
eled a grassroots movement to provide support for the code.
Alas, the enthusiastic support of this ad hoc grassroots
movement exposed shortcomings in the overall design of
mpiBLAST (e.g., lack of modularity and consistency) that
needed to be addressed fully and expediently. Hence, we
undertook the architectural refactoring of mpiBLAST, and
in the short course of three months, we successfully accom-
plished this challenging task.

Despite the clear objective of creating a new design, we
had to overcome software engineering challenges from both
a purely technical and human resources standpoint. In the
technical realm, our effort entailed refactoring 10K lines of
functional code with little software engineering discipline
into a high-quality software package that adheres to state-
of-the-art software engineering principles such as modular-
ity, reusability, and encapsulation. However, the major draw
of mpiBLAST has been its high-performance functionality
(i.e., super-linear speedup). Therefore, any changes in the
design had to maintain (or improve) performance while pro-
viding the additional benefits of disciplined software engi-
neering to its stakeholders. Specifically, end-users require
easy-to-use interfaces and expedient support; system ad-
ministrators require simple installation and upgrade proce-
dures; and developers require a modular codebase to enable
seamless maintainability and extensibility.

Furthermore, our refactoring effort had to be completed
by a team of three in three calendar-months but utilizing
only five person-months [8]. With such a short timeframe,
this project called for a software development model that
allowed for a rapid development cycle. To this end, we em-
ployed several techniques of eXtreme Programming to ex-
plore the design space to the fullest degree possible within
our time constraints, i.e., rapid prototyping, pair program-
ming, and unit testing [3].

Our experience in refactoring mpiBLAST exemplifies
how a small team size complements the rapid development
cycle by fostering an environment in which designs can be
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Figure 1. Comparison of the Growth of Gen-
Bank against the Growth of Memory Capacity

quickly generated, evaluated, and critiqued. It is important
to note that this effort did not start from scratch, but rather
from a functioning software package that had been in ac-
tive use and development for several years. Instead of start-
ing from a clean slate, we embraced our prior experiences
with mpiBLAST and focused on the architectural refactor-
ing [9, 15, 36].

Additionally, our endeavor is an example of a common
trend. As parallel computation becomes a requirement for a
large and growing number of computing applications, their
increased complexity will likely lead to decreased maintain-
ability, making the architectural refactoring of such parallel
applications more and more common. This paper reports on
our experiences of refactoring a high-performance, paral-
lel, bioinformatics, open-source application, and we believe
that our experiences will be of value to software engineers
faced with the challenge of creating maintainable and ex-
tensible software in this important domain.

The rest of this paper is structured as follows. Sec-
tion 2 explains the significance of mpiBLAST from the
user’s perspective as well as the main aspects of its algo-
rithmic design. Section 3 details both the motivation behind
our refactoring effort and the design objectives we set for
ourselves. Our methodology and refactoring experiences
during this effort are reported in Section 4 and Section 5,
respectively, culminating in the final design that we chose
for mpiBLAST-2.0. We then outline some future directions
for mpiBLAST as well as how the new design will enable
them in Section 6. Lastly, Section 7 summarizes our expe-
riences and lessons learned of this architectural refactoring
of mpiBLAST.

2. mpiBLAST Overview

The advent of genome sequencing has brought biomedi-
cal researchers a wealth of DNA sequence information. Re-
searchers commonly use the Basic Local Alignment Search
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Figure 2. High-level View of mpiBLAST Algo-
rithm

Tool (BLAST) to search these sequence databases for re-
gions of homology between a query sequence and one of
the database sequences. Because the BLAST algorithm de-
tects both local and global alignments, regions of similarity
that are embedded in otherwise unrelated proteins can be
detected [1, 2]. Both types of similarity can reveal key in-
sights into the function of uncharacterized proteins.

BLAST enables the rapid search of nucleotide and pro-
tein databases in a sequential environment, and until re-
cently, these databases could fit in main memory. How-
ever, this is no longer the case as shown in Figure 1. More
importantly, because the size of sequence databases is dou-
bling every 12 months and far outpacing memory growth,
which is quadrupling every 36 months (or doubling every
18 months), sequence databases are unlikely to ever fit in a
sequential environment’s main memory again [5, 18].

In 2002 and 2003, we developed an open-source soft-
ware package, mpiBLAST, which augments the standard
BLAST software, developed by the National Center for
Biotechnology Information (NCBI), by executing it in par-
allel on a network of computers (i.e., compute cluster). At
a high level, the mpiBLAST algorithm follows a Master-
Worker parallelization model that consists of three basic
steps: (1) distributing the query to be searched by each
Worker, as shown at the left of Figure 2, (2) searching the
query on each Worker, and (3) merging the results from
each Worker into a single output file, as shown at the right
of Figure 2.

The significance of mpiBLAST’s parallelization scheme
is that it segments the database into pieces such that each
compute node searches a portion of the database, giving the
notable advantage that it offers super-linear speedup when
the database being searched is too large to store in an in-
dividual compute node’s memory. Furthermore, even when
the original database fits in memory, mpiBLAST still im-
proves throughput by finishing the search faster.

As sequence databases experience exponential growth
and sequence searching becomes more computationally in-
tensive each year, so grows the importance of mpiBLAST
functionality to bioinformatics researchers [24].
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3. Refactoring Objectives

Our starting point for the architectural refactoring was
mpiBLAST-1.4.0. As shown in Figure 3, this version ex-
hibits super-linear speedup across more than 100 proces-
sors through the use of query and database segmentation,
sophisticated scheduling, pipelined results gathering, and
asynchronous communication [11].

Despite its functionality, the codebase substantially
hinders maintainability and extensibility. For example,
mpiBLAST-1.4.0 is dependent on specific versions of the
NCBI C Toolkit, thereby requiring a new and custom patch
to be created for every new release of the Toolkit. There-
fore, one can significantly improve the package’s maintain-
ability and portability by introducing an abstraction that
streamlines this necessary but tedious and error-prone task.

Additionally, many changes to mpiBLAST-1.4.0 require
developers to have intimate knowledge of the entire pack-
age. For example, changing the way results are written
requires substantial modifications to several different func-
tions scattered across multiple source files. Not only does
this level of knowledge hinder extensibility, but this also
makes the package more difficult to maintain.

However, that is not to say that efforts have not been
made to improve the quality of the mpiBLAST codebase. In
fact, with each successive release the codebase has moved
more towards a modular design. Nevertheless, the desire
to improve the algorithmic quality of the package has over-
shadowed the objective to improve the modularity of the
codebase. From this pattern of development, a “feature-
rich”, but ad hoc, codebase has evolved.

The very success of the continued development of the
package depends on a concerted effort to add new features
while applying solid software engineering principles to mpi-
BLAST. This challenging task was further exacerbated by
several design constraints.

The challenge of our refactoring effort was in preserving
the high-performance properties of mpiBLAST-1.4.0 while
simultaneously improving maintainability and extensibility.
In addition, we had to preserve the above properties across
all of the multiple platforms on which mpiBLAST-1.4.0
runs (i.e., GNU/Linux, Windows, Mac OS X, and other
BSD and Unix variants). A new design that is highly main-
tainable and extensible but exhibiting poor performance
characteristics and only supported on one platform would
be desirable to its developers, but of zero utility to its users.
Therefore, we must ensure that the product of our refactor-
ing effort satisfies all of the mpiBLAST stakeholders: end-
users, system-administrators, and developers.

3.1. Maintainability

mpiBLAST has many users that are both geographically
and institutionally disparate. In many cases, a single mpi-
BLAST installation serves hundreds of users as part of a
shared supercomputing environment (e.g., Teragrid [35]).
Therefore, keeping the package up-to-date by finding and
fixing bugs quickly or installing new versions is of great
importance.

However, two different groups of mpiBLAST users have
unique sets of responsibilities in this process. System ad-
ministrators, and often the end-users as well, are responsi-
ble for installing new versions of the software as well as for
reporting any emerging issues to the developer community.
mpiBLAST developers address and resolve the issues, and
a patch or new release of mpiBLAST is then made available
to all interested parties through the mpiBLAST website.

To simplify the maintenance process, we aim to max-
imize the modularity of mpiBLAST, thereby enabling
changes (e.g., bug fixes) on a per module basis and reduc-
ing ripple-effects. This has the additional benefit of re-
quiring minimal familiarity with the entire software pack-
age when making modifications. For example, an issue
with command-line processing will only require familiar-
ity with the command-line module and not other modules
such as scheduling or formatting. Furthermore, the code for
the command-line module will be located in an intuitively-
named source file containing only command-line function-
ality. Placing each module in its own source file maximizes
encapsulation and modularity.

Modularity also enables mpiBLAST to embrace an
open-source development model in which many developers
can work on the software concurrently. Loosely coupled
code allows developers to make and integrate changes or-
thogonally to each other.



3.2. Extensibility

The growth of bioinformatics data continuously presents
new computational challenges. Specifically, databases are
growing faster than a single node’s physical memory by
33%-50%. Such challenges call for new and advanced algo-
rithms and data structures to be integrated into mpiBLAST.

It is likely that future contributions will span the entire
gamut of the mpiBLAST application: better search algo-
rithms, improved communication mechanisms, more intu-
itive user interfaces (UI), and efficient parallel Input/Output
(I/O) strategies to name a few. If mpiBLAST-2.0 fails to
facilitate such contributions, it will lose its utility.

Therefore, mpiBLAST should provide an intuitive and
flexible design in which all developers can incorporate
their novel algorithms and data structures into the package.
While we expect a certain level of knowledge from such de-
velopers, we should not require developers to possess com-
plete knowledge of the inner workings of the entire package
in order to make a contribution. Rather, developers should
only need knowledge relevant to the module(s) they are en-
hancing.

4. Methodology Experiences

As is the case with most successful software engineer-
ing endeavors, our general approach not only took into con-
sideration the purely technical characteristics of the task at
hand but also the human factors as well.

4.1. Technical Perspective

Parallel bioinformatics is a young research area. There-
fore, from a technical perspective, having no proven ar-
chitectural solutions available for this important, but still
emerging, domain required us to be able to evaluate many
designs thoroughly and quickly.

To evaluate multiple designs, it was imperative that we
keep a record of our efforts and thoughts on each. This
included keeping track of our discussions, evaluations, and
source code for each design. In addition, these records had
to be readily available to all the members of the team at
any time for examination and modification. To this end,
we utilized a WIKI implementation called pmWIKI to keep
track of all non-source-code documents [21, 27]. We chose
this particular WIKI implementation because of its simple
installation, ease of use, and utility. Of particular utility was
the revision control feature of pmWIKI which saved each
revision of every document that it managed. This enabled
us to replay our thought process whenever we needed to
recall why we made a particular decision at some point in
the past.

Revision control was also instrumental in source-code
development, as it allowed us to keep track of multiple con-
current designs under consideration. The revision control
system (RCS) that we chose to use was darcs [29]. The fast
and straightforward branching mechanism in darcs signif-
icantly facilitated concurrent development of multiple de-
signs. That is, at any point in time, we could branch (i.e., de-
viate) from our current design and pursue a radically differ-
ent approach on a whim, while still being able to revert back
to the pre-branch design at any time. Additionally, unlike a
traditional RCS, darcs did not rely on a centralized server,
enabling individual developers to pursue their own branches
(i.e., designs) independently of each other. While we did
not require the decentralized feature during the refactoring,
this feature will greatly facilitate geographically disparate,
open-source developers to contribute to mpiBLAST.

Lastly, the advantage of having a fully functional version
of mpiBLAST to start with enabled us to develop a thorough
suite of unit tests that we used consistently throughout the
development process [4]. If the current design could not el-
egantly pass all of the unit tests, we either branched to a new
design or reverted back to a previous design. This practice
helped to document our progress and gave us confidence
that our efforts were leading to the desired outcome.

4.2. Human Resource Perspective

Our team was composed of three members with each
member having defined primary roles in this endeavor,
which were determined by their areas of expertise. Our
project manager/visionary has been the principal investiga-
tor of the mpiBLAST project since its very inception. Our
technical lead has substantial experience with architecting
large-scale software projects both in industry and academia.
Last, but not least, our developer has been involved with
the mpiBLAST project for the last three years, including
a large-scale effort in sequence-searching the largest nu-
cleotide database against itself [17].

With each team member allocating different amounts of
time to the project, these roles were not rigidly assigned.
This enabled each team member to adjust to the demands
of the highly-dynamic and fast-paced refactoring effort by
participating in multiple roles whenever necessary. Specifi-
cally, meeting the short time constraint required team mem-
bers to assume different roles at different times due to mem-
bers having to fulfill their other duties as required by the
realities of an academic work environment.

As a development methodology, we used eXtreme Pro-
gramming techniques, i.e., rapid prototyping, pair program-
ming, and (as aforementioned) unit testing [3]. These tech-
niques significantly aided our project for several reasons.
First of all, with multiple designs to pursue and evaluate,
we needed to be able to make conclusions about their suit-



ability quickly [37, 39]. To achieve this objective, it was not
always necessary to produce a fully functional version of
mpiBLAST. In short iteration cycles, a small, architectural
prototype was often sufficient to reveal the deficiencies of a
design and thus determine its suitability.

Additionally, as with most software teams, our team
members possessed complementary expertise, and no sin-
gle member had sufficient knowledge required to accom-
plish the task independently. Thus, we needed to fuse two
different areas of expertise possessed by the members of our
team: parallel algorithmic design and software architecture
implementation. Through pair programming we were able
to utilize the combined expertise of individual members to
create a synergy of ideas and talents [38]. This technique
helped us to meet our objectives by enabling a concerted
effort to minimize the number of programming errors and
maximize productivity during initial prototyping. To clar-
ify, whereas we employed pair programming to create initial
skeletal prototypes, maturing the final version into a func-
tioning system was accomplished individually.

Furthermore, impromptu discussions during our joint
programming sessions often engendered novel ideas that
warranted further evaluation. We were pleasantly surprised
to find that some of the more off-the-wall ideas generated
during these discussions were incorporated into our final
design.

5. Refactoring Experiences

Before describing our refactoring experiences, we reit-
erate our main design objectives: maintainability and ex-
tensibility while still retaining high-performance. Achiev-
ing these objectives requires achieving the following goals:
(1) retain high-performance guarantees across multiple plat-
forms, (2) structure the system as a collection of reusable
and interchangeable software components, (3) express de-
pendencies and correspondences between different compo-
nents, (4) flatten the learning curve for development and
maintenance, and (5) avoid code duplication.

The motivation behind the pursuit of several of
these goals is self-evident, such as guaranteeing high-
performance, flattening the learning curve, and avoiding
code duplication. With respect to flattening the learning
curve, we were primarily concerned with making it easier
to develop and maintain the application, leaving learning to
program in ANSI C++ to the developer. We chose ANSI
C++ as the implementation language because, (1) the NCBI
Toolkit API is migrating to C++, (2) the newest version of
mpiBLAST is a combination of ANSI C/C++, and (3) we
needed to maintain cross-platform compatibility.

Our stated objective to refactor the codebase into a more
modular design and the patterns of mpiBLAST develop-
ment led us to structuring the system as a collection of
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reusable and interchangeable software components. As to
what the component decomposition would be, it became ap-
parent to us early on that the stages of the mpiBLAST al-
gorithm (e.g., Scatter, Search, etc.), rather than the process
roles (e.g., Master and Worker), should become the main
components. The reason for this form of component decom-
position is because it logically partitions the system into the
units that are most likely to be modified. For example, it is
highly foreseeable that a new search or write strategy would
be implemented as the system evolves, whereas changing
the master-worker paradigm to a peer-to-peer model would
be less likely.

However, decomposing stages into components did not
produce entirely independent components. In fact, like all
component-based designs, inter-component compatibility is
defined by their input and output types: if Scatter distributes
fragments as files, then Search must accept files rather than
memory buffers as input. Our final design had to express
these dependencies and correspondences between compo-
nents, preferably early on in the development process (i.e.,
during compilation vs. execution).

Next we discuss the different designs we pursued and
how each satisfied our design objectives.

5.1. GoF Design Patterns

Seeking to find a pure object-oriented design for mpi-
BLAST, we tried to find a suitable solution that utilized de-
sign patterns. The design pattern that most closely captures
our requirements for mpiBLAST was Abstract Factory. An
Abstract Factory is a flexible means in controlling how dif-
ferent components in a system are created [16]. The details
of creating multiple components in a system are encapsu-
lated inside factory objects that are themselves expressed



template <class Communicate,
template <class Communicate> class Scatter,
template <typename Scatter> class Search,

template <typename Search, class Communicate> class Gather,
template <typename Gather, typename Search, class Communicate> class Write>

class Scheduler { /xx body *x/ };

Figure 5. Template Definition for Scheduler in Parametric Polymorphic Design

only as abstract interfaces. A specific implementation of a
factory creates a specific type of an entire system. Thus,
the task of enforcing the compatibility between different
components is handled entirely by a factory object. Fur-
thermore, introducing new combinations of components is
straightforward: it only requires implementing a new fac-
tory object.

However, in our case, this design suffered from a com-
binatorial explosion of factory objects. Although every
component of mpiBLAST has input and output dependen-
cies, sets of components and even some individual compo-
nents could be replaced independently. As shown in Fig-
ure 4, Communicate (which provides generic communica-
tion primitives) is independent of every other component.
On the other hand, Search dictates the version of Scatter
that must be used: if Search uses files as input, Scatter must
produce files as output. Thus, with an Abstract Factory de-
sign, we need to provide a unique factory object for every
possible combination of components. This is a formidable
challenge, as every extension of mpiBLAST that produces a
new component would result in an explosion of new factory
objects.

Further exacerbating this design, it is the developer of a
new component who is responsible for creating new factory
objects that enforce the correct usage of the new component.
This means that the developer requires knowledge of all of
the components within the new factory objects, thereby sig-
nificantly raising the barrier to entry for new development.

While a different and/or novel design pattern, or a com-
bination thereof, could have provided an elegant design for
mpiBLAST-2.0, the use of most design patterns invariably
involves using indirection and dynamic dispatch through
virtual methods. Some sophisticated C++ compilers are ca-
pable of reducing the cost of such abstractions significantly,
however, with our objective of cross-platform portability,
we could not assume that all of the supported platforms
would have such a compiler available. Therefore, we chose
to look into designs in which the cost of abstractions would
be minimized by being resolved at compile time. This im-
mediately directed our efforts toward solutions that make
use of C++ templates as their abstraction mechanism. (As
it turned out, we did not pursue another design based on de-
sign patterns during this refactoring because we found an
alternative design that satisfies all of our requirements.)

5.2. Parametric Polymorphism

C++ templates provide a powerful mechanism for
generic programming. A class or a method can be param-
eterized with a template parameter that specifies the con-
straints on the type used. For example, the C++ Standard
Template Library (STL) makes extensive use of templates
not only to provide powerful functionality and diverse data
structures, but also to enforce compatibility between STL
classes and methods [34]. Specifically, the sort algorithm
method of STL accepts template parameters of type Rando-
mAccesslterator, thereby disallowing STL list to be sorted,
because the iterator for STL list (i.e., Bidirectionallterator)
is incompatible. However, STL sort works seamlessly with
an STL vector’s RandomAccesslterator. Furthermore, such
incompatibilities are signaled at compilation time as errors,
and in regards to performance, template abstractions do not
incur a runtime overhead.

Naturally, we attempted to utilize such template abstrac-
tions to enforce the compatibility requirements between
mpiBLAST components. In this scheme, each mpiBLAST
component was modeled as a template class whose template
parameters defined the types of components used within the
class. This forced the creation of components to have struc-
tural conformance: types used as template arguments had to
have matching methods with exact names and signatures.

Unfortunately, adequately enforcing structural confor-
mance caused the template definitions to become increas-
ingly complex and unwieldy. For example, to create a
Scheduler the following requirements had to be satisfied:
(1) references to Communicate, Scatter, Search, Gather,
and Write were needed, (2) Scatter had to use the same
Communicate as Scheduler, (3) Search had to use the same
Scatter as Scheduler, (4) Gather had to use the same Search
and Communicate as Scheduler, and (5) Write had to use
the same Communicate and Search as Scheduler. The C++
template definition for a parametric, polymorphic Scheduler
can be seen in Figure 5.

While this complex arrangement may succeed in enforc-
ing inter-component compatibility for a particular combi-
nation of mpiBLAST components, this solution is far from
general. Specifically, we have now forced every Write to
take exactly three parameters and for Gather to take exactly
two parameters and so forth. Obviously such rigidity makes



it impossible to accommodate future extensions where com-
ponents require different numbers of parameters.

To be fair, several techniques could alleviate this issue.
We could provide adapter template functions that bridge be-
tween classes taking different number of input template pa-
rameters. However, such adapter functions are non-trivial
to write, as it is not always possible to provide default tem-
plate parameters. It is also possible to use larger blocks of
template definitions as a single typename but the dependen-
cies between template types inside such blocks cannot be
enforced. For example, in the following definition, there is
no guarantee that Scatter and Search use the same version
or instance of Communicate.

template <typename Communicate,
typename Scatter>
class Search { /xx body xx/ }

From this complexity, it became clear to us that we
needed to take advantage of an alternative, template-based,
state-of-the-art, component-oriented design.

5.3. Mixins

A mixin is an abstract subclass through which one can
extend the behavior of a variety of super classes [7]. In
C++, a mixin can be implemented as a generic class with a
template parameter specifying its super class:

template <class Super>
class Mixin : public Super { /%% body %%/ };

Mixin-based inheritance can provide a powerful mech-
anism for composing components. In this setup, differ-
ent components participate in an inheritance relationship,
in which the exact version of all of the components for
a particular object is not specified until instantiation time.
Furthermore, the inheritance tree is built using a bottom-
up approach: subclasses are specified before superclasses.
For example, Cat<Animal> mixinAnimalCat, specifies that
Cat is an Animal. On the other hand, Cat< Picture> mixin-
PictureCat, specifies that Cat is a Picture. Notice that both
definitions use the same mixin subclass Cat, and it is the
superclass, Picture or Animal, that defines the functionality.

In our experience, a mixin-based design provides the
required structural conformance between different mpi-
BLAST components while still making it possible to easily
replace components. However, unlike a factory-based de-
sign, a mixin-based design specifies components only once
in a single declaration. In other words, this scheme makes
it impossible to use incompatible components because an
mpiBLAST object combines components only through a
single inheritance relationship. Furthermore, the template
definition of the main mpiBLAST object takes template ar-
guments specifying the types of each component used; it

then instantiates exactly one instance of each of these com-
ponents.

Despite the benefits of a mixin-based design, we discov-
ered that it has several deficiencies. Specifically, while the
phases of the mpiBLAST algorithm are represented as sep-
arate components, the Master and Worker roles are only de-
fined implicitly. This makes it possible for Master to di-
rectly call a Worker-specific method and vice versa. Making
such direct calls will introduce insidious consistency errors,
as Master and Worker are disparate and distinct processes
that do not share any memory address space. The only valid
sharing of data between Master and Worker is through Com-
municate.

Separating the Master and Worker functionality through
a coding convention proved to be insufficient, as the devel-
oper could easily bypass such restrictions. This realization
led us to pursue a refinement of this design by explicitly
separating the Master and Worker roles into distinct sub-
components.

5.4. Mixin Layers

Mixin layers is a flexible mixins-like design for imple-
menting collaboration-based designs by assembling soft-
ware components in layers in which each successive layer
is represented as a collection of inner classes [31, 32, 33].
Both the enclosing class and its inner classes participate
in an inheritance relationship with an abstract super class.
Specifically, the enclosing class inherits from the enclos-
ing super class, and each inner class inherits from its corre-
sponding inner class in the super enclosing class. Addition-
ally, this design allows functionality to be added with each
layer in a flexible manner: a layer defines inner classes only
for those objects for which it needs to add functionality. In
C++, a mixin-layer looks like the following:

template <class Super>
class MixinLayer : public Super {
class Innerl : public Super::Innerl {
/%% body xx/
}i
class Inner2 : public Super::Inner2 {
/%% body xx/
}i
}i
We tried two versions of this design: “mixin layers with
general roles” (Master and Worker), and “mixin layers with
refined roles” (Master, Worker, and Common). We detail
our experiences with each below and argue that mixin layers
with refined roles is best suited for mpiBLAST-2.0.

5.4.1. Mixin Layers with General Roles

Building on our classical mixins design described in 5.3,
we added two inner classes to each component representing



class Base({
class Common {
class Master
class Worker

}i

/x% body *x/ };
virtual private Common {
virtual private Common {

template <class Super>

class MixinLayer : protected Super ({
class Common
class Master
class Worker

}i

virtual protected Super:: Common {
virtual private Common, protected Super::Master {
virtual private Common, protected Super::Worker {

/%% body *x/ };
/%% body x%/ };

/%% body *x/ };
/%% body *x/ };
/x% body *x/ };

Figure 6. C++ Implementation of Mixin Layers with Refined Roles

the roles played by each mpiBLAST process: Master and
Worker. This way, Master and Worker functionality was ex-
plicitly separated between these two classes. In other words,
it was now impossible for a Master process to explicitly or
inadvertently call a method in the Worker process and vice
versa.

At first glance, a mixin layers with general roles de-
sign retains all of the advantages of classical mixins with
the added improvement of strictly separating mpiBLAST
process roles. However, the strict separation, despite its
desirable properties, also makes it impossible for Master
and Worker to share any common functionality. For exam-
ple, both Master and Worker processes need to send mes-
sages. With no common functionality between them, both
the Master and Worker inner classes have no choice but to
duplicate all of the message sending primitives. This results
in duplicating a substantial amount of code with all of the
inherent negative consequences, such as having to modify
multiple, but identical, pieces of code.

5.4.2. Mixin Layers with Refined Roles

To retain the benefits of mixin layers without the is-
sues of having to duplicate code we added another inner
class, Common, that contains common functionality be-
tween Master and Worker. This common inner class serves
as a base for the two other inner classes and to codify the
has-a relationship between them, we use private inheri-
tance. Figure 6 shows this mixin-layer with refined roles
design as implemented in C++.

It is important to note that even with private inheritance,
Master and Worker inner classes can still access the Com-
mon inner class in the upper layers through the Common
inner class in its own layer as shown in Figure 7. It is the
use of multiple inheritance for Master and Worker classes
that enables this behavior. That is, Master and Worker inner
classes inherit from their corresponding super inner class, as
is normal for mixin layers, but also inherit from the Com-
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Figure 7. Graphical View of Mixin Layers with
Refined Roles

mon class in their own layer. To avoid duplicating each
Common class instance in the multiple inheritance tree, we
use virtual inheritance when inheriting a Common class.

In a different language environment, we could have im-
plemented the common functionality in the enclosing class.
However, unlike Java, C++ does not automatically enable
inner classes to access their enclosing class and doing so
programmatically without pointers or references is non-
trivial. Because a non-trivial implementation of mpiBLAST
does not meet one of our primary design goals, namely
keeping the codebase simple and elegant and thereby flat-
tening the learning curve for development and maintenance,
we chose not to implement the Common functionality in the
enclosing class.

Table 1 shows a summary of how our five design goals
are satisfied by the designs we considered and as one can
see, a mixin layers with refined roles design satisfies all
of our stated design objectives, simplifying the design for
modularity and extensibility while retaining the requisite



GoF Design Parametric Classic | Mixin Layers w/ | Mixin Layers w/
Patterns Polymorphism | Mixins | General Roles Refined Roles
Portable High Performance - + + + +
(Re)Usable Components + + +/- + +
Expressed Dependencies - +/- + + +
Shallow Learning Curve + - +/- + +
Avoids Code Duplication - + + - +

Table 1. Summary Comparison of Design Fitness

performance characteristics. Specifically, the system is
clearly decomposed into separate components based both
on the stage of the mpiBLAST algorithm and also on the
process role. Through the use of mixin layers, components
are easily interchangeable and compatibility is still enforce-
able. This design enables mpiBLAST developers to main-
tain and extend the package in a well-modularized fashion
with different functionality confined to well-encapsulated
logical units (i.e., classes within mixin layers).

Lastly and most importantly, the refactored mpiBLAST
remains a high-performance application. Unfortunately,
comparing the performance of different versions of mpi-
BLAST is challenging due to the differences in the under-
lying search engine, NCBI BLAST. Since the release of
mpiBLAST-1.4.0, NCBI has released BLAST four times
with each release improving various qualities including per-
formance. Therefore, although mpiBLAST-2.0 improves
overall execution time in relation to mpiBLAST-1.4.0, e.g.,
by 43% for 32 workers, it is difficult to quantify precisely
what percentage of this improvement is due to the new de-
sign. However, unlike mpiBLAST-1.4.0, the new design
allows developers to quickly and straightforwardly incor-
porate each new NCBI BLAST engine, the prime avenue
for improving performance.

6. Future Directions

The successful architectural refactoring makes mpi-
BLAST immediately amenable to new and exciting devel-
opments. We are looking forward to seeing what mpi-
BLAST developers will add to the project, now that the
new design facilitates experimenting with new features and
functionality. Anecdotal evidence is encouraging: we re-
cently introduced our new implementation to several incom-
ing graduate students at Virginia Tech and they found the
new design intuitive and easy to follow.

One future direction we foresee for mpiBLAST is im-
proving various algorithmic properties such as searching
and Input/Output strategies. These improvements are vital
because, as aforementioned, sequence databases are expe-
riencing exponential growth and sequence searching is be-
coming more computationally intensive each year. But most

importantly, the new design makes it possible to develop
and incorporate these new features orthogonally to routine
maintenance of the codebase.

From the software engineering perspective, we aim to
further maximize the usability of the package for both de-
velopers and end-users. For developers, one area to ex-
plore is alternative ways to implement the has-a relation-
ship between Common and Master/Worker roles. For end-
users, we aim to improve usability. Most mpiBLAST end-
users are not experts in computer science, nor do they as-
pire to become ones. Thus, it is the developers who are
ultimately responsible for improving all aspects of the end-
user experience. Not coincidentally, the modular design of
mpiBLAST-2.0 is well suited to providing new UI facili-
ties, thereby opening up an entirely new area of mpiBLAST
development focused solely on the user experience.

7. Conclusions

In conclusion, the architectural refactoring of mpi-
BLAST has been an all-around positive experience that has
provided us with multiple insights that we believe are ap-
plicable in other parallel bioinformatics search algorithms.
Some of our insights are as follows:

1. High-performance software can be structured in a
modular fashion without sacrificing performance using
mixin layers.

2. Idiosyncrasies of the implementation language may
significantly influence the final design.

3. Complex architecture refactoring can be accomplished
by a small team in a short time frame using eXtreme
Programming techniques.

4. Pair programming can effectively combine disparate
expertise of team members into a synergy of ideas and
approaches.

5. Rapid prototyping of experimental ideas can be an
effective approach to evaluating multiple designs
quickly and efficiently.

Consequently, insights 3-5 confirm several of the find-
ings described in the research literature on eXtreme Pro-
gramming [13, 22, 23].



Lastly, parallel bioinformatics software has earned the
reputation of being difficult to develop and to use that we
think is undeserved. As our experience shows, sound soft-
ware engineering principles can and should be applied to
the development and maintenance of this type of software.
Our final design indeed satisfies all of our design objectives
and thus mpiBLAST-2.0 proves that one does not have to
give up performance to achieve desirable software engineer-
ing objectives such as modularity. We are optimistic that
mpiBLAST-2.0 will enable scientists to concentrate on their
own science rather than on computer science.
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