
 1

Education and Design: Using Human-Computer
Interaction Case Studies to Learn

Laurian Hobby, D. Scott McCrickard
Department of Computer Science and Center for HCI, Virginia Tech

Blacksburg, VA. 24061-0106
{lhobby, mccricks}@cs.vt.edu

ABSTRACT
Computers are essentially an ever-present tool that can be
used in almost any discipline to make work faster and
easier. Creating these programs, however, such that they
fulfill the needs of the customer is a challenging process
given the uniqueness of the discipline and circumstance.
Thus, the use of a programming design methodology can
enable the computer program designer to create a better
system that meets the needs of the customer. Teaching this
process, or in essence how to design, is the focus of this
work. In this paper we present how using case studies in
Human-Computer Interaction, and more specifically
displaying the evolution of a case study, increases a
designer’s ability to learn and then apply this knowledge.
We investigate how to use this design evolution within case
studies and the effects it had on application, while also
exploring how case studies can be used in educating
computer scientists.

Author Keywords
Human-computer interaction, case studies, scenario-based
design

INTRODUCTION
How do you teach design? Even with the skills and tools
given to programmers, such as languages and compilers,
how does a computer system designer know how to make
the right design? How to teach the art of creating an
interface? These are questions that are being discussed in
the Human-Computer Interaction (HCI) community. This
paper discusses these issues and explores the use of case
studies of successful computer designs as a tool to leverage
learning.

 A case study can be described as a collection of artifacts or
data about a particular example or phenomenon. In the
instance of a computer program design, a case study is a
collection of the artifacts, skills, and tools used to create the
end program. As an analogy, in building a house, the
agreements made between the architect and the builders
would be one datum and the set of architectural drawings
for the design would be another.

Case studies have had a long history of teaching in many
various disciplines because of the diverse nature of what a
case study can be. Perhaps it is the nature of a case study in
that tells a story that is easier to understand than a rote
methodology. Or, perhaps its popularity is due to the fact

that people can more easily understand and relate to the
story-telling and personality of the work. Perhaps they
remain popular because case studies are able to show the
details between the steps. No matter which of the above is
correct, case studies have the ability to make learning, and
more importantly understanding, easier.

This application of case studies as a teaching aid brings up
many other questions. For example, what pieces of
information are important to store/archive for others to
learn from later? Secondly, what is the most effective way
to present the case studies to novice designers to maximize
the extent of their learning? Thirdly, how can a case study
be developed and when should it be developed? In this
work we study what information should be used within a
case study. This affects all three of the posed questions and
is foundational in making this work successful.

BACKGROUND AND RELATED WORK
Case studies are a form of analogical problem solving; a
method in which a user is able to apply the lessons learned
in one discipline to a new situation. This method of learning
is effective due to the psychological methods that motivate
creativity [9]. Specifically, the cognitive mapping of one
situation in the mind to another is what makes the use of
case studies not only possible, but a normal function for
people to use in a new situation.

When using a case study a student will follow characteristic
steps in order to solve the presented problem. These steps,
according to Aamodt and Plaza, are retrieve, reuse, revise,
and retain [2]. First, the student has the need to solve a
problem and thus attempts to retrieve relevant material from
some library of cases. The student will then select the case
based on some set of defined criteria and determine a
unique solution using that material. Once the solution is
finalized it is archived within the original library [10]. This
cycle creates a process of knowledge reuse, augmentation,
and propagation, which assists the community to be
successful while using case studies.

In the HCI designer community there is a tendency,
however, to try and “recreate the wheel”. Rather than
looking through past designs and design decisions, as
successfully practiced in business [1] or biology [3, 13],
precedence has shown a tendency to be ignored. This could
be due to a multitude of factors, two of them being the age
of the discipline and the diversity of computer programs to

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Computer Science Technical Reports @Virginia Tech

https://core.ac.uk/display/10676126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

design; however, neither should be allowed to limit the
creation of a set of case studies. To be successful in this
endeavor, some standards should be applied to what needs
to not only be in a case study but how the case study should
unfold for the user. Just as a book is made up of sentences,
paragraphs, and chapters to tell a story, a case study should
provide a structured account of a past experience; and, just
as a book has a table of contents, bibliography, and other
structural content, a case study should possess items that
facilitate easy use. One way to achieve this result is to
employ a design methodology which defines a set of
standard artifacts and a timeline.

One design methodology that has been successful in
educating young HCI students is Scenario-Based Design
(SBD) [5, 14]. In SBD designers are encouraged to develop
computer systems, with the user in mind, by working with
scenarios. A scenario is a descriptive story that tells how an
end-user would interact with an interface. In a way, SBD
forces the designer to think through various design trade-
offs and decisions that have to be made. For example, a
notification message can be salient but it can also be overly
interruptive. These tradeoffs are called ‘claims’. By
working closely with the end-user of the interface, the
designer will be able to visualize the proposed system early
in the design process because scenarios and claims are
written in the user’s language (i.e., not in engineering
jargon).

In terms of a case study, the artifacts created while using
SBD could be combined in such that they would aid the
illustration of design. An introductory attempt has been lead
by Carroll and Rosson to create a case study library [6, 15].
This library1 is a collection of artifacts (i.e. scenarios,
claims, and other artifacts) that follow the SBD design
process. Through using these artifacts, teachers are able to
design class activities that best promote HCI education. It
should be noted that this library currently contains only a
half a dozen cases since this is early in its development
process. How to design a case study and what information
should be used in a case study are harder questions to
answer at this early research stage. Currently the artifacts
that are presented in the Case Study Library are the easiest
ones to collect: the final products. While these may support
an overview of the design process they may not highlight
the intricacies of the steps. For this fact we are focusing on
determining artifacts highlight the design process.

DESIGNING CASES
While visualizing a case study and building a library of
cases are important tasks, determining what should be in a
case study is more important as this will establish its
usefulness. A case study, in terms of SBD, needs to be able
to drive class learning activities. Creating the cases such
that they maximize the learning, and provide the best

1 The Case Study Library can be found at
http://ucs.ist.psu.edu/

reference tool, requires that the artifacts within the case
should be carefully explored.

The field of perceptual learning includes the concept that by
presenting contrasting cases the student will be better able
to detect what may be subtle differences between artifacts
[8]. This has ramifications for what case artifacts should be
present. Currently, one finalized artifact (i.e. the final
version of a scenario) is present, but the process and the
artifacts used to evolve to this state are missing. Common
experience shows that the first draft of any work product is
never the best. By presenting the evolving versions of these
SBD artifacts, and showing progression down the design
process, students will be better able to understand the
methodology used, and thus at a higher level the method of
HCI design. As an artifact evolves it will better reflect its
design requirements, e.g., as a scenario evolves it will better
incorporate the needed elements in order to convey the
story of use.

In this study we explored how a scenario evolved in order
to be able to describe the impact it would have on learning.
Wahid et. al. has explored the idea of how claims would
evolve and speculated not only how a claim would evolve
but also the impact it could have on deign [17]; however, in
the literature claims are not as well defined as scenarios
which at this point in time makes them harder to evaluate.

In writing a scenario while using SBD there are eight
elements that should be included: Setting, Actor(s), Task
Goals, Plans, Evaluations, Actions, Events, and Plot (See
Table 1). Scenarios should also have certain characteristics
that are harder to define: Succinctness, Concreteness,
Flexibility, Coherence, and the ability to Promote Work
Orientation (See Table 2). As a scenario evolves the writer

Element Definition

Setting Situational details that motivate or explain
goals, actions, and reactions and actors(s)

Actors Human(s) interacting with the computer
interface or other setting elements

Task Goals Affects on the situation that motivate actions
carried out by actors

Plans Mental activity directed at converting a goal
into behavior

Evaluations Mental activity directed at interpreting the
features of the situation

Actions Observable behavior

Events External actions or reactions produced by the
computer or other features of the setting

Plot Arrangement of incidence to convey the
story

Table 1. Elements of a scenario. (Adapted from [5, 14].)

 3

would not only incorporate more elements of a scenario but
the writer would also be able to balance concreteness and
flexibility in such a way that the scenario would promote
work orientation. Teaching these finer elements and
characteristics is hard not only for a student to understand,
but it is hard for an instructor to evaluate, thus providing
contrasting cases could enable a better understanding for
the educational process.

EXPERIMENT

Experimental Design
In this study there were two hypotheses: 1) That evaluators
will be able to attain a high level of agreement on what a
‘good’ scenario is; 2) That participants would create better
scenarios in the after working with scenarios that showed
the evolution of design. To address these hypothesis, three
groups of users (n=41; two groups of 14, one group of 13)
were employed to create a three factor experiment – two
experimental groups and one control group. The
participants were all enrolled in a junior year HCI class
being taught in the spring semester of 2006. Each
participant was given a set of four scenarios and a list of the
elements of a scenario with descriptions as provided in
Table 1. The participants were then instructed to isolate the
elements of a scenario within each of the four scenarios.
Next, the participants had to write a follow up scenario
based on the previously viewed scenarios. These scenarios
were viewed as the final material to be evaluated for this
study.

The three factors were control, expert, and novice. In the
control group the participants read four different scenarios
about the same piece of software. In the expert and novice
groups the participants read a progression of the same
scenario with the fourth being the final and perfect version.
The expert group read the progression of scenarios from the
point of view of an expert SBD writer; where as, the novice
group read the progressions from the standpoint of a novice
SBD writer. Expert scenarios evolve to incorporate and
weave more material into the story; novice scenarios, on the

other hand, are usually overly verbose and try to
incorporate too much or too little. For example, a novice
will occasionally incorporate a funny anecdote that is
unrelated to the plot: “George got really angry and had to
crack open a beer...”. Through feedback a student learns
that this type of information is unneeded, and it was thus
incorporated into the novice experimental factor.

The scenarios produced by the participants were then
graded by three evaluators. Each of the fifty-one scenarios
was evaluated based on a) the elements of a scenario and b)
the characteristics of a scenario; with a double-anchor ten-
point scale in which “one” was the best grade and “ten” was
the worst. Three evaluators were used, two female and one
male. The male and one of the female evaluator had taken
one prior SBD design class. The other female evaluator had
programming experience but had not taken any HCI
classes. The results were then evaluated for inter-rater
reliability [12]. Inter-rater reliability is the statistical test to
measure how much the evaluators agree on a criterion. For
example, if the there judges scores were 6, 7, and 6, this
would have a high level of agreement: the scores were
similar. For this study the inter-rater reliability was done for
each characteristic and element and agreement is measured
in terms of percentage. The average for each element was
then taken across the three evaluators for the participants
final score. These scores were then used to determine the
effectiveness of the contrasting cases.

For the inter-rater reliability, the null hypothesis was that
the evaluators would have a successful rate of agreement. If
a successful level of agreement is found and the null
hypothesis is disproved, then this would prove the there is
agreement on what makes a ‘good’ scenario. Given a
successful level of agreement for the first stage, the null
hypothesis for the participant scenarios was that all three
factor groups would perform at similar levels across all
elements and characteristics of a scenario. If the null
hypothesis is disproved for this stage then it would prove
that contrasting cases could be used to help teach design.

Results
Inter-rater Reliability
The interclass correlation between all three groups was very
low. Taking the average measures in a two way random
effects model – where both people-effects and measure-
effects were random – the interclass correlation was 0.31
(df = 50). In contrast, when the rater who had not had any
previous HCI or SBD experience was removed, the
interclass correlation between the two remaining evaluators
was 0.67 (df=50). There is a correlation of agreement
between the two judges that could be relied upon. This
disproved the stage one null hypothesis and allowed for a
continued evaluation of the participants’ scenarios.

Participant Scenarios
For the participant scenarios the null hypothesis was
disproved: there was a statistical difference between the
groups. Using a two-tailed t-test there was a statistically

Characteristic Definition

Succinctness The ability to convey the right amount
of information about the elements

Concreteness The ability to be firm in the details
about the elements

Flexibility The ability to leave future adaptation
about the elements

Coherence Logical flow and aesthetic consistency

Promote Work
Orientation

Enables all stakeholders to understand
the design at any point in the design
process

Table 2. Characteristics of a scenario. (Adapted from [4, 10].)

 4

significant difference between the control and the
experimental groups – experimental groups being novice
scenarios and expert scenarios combined. This means that
in the following elements and characteristics of a scenario
the contrasting cases groups performed better than the
control group: Actors (p=0.049), Goals (p=0.035), Plans
(p=0.01), Evaluation (p=0.032), Actions (p=0.04), Events
(0.081), Plot (p=0.044), and Concreteness (p=0.061). (See
Table 3 for statistics on mean and standard deviation.) It
can be seen initially that elements of a scenario can be more
easily isolated and transferred to future work by
participants. However, characteristics of a scenario may be
harder concepts for students to mentally digest. In terms of
a difference between expert and novice groups there was a
moderate statistical difference in the element of Evaluation
with expert scenarios having a better score (p=0.08; Expert
Mean=5, Expert SD=1.08, Novice Mean=4, Novice
SD=1.31). These results prove that contrasting cases can
affect certain scenario factors to help teach SBD to
undergraduate students.

Discussion
Looking at the results we can see that the use of contrasting
cases, in particular showing the evolution of design, can
help educate; in essence, it can help teach people how to
design. The use of contrasting cases or even HCI in
computer science seems atypical to computer programmers.
This may be due to the influence of mathematics where
there is one correct answer to a problem. In design this is
simply not the case; instead, there may be many possible
solutions that all influence the final outcome.

An analysis of how a doctor might treat a patient- by
recommending the patient drink a glass of juice every day
or by prescribing a dose of antibiotics in order to achieve a
healthy state- may be analogous to understanding that there
are many solutions to a design problem: determining which
method to use is where case studies can play a part in

design. When trying to determine which case to use, or how
to apply that knowledge to the application of ones own
work, being able to see the steps between the starting point
and the finalized solution can highlight the intricacies of a
delicate process. As we can see from the results shown in
Table 3, having students see the design evolution, whether
from the novice or expert standpoint, students were able to
see the subtle differences between the scenarios and then
apply that knowledge to writing their own material.

In terms of the scenario evaluation, it is encouraging to see
that agreement about what makes a “good” scenario is
possible. Although it takes training in SBD to get a
correlated agreement, this is not surprising. These
evaluators have had feedback from expert scenario writers
in their class instructor. This possibly enabled the
evaluators to have a better grasp on the elements and
characteristics of a scenario due to their own experience
with using SBD. In other studies, when trying to get a
significant correlation of agreement, most evaluators have
to work closely for a period of time before the evaluation
can start. This process, in a way, works to guarantee a
larger agreement because of a defined set of rules created
by the evaluators – ones that were not given by the
experiment proctor. In this study no such process was used:
the evaluators worked independently and had not
participated in group work together. This means that in
general, with previous work in SBD, subjectivity of what
makes a good scenario can be limited.

The lack of agreement in the characteristics of a scenario –
succinctness, flexibility, coherence, and promoting work
orientation – is not surprising either. The characteristics of a
scenario are harder to grasp then whether or not an element
of a scenario is present. It is similar to asking someone to
judge figure skating: the rates of agreement in artistic
quality are going to vary more than ones based on technical
skill due to the intrinsic biases of what makes good art.
These are harder concepts to grasp and are good examples
of those that we believe need more work.

The lack of statistical significant for the element of Setting
can be explained by looking at the activity within the
experiment. In this activity the participants had to follow
up on past materials. For seven of the eight elements the
participants had to construct new material which showed a
difference in their abilities. For the element of Setting the
participants were able to copy almost all of the material
from the previous work across all three experimental
factors. This is most likely what caused a lack of difference
for this element.

Lastly, the lack of a statistical difference between expert
and novice scenarios is surprising. This may be due to a low
population of users; however, the t-tests between the two
groups showed that there was little or no difference
between the two experimental groups. It is possible that the
participants were able to learn the same lesson through

 Control Expert Novice
 Mean SD Mean SD Mean SD
Setting 3 0.91 3 0.91 3 0.92
Actors 3 1.51 2 1.04 2 0.78
Goals 5 1.09 4 0.75 4 0.93
Plans 5 1.03 4 0.89 4 1.13
Evaluation 6 1.52 5 1.06 4 1.31
Actions 5 1.65 3 1.04 4 1.32
Events 6 1.34 5 1.15 5 1.40
Plot 4 1.05 3 1.11 3 0.64
Succinct 3 0.98 3 0.87 3 1.00
Concrete 4 0.99 3 0.69 3 1.12
Flexible 3 0.70 3 1.07 2 0.36
Coherence 3 0.97 3 0.86 3 0.67
Work 2 0.53 2 0.98 2 0.47

Table 3. The mean and standard deviation for the three factor
groups based on scenario elements and characteristics

 5

different means which caused the same end results. This
topic will have to be explored in future work.

Overall, these results make a strong argument for using
contrasting cases while trying to teach and/or learn from
SBD. Much of the time spent in a class involves the
students receiving feedback from a teacher about their work
and then turning the feedback into a better product. By
showing the evolution of a scenario the student is able to
see the application of unspoken – and not illustrated –
feedback; this student is then able to apply the gained
knowledge to their own future work. Not only does this
reduce the costly time spent on providing teacher-student
feedback, but it also gives the student a reference tool in
guiding their own work. For example, ‘Dan wants to better
incorporate his actor’s motivations and goes to a case study
where this is illustrated.’ This application facilitates a
faster learning time and allows the students to focus on
harder areas of design development.

Apart from just a reference tool for students to refer back to
this new work should be applied to actual classroom
activities. In terms of practical application, instructors
should be able to focus class activities on using a case
library to design scenarios. In a jigsaw -like activity where
students are given intermediate elements, students can
explore the previously used scenarios while focusing on one
particular aspect. For example, if a classroom of forty
students was broken into eight teams, each team could
focus on one element of a scenario and how its use evolves
while designing. Activities that involve case studies need to
be explored in the future.

While SBD may be only one design methodology or
process, it shows that students are able to take the story
from one set of data and produce a solution that is better.
This ultimately means that these students will be able to
better convey their designs to stakeholders. Needless to say,
this is an important process to learn when designing
software solutions – where feedback from the stakeholders
is sometimes what will make or break the success of a piece
of software.

In the larger picture this work makes a convincing
argument for a way or tool to teach design: using case
studies. A program manager or a designer will be able to
use a case study and a case study library to learn how to
make the right design; by following the precedence set forth
by past designs programmers will be able to raise the floor
on their ability to create a successful design.

FUTURE WORK
The next phase of this work is going to be expanding the
contrasting cases to other components of SBD. This will
naturally lead to the future development of a case study that
will show the evolution for all established SBD artifacts.

Using contrasting cases is only one of the many new
theories that might be added to a case study. For example,
when trying to determine which claims to use, a student

may look through a similar case study to see which claims
were discarded or how they were modified. Expanding on
this idea, a map of the claims and how they all interact to
create a final design is another part of a design case study
that should be tested.

Discovering how these cases should be visualized and
support the activities associated with learning also needs
more development. Some preliminary work has been done
using the current case study library; however, the activities
are based off of the library, rather than the library and its
cases being based on the activities[6]. One piece of
information found in the previous work performed on
visualizing cases is that the activities for learning are stifled
by the current visualization[4]. Participants were not able to
apply understanding from one phase of SBD to the next.
Creating a library/case that is networked and displayed in
such a way that it is intrinsically obvious that it will make
the library/case usable and educational will be of great
benefit.

In the larger picture of cases, finding a way to make the
case library self propagating would be a large stride in the
success of this work. At Virginia Tech there is a group that
is working on a project that is planned to guide designers
through the steps of SBD. This project, called LINK-UP
[7], works with a library of SBD claims to have the
designer create the needed artifacts of SBD process. For
example, as designers write scenarios they may choose
claims from the library and incorporate that information
into their scenarios. Working to take the created artifacts
out of LINK-UP and into a case study would automate the
process of creating, leveraging, and modifying cases.

In terms of education, using different types of case studies
has been effective in the education of HCI students. The
work done by McCrickard, Chewar, and Somervell points
out that using a traditional case study library- like the one at
present- requires a significant background in the material
before application can be possible [11, 16]. The use of
familiar interfaces such as AIM or Yahoo was the most
productive in enabling students to apply the theory within
HCI; however, students felt that the case study library was
the best reference to refer back to and use. Entwining both
of these educational materials in a case library would make
the best tool for young designers.

The current work presented in this paper moves towards the
future work to be completed in understanding how to use
case studies for HCI education. Determining what should
be in a case study is the first step, along with determining
what activities to support with a case study. The next step
of this work is to determine how to visualize the materials
and to propagate the library of case studies.

CONCLUSION
Some people have argued that design is an art and it cannot
be taught. If this is true, then why are there art schools and
programs? Art, the same as design, is a creative process.
Knowing how to utilize that process to yield the highest

 6

results is what teaching design is all about. In this paper we
have discussed how case studies and how a case study
library should be involved in teaching HCI. One element of
that is determining what parts or artifacts of design should
be presented within a case study.

The research presented in this paper demonstrates that by
showing students how design evolves, students were able to
grasp a higher understanding of a popular design process.
This understanding was then transferred to their own work
to produce a better design in eight out of the thirteen graded
criteria. This is an encouraging step in trying to answer the
question of how to teach design and one that should be
explored in future work.

ABOUT THE AUTHORS
Laurian Hobby is a first year Ph.D. student at Virginia
Tech. D. Scott McCrickard is her advisor and an Assistant
Professor at Virginia Tech.

ACKNOWLEDGMENTS
We would like to thank Jason Lee and Shahtab Wahid for
their help with crafting this work and the Virginia Tech
Statistical Department for helping with the statistical
modeling and testing.

REFERENCES
1. Havard Business School Cases. 2006, The website of
Harvard Business School Publishing.
http://www.hbsp.harvard.edu/products/cases/.
2. Agnar Aamodt and Enric Plaza. Case-Based
Reasoning: Foundational Issues, Methodological
Variations, and System Approaches, in Artificial
Intelligence Communications. 1994. p. 39-52.
3. Mark Bergland, Karen Klyczek, Mary Lundeberg,
Kim Mogen, Douglas Johnson, Marlys Nelson, Torey
Kauth, Sam Cocchiarella, Tim Krehl and Tim Hiller. Case
It! Case-based learning in biology. 2006.
http://caseit.uwrf.edu//caseit.html.
4. Brandon Berry, Laurian Hobby, D. Scott McCrickard,
Chris North and Manuel A. Pérez-Quiñones. Making a Case
for HCI: Exploring Benefits of Visualization for Case
Studies, in ED-MEDIA. 2006: Orlando, FL.
5. John M. Carroll, Making Use: Scenario-based Design of
Human-Computer Interactions. 2000. Cambridge:
Massachusetts Institute of Technology.
6. John M. Carroll and Mary Beth Rosson, A case library
for teaching usability engineering: Design rationale,
development, and classroom experience. J. Educ. Resour.
Comput., 2005. 5(1): p. 1-22.

7. C. M. Chewar, Edwin Bachetti, D. Scott McCrickard
and John Booker. Automating a Design Reuse Facility with
Critical Parameters: Lessons Learned in Developing the
LINK-UP System, in Computer-Aided Design of User
Interfaces IV., Jacob, Robert and Limbourg, Quentin and
Vanderdonckt, Jean, Editors. 2005, Kluwer Academic
Publishers. p. 235-246.
8. Wendell Garner, The processing of information and
structure. 1974. Potomac, Md.: Earlbaum Associates.
9. Mary L. Gick and Keith J. Holyoak, Analogical Problem
Solving. Cognitive Psychology, 1980. 12(3): p. 306-355.
10. Ramon López de Mántaras and Enric Plaza, Case-
Based Reasoning: An Overview. AI Communications, 1997.
10(1): p. 21-29.
11. D. Scott McCrickard, C. M. Chewar and Jacob
Somervell. Design, Science, and Engineering Topics --
Teaching HCI with a Unified Method, in Proceedings of the
2004 ACM Technical Symposium on Computer Science
Education (SIGCSE '04). March 2004: Norfolk, VA. p. 31-
35.
12. Kenneth O. McGraw and S. P. Wong, Forming
Inferences About Some Intraclass Correlation Coefficients.
Psychological Methods, 1996. 1(1): p. 30-46.
13. Centers for Disease Control and Prevention.
Epidemiologic Case Studies. 2005, Department of Health
and Human Services.
http://www.cdc.gov/doc.do?id=0900f3ec80093d70.
14. Mary Beth Rosson and John M. Carroll, Usability
Engineering: Scenario-Based Development of Human-
Computer Interaction. 2002. San Francisco: Morgan
Kaufmann Publishers.
15. Mary Beth Rosson, John M. Carroll and Con M. Rodi.
Case studies for teaching usability engineering, in
Proceedings of the 35th SIGCSE technical symposium on
Computer science education. 2004, ACM Press: Norfolk,
Virginia, USA.
16. Jacob Sommervell, C. M. Chewar and D. Scott
McCrickard. Making a Case for HCI: Comparing Materials
for Case-Based Teaching, in 2004 Conference on Frontiers
in Education (FIE '04),. 2004: Savannah, GA. p. T3H-4 -
T3H-9.
17. Shahtab Wahid, C. F. Allgood, C. M. Chewar and D.
Scott McCrickard. Entering the Heart of Design:
Relationships for Tracing Claim Evolution, in Proceedings
of the Sixteenth International Conference on Software
Engineering and Knowledge Engineering (SEKE '04).
2004: Banff Alberta Canada. p. 167-172.

