
Forward, Tangent Linear, and Adjoint Runge Kutta Methods in

KPP–2.2 for Efficient Chemical Kinetic Simulations

Adrian Sandu∗ and Philipp Miehe

Department of Computer Science

Virginia Polytechnic Institute and State University

Blacksburg, VA 24061.

Email: {sandu, pmiehe}@cs.vt.edu

July 7, 2006

∗Corresponding author. Phone: (540)-231-2193. Fax: (540)-231-6075. Email: sandu@cs.vt.edu.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computer Science Technical Reports @Virginia Tech

https://core.ac.uk/display/10676123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

The Kinetic PreProcessor (KPP) is a widely used software environment which generates Fortran90,

Fortran77, Matlab, or C code for the simulation of chemical kinetic systems. High computational

efficiency is attained by exploiting the sparsity pattern of the Jacobian and Hessian. In this paper

we report on the implementation of two new families of stiff numerical integrators in the new version

2.2 of KPP. One family is the fully implicit three-stage Runge Kutta methods, and the second family

are singly diagonally-implicit Runge Kutta methods. For each family tangent linear models for direct

decoupled sensitivity analysis, and adjoint models for adjoint sensitivity analysis of chemical kinetic

systems are also implemented. To the best of our knowledge this work brings the first implementation

of the direct decoupled sensitivity method and of the discrete adjoint sensitivity method with Runge

Kutta methods. Numerical experiments with a chemical system used in atmospheric chemistry il-

lustrate the power of the stiff Runge Kutta integrators and their tangent linear and discrete adjoint

models. Through the integration with KPP–2.2. these numerical techniques become easily available

to a wide community interested in the simulation of chemical kinetic systems.

Keywords: Stiff chemical kinetics, Runge Kutta methods, direct decoupled sensitivity analysis,

adjoint sensitivity analysis

2



1 Introduction

Computer simulation of chemical kinetic systems requires efficient implementations of reaction mecha-

nisms for analysis and further development. Numerical stiffness, due to the presence of both fast and

slow reactions with reaction speeds spanning many orders of magnitude, poses special challenges to the

numerical integration techniques. A number of numerical codes have been developed to integrate stiff

ordinary differential equations (ODEs) describing chemical kinetics, e.g., Facsimile [12], AutoChem [1],

SPACK [16], CHEMKIN [2], ODEPACK [7], and KPP [14].

The Kinetic PreProcessor KPP [14, 26, 13, 27] is a software tool that assists the computer simula-

tion of chemical kinetic systems. The concentrations of a chemical system evolve in time according to

the differential law of mass action kinetics. A numerical simulation requires an implementation of the

differential laws and a numerical integration in time. KPP is currently being used by many academic,

research, and industry groups in several countries [5, 33, 34, 32, 31, 24].

KPP translates a specification of the chemical mechanism into Fortran77, Fortran90, C, or Matlab

simulation code that implements the concentration time derivative function, its Jacobian, and it Hessian,

together with a suitable numerical integration scheme. Sparsity in Jacobian/Hessian is carefully exploited

in order to obtain computational efficiency. Fortran90 is the programming language of choice for the

vast majority of scientific applications. Matlab [6] provides a high-level programming environment for

algorithm development, numerical computations, and data analysis and visualization. The Matlab code

produced by KPP allows a rapid implementation and analysis of a specific chemical mechanism.

A summary of KPP generated routines is given below:

1. Fun: the time derivative of concentrations;

2. Jac, Jac SP: Jacobian of Fun in full or in sparse format;

3. KppDecomp: sparse LU decomposition for the Jacobian;

4. KppSolve, KppSolveTR: solve sparse system with the Jacobian matrix and its transpose;

5. Jac SP Vec, JacTR SP Vec: sparse Jacobian (transposed or not) times vector;

3



JacFun

HessJac_SP

full format

sparse format

Jac_SP_Vec Hess_Vec

HessTR_VecJacTR_SP_Vec

functions using sparsity

Figure 1: KPP-generated building blocks for chemistry simulations include the derivative function, the

Jacobian and the Hessian, sparsity information on the Jacobian and the Hessian, and sparse linear algebra

routines for tensor-vector products and the solution of sparse linear systems.

6. The stoichiometric matrix STOICM;

7. ReactantProd: vector of reaction rates;

8. JacReactantProd: the Jacobian of the above;

9. dFun dRcoeff: derivatives of Fun with respect to reaction coefficients (in sparse format);

10. dJac dRcoeff: derivatives of Jac with respect to reaction coefficients times user vector;

11. Hess: the Hessian of Fun; this 3-tensor is represented in sparse format;

12. Hess Vec, HessTR Vec: Hessian (or its transpose) times user vectors; same as the derivative of

Jacobian (transposed) vector product times vector.

Figure 1 summarizes the main components of the KPP-generated code that are useful for most chem-

istry simulations. Efficiency is provided through the sparsity format of the building blocks: only non-zero

entries of the Jacobian as well as the Hessian are stored. Sparsity structure then requires functions to

multiply the Jacobian and Hessian with a vector. The names of these functions are given in the figure.

The KPP environment allows for rapid prototyping of new chemical kinetic schemes as well as new

numerical integration methods. KPP incorporates a library with several widely used atmospheric chem-

4



istry mechanisms; the users can add their own chemical mechanisms to the library. KPP also includes a

comprehensive suite of stiff numerical integrators.

The original set of integrators in KPP–2.1 [14, 26, 13, 27] contains several implementations of efficient

solvers employing the sparsity structure of the stiff system. A number of Rosenbrock methods of various

orders can already be used in KPP [28]. The high efficiency has made Rosenbrock methods one of the

first choices for many applications, and in particular for atmospheric chemistry. SEULEX [21], a variable

order stiff extrapolation implementation, produces extremely accurate solution. Backward differentiation

formula (BDF) methods have been used in the Livermore ODE solver (LSODE, LSODES [23]) in the

implementation of the VODE [10] integrator to be applied to stiff problems. Furthermore, a BDF-based

direct-decoupled sensitivity integrator is part of the original set of solvers by modifying ODESSA [22] to

use the sparse linear algebra routines of KPP.

In this paper we describe two new families of stiff numerical integrators which have been implemented

in the new version 2.2 of KPP. One family is the fully implicit three-stage Runge Kutta methods (including

Radau-1A, Radau-2A, Lobatto-3C and Gauss formulas). The second family are singly diagonally-implicit

Runge Kutta (SDIRK) methods (including five different formulas of orders 2–4). Integrators in both

these families have excellent stability properties and allow for efficient and high accuracy solutions of

chemical kinetic systems. In addition, tangent linear models for direct decoupled sensitivity analysis,

and adjoint models for adjoint sensitivity analysis of chemical kinetic systems are also implemented. The

implementation of the new integrators is done in Fortran90.

The paper brings the following novel elements: (1) this is the first implementation of multiple Runge

Kutta methods from both fully implicit and SDIRK families; (2) to the best of our knowledge this is the

first implementation of the direct decoupled method for sensitivity analysis with Runge Kutta methods;

(3) to the best of our knowledge this is the first implementation of discrete adjoint implicit Runge Kutta

methods.

The paper is organized as follows. A short overview of KPP is given. The new integrators are

presented in section 2. Mathematical background is presented here and implementation details are

explained. Section 6 shows results from applying the solvers to a chemical system. Comparisons of the

5



different implementation details are elaborated in detail. In section 7 a data assimilation example using

our integrators and sensitivity analysis based on our implementation is briefly presented. Finally, the

conclusion is drawn in section 9.

2 The Runge Kutta Numerical Integrators

In KPP version 2.2, stiff numerical integrators of the Runge Kutta family have been added to the KPP

numerical library of stiff solvers for chemical kinetic system ODEs.

Consider a chemical kinetic system defined by the stiff system of ordinary differential equations

y′ = f (t, y) , t0 ≤ t ≤ tF , y
(
t0

)
= y0 , y(t) ∈ �n . (1)

There are n chemical species in the system. The right hand side function f(t, y) ∈ �n describes the

rates of change due to chemical production and loss processes. We will denote the Jacobian of the ODE

function by J(t, y) = ∂f/∂y ∈ �n×n. Typically the ODE system (1) is stiff: different chemical species

change at very different rates during the kinetic evolution, and one is interested to follow the system

evolution at the slower time scales. As a consequence the eigenvalues of the Jacobian differ by orders of

magnitude. The numerical methods used to solve (1) have to be stable in the presence of stiffness [21].

In this paper we focus on implicit Runge Kutta integrators which have the necessary stability properties.

We discuss in detail the implementation of stiff numerical Runge Kutta integrators in the numeric library

of KPP–2.2.

A general s-stage Runge Kutta method is defined as [20]

yn+1 = yn + h
s∑

i=1

biki ,

Ti = tn + cih , Yi = yn + h

s∑
j=1

aijkj ,

ki = f ( Ti, Yi ) .

(2)

The coefficients aij , bi and ci determine the particular method and its accuracy and stability properties.

6



A particular Runge Kutta method can be compactly represented by the Butcher tableau of its coefficients:

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

. . .
...

cs as1 as2 · · · ass

b1 b2 · · · bs

≡
c A

bT

(3)

The linear stability analysis considers the solution of the method (2) when applied to a linear scalar

equation y′ = λy:

yn+1 = R(hλ) yn , R(z) = 1 + z bT (Is − zA)−1
�s , �s = [1, · · · , 1]T .

When the real part Re(λ) < 0 the exact solution decreases to zero, and so should the numerical solution;

this happens if the magnitude of the transfer function is |R(z)| ≤ 1. The method (2) is A-stable if

|R(z)| ≤ 1 for all complex arguments with Re(z) ≤ 0. The method is L-stable if, in addition to being

A-stable, the transfer function satisfies Re(∞) = 0 (complete damping of high frequencies). A Runge

Kutta method is called stiffly accurate if the last stage solution and the final solution coincide; i.e. if

asj = bj for j = 1, · · · , s. Stiff accuracy is an essential property in the solution of differential algebraic

equations [21] and is useful in the solution of stiff ordinary differential equations. All the Runge Kutta

methods implemented in KPP–2.2 are A-stable, some are L-stable, and some are stiffly accurate. These

properties will be highlighted when the methods are discussed.

2.1 Implementation Aspects

Following [21, Section IV.8], for implementation purposes the method (2) is written in terms of the

variables Zi = Yi − yn as follows:

yn+1 = yn + h
s∑

i=1

bi f ( Ti, yn + Zi ) = yn +
s∑

i=1

di Zi ,

Ti = tn + cih , Zi = h

s∑
j=1

aij f ( Tj , yn + Zj ) .

(4)

7



The stage relations

Z1 = h
s∑

j=1

a1j f ( Tj , yn + Zj ) ,

Z2 = h

s∑
j=1

a2j f ( Tj , yn + Zj ) ,

...

Zs = h
s∑

j=1

asj f ( Tj , yn + Zj )

(5)

form a nonlinear system of dimension ns× ns in the variables Z1 · · ·Zs which needs to be solved at each

time step. Replacing the nonlinear system in ki in (2) by a nonlinear system in Zi in (4) has numerical

advantages for stiff systems where f has a large Lipschitz constant.

Explicit Runge Kutta methods. If the method coefficients are chosen such that aij = 0 for j ≥ i

then the Runge Kutta method is explicit and no solutions of nonlinear systems are necessary. The stage

vectors are obtained one after another by successive substitutions from the first stage to the last

Z1 = 0 ,

Z2 = h a21 f ( tn, yn ) ,

Z3 = h a31 f ( tn, yn ) + h a32 f ( T2, yn + Z2 ) ,

...

Zs = h
s−1∑
j=1

asj f ( Tj , yn + Zj ) .

While computationally inexpensive, explicit methods cannot offer the stability properties needed to solve

stiff chemical equations. They are not considered for implementation in KPP–2.2.

Singly Diagonally-Implicit Runge Kutta (SDIRK) methods. Singly diagonally-implicit Runge

Kutta (SDIRK) methods are characterized by coefficients satisfying aij = 0 for j > i and aii = γ for all

i. Each stage leads to a nonlinear system of dimension n × n; the stage vectors are obtained one after

8



another by solving the nonlinear systems for each stage in succession

Z1 = h γ f ( T1, yn + Z1 ) ,

Z2 = h a21 f ( T1, yn + Z1 ) + h γ f ( T2, yn + Z2 ) ,

...

Zs = h

s−1∑
j=1

asj f ( Tj , yn + Zj ) + h γ f ( Ts, yn + Zs ) .

The nonlinear system that defines a stage vector Zi

Zi = h

i−1∑
j=1

aij f ( Tj , yn + Zj ) + h γ f ( Ti, yn + Zi )

is solved by simplified Newton iterations of the form

[
In − h γ J ( tn, yn )

]
· ∆Z

[m]
i = Z

[m]
i − h

i−1∑
j=1

aij f (Tj , yn + Zj )

Z
[m+1]
i = Z

[m]
i − ∆Z

[m]
i , m = 0, 1, · · ·

(6)

The starting value for the Newton iterations Z
[0]
i are chosen as zero, or are estimated by interpolation from

the previously computed stage vectors Z1, · · · , Zi−1. For all stages i = 1, · · · , s and for all iterations m

the linear systems solved share the same matrix In−h γ J . Consequently the expensive LU decomposition

of this n × n matrix is computed only once per time step.

Fully Implicit Runge Kutta methods. In the general case the method array of coefficients A = (aij)

does not have a triangular structure, and the nonlinear system (5) of dimension ns × ns cannot be

decoupled in a sequence of smaller systems. With the compact notation

Z =
[
Z1 · · ·Zs

]T

, F (Z) =
[
f ( T1, yn + Z1 ) · · · f ( Ts, yn + Zs)

]T

,

the nonlinear system (5) in Z can be written as [21]

Z = (hA ⊗ In) · F (Z) , (7)

9



where ⊗ denotes the Kronecker product. The Kronecker product of two matrices P = (pij) ∈ �n×n and

Q = (qij) ∈ �m×m is defined as

P ⊗ Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p11Q p12Q . . . p1nQ

p21Q p22Q . . . p2nQ

...
...

. . .
...

pn1Q pn2Q . . . pnnQ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

Following [21] the system (7) is solved by simplified Newton iterations of the form

[
Ins − hA ⊗ J ( tn, yn )

]
· ∆Z [m] = Z [m] − (hA ⊗ In) F

(
Z [m]

)
Z [m+1] = Z [m] − ∆Z [m] , m = 0, 1, · · ·

(9)

Note that the system matrix is constructed using only the chemical Jacobian value at the beginning of

the time step J(tn, yn). The linear systems in (9) have dimension ns × ns. Following [21] the KPP–2.2

implementation uses a transformation of the system (9) to complex form. This allows to replace the

costly ns-dimensional real LU decomposition by several n-dimensional LU decompositions of real and

complex matrices.

Differences regarding order and accuracy of the implicit Runge Kutta and SDIRK methods are dis-

cussed next.

2.2 Fully implicit Runge Kutta methods in KPP–2.2

The KPP–2.2 contains implementations of four different fully implicit Runge Kutta methods as follows:

• Radau-2A: stiffly accurate three stage method of order 5, based on the Radau-IIA quadrature. It

is one of the most robust formulas for stiff ordinary differential equations [21].

• Lobatto-3C: stiffly accurate, three stage method of order 4 based on Lobatto quadrature.

• Gauss: three stage method of order 6 based on Gaussian quadrature. The method is only weakly

L-stable (R(∞) = −1) and is not stiffly accurate.

• Radau-1A: L-stable, three-stage method of order 5, based on Radau-IA quadrature. It is not stiffly

accurate.

10



All methods are A-stable. Each of them has 3 stages, and require one complex and one real LU

decomposition at each time step. The implementation has been inspired by the Radau5 code of Hairer

and Wanner [21]. The Butcher tableaux of coefficients are presented in table 1. More information on

these methods can be found in [21].

The selection of the fully-implicit Runge Kutta family of integrators in KPP–2.2 is done by the using

following command in the model (*.kpp) file:

#INTEGRATOR Runge_Kutta

The selection of a particular method within this family is done via the input control vector entry ICN-

TRL(3) (the values 0 or 1 select Radau-2A, 2 selects Lobatto-3C, 3 selects Gauss, and 4 selects Radau-1A).

2.3 SDIRK methods in KPP–2.2

KPP–2.2 contains implementations of five different SDIRK methods as follows:

• Sdirk-2 are two-stage, L-stable, stiffly accurate methods of order 2. The choice γ = 1 − √
2/2

(Sdirk-2a) is more accurate, while the choice γ = 1 +
√

2/2 (Sdirk-2b) may be advantageous when

a non-negative numerical solution (concentrations) is needed.

• Sdirk-3a is a three-stage, second order, stiffly accurate method. Its coefficients are chosen such that

the discrete adjoint is also stiffly accurate.

• The methods Sdirk-4 are the fourth order L-stable singly-diagonally-implicit Runge Kutta methods

developed by Hairer and Wanner [21]. Specifically, Sdirk-4a is the method with γ = 4/15 and

Sdirk-4b the method with γ = 1/4. The coefficients of these methods are given in [21] and not

reproduced here.

All methods are A-stable. Each of them requires a single real LU decomposition at each time step.

The implementation has been inspired by the Sdirk4 code of Hairer and Wanner [21]. The Butcher

tableaux of coefficients are presented in table 2.

The selection of the singly diagonally-implicit Runge Kutta family of integrators in KPP–2.2 is done

by the using following command in the model (*.kpp) file:

11



4−√
6

10
88−7

√
6

360
296−169

√
6

1800
−2+3

√
6

225

4+
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1 16−√
6

36
16+

√
6

36
1
9

16−√
6

36
16+

√
6

36
1
9

0 1
6 − 1

3
1
6

1
2

1
6

5
12 − 1

12

1 1
6

2
3

1
6

1
6

2
3

1
6

(a) Radau-2A (order 5, stiffly accurate) (b) Lobatto-3C (order 4, stiffly accurate)

1
2−

√
15

10
5
36

2
9−

√
15

15
5
36 −

√
15

30

1
2

5
36 +

√
15

24
2
9

5
36−

√
15

24

1
2 +

√
15

10
5
36 +

√
15

30
2
9−

√
15

15
5
36

5
18

4
9

5
18

0 1
9

−1−√
6

18
−1+

√
6

18

6−√
6

10
1
9

88+7
√

6
360

88−43
√

6
360

6+
√

6
10

1
9

88+43
√

6
360

88−7
√

6
360

1
9

16+
√

6
36

16−√
6

36

(c) Gauss (order 6) (d) Radau-1A (order 5)

Table 1: The coefficients of fully implicit, three-stage Runge Kutta methods implemented in KPP–2.2.

12



2−√
2

2
2−√

2
2 0

1
√

2
2

2−√
2

2

√
2

2
2−√

2
2

2+
√

2
2

2+
√

2
2 0

1 −
√

2
2

2+
√

2
2

−
√

2
2

2+
√

2
2

(a) Sdirk-2a (order 2, stiffly accurate) (b) Sdirk-2b (order 2, stiffly accurate)

3−√
3

6
3−√

3
6 0 0

1 −
√

3
3

3−√
3

6
3−√

3
6 0

1 3−√
3

6

√
3

3
3−√

3
6

3−√
3

6

√
3

3
3−√

3
6

(c) Sdirk-3a (order 2, stiffly accurate)

Table 2: The coefficients of second order SDIRK methods implemented in KPP–2.2.

#INTEGRATOR SDIRK

The selection of a particular method within this family is done via the input control vector entry ICN-

TRL(3) (the values 0 or 1 select Sdirk-2a, 2 selects Sdirk-2b, 3 selects Sdirk-3a, 4 selects Sdirk-4a, and 5

selects Sdirk-4b).

Using the implementations of the forward routines, integrators for the tangent linear model (TLM)

and adjoint model (ADJ) were developed. Each family of forward methods (implicit Runge Kutta,

singly-diagonally-implicit Runge Kutta, and Rosenbrock methods) was extended to calculate the TLM,

the generated result is the sensitivity matrix.

13



3 Tangent Linear Models of Runge Kutta Methods

Small perturbations of the solution of (1) due to small changes δy0 in the initial conditions propagate

forward in time according to the sensitivity equation (also called the “tangent linear model”)

δy′ = J (t, y) · δy , t0 ≤ t ≤ tF , δy
(
t0

)
= δy0 , δy(t) ∈ �n . (10)

Note that for nonlinear systems the sensitivity equations (10) depend on the solution of the chemical

equations (1) through the Jacobian J(t, y). Thus (1) and (10) have to be solved together to obtain a

solution of the sensitivity equations.

A numerical solution of (10) can be obtained by applying a Runge Kutta method (2) to both (1)

and (10). Alternatively, one can use variational calculus to compute the variations (sensitivities) of the

solution of (2) due to small changes in the initial conditions. The two approaches are equivalent and they

lead to the tangent linear Runge Kutta methods:

yn+1 = yn + h
s∑

i=1

biki , δyn+1 = δyn + h
s∑

i=1

bi�i ,

Yi = yn + h

s∑
j=1

aijkj , δYi = δyn + h

s∑
j=1

aij�j , (11)

ki = f ( Ti, Yi ) , �i = J (Ti, Yi) · δYi .

The numerical solution of the sensitivity part depends on the stage vectors of the nonlinear chemical

system through J (Ti, Yi). Thus one has to solve simultaneously for the concentrations and their sensi-

tivities.

For implementation purposes we use the same transformation as for the forward integrators and work

with the sensitivity stage variables δZi = δYi−δyn. The method (11) leads to a system of linear equations

in the unknowns δZi

δZi − h
s∑

j=1

aij J (Tj , Yj) · δZj = h
s∑

j=1

aij J (Tj , Yj) · δyn , i = 1, · · · , s . (12)

For SDIRK methods the system (12) reduces to independent n-dimensional linear systems that can

14



be solved successively for each stage i = 1, · · · , s

[
In − h γ J (Ti, Yi)

]
· δZi = h

i−1∑
j=1

aij J (Tj , Yj) ·
(
δyn + δZj

)
+ h γ J (Ti, Yi) · δyn . (13)

The KPP-2.2 implementation offers the option to solve the linear systems (13) directly, at the expense

of one additional sparse LU decomposition per stage of matrices In − hγJ (Ti, Yi). The implementation

also offers the alternative to solve (13) by quasi-Newton iterations of the form

[
In − h γ J (tn, yn)

]
· ∆δZ

[m]
i = δZ

[m]
i − h

i−1∑
j=1

aij J (Tj , Yj) ·
(
δyn + δZ

[m]
j

)

−h γ J (Ti, Yi) ·
(
δyn + δZ

[m]
i

)
δZ

[m+1]
i = δZ

[m]
i − ∆δZ

[m]
i , m = 0, 1, · · ·

(14)

The equations (14) re-use the sparse LU factorization of the matrix In − hγJ (tn, yn) which is available

after advancing the concentrations by one step. This approach is closer in the spirit to the direct decoupled

method [15] for sensitivity analysis.

The selection of the tangent linear SDIRK family of integrators in KPP–2.2 is done by the using

following command in the model (*.kpp) file:

#INTEGRATOR SDIRK_tlm

and the selection of a particular method within this family is done via the input control vector ICNTRL.

For fully implicit Runge Kutta methods KPP-2.2 offers the option to construct the ns × ns linear

system (12) explicitly, and solve it using a direct full linear algebra method. As an alternative KPP-2.2

also offers the option of solving (12) by quasi-Newton iterations of the form:

∆δZ
[m]
i − h

s∑
j=1

aij J (tn, yn) · ∆δZ
[m]
j = δZ

[m]
i − h

s∑
j=1

aij J (Tj , Yj) ·
(
δyn + δZ

[m]
j

)
,

δZ
[m+1]
i = δZ

[m]
i − ∆δZ

[m]
i , m = 0, 1, · · ·

(15)

Equation (15) defines a ns×ns linear system for the unknowns ∆δZ
[m]
1 , · · · ,∆δZ

[m]
s . It can be seen that

the matrix of this linear system is Ins − hA⊗ J(tn, yn). The LU decomposition of this matrix is already

available as it is also necessary in the calculation of concentrations using equation (9). The re-use of the

main LU decomposition in the concentration and in the sensitivity solutions is similar in spirit to the

direct-decoupled method [15].

15



The selection of the tangent linear fully-implicit Runge Kutta family of integrators in KPP–2.2 is

done by the using following command in the model (*.kpp) file:

#INTEGRATOR Runge_Kutta_tlm

and the selection of a particular method within this family is done via the input control vector ICNTRL.

We note that the direct-decoupled approach is relatively inexpensive since it re-uses the available LU

decompositions. However the control of the error within the iterations (14) and (15) for sensitivities is

challenging, due to the fact that sensitivities take values spanning many orders of magnitude. It is quite

difficult in practice to set the absolute tolerances for sensitivities to appropriate values, and correctly

define an error norm used to control the iterative process.

4 Discrete Adjoint Models of Runge Kutta Methods

4.1 Continuous Adjoint Models

The solution of inverse problems involving chemical kinetic systems (e.g., parameter fitting, optimal

control, and data assimilation) require the minimization of a cost functional defined in terms of the

chemical concentrations. Without loss of generality any inverse problem can be formulated as the following

optimization problem: find the initial conditions for which a function of the system state at the final time

is minimized,

min
y0

Ψ
(
y0

)
= h

(
y(tF)

)
subject to (1) . (16)

To apply a gradient based optimization procedure one needs to compute the derivatives of the cost

function Ψ with respect to the initial conditions. It is well known [26] that these derivatives can be

obtained efficiently by solving the continuous adjoint equation

λ′ = −JT
(
t, y(t)

)
λ , λ

(
tF

)
=

∂h

∂y

(
y(tF)

)
, tF ≥ t ≥ t0 (17)

backwards in time from tF to t0 to obtain

λ(t0) =
∂Ψ
∂y0

.

16



Note that the continuous adjoint equation (17) is formulated based on the forward solution y(t).

In the continuous adjoint approach one solves the equation (17) backward in time with a Runge Kutta

method (2) with coefficients ãi,j , b̃i, c̃i to obtain

λn = λn+1 + h
s∑

i=1

b̃i �̃i ,

�̃i = JT
(

tn+1 − c̃ih, y(tn+1 − c̃ih)
)

λi , λi = λn+1 + h

s∑
j=1

ãi,j �̃j .

(18)

The terminal value of the adjoint variable λ(t0) is an approximation of the gradient of (16).

The continuous approach (18) requires the values of the forward model solution at intermediate times

y(tn+1 − c̃ih). These values are obtained by interpolation from the forward solution, which is saved in

checkpoints at each forward time step tn. It is our experience that in practice the interpolation procedure

works properly only when the forward solution is stored often; in other words, only when the step size in

the forward solution is small, typically much smaller than that required by the accuracy constraints. For

this reason we have not implemented the continuous adjoint approach in KPP–2.2.

4.2 Discrete Adjoint Models

In practice the equation (1) is solved numerically on a computer. A Runge Kutta discretization (2)

advances the solution in time as follows

yn+1 = Mn (yn) , yN = MN−1

(
MN−2

(· · ·M0(y0)
))

, (19)

where M symbolically denotes one step of the method (2), tN = tF and the numerical solution is

yn ≈ y(tn). The optimization problem (16) is formulated in terms of the numerical solution minimized,

min
y0

Ψ
(
y0

)
= h

(
yN

)
subject to (19) . (20)

To estimate the gradient of the cost function (20) several approaches are possible.

In the discrete adjoint approach the gradient of (16) is computed directly from (19) using the trans-

posed chain rule

(
dΨ
dy0

)T

=
(

dM0

dy0
(y0)

)T

· · ·
(

dMN−1

dyN−1
(yN−1)

)T (
dh

dyN
(yN )

)T

.

17



This calculation proceeds backwards in time, i.e. the expression is evaluated right to left as follows

λN =
(

dh

dyN
(yN )

)T

. . . λn =
(

dMn

dyn
(yn)

)T

λn+1 . . . λ0 =
(

dΨ
dy0

)T

. (21)

We will call λn discrete adjoint variables. Their evaluation requires the forward numerical solution y0 to

yN to be available during the backward calculation.

Discrete adjoints are useful in optimization since they provide the gradients of the numerical function

that is being minimized. Moreover, they can be calculated by reverse mode automatic differentiation.

In KPP–2.2 we have implemented the discrete adjoints of Runge Kutta methods. In [30] we have

shown that the discrete Runge Kutta adjoint (21) can be regarded as a new numerical method applied

to the continuous adjoint equation (17). The main results of [30] are:

• the discrete adjoint of a Runge Kutta method of order p is an order p discretization of the continuous

adjoint equation (17);

• consider a singular perturbation problem and a cost functional defined only in terms of the nonstiff

variable. The discrete adjoint of an L-stable Runge Kutta method with an invertible coefficient

matrix A produces solutions of the same accuracy as the continuous adjoint approach.

These two theoretical properties imply that discrete Runge Kutta adjoints are very well suited for solving

inverse problems with stiff chemical systems. This conclusion is also supported by other previous studies.

Consistency properties of discrete Runge Kutta adjoints have been studied by Hager [19] in the context

of control problems. Walther [36] has studied the effects of reverse mode automatic differentiation on

explicit Runge Kutta methods. Giles [17] has discussed Runge Kutta adjoints in the context of steady

state flows.

Hager [19] has shown that one step of the discrete adjoint of the Runge Kutta method (2) reads

ui = hJT (Ti, Yi) ·
⎛
⎝biλ

n+1 +
s∑

j=1

aj,iuj

⎞
⎠ , i = s, · · · , 1 (22)

λn = λn+1 +
s∑

j=1

uj .

For bi 
= 0 the RK adjoint (22) can be rewritten as another Runge Kutta method [19] applied to the

18



continuous adjoint equation (17)

λn = λn+1 + h

s∑
i=1

bi �i , �i = JT
(

tn+1 − cih, Ys+1−i

)
Λi ,

Λi = λn+1 + h

s∑
j=1

ai,j�j ,

where bi = bs+1−i , ci = 1 − cs+1−i , ai,j = as+1−j,s+1−i·bs+1−j

bs+1−i

(23)

We will call (23) the formal discrete adjoint method of (2). Note the similarity between (23) and (18).

The only difference is that the Jacobian in (23) is evaluated at the stage vector Ys+1−i, while in (18) is

evaluated at the interpolated solution vector y(tn+1 − c̃ih). To some extent the properties of the discrete

adjoint are in this case the properties of the formal adjoint method (23).

The formal adjoints (A, b, c) of the Runge Kutta methods (A, b, c) implemented in KPP–2.2 can be

easily derived using the transformation (23) and are as follows:

• the formal adjoint of Radau-2A is Radau-1A; the formal adjoint of Radau-1A is Radau-2A;

• the formal adjoint of Lobatto-3C is Lobatto-3C (i.e., Lobatto-3C is formally self-adjoint). Therefore

its formal adjoint is stiffly accurate;

• Gauss is formally self-adjoint;

• Sdirk-3a is formally self-adjoint (and therefore its formal adjoint is stiffly accurate);

• The formal adjoints of Sdirk-2a, Sdirk-2b, Sdirk-4a, and Sdirk-4b are other SDIRK methods.

4.3 Implementation Aspects

Our implementation of the discrete adjoints in KPP–2.2 follows the formulation (22). This equation

defines a linear system of dimension ns × ns in the stage vectors u1, · · · , us

ui − hJT (Ti, Yi) ·
s∑

j=1

aj,iuj = h bi JT (Ti, Yi) · λn+1 , i = 1, · · · , s . (24)

For SDIRK methods the system (24) decouples into s systems of dimension n×n, which can be solved

successively for each stage (from the last to the first)

[
In − hJ (Ti, Yi)

]T

· ui = hJT (Ti, Yi) ·
(
bi λn+1 +

s∑
j=i+1

aj,iuj

)
, i = s, s − 1, · · · , 1 . (25)

19



Our KPP–2.2 implementation offers two options. The linear systems (25) can be solved directly, at the

expense of one LU factorization per stage of the matrices In − hJ (Ti, Yi), or via iterations

[
In − hJ (tn, yn)

]T

· ∆u
[m]
i = hJT (Ti, Yi) ·

(
bi λn+1 +

s∑
j=1

aj,iu
[m]
j

)
,

u
[m+1]
i = u

[m]
i − ∆u

[m]
i

(26)

which re-use the LU factorization of In − hJ (tn, yn) for all the stages. The iterations (26) are similar to

the ones for tangent linear calculations (14).

The selection of the discrete adjoint SDIRK family of integrators in KPP–2.2 is done by the using

following command in the model (*.kpp) file:

#INTEGRATOR SDIRK_adj

and the selection of a particular method within this family is done via the input control vector ICNTRL.

For fully implicit Runge Kutta methods the KPP–2.2 implementation offers the option to construct

the system (24) explicitly and solve it by a direct ns × ns LU factorization. The implementation also

offers the option of solving (24) by iterations of the form

[
Ins − hA ⊗ J(tn, yn)

]T

∆U [m] =

⎡
⎢⎢⎢⎢⎢⎢⎣

u
[m]
1 − hJT (T1, Y1) ·

(
b1 λn+1

∑s
j=1 aj,1u

[m]
j

)
...

u
[m]
s − hJT (Ts, Ys) ·

(
bs λn+1 +

∑s
j=1 aj,su

[m]
j

)

⎤
⎥⎥⎥⎥⎥⎥⎦

U [m+1] = U [m] − ∆U [m] .

(27)

The matrix Ins −hA⊗J(tn, yn) in (27) is the same matrix used in the solution of the forward model (9),

as well as in the iterative solution of the tangent linear model (15). Its LU factorization can be saved

from the forward simulation and reused in adjoint.

The selection of the adjoint fully-implicit Runge Kutta family of integrators in KPP–2.2 is done by

the using following command in the model (*.kpp) file:

#INTEGRATOR Runge_Kutta_adj

and the selection of a particular method within this family is done via the input control vector ICNTRL.

We note that the iterative approaches (26) and (27) to solve the linear adjoint systems are relatively

inexpensive since they re-use the available LU decompositions. However the control of the error within the

20



iterations (26) and (27) for adjoints is challenging, due to the fact that adjoints (like forward sensitivities)

take values spanning many orders of magnitude. It is quite difficult in practice to set the adjoint absolute

tolerances to appropriate values.

5 The DECLARE option

We now report on a new option that has been implemented in KPP–2.2. The command

#DECLARE [ symbol | value ]

in the model (*.kpp) file tunes the form of the array declarations in the generated code.

The default #DECLARE symbol option dimensions the arrays in the generated code in terms of the

model parameters like the number of variables and the number of reactions, e.g.,

USE model_Parameters

REAL(kind=dp) :: VAR(NVAR), RCONST(NREACT)

The values of the constants like NVAR, NREACT are declared in the Parameters module (or header file).

The option #DECLARE value dimensions the arrays in the generated code by using the model param-

eter values directly, e.g.,

REAL(kind=dp) :: VAR(74), RCONST(211)

This option alleviates the cross-dependencies of the generated code (here, the dependency on the Param-

eters module, or header file, has been removed).

6 Numerical Results

We now illustrate the application of the new numerical integrators on the chemical model SAPRC99 [11],

which is widely used in real atmospheric chemistry applications. The SAPRC99 mechanism consists of

74 active chemical species interacting in 211 chemical reactions. We consider emissions of key species

being added to the chemical rates of transformation. The initial conditions are obtained after a 24

hour integration of the system with emissions; this initial period allows the system to evolve past the

21



initial transients and develop quasi-steady-states. The integration interval is 24 hours (beyond the initial

time); the accuracy of the numerical solutions is assesses at the end of the simulation interval. Reference

solutions of concentrations and sensitivities are obtained with the SEULEX stiff differential equation

solver of Hairer and Wanner [21] with very tight accuracies (RTOL = 10−12, ATOL = 10−8). SEULEX

uses an extrapolation formula and offers an independent approach to benchmark the accuracy of KPP–2.2

Runge Kutta integrators.

6.1 Forward Methods and Integration Options

Three families of stiff integration methods are implemented in KPP–2.2: fully implicit Runge Kutta,

SDIRK, and Rosenbrock. Each family has a different implementation. The selection switch ICNTRL(3)

allows the user to choose a particular method within each family. The major selection switch in the Runge

Kutta family chooses between Radau-2A, Lobatto-3C, Gauss, and Radau-1A. For SDIRK integration, the

same switch is used to select between Sdirk-2a, Sdirk-2b, Sdirk-3a, Sdirk-4a, or Sdirk-4b. The available

choices of Rosenbrock methods are Ros-2, Ros-3, Ros-4, Rodas-3, and Rodas-4.

Some control options are general and apply to all families. The relative and absolute error tolerances

can be a scalar or a vector (different tolerance for each species). The maximum number of integration

steps before unsuccessful return can be specified to limit the return time for non-converging calculations.

Various other switches select specialized options for the different integration families.

6.1.1 Fully Implicit Runge Kutta Options

We now discuss the most important switches that allow the user to tune the behavior of the fully implicit

Runge Kutta family.

Tuning the Newton iterations. Various internal coefficients and parameters for Newton iteration

can be specified. They include the maximum number of Newton iterations, stopping criterion (based on

estimating the magnitude of iteration error), bounds on step decrease, increase, and on step rejection.

Default values are assigned to these parameters after careful experimenting and using [21]. The choice of

starting values for Newton iteration are zero or the extrapolated collocation solution. As seen in Figure

22



Figure 2: Work-precision diagram (accuracy vs. CPU-time) for the forward methods. Shown are Lobatto-

3C (left) and Sdirk-2a and Sdirk-4b (right) results when the starting values for Newton iterations are

taken equal to zero and when they are obtained by extrapolation.

2 (left) for Lobatto-3C, the CPU time decreases when using extrapolation. This effect is clearly due to

the fewer number of Newton iterations necessary to reach the desired accuracy.

Step size control. Two step-size strategies are implemented: the classical approach and the modified

predictive controller (Gustafsson, [18]). The Gustafsson predictive controller takes a few more steps but

secures the computation by using a more precautions approach. If the predicted change in step size is

small then the code keeps the same time step and attempts to re-use the LU factorizations of the previous

step.

Error estimation. Two different error estimation strategies are implemented. The first one is the

classical error estimation [21] which uses an embedded third order method constructed based on an

additional explicit stage (at the beginning of the time step). The embedded solution is:

ŷn+1 = yn+ h

(
b̂0f(tn, yn) +

3∑
i=1

b̂if(tn+cih, yn+Zi)

)
(28)

Our newly implemented error estimation uses two additional stages: an explicit stage (at the beginning

of the time step) and another SDIRK stage which re-uses the real LU decomposition from the solution

23



Figure 3: Comparison of forward Gauss and Radau-1A methods using classical versus SDIRK error

estimation. The comparison includes the total number of steps used (left) and the solution accuracy

(right).

of the main method. The embedded solution reads:

ŷn+1 = yn+ h

(
b̂0f(tn, yn) +

3∑
i=1

b̂if(tn+cih, yn+Zi) + γf(tn+h, yn+Z4)

)
(29)

All the embedded methods have been chosen to be stiffly accurate and have order 3. The coefficients of

the additional stage are given in Appendix A. The results shown in Figure 3 indicate that the new error

estimator works well, and brings marked improvements for Gauss and Radau-1A. While the classical

error estimator does not predict the error very well for low relative tolerances, the Sdirk error estimation

provides very good results and keeps the accuracy of the solution below the ideal line.

6.1.2 SDIRK Options

The SDIRK solution uses Newton iterations; the SDIRK implementation offers similar options as the

implicit Runge Kutta methods described above. Figure 2 (right) shows the difference of using zero or

extrapolation starting values for Newton iteration on methods Sdirk-2a and Sdirk-4b. While Sdirk-2a

only shows slight changes, the larger differences for Sdirk-4b are due to different step size selections (when

starting values are set to zero they may reach the maximum number of Newton iterations due to the

large resulting error). The classical error estimation [21] based on an embedded solution with different

weights has been implemented and works well.

24



Figure 4: Accuracy vs. CPU-time (left) and accuracy vs. relative tolerance (right) for forward fully

implicit Runge Kutta methods.

6.1.3 Comparison of Forward Integrator Families

All new solvers have been tested thoroughly. Figures 4–6 (left) show the work precision diagrams (solution

accuracy versus CPU time) for all the forward methods implemented in KPP–2.2. The implicit Runge

Kutta integrators were tested using the relative tolerance range RTOL ∈ [10−2, 10−12] and SDIRK and

Rosenbrock integrators are presented on tolerance range RTOL ∈ [10−2, 10−10]. The absolute error

tolerances are set to ATOL = 105 · RTOL. Figures 4–6 present the accuracy of the computed solution

versus the requested RTOL; this illustrates the quality of the error control (an ideal error controller would

yield the accuracy very near the user specified tolerance). For fully implicit Runge Kutta methods the

new error estimator using an additional SDIRK stage was used. Gustafsson predictive error controller

was selected for all integrators. The starting values of Newton iterations were interpolated (the default

setting) for both Runge Kutta and SDIRK families.

Figure 7 compares the work-precision diagrams of the best methods of each family (Radau-2A, Sdirk-

4b, and Rodas-4). While the Rosenbrock method is the best for low tolerances, the fully implicit Runge

Kutta is to be preferred for high accuracy calculations.

25



Figure 5: Accuracy vs. CPU-time (left) and accuracy vs. relative tolerance (right) for forward Sdirk

methods.

Figure 6: Accuracy vs. CPU-time (left) and accuracy vs. relative tolerance (right) for forward Rosenbrock

methods.

26



Figure 7: Accuracy versus CPU-time for Radau-2A, Sdirk-4b, and Rodas-4 forward methods.

6.2 Tangent Linear Methods and Integration Options

The tangent linear model (TLM) implementations advance in time both the concentrations and the

forward sensitivity coefficients. The TLM of each method for all the forward integration families is

implemented in KPP–2.2. The options of the forward code are also available in TLM routines. In

addition several TLM-specific options are available to the user as follows:

• apply forward error estimation only (there is no explicit control over the accuracy of the sensitivi-

ties);

• control the convergence of TLM Newton iterations; and

• control the truncation errors for both the concentrations and the TLM sensitivities (and use both

in step-size selection).

In these experiments we look at the sensitivity coefficients of 10 long-lived species with respect to their

initial values. To be specific, we compute ∂yi(tf )/∂yj(t0) for all i, j in a subset of 10 long lived species.

The relative errors of TLM variables are computed for these 100 sensitivity coefficients; the reference

solution is obtained by running SEULEX on the TLM differential equations (10).

27



Figure 8: Comparison of tangent linear Gauss and Radau-1A methods using classical and SDIRK error

estimates. Compared are the number of steps (left) and accuracy of the solution (right).

6.2.1 Tangent Linear Implicit Runge Kutta Methods Options

We have seen that in the forward integration the choice of the error estimation method influences the ac-

curacy of the result. The forward integration method also influences the accuracy of the TLM integration

as can be seen in Figure 8.

Controlling the convergence of Newton TLM iterations. There are two options implemented

for the Newton TLM iterations. The first is to predefine the number of iterations for sensitivities as the

number of Newton iterations for concentrations plus one. The second option is to use the relative and

absolute tolerances for sensitivities to control the convergence of the Newton TLM iterations. Because

sensitivity values are typically different than the concentration values one needs different absolute toler-

ances for the concentrations and for sensitivities. A comparison of these two options is shown in Figures 9

and 10. The control of Newton TLM iteration error leads to smoother curves, but considerably increases

the number of steps. The number of Newton iterations in this case is smaller than the number of Newton

iterations required by the forward method. We recommend the user to combine the control of Newton

TLM iteration error with the control of the TLM truncation error (discussed below) in a fully adaptive

code.

28



Figure 9: Comparison of steps (left) and accuracy (right) of tangent linear Lobatto-3C and Radau-1A

using TLM Newton iteration convergence and forward iteration count.

Figure 10: Comparison of CPU-time (left) and (right) of tangent linear Lobatto-3C and Radau-1A using

TLM Newton iteration convergence and forward iteration count

29



Figure 11: Accuracy vs. the number of steps steps (left) and accuracy vs. tolerance (right) for of TLM

Gauss and Radau-1A methods. Results are shown for both step size control strategies (with and without

TLM truncation error control).

Controlling the TLM truncation error. During the forward integration (the calculation of concen-

trations) estimates of the truncation error are used to decide whether the step is accepted or rejected,

and to compute the next step size. Two options are implemented in KPP–2.2 for the calculation of

sensitivities.

The first option is to use only the forward (concentration) error estimates for step size control. No

error control is used for the TLM variables; the resulting sensitivities can be viewed as sensitivities of

the Runge Kutta numerical solution (2) (rather than as approximations of solutions of the continuous

tangent linear ODE 10).

The second option implemented in KPP–2.2 is to estimate the truncation errors for both the forward

solution (concentrations) and the TLM solution (sensitivities). The solution error is taken as the max-

imum between the forward truncation error and the truncation error of any column of the sensitivities.

This solution error is used to control the step size. Results presented in Figures 11 and 12 indicate that

while Radau-1A TLM behaves similarly, the truncation error forces higher accuracy for Gauss TLM.

30



Figure 12: Accuracy vs. CPU-time for TLM Gauss and Radau-1A. Results are shown for both step size

control strategies (with and without TLM truncation error control).

6.2.2 Tangent Linear Sdirk Method Options

For the Sdirk integrators an additional option has been implemented. The TLM solution can either be

computed using modified Newton iterations that re-use the same LU decomposition or by computing the

direct solution at the expense of an additional LU factorization per stage. The results presented in Figure

13 indicate that the same accuracy is reached faster with the direct methods.

As with fully implicit Runge Kutta TLM methods, for Sdirk TLM methods the user has the option

to control the TLM Newton iteration convergence and/or estimate the TLM truncation error and use it

in the step size decisions. The results of different options with TLM Sdirk-4A are shown in Figure 14.

6.2.3 Tangent Linear Rosenbrock Method Options

The options of using the TLM truncation error in step size control has been implemented with Rosenbrock

TLM methods as well. Our experience is that using the forward error estimation for step size control is

a good strategy; adding the TLM truncation error control not change the step size significantly.

6.2.4 Comparison of the Tangent Linear Integrator Families

Efficiency and accuracy results for the TLM integrators are shown in Figure 15 (TLM fully implicit Runge

Kutta), Figure 16 (TLM SDIRK), and Figure 17 (TLM Rosenbrock methods). The fully Runge Kutta

31



Figure 13: Accuracy vs. CPU-time for TLM Sdirk-2B and Sdirk-4A methods. Results are shown for

both the direct and the iterative approaches to solve for TLM variables.

Figure 14: Comparison of tangent linear Sdirk-4A using TLM Newton iteration convergence and TLM

truncation error estimation

32



Figure 15: Accuracy vs. CPU-time (left) and accuracy vs. tolerance (right) for TLM fully implicit Runge

Kutta methods.

Figure 16: Accuracy vs. CPU-time (left) and accuracy vs. tolerance (right) for TLM SDIRK methods.

and SDIRK integrators were tested using relative tolerances in the range RTOL ∈ [10−2, 10−12]. For Sdirk

and Rosenbrock integrators this range was limited to RTOL ∈ [10−2, 10−8] due to the computationally

intensive calculations for some of the methods. The absolute error tolerance was set to ATOL = 105 ·

RTOL. The TLM error estimation (for TLM Newton iterations and TLM truncation error) have been

disabled. For Sdirk routines, modified Newton iterations have been used.

In Figure 18 we compare efficiency of several TLM methods, one from each family (Radau-2A, Sdirk-

4B, and Rodas-4) within the relative tolerance range RTOL ∈ [10−2, 10−8]. Rodas-4 is the most efficient

for low accuracies, while Radau-2A is the most efficient in the high accuracy range.

33



Figure 17: Accuracy vs. CPU-time (left) and accuracy vs. tolerance (right) for TLM Rosenbrock

methods.

Figure 18: Accuracy vs. CPU-time for TLM Radau-2A, TLM Sdirk-4B, and TLM Rodas-4 methods.

34



6.3 Adjoint Methods and Integration Options

The adjoint experiments are carried out as follows. The forward code is run once from the initial time

to the final time. At each step the time tn, the step size h, the vector of concentrations yn, and the

intermediate stage vectors Zi are all saved in checkpoints. The user has the option to store the LU

decomposition of the relevant matrix (Ins − hA ⊗ J for fully implicit or In − hγJ for SDIRK methods).

The discrete adjoint method is then run backwards in time, and traces backwards the same sequence

of steps as the forward method. At each step the concentrations, stage vectors, and the LU decomposition

(if needed) are retrieved from the checkpoint storage. No source terms are added to the adjoint calculation

(this means that the cost functional (20) is defined at the final time, without loss of generality). The

calculation of the adjoint step then proceeds as discussed previously. The linear system for the adjoint

stage variables is solved by Newton iterations. The user has the option to store the LU factorizations

during the forward integration, and re-use them during the adjoint calculation for high computational

efficiency. If they do not converge we do not have the option of reducing the stepsize and reiterating. If

the Newton iterations do not converge the code switches automatically to a direct solution method (at

the expense of additional LU decompositions).

Since the choice of the step sizes is done exclusively by the forward method, the accuracy of the

adjoint solution will depend on the error control used during the forward integration. Figure 19 shows

the impact on adjoint accuracy of of using the classical and the 2-stage SDIRK error estimation in the

forward implicit Runge Kutta integration.

6.3.1 Comparison of the Adjoint Integrator Families

In the adjoint experiments we look at the same 100 sensitivity coefficients ∂yi(tf )/∂yj(t0) for all i, j in

the subset of 10 long lived species. The reference values are the ones computed with SEULEX by the

direct decoupled method.

The efficiency and accuracy graphs for adjoint integrators are shown in Figure 20 (adjoint fully

implicit Runge Kutta), Figure 21 (adjoint SDIRK), and Figure 22 (adjoint Rosenbrock). All integrators

were tested using the relative tolerance range RTOL ∈ [10−2, 10−8] and absolute error tolerances set to

35



Figure 19: Comparison of adjoint Gauss and Radau-1A methods using classical and SDIRK error estima-

tion in the forward calculation. Shown are the accuracy vs. the number of steps (left) and the accuracy

vs. tolerance (right).

ATOL = 103 · RTOL. The same settings as in forward comparison are used to compute the forward

solution (for SDIRK routines, modified Newton iterations have been used). The slopes of the work-

precision diagrams show that the order of accuracy of discrete adjoint Runge Kutta methods is the same

as the order of the forward Runge Kutta methods. The performance of methods representing each

integrator families (adjoint Radau-2A, adjoint Sdirk-4B, and adjoint Rodas-4) are compared in Figure 23

using the relative tolerances RTOL ∈ [10−2, 10−8]. The same conclusion holds as for the direct and for

the TLM comparisons: Rodas-4 is the most accurate method for adjoint calculations with low accuracy,

while Radau-2A is the most accurate for high accuracy adjoint calculations.

7 Variational Data Assimilation

We now illustrate the use of discrete adjoint Runge Kutta methods in the solution of inverse problems.

Specifically, we apply discrete Runge Kutta adjoint solutions to variational chemical data assimilation [13].

Four dimensional variational data assimilation (4D-VAR) approach adjusts the model initial conditions

and model parameters to minimize the mismatch between the model predictions and the observations.

The cost function gradients needed to solve the minimization problem are obtained by adjoint modeling.

36



Figure 20: Accuracy vs. CPU time (left) and accuracy vs. tolerance (right) for adjoint fully implicit

Runge Kutta methods.

Figure 21: Accuracy vs. CPU time (left) and accuracy vs. tolerance (right) of adjoint SDIRK methods.

37



Figure 22: Accuracy vs. CPU time (left) and accuracy vs. tolerance (right) of adjoint Rosenbrock

methods.

Figure 23: Accuracy vs. CPU-time for adjoint Radau-2A, adjoint Sdirk-4B, and adjoint Rodas-4 methods.

38



Variational methods are widely used in meteorological and oceanographic applications; more details can

be found in [35].

We consider a 4D-VAR experiment with the SAPRC-99 chemical mechanism carried out in a twin

experiment framework. A 48 hour reference run starting at ts = 12 : 00pm local time is considered as the

“true solution” of the model. Artificial observations ȳk are generated hourly from the reference solution

by adding random Gaussian noise εk ∈ N (0, Rk)

ȳk = Hkyk + εk. (30)

The noise simulates measurement errors. Only long-lived species are used as observations (and selected

via the “observation operator” Hk).

The run is repeated with initial concentrations increased by 30%. (yB = 1.3yref). These modified

initial concentrations represent the “best guess” initial conditions. We look to recover the reference initial

conditions using the information contained in the artificial observations. For this we define the following

cost function:

Ψ(y0) =
1
2

(
yB − y0

)T
B−1

(
yB − y0

)
+

1
2

m∑
k=0

(Hkyk − ȳk)T
R−1

k (Hkyk − ȳk) . (31)

The background is a diagonal matrix with all diagonal entries equal to 0.01, while the observation co-

variances are diagonal matrices with all diagonal entries equal to 1.

This cost function measures the mismatch between the (perturbed) model solution and the (artificial)

observations, and also penalizes the departure of the solution form the initial guess. The optimal initial

state y0 is obtained as the argument which minimizes the cost function. The minimization of (31) is

carried out using the LBFGS-B [9] quasi-Newton optimization routine. For a better scaling and for

imposing the positivity constraint the control variables are taken to be the logarithms of the initial

concentrations (log y0). The gradient of (31) with respect to the control variables is obtained by solving

the discrete adjoint model using the Lobatto-3C fully implicit Runge Kutta method.

The optimization results presented in Figure 24 are obtained after 51 L-BFGS iterations. Emission

data is included but not varied over time. Tolerances are set to RTOL=10−4 and ATOL=10. The per-

turbed solutions are quite different than the reference solutions. After data assimilation the optimized

39



Figure 24: Time evolution of six species before and after data assimilation.

initial conditions lead to a solution that is indistinguishable from the reference one. Thus data assimi-

lation, using the adjoint Lobatto-3C model, is successful in retrieving the reference initial conditions of

the chemical model.

8 Code Availability

The KPP–2.2 source code is available for download under the Gnu Public License [3] from http:

//www.cs.vt.edu/~asandu/Software/Kpp [4]. The download archive contains the directory kpp-2.2

with the entire KPP–2.2 source code. The following templates of the new integrators can be found un-

der the directory kpp-2.2/int: runge kutta.f90, runge kutta tlm.f90, runge kutta adj.f90, and

sdirk.f90, sdirk tlm.f90, sdirk adj.f90 respectively.

40



9 Conclusions

In this paper we report on state-of-the-art, high-order stiff Runge Kutta numerical integrators for effi-

cient integration of chemical kinetic systems. Two families of implicit Runge Kutta methods have been

implemented in the widely-used software environment KPP. One family is the fully implicit three-stage

Runge Kutta methods (including Radau-1A, Radau-2A, Lobatto-3C and Gauss formulas). The second

family are singly diagonally-implicit Runge Kutta (SDIRK) methods (including five different formulas of

orders 2–4). Integrators in both these families have excellent stability properties and allow for efficient

and high accuracy solutions of chemical kinetic systems.

Tangent linear versions of the fully implicit and singly diagonally implicit Runge Kutta methods are

implemented in KPP–2.2 for direct decoupled sensitivity analysis. Implementation details specific to each

family and the integration options available to the user are discussed. To our knowledge this work is the

first to develop direct decoupled sensitivity analysis in the context of implicit Runge Kutta methods.

KPP–2.2 also offers new discrete adjoint implementations of the fully implicit and singly diagonally

implicit Runge Kutta methods. Discrete adjoints offer a computationally efficient way to compute sensi-

tivities of a cost functional with respect to the chemical model parameters, and are useful in the solution

of inverse problems. The formulation of discrete Runge Kutta adjoints and implementation details specific

to each family are discussed. To our knowledge the current work is the first publicly available software

for discrete adjoints of fully and singly diagonally implicit Runge Kutta methods.

Comprehensive tests of the forward, tangent linear, and adjoint methods are performed with a chemical

mechanism used in real air pollution applications. In addition we illustrate the use of discrete adjoints

to solve a chemical kinetic inverse problem (4D-VAR data assimilation).

Only discrete adjoints are currently implemented in KPP–2.2 for fully implicit Runge Kutta and for

SDIRK methods. Both discrete and continuous adjoints are implemented for the Rosenbrock methods.

In the future we plan to implement continuous adjoints for both Runge Kutta families.

41



10 Acknowledgments

This work was supported by the National Science Foundation through the awards NSF ITR AP&IM

0205198, NSF CAREER ACI0413872, and NSF CCF0515170, by the National Oceanic and Atmospheric

Administration (NOAA) and by the Texas Environmental Research Consortium (TERC).

A Coefficients of the SDIRK error estimators

In this appendix we provide the coefficients of the additional SDIRK stage for error estimation with the

fully implicit methods. The embedded methods are characterized by b̂i = â5,i (stiff accuracy).

The coefficients for Radau-2A:

b̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0(
1/18 + 1/12

√
6
) (−1 − 6 b0 +

√
6
)

(−1/18 + 1/12
√

6
) (

6 b0 + 1 +
√

6
)

− 4
45 − 1/3 b0 − 1/10 3

√
3 + 1/30 32/3

1/5 + 1/10 3
√

3 − 1/30 32/3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The coefficients for Lobatto-3C:

b̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0

1/6 − b0

2/3

1/6 −
(
1/2

(
2 + 2

√
3
)2/3 −√

3 3
√

2 +
√

3 + 3
√

2 + 2
√

3 + 2
)−1

(
1/2

(
2 + 2

√
3
)2/3 −√

3 3
√

2 +
√

3 + 3
√

2 + 2
√

3 + 2
)−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

42



The coefficients for Gauss:

b̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1/36
√

3
√

5 + 5
36 + 1

144 22/3 3
√√

5 + 1
√

3 − 1
144 22/3 3

√√
5 + 1

√
3
√

5 · · ·

· · · − 1
144 22/3 3

√√
5 + 1

√
5 + 5

144 22/3 3
√√

5 + 1 + 1
72

3
√

2
(√

5 + 1
)2/3 √

3 − 1
72

3
√

2
(√

5 + 1
)2/3 √

5

1
180 22/3 3

√√
5 + 1

√
5 − 1/36 22/3 3

√√
5 + 1 + 1

90
3
√

2
(√

5 + 1
)2/3 √

5 + 5/9

5
36 − 1/36

√
3
√

5 − 1
144

√
3 3
√

4 + 4
√

5 − 1
144

√
5 3
√

4 + 4
√

5 · · ·

· · · + 5
144

3
√

4 + 4
√

5 + 1
144

√
3
√

5 3
√

4 + 4
√

5 · · ·

· · · − 1
144

√
5

(
4 + 4

√
5
)2/3 − 1

144

√
3

(
4 + 4

√
5
)2/3

−1/24 3
√

4 + 4
√

5 + 1
120

√
5 3
√

4 + 4
√

5 + 1/6 + 1
120

√
5

(
4 + 4

√
5
)2/3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The coefficients for Radau-1A:

b̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1
90 32/3 − 1/30 3

√
3 + 2

45

−1/20
√

2 6
√

3 + 23
180

√
2
√

3 + 1/20
√

235/6 − 1/30 3
√

3 + 1
90 32/3 + 17

45

17
45 − 1/30 3

√
3 + 1

90 32/3 + 1/20
√

2 6
√

3 − 23
180

√
2
√

3 − 1/20
√

235/6

1/5 + 1/10 3
√

3 − 1/30 32/3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

References

[1] AutoChem home page. http://www.autochem.info.

[2] CHEMKIN reactor models home page. http://www.reactiondesign.com/products/open/

chemkin.html.

[3] GNU general public license. http://www.gnu.org/copyleft/gpl.html.

[4] The Kinetic PreProcessor home page. http://www.cs.vt.edu/$\sim$asandu/Software/Kpp.

[5] The Master Chemical Mechanism home page. http://mcm.leeds.ac.uk/MCM.

[6] MATLAB home page. http://www.mathworks.com/products/matlab.

[7] ODEPACK home page. http://www.llnl.gov/CASC/odepack.

43



[8] M.L. Baguer and W. Romisch. Computing gradients in parametrization-discretization schemes for

constrained optimal control problems. Approximation and Optimization in the Carribbean II, p.

14–34, M. Florenzano editor, Peter Lang, Frankfurt am Main, 1995.

[9] R. Byrd, P. Lu, and J. Nocedal. A limited memory algorithm for bound constrained optimization.

SIAM Journal of Scientific and Statistical Computing, 16(5):1190–1208, 1995.

[10] P.N. Brown, G.D. Byrne, and A.C. Hindmarsh. VODE: A variable step ODE solver. SIAM Journal

on Scientific and Statistical Computing, 10:1038–1051, 1989.

[11] W.P.L. Carter. Documentation of the SAPRC-99 chemical mechanism for VOC reactivity assessment:

Final report to California air resources board. California Air Resources Board Contract 92–329,95–

308, California Air Resources Board, 2000.

[12] A. R. Curtis and W. P. Sweetenham. Facsimile/Chekmat user’s manual. Technical report, Computer

Science and Systems Division, Harwell Lab., Oxfordshire, Great Britain, August 1987.

[13] D. Daescu, A. Sandu, and G. R. Carmichael. Direct and adjoint sensitivity analysis of chemical

kinetic systems with KPP: II – validation and numerical experiments. Atmospheric Environment,

37:5097–5114, 2003.

[14] V. Damian, A. Sandu, M. Damian, F. Potra, and G. R. Carmichael. The kinetic preprocessor

KPP – a software environment for solving chemical kinetics. Computers and Chemical Engineering,

26:1567–1579, 2002.

[15] A. M. Dunker The decoupled direct method for calculating sensitivity coefficients in chemical

kinetics. Journal of Chemical Physics, 81:2385–2402, 1984,

[16] R. Djouad, B. Sportisse, and N. Audiffren. Reduction of multiphase atmospheric chemistry. Journal

of Atmospheric Chemistry, 46:131–157, 2003.

[17] M.B. Giles. On the Use of Runge-Kutta Time-Marching and Multigrid for the Solution of Steady

Adjoint Equations. Technical Report NA00/10, Oxford University Computing Laboratory, 2000.

44



[18] K. Gustafsson. Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods.

ACM Transactions on Mathematical Software, 20(4):496–517, 1994.

[19] W. Hager. Runge Kutta methods in optimal control and the transformed adjoint system. Numerische

Mathematik 87(2):247–282, 2000.

[20] E. Hairer, S.P. Norsett, and G. Wanner. Solving Ordinary Differential Equations I. Nonstiff Prob-

lems. Springer-Verlag, Berlin, 1993.

[21] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic

Problems. Springer Series in Computational Mathematics, Berlin, 1996.

[22] J.R. Leis and M.A. Kramer. Algorithm 658: ODESSA – an ordinary differential equation solver with

explicit simultaneous sensitivity analysis. ACM Transactions on Mathematical Software, 14(1):61–67,

1988.

[23] K. Radhakrishnan and A. Hindmarsh. Description and use of LSODE, the Livermore solver for

differential equations. NASA reference publication 1327, 1993.

[24] R. Sander, A. Kerkweg, P. Jöckel, and J. Lelieveld. Technical note: The new comprehensive atmo-

spheric chemistry module MECCA. Atmospheric Chemistry and Physics, 5:445–450, 2005.

[25] A. Sandu, J.G. Verwer, J.G. Blom, E.J. Spee, G.R. Carmichael, and F.A. Potra: “ Benchmark-

ing stiff ODE solvers for atmospheric chemistry problems II: Rosenbrock methods”, Atmospheric

Environment, 31:3459–3472, 1997.

[26] A. Sandu, D. Daescu, and G. R. Carmichael. Direct and adjoint sensitivity analysis of chemical

kinetic systems with KPP: I – Theory and software tools. Atmospheric Environment, 37:5083–5096,

2003.

[27] A. Sand, and R. Sander. Simulating Chemical Kinetic Systems in Fortran90 and Matlab with the

Kinetic PreProcessor KPP-2.1. Atmospheric Chemistry and Physics, 6:187–195, SRef-ID: 1680-

7324/acp/2006-6-187, 2006.

45



[28] A. Sandu and R. Sander: “KPP – User’s Manual”, http://www.cs.vt.edu/$\sim$asandu/

Software/Kpp.

[29] P. Miehe and A. Sandu Forward, Tangent Linear, and Adjoint Runge Kutta Methods in KPP–

2.2. V.N. Alexandrov et al. (Eds.): ICCS 2006, III, LNCS 3993, p. 120–127, Springer-Verlag Berlin

Heidelberg, 2006.

[30] A. Sandu On the Properties of Runge Kutta Discrete Adjoints. V.N. Alexandrov et al. (Eds.): ICCS

2006, Part IV, LNCS 3994, p. 550–557, Springer-Verlag Berlin Heidelberg, 2006.

[31] Y. Tang, G. R. Carmichael, I. Uno, J.-H. Woo, G. Kurata, B. Lefer, R. E. Shetter, H. Huang,

B. E. Anderson, M. A. Avery, A. D. Clarke, and D. R. Blake. Impacts of aerosols and clouds on

photolysis frequencies and photochemistry during TRACE-P: 2. three-dimensional study using a

regional chemical transport model. Journal of Geophysical Research, 108D, 2003.

[32] J. Trentmann, M. O. Andreae, and H.-F. Graf. Chemical processes in a young biomass-burning

plume. Journal of Geophysical Research, 108D, 2003.

[33] R. von Glasow, R. Sander, A. Bott, and P. J. Crutzen. Modeling halogen chemistry in the marine

boundary layer. 1. Cloud-free mbl. Journal of Geophysical Research, 107D, 2002.

[34] R. von Kuhlmann, M. G. Lawrence, P. J. Crutzen, and P. J. Rasch. A model for studies of tro-

pospheric ozone and nonmethane hydrocarbons: Model description and ozone results. Journal of

Geophysical Research, 108D, 2003.

[35] K.Y. Wang, D.J. Lary, D.E. Shallcross, Hall S.M., and Pyle J.A. A review on the use of the adjoint

method in four-dimensional atmospheric-chemistry data assimilation. Quarterly Journal of Royal

Meteorological Society, 127(576 –Part B):2181–2204, 2001.

[36] A Walther. Automatic Differentiation of Explicit Runge Kutta methods for Optimal Control.

Technical University Dresden technical report WR-06-2004. To appear in Journal of Computational

Optimization and Applications.

46


