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Abstract

Special elements and values have always been of interest in the study of lattice-ordered groups,
arising naturally from totally-ordered groups and lexicographic extensions. Much work has been
done recently with the class of lattice-ordered groups whose root system of regular subgroups has

a plenary subset of special values. We call such [-groups special valued.

In this paper, we first show that several familiar structures of I-groups, namely polars, minimal
prime subgroups, and the lex kernel, are recognizable from the lattice and the identity; that is,
knowing which element of the lattice is the group identity, we can pick out in the lattice all the
clements of polars, minimal primes, and the lex kernel. This then leads to an easy proof that

special clements can be recognized from the lattice and the identity.

We then prove several results about the class § of special-valued I-groups. We give a simple
and direct proof that § is closed with respect to joins of convex I- -subgroups, incidentally giving a
direct proof that § is a quasitorsion class. This proof is then used to show that the special-valued
and finite-valued kemels of I-groups are recognizable from the lattice and the identity. We show
also that the lateral completion of & special-valued [-group is special-valued and is an a*-extension

of the original !-group.

Our most important result is that the lateral completion of a completely-distributive normal-
valued I-group is special-valued. This lends itself easily to a new and simpler proof of Ball, Conrad,
and Darnel’s result that every normal-valued l-group can i)e {-embedded into a special-valued
l-group. Readers familiar with the impact of the Conrad-Harvey-Holland Theorem on abelian -
groups will recognize the importance of the last theorem to the study of the class of normal-valued

{-groups and to the study of proper varieties of I-groups, all of which are normal valued.
* Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061

** Department of Mathematics, Indiana University, South Bend, Indiana 46634
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SECTION 1: Introduction

In this section, we gather many of the terms and fundamental results about {-groups that we

will use throughout the paper.

We will follow tradition and use additive notation for the group operation throughout the
paper even though most of the groups will not be abelian. ® will denote the group of real numbers,

@ the group of rational numbers,and Z the group of integers, ordered in the usual way.

A lattice is a partially-ordered set in which every pair of elements has a least upper bound
and a greatest lower bound. A lattice-ordered group, written I-group, is a group whose underlying
set is lattice-ordered and such that if z, ¥, g, and k are elements of the group ¢ < A, then

Z+g+ysz+h+y I the order is a total order, the group is called an ¢-group.

If G is an I-group and g € G, the positive part of g, written 9%, i3 gV 0, and the negative
part of g, written g, is —g V 0. 9t Ag~ =0 and g=g -y~ in fact, this is the unique such
representation of g: if A A k = 0 and g=h—k then h =gt and k = 9~ . The absolute value of g,
written |g|, is g* + g~ = ¢+ Vg~ =gV —g. Two elements z and y of G are disjoint if |z} A Jy| = 0.
Z i3 a component of g if |z| A |g — z[ = 0. An element g is infinitely smaller than an element § if
na < b for every integer n. This is denoted by @ << b. An I-group is archimedean if 0<a<<h
forces a = 0. A central theorem of {-groups is Holder’s Theorem [ ] that an archimedean 0-gToup

18 isomorphic, as an ordered group, to a subgroup of .

A subgroup A4 of G is an {-subgroup if A is also a sublattice of G ; this is equivalent to 2 € A
forcing a V 0 to also be an element of A. An l-subgroup A4 is dense in @ if for any 0 < gin G,
there exists e € A such that 0 < ¢ = ¢. An l-subgroup A is convezif 0 < 9 < a€ Aforces g € A
The set of convext [-subgroups of G, denoted C(G), is a sublattice of the lattice of all subgroups of
G. A normal convex I-subgroup is called an I-tdeal; £(G) denotes the set of I-ideals of & and is a

sublattice of C{@).

If both G and H are {-groups and r: @ — H is both a group and a lattice homomorphism, r

is called an I-homomorphism. A group homomorphism r is an {-homomorphism if and only if for
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every g € G, r(g vV 0} = r{g) V0. An {-homomorphism r is complete if r preserves all meets and
joins. The kernel of an {-homomorphism is always an [-ideal and the natural homomorphism of an

l-group onto the factor group of an /-ideal is always an {-homomorphism.

A convex l-subgroup P is primeif a A b = 0 forces either a € P or b € P. The set of prime
subgroups of an l-group forms a root system under inclusion: no two incomparable elements have a
lower bound. The intersection of a chain of prime subgroups is prime and thus, by Zorn’s Lemma,

every prime subgroup contains at least one minimal prime subgroup.

For any 0 # g € @, there exists at least one convex /-subgroup -M that is maximal with respect
to not containing g. M is called a regular subgroup and is a value of 9. Regular subgroups are
prime and also form a root system under inclusion, commonly denoted I'(G). I M is a regular
subgroup, M is properly contained in M* — MNeC@): Mc N}. M is called the cover of
M. It is customary to use I'(G) as an index set of small Greek letters and, if § € T'(G@), to let
75 denote the associated regular subgroup and G% the cover of Gs. A plenary subset of I'(G) is
a dual ideal whose intersection {of the corresponding regular subgroups) is the identity. We will
call a plenary subset A normal if for every G5 € A and any g € G, —§+Gs+gisalsoin A. A
regular subgroup M is a normal valye if M is a normal subgroup of M*, in which case M* /M is
an archimedean o-group. A normai-valued i-group is an l-group in which every value is a normal

value; this is equivalent to a plenary subset of I'(G) consisting of normal values.

For any subset S of G, the polar of 5, denoted §', is the set {5 € ¢ : lgl A |s] = 0 for all
8 € §}. Polars are convex {-subgroups of 7 and form a complete Boolean algebra under inciuéion.
If {A)\}sey is a set of I-groups, then on the group direct product of the set { Ay }yea, we place an
order by defining {..., ay, w) 2 (., 0,...) if for every A€ A, ay > 0. The resulting l-group is caﬂed
the cardinal product of the set {4s}res and is denoted II, Ax. An important convex l-subgroup of
ITp Ay is the cardinal sum LA, consisting of those elements g such that for all but a finite pumber

of A€ A, ay =0.

ay exists in G,

A rconvex l-subgrou_p A 18 closed if whenever {81}aey is a subset of A and ,\XA

then A\E/A ex i3 in A. Polars are known to be closed convex [-subgroups; K (@) will denote the set
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of closéd convex {-subgroups of the l-group G. K (G} does form a lattice under inelusion but need
not be a sublattice of C{G). An l-ideal is closed if and only if the natural homomorphism onto the

factor group is complete.

An [-group G is completely distributive if whenever {gis}ier,jer is a subset of G and both
VA9 and A, , V1 95y exist, they must be equal. A normal-valued l-group is completely-
distributive if and only if (@) kas a necessartly unique minimal plenary subset of closed values;

we will denote this minimal plenary subset of I'(G) by A(G).

All of the above results can be found either in [10] or in [17]. We will also need the following
definitions and results which are also widely known but which, by and large, have come after the

above texts were writien.

An element g is special if g has only one value, in which case its value s called special as well.
A zpecial value is necessarily a normal value [17]. If an element has only a finite number of values,
each value must .be special [14]. An l-group is called findte-valued if every nonzero element has a
finite number of values. If any element 4 has a special value M, then g has a special component with
value M [15]. We introduce and use the term special-valued to denote an I-group whose root system
of regujar subgroups has a {necessarily minimal) plenary subset of special values. A special-valued
I-group is thus a completely-distributive normal-valued {-group. The most fundamental result of
special-valued I-groups is that an l-group is special-valued if and only if every positive element is

the join of a pairwise disjoint collection of positive special elements [15].

If A 13 a root system, let V{A,R) denote the functions from A to R whose supports satisfy
the ascending chain condition on the root system A. V{A,R) is a group under component-wise
addition and, defining f € V(A,R) to be positive if f (6) > 0 for every maximal component § in
the support of f, V(A,R) is then a special-valued I-group, where the special values are all of the
form (for § € A) Vs = {f e V(A,R) : fla) =0for all @ > §}. If G is an abelian l[-group and A is a
plenary subset of I‘(G), there exists an I-homomorphism 7 of & into V{A,R) such that g € G®\ G
if and only if r{g) € V5 \ Vs forall 6 € A (19]. This is of course the most quoted theorem in l-group

theory, the Conrad-Harvey-Holland Theorem.



Finally, an l-variety is an equationally-defined class of I-groups. The class ¥ of normal-valued
I-groups is such a variety, satisfying the equation [(a_VO)+(bVO)]A[2(bVO)+2(aV0)] = {aVv0)+(bv0)
[10]. A torsion class is a class T of I-groups closed under convex {-subgroups, [-homomorphic images,
and joins of convex [-subgroups [26]. The class 7 of finite-valued I-groups is a torsion class [26] and
every [-variety is a torsion class [22]. A quasitorsion class is a class of l-groups that differs from
being a torsion class in that it need contain only complete {-homomorphic images and not every
[-homomorphic image [24]. The class of archimedean {-groups is a quasitorsion class {24] as is the
class § of special-valued {-groups [18]._Clearly every torsion class is a quasitorsio.n class. The final
generalization of a variety is a radical class, which is closed with respect to convex !-subgroups,
l-isomorphic images, and joins of convex {-subgroups [23]. Clearly a quasitorsion class is a radical

class and examples of radical classes that are not quasitorsion classes can be found in {18] and {23].

If R is a radical class of {-groups, let a be a successor ordinal and suppose that R*~! is defined.
We define R° to be the class of l-groups G that contain an l-ideal A such that A js in R*=1 and
G/Aisin R. If @ is a limit ordinal, we-define R to the class of {-groups G such that there exists
a set {Ag}p<a of l-ideals of G such that Ap€Rg, A; C A3 C A3 C ..,and G = ﬁga Ag. Then
for any ordinal @, R is a radical class (23] and is a quasitorsion class [24] or a torsion class [26] if

R is. If ¥V is an l-variety and n is a positive integer, V™ is also an I-variety {25].



SECTION 2: Special Elements

‘The purpose of this section is to show that special elements can be recognized in the underlying
lattice of an I-group. This statement needs some explanation because, since group automorphisms
are always lattice automorphisms, no point in the underlying lattice can be distinguished from any

other point.

So what exactly is meant when we say that polars, minimal prime subgroups, and special
elements can be recognized in the lattice? Basically this: if + and @ are two group operations
with the same identity on the lattice (@, <) such that (G, <, +) and G, £, ®) are both l-groups,
then a subset of G is a polar of (G, <,+) if and only if it is also a polar of (G, <, @). We do need
that + and @ have the same identity, but this is not as much a restriction as it might seem. For
i 4, and 42 are the respective identities for + and @, let 7 denote the map g — g + f2. Defining
a third group operation * on G by g+ h = r=1r(g) @ r(h)] yields that 4, is the identity of * and
that (G, <, +} is an {-group isomorphic to (G, <,9). Thus it does no harm to assume that + and
® have the same identity. We will call any group operation, +, on the lattice (@, <) such that

(G, <,+) i3 an I-group an l-operation.

Now if + and & are l-operations on (G, <), the map g — ~ 8 g is easily seen to be a lattice
automorphism of (G, <). This fact underlies most of the known results about changing the group

operation on a lattice.

Lemma 2.1. Let + and @ be l-operations on (@, <} and let C be a convex submonoid of Gt under
both /-operations such that the map ¢ — — © g is a permutation of C. Then the convex l-subgroups

[C,+] and [C, @] of (@,+} and (G, ®), respectively, generated by C are the same subset of (.

PROOF: Since C is a convex submonoid under both + and @, C = [C,+]t = lCc,e]*. If
9 € [C,®]™, —g € C implies that —g=~0c¢for some ¢ € C and s0 g = O, placing g in [C,+]~.

Thus [C, +]~ C [C,®]™ and a symmetric argument shows that {C, @]~ C [C, +]~.

Now let g € {C,+] which of course implies that g =¢; —¢,;, where c; and ¢z € C and

e1Aez =0. Then —¢; —c2 <¢; —e3 < ¢y +e¢2. Since both —¢; — ¢ and ¢, +¢2 are in {C, @]
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and [C, @] is convex, ¢; — ¢z is in [C, ®]. Thus [C,+] € [C, @] and symmetry gives equality of the

dets.

Lemma 2.2. (due to Paul Conrad) Let + and @ be {-operations on (G, %). Thenforany g >0in

G,gA-8g>0andgAe ~g>0.

PROOF: Suppose §A—©g=0. Then g>g+9g > ©yg implies that g+ ©g € (G(g),®), the
convex [-subgroup of (G, ®) that is generated by g. Thus g + ©¢ = &y 3 hy, where h; and ho are
positive elements of (G(g),®) and Ay A h, = 0. But 4, = (9+69)v0=ygandso hpAg=0, a

contradiction.

These two lemmas now give us a theorem that is and is not surprising, namely that polars are
l=ttize-recognizable. This is not surprising in one sense for the positive cone of a polar is of course
defined in terms of the lattice and the group identity. But what is surprising is that the negative
cone is determined by the lattice and the identity as well as all elements that are incomparable to

the identity.
Theorem 2.3. Polars of an I-group are recogmzable from the lattice and the identity.

PROOF: Let + and @ be l-operations on (G,2£),0<geGand0<he ¢'. Assume —© gAA> O
then g A© — 2 > 0. But then we have thatO:gAh?_gi\e—.h/\—eg/\h=(g/\e—h)/\—e
{gA©—Ah} >0, a contradiction. So —©gAh =0implying that —~© g and © — g are both elements
of . Thus if P is a polar of (g,+) and 0 < 9 € P, both — &g and © — y € P implying, of course,

that —© is a permutation of P+ which is a convex submonoid of both (G,+) and (@, ®).
Corollary 2.4. Minimal prime subgroups are recognizable from the lattice and the identity.

PROOF: M is a minimal prime subgroup of (G,+)ifandonly if M =U{z' 1z ¢ M} which is true

if and only if M is a minimal prime subgroup of (G, @) [17).

If G is a l-group, the lez kernel of G is the join of all the minimal prime subgroups of G. Lavis

(17] proved the following useful characterization of the lex kernel of an {-group G.
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A Lavis sequence in an {-group Gisa finite sequence of elements gy, g2, ..., g such that gill giti

forallz=1,2,..,n- 1.

Theorem 2.5. For any l-group G, the lex kernel of G is the set {0} U{g€G:gis an element of a

Lavis sequence containing 0}.

We will not prove this theorem; the reader can find a proof in [17]. The reason for including
the theorem is that we now have an immediately obvious proof of the Proposition 2.6 below. Our
original proof was quite tedious and proceeded directly from the definition of the lex kernel; we
wouid like to thank Paul Conrad for reminding us of Lavis’ theorem and pointing out its immediate

impact on this proposition,
Proposstion 2.6. The lex kernel of an I-group is recognizable from the lattice and the identity.

Quite a few other structures of an l-group are easily proved to be recognizable from the lattice
and the identity. Among these are the polars that are also direct summands of the group; these
are called cardinal summands. From this fact we can easily derive two results due to Tsinakis [27]
that show that whether or not an {-group is projectable or strongly projectable is decidable from
the lattice. His theorems, however, are much stronger than this, giving actual lattice descriptions

of projectable and strongly projectable {-groups.
Theorem 2.7. An element s € G is special if and only if s is not an element of the lex kernel of s”.

PROOF: For one direction of the proof, assume that s is special in @ and let M be the value of .
Then MNs" is the value of 5 in s” [17]. Now if ¥ is any minimal prime subgroup of s, N = Prs”
for some minimal prime subgroup P of @ such that s" ¢ P. Now s ¢ P,else s € ' forsome z ¢ P

which implies that z € ¢/ and so s” € z' C P. Since s € P,PC Mand so NCMnNs". Thus the

Join of all minimal primes of 8" is in M N &".

For the converse, if s is not in the lex kernel of 3", then s has only one value in s" [17] and so

has only one vahlie in G.

Theorem £.8. Special elements are recognizable from the lattice and the identity.
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PROOF: 5" is of course recognizable from the lattice and the identity and within the lattice of 8",

the lex kernel of 4" is recognizable from the lattice and the identity.



SECTION 3: The Quasitorsion Class of Special-valued i-groups

We start this section by reminding the reader of the fundamental theorem of special-valued

l-groups as shown by Conrad in [15].

Theorem 8.1. An l-group G is special-valued if and only if every positive element is the join of a

set of mutually disjoint positive special elements.

If G is special-valued and 0 < g € G, there exists a unigue set of mutually disjoint positive
special elements {ga : @ € A} in G such that g = Y go. Each such ga i called a special component
of g and g = go + ﬁ;/a ga for all @ € A. Equally important is that for all @ € A, ¢a A ,a\¢/a g = 0.

These facts make finite lattice computations within a special-valued /-group very easy.

Froposition 3.2. Let G be special-valued and 0 < a,b € G. The special components of a V b are
the larger of all pairs of comparable special components of 2 and b and those special components
of a disjoint from all special components of b and those special components of b disjoint from all
special components of a. The special components of a A b are the lesser of _all pairs of comparable

special components of a and b.
The proof is quite clear and is omitted.

In [18], Conrad showed that the special-valued {-group form a quasitorsiocn ciass §, which, as
said in the introduction, is a class of [-groups closed under taking convex l;subgroups, complete
I-homomorphisms, and joins of convex [-subgroups. For §, the first condition is easily verified using
Theorem 3.1, fhe second condition is well-known and easily proved. The third condition is harder
to i)rove and in fact Conrad did not prove the condition directly. Instead, he showed that § is the
intersection of two radical classes and thus is a radical class itself, which of course gives the third

condition.

We will now give a direct proof of the third condition and this proof will also give us a

description of the special-valued kernel of an l-group in terms of the lattice and the identity.
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The only difficulty in the proof is that we are forced to make most of the computations in the
lateral completion G¥ of G. For the reader who may not be familiar with the lateral completion of
an l-group, an {-group is laterally complete if every set of mutally disjoint positive elements has a
least upper bound. Bernau !7] showed that evefy {-group G has a lateral completion G& , migque up
to {-1somorphisms, in which @ is a dense {-subgroup. In the original paper on the lateral completion
of an I-group, Conrad (16] showed that if I'(G) has a minimal plenary subset, so does T(G¥). We
will denote the minimal plenary subset, if it exists, of I'(G) by A(G) from now on in this paper.
Conrag also showed that A(GE) is order-isomorphic to A(G), where the order-isomorphism from
A(G*) onto A(G)is Hs — H; NG = Q5. Contained within this proof is the fact that this map

has the property that for any g € G, 5 € H*\H; if and only if g € Go\Gs.
Since we must deal with the lateral completion anyway, we will include the following results.

Lemma 8.8, If G if normal-valued and completely-distributive, each special element of ¢ is also

special in GZ.

PROOF: Since G is normal-valued and completely-distributive, I'(G) has a minimal plenary subset
A(G), and so T{GY) has a minimal pieuat;y subset A(G¥) which is order-isomorphic to A{G). Let
g be a special element of G and M its value in G. Then M € A(G) [17]. Now if H;, and Hj, are
distinct values of g in A(GE), then Hs, NG and Hy, N G are distinct values of g in G. Thus the

only value of g in GZ is that element of A(GY) whose intersection with G is M.
Theorem 8.4. If G is special-valued, so is G'%.

PROOF: Let H be in the minimal plenary subset A(GE) of I‘(CL). Then G5 = Hs; NG is special

and we have seen that this forces H; to be special.

We have one more proposition to prove before we can show that § satisifes the third condition

of quasitorsion classes.

Proposition 8.5. Let 0 < q = a\e/A 8q and b = 5¥B bp be joins of mutually disjoint positive special

elements of an l-group G. Then a + b is likewise a disjoint join of positive special elements.
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PROOF: All that we need to do is to exhibit a set of mutually digjoint positive special elements of
G whose join is a + 5. We are thus free to compute in G¥, provided that at the end, all special
elements do indeed belong to G. We will follow tradition and identity a« € A and § € B with the
value of aq or bg, respectively. ANB will indicate those valﬁes that lie in both A and B. For every
a€ A let Bg={f € B:bg<<an}andlet Ay = {@ € A: B, #0}. Define Ag and B, similarly.
Finally, define Az = {@ € A:ay Abg =0 for all # € B and define B; analogously.

Then

e+ b= a\;Aaa+ﬁ\e/Bbﬁ

H

+ + Vv Va,,+ v V_b,g+'vbg+

acanB e T a4, % T gep, €4 a€4, BEB, PEB; peans 3

) wl+ Y, a4, b))

e + ba) + Vo + VY bg + 4 [

cEAND ( aEdg o BEB, BeB,

Now for any & € AN B, a4 +b, i3 special with value o. If # € By, then bgAa = bﬁA(agA Ge) =

2y + bg i3

2o € Gg and s0 GEVA,Q

Vv 8. Since each such aq 18 n Gy and Gg is closed, ue\{ig

acdy
special in G with value 8. Similarly, for all @ € A3, aq + 8 E\{B bg) 13 a special element of G.

Voo,

“Thus the set {aa + ba}aganB U {3a}acis U{bs}sem, U loa + (, 0 bs)taca, U{(,Y, 2a) +
bs}pes, is easily verified to consist of mutually disjoint positive special elements of G and a + b is

the join in G of this set.

The above proposition of course can be extended to any finite sum of joins of mutually disjoint

positive special elements.
Theorem 3.6. Let {Ax}tiea G C(G) be special-valued for all A € A. Then A\E/A A, is special-valued.

U {Ar+] [10]. But then g

Ay, g =ax, +ax, +...+ 25, where gy, € AeA

PROOF: K0 <g ¢ Y,

itself i3 a disjoint join of positive special elements. ©

Now for any radical class R and any [-group @, there exists a unique largest convex I-subgroup
R{G) which is called the R-kernel of G [23]. (This R-kernel is merely the join of all convex

{-subgroups of G that are in R.) Thus the torsion class 7 of finite-valued I-groups and the
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quasitorsion class § of special-valued {-groups have kernels within every {-group. Our next goal is

to show that these are recoguizable from the lattice and the identity.

Lemma 3.7. 0 < g € G is in $(@) if and only if whenever 0 S h<g, his adisjoint join of positive

special elements.

PROOF: If ¢ € §(@), then A is as well since S(G) is convex and 30 A is a disjoint join of positive

special elements.

Conversely, let 0 € 2 € G(g). Then 0< 2 < ng for some positive integer n and so by the Riesz
. Decomposition Law [17], there exist At  h2, ..., hy in G such that 0 < &, < gand z = Ay +ho+.. +h,.
But then eack 4, is a disjoint join of positive special elements and thus z is as well. So G(g) is

special-valued and thus ¢ € G(g) € §(@). c
The above lemma is easily adapted to 7(G):

Lemma 3.8. 0 < f € Gis in F(G) if and only if whenever 0 < 2 < g, A is a disjoint Join of finitely

many positive special elements.
Theorem 3.9. $(G) and 7(G) are recognizable from the lattice and the identity.

PROOF: Lemma 3.7 shows tilat $(G)* is a convex submonoid regardless of the l-operations + or’
@ on (@, <). Now for any positive special element g of G, both —g and ©¢ are negative specia.f
elements of G and so both —© g and © - g are positive special elements of . Thus if z € $(G)*,
then both —©z and 6 — z are in ${G)T, since z = .\\E/A z» a3 a disjoint join of positive special

elements and - g z = Vv

aca — O Thus the map —© permutes ${G)* and so we are done.

A similar proof works for 7(G). o

In Section 5, our main resnit 18 a new and easier proof that if 7 is normal-valued and § is a
normal plenary subset of T'(@), there exists a laterally complete special-valued l-gfoup H whose
minimal plenary subset of special values is order-isomorphic to A and such that there exists a
value-preserving l-embedding of G into H. (The reader familiar with l-groups will recognize this

as a generalization of the celebrated Conrad-Harvey-Holland theorem).
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There exists, then a natural and intimate relation between § and N, the l-variety of normal-
valued [-groups, namely that § € ¥ and every {-group in N can be [-embedded in a value-preserving
way into an element of §. Since N - N = N, one might well then suspect that §-§ = §. This is
not the case and in fact, for any pair of ordinals & > J, there exists an l-group G € §*\§4. We
will show examples of I-groups that are in $%\§ and §%\§?, respectively, and then outline how one
extends these examples for all succeeding cases. The first example is an example that has cropped

up many times and many places, [10].

Ezample 8.1. Let A = : f f :( “g‘ ) and let G be the [-subgroup of V (A, Z) consisting of

lim
n—vaod

eventually constant integer sequences on A such that (h) = g{w) and where g{a) can be any
integér. Forany 6 € A, let M; = {g € G : g{f) =0 for all B in A such that 3.> § (where the order
is that of the root system A) }. Each Mj is a regular subgroup of G and if § # w, M; is special.
But M, is not special, as if § & M,,, § must have support on some infinite subset of A and thus is

not special. It is easy to see that M, = §{G} and that G/M, ¥ Z. Thus G € §3\5§.

To extend this example to an example of an [-group in $%\§% we make each point in the

upper tier of A above into a “foot” point of another copy of A like so:
*** Figure 1 here ***

On this root system, let G be the l-subgroup of V(A, Z) such that g(#) is any integer,
nlin;g(w, n) = glw,w), nl_i_.mmg(a,w), and liflg(n,k) = g{w, k). The special values of 7 then are
Mpny mn€Z}, My :meZ}, {Myn:inel}, and My, these of course being defined

a3 above. “Modding out™ ${@G) yields the previous example and so G i1s in §3\§2.

By making each point in the top tier of our new root system a “foot” point of another copy
of A and choosing the necessary [-subgroup as indicated in the two above examples clearly yields
an [-group in §*\§%. Building on this root system in the same way gives examples of l-groups in
§n+1\§” for all positive integers n. Letting A; denote the root system of §*\§*~?, we have that A;

is an ideal of A;y; for all positive integers ¢. By letting () = :‘Eg+A"’ we can choose an l-subgroup
G, of V{2, Z} that is in §“ but not in $™ for any positive integer n. Taking a lexicographical

product of G, with 2 (lexing Z above G, of course), gives an example of an I-group that is in
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§@+1\§“. We then can build as before and so get examples of I-groups G, that lie in §2+!1\§=
for every ordinal a. One interesting fact that comes out of our construction for the limit ordinals

is that not all special elements of G, need be in §(G).

We do not know whether or not the following theorems are true for transfinite powers of S.

The theorems wonld be true for all powers of § if they are true for all limit ordinal powers.
Theorem 8.10. For every positive integer n, $7{G) is a closed [-ideal of G.

PROOF: We of course induct on n. The case n = 1 was shown by Conrad in [12], but we give our

own proof now.

exists in &7, then, since each g, is the join of special

If {gataca € S(G)* and 9= Y, 54

elements, g is the join of special elements and so we can assume that each g, is special. Let M, be
the value of g,. Since g > ¢,0, ¢ € M, implying that M, € M a value of §. Since M, i3 closed,
so is M, and thus there exists a gg such that gg is not in M, either, and so M = Mp. So g has

special values and hence special components.

Now suppose that g > z > hg for all special components hg of g. Since g is in the order
closure of $(G), z is as well and so ¢ — z is also in the order closure of S{G). Thus g — z,if not 0,
has a special component t. Since ¢ > g — z > ¢, g has a closed value containing the special value
of t and this value must be special. Thus ¢ is comparable to some special componeunt kg of g. But
O0<hgAt<hgA(g—2z)<hsA(g— hg)=0, and s0 we have a contradiction. Thus g =z and so
¢ 13 a disjoint join of special elements. Since this is true for all positive elements of 0¢/{§(G)), the

order closure of ${G) is special-valued and so contained in $(@).

To show that this is true for n + 1 knowing that $"(G) is closed, we know that ${G/S$.(G))
is closed in G/S™(G) and from [11], this says that S"t!(G) is closed in G. o

Theorem 4.11. For any positive integer n and {-group G € §%, G is completely-distributive.

PROOF: Let A, = {Gs € T(G) : $"~1(G) € Gs and G5/S™ Y(G) is in A(G/S"~1(G)). Let Ay =
{Gs : GsN $™~1G) is in A(S§""*G))}. Then each M € Ay U A2 is closed and N{A; U Az} = (0).
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Letting A be the dual ideal of T'(G) generated by A; UA2 gives that A is a plenary subset of closed

values and so (7 is completely-distributive. a

In the series of examples built in Example 3.1, none of the [-groups was archimedean. This

was no accident.

Proposition 8.12. H G is an archimedean l-group and G € $§% for some ordinal «, then < is

special-valued.

PROOF: If G € §=, then §{G) C §*(@) C ... C $%(G) = G and if §*(G) = $(G), the entire
chain collapses to §{G). So it suffices to show that if G is archimedean and G € $2, then G is

. special-valued.

So assume that G € §2\§. Then there is an M € A(@) such that M is not a special value but
M/ $(G) is a special-value in G/$(G). Let 0 < g € G such that §(G) and g is special in G/$(G).
Then M is a value of g in G and so g is not special. Thus g has another value X in A(G) [17] and
S(G) € N, else ${G) + g has two distinct values in G/§(G).

Since $(G) such that N, there exists 0 < A € S{G)/X and so, as seen before, ¥ is contained
m a special value of 4. But then ¥ itself must be the value of a special element of ${G). Thus g
has special components which are in §{G). Since ${G) is a closed [-ideal of G, g can not be the

join of its special components that are in §{G).

Let 0 < z € G such that g > z > Ay for every special component Ag of ¢ that is an element of
§{(G). If g — z has a special value, g — z has a special component ¢ > 0; note that ¢ > g—z > ¢ > 0.
But for any special component sz of gin S(G), 0<tAhs < (g—z)Ahy <{g-hp)Ahg=0, and
so ¢ must be an element of M. But then nt € M for any integer n and so nt < g for all integers n.

Thus & is not archimedean.

If g ~ z has no special values, let 0 < y € G be such that §{@) + y is a special component of
S(G)+ g~z in G/S(G). Then y is not special in G and so has special components that are in

S(G). Let t be one such special component of . Then g~z > y > t > 0 and since ¢ — z has no
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special values, ¢ must be an element of a closed value of ¢ — z and again, then, g - z > nt for every

integer n. o

The final part of this section will discuss the relation between the closed convex I-subgroups
of a special-valued /-group & and the minimal plenary subset of I'(G). Conrad [14] showed that
an [-group G is finite-valued if and only if A(G) = I'(G) and if and only if the lattice of convex
I-subgroups is freely generated by the regular subgroups (we define “freely generated’ below), thus
proving there exists a one-to-one order-reversing correspondence between the dual ideals of ['G)
and the convex l-subgroups of G. In a later paper [18], he showed that if the closed convex |-
subgroups of G are freely generated by the closed regular subgroups, G must be special-valued.
Anderson and Conrad [1] then studied the closed convex l-subgroups of V{A,R), showing that
there exists a one-to-one order-preserving correspondence between the ideals of A and the closed
convex [-subgroups of V(A,R®). Moreover, if A is an ideal of A and K is the associated closed

convex [-subgroup, then K & V(A R) and V{A,R}/K is l-isomorphic to V{A\A, R).

Our next theorem is that an l-group is special-valued if and only if the lattice of closed convex
{-subgroups is freely generated by the closed regular subgroups. This generalizes Conrad’s theorem
in [14] from fAnite-valued to special-valued l-groups and incorporates his result from (18]. Our

theorem then implies Anderson’s and Conrad’s theorem about closed [-ideals of V(A R).

An element M of a lattice L is meet-trreducidle if M = a/e\A No = M = N, for some o € A,
The meet-irreducible elements of C(G) are the regular subgroups [17] and the meet-irreducible
elements of K(G) are the closed regular subgroups [{11]. For any lattice L, the meet-irreducible
elements form a root system under the order inherited from L. The lattice  is generated by the
root system of meet-irreducible elements if every element of L is the meet of a dual ideal of the
root system and L is freely generated by the meet-irreducible elements if for each element ! of L,

there exists a unigue dual ideal of the root system whose meet i3 {.

Theorem $.18. An l-group G is special-valued if and only if the lattice of closed convex {-subgroups

i3 freely generated by the closed regular subgroups.
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PROOF: Let G be special-valued and M be a closed regular subgroup of G. Let 0 < ¢ be an
element of G such that M is the value of g; then, as seen before, M is the value of a special

component of ¢ and so the closed regular subgroups of G are precisely the special values,

Now let K € K(G). Then K = N{Gs; € A(G) : K C G5} and this set is clearly a dual ideal
of A(G). So A(G) generates K(G). I A C A(G) is a dual ideal and K = h{G5 : Gs € A},
clearly K € G5 for all Gs € A and s0 A C {Gs € A[G) : K C ay). Suppose there is a
G5 € A(G) such that K € G5 ¢ A Let 0 < g5 be special with value G45. Then for all G €A,

95 € Gy = gs €N{Gxr: A € A} = K C G5 a contradiction.

Conversely, suppose K(G) is freely generated by the closed regular subgroups of G. {This part
is due to Conrad and appeared in [18].) Let G5 be a closed regular subgroup. Then if G5 C G,,
G i3 also closed [13] and so the closed regular shape form a dual ideal of T'(G). Since (0) € K (@),
{0} is then the intersection of all closed regular subgroups and so these form a plenary subset of

(G).

Now for any closed regular subgroup G5 of G, the sets of closed regular subgroups {G, : G, €
Gs} and {Gy :.Gg ¢ G5} are distinct dual ideals of the closed regular subgroups and thus have
distinct intersections. This implies that there exists 0 <9EN{Ga:Ga & GsI\N{Gy : Gs & Gs}

and G is clearly the only value of g. So G5 is special. o

This theorem of course states that if @ is speciai-valued, then there exists a one-to-one order-
reversing correspondence between the closed convex {-subgroups of ¢ and the dual ideals of A(@).
The correspondence is as follows: if K € £ (@), then the corresponding dual ideal A comsists of
those closed regular subgroups that are not values of elements of K and if A is a dual ideal of A(G),

the associated closed convex I-subgroup are those elements of @ whose special values are not in A.

Recasting the above in terms of ideals of A(G) gives us the following generalization of the

Anderson and Conrad theorem.

Corollary 3.14. An I-group is special-valued if and only if there exists a one-to-one order-preserving

correspondence between the closed convex I-subgroups of G and the ideals of the root gystem of
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closed regular subgroﬁps, where the correspondence takes K € £ (@) to all special-values of elements

of K.

Corollary 3.15. Let G be special-valued and K be a closed (- ideal of G. Then A(G/K) is order
isomorphic to the dual ideal of A(G) associated with K.

To get our final corollary to Theorem 3.13, we need the definition of ag a*-eztension of an

{-group.

Let H be a l-group and @ an l-subgroup of H. H is an a*-eztension of G if whenever Ky and
K5 are two distinct closed convex l-subgroups of H, K1 NG # Ko N G {11]. 1t is known that if
K € K(H), then KNG € K(G) [11] so what an a*-extension insists upon is that the correspondence

be one-to-one.
Corollary 3.16. I G is special-valued, then G¥ is an a*-extension of G.

PROOF: We know that G* is special-valued and that A(G?) is order-isomorphic to A(G), when
Hs € A(G?) is mapped to H; N G. Thus if X + and K3 are distinct closed convex l-subgroups of
? with corresponding dual ideals Ai and Az of A(G®), Ay # Az and so Ky, NG # K5 N @ since

these arise from the same dual ideals of A(G). &
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SECTION 4: The Main Theorem

The main result of this section is that a laterally complete, completely distributive, normal-
valued {-group must be special-valued. In the next section we use this result to gain a generalization
of the famous Conrad-Haﬁey—Hollaﬂd embedding theorem for abelian [-groups, namely, that every
normal-valued {-group can be l-embedded into a special-valued i-group. This generalization was

first proved in (5], but our proof s simpler and more direct.

The next several lemmas set up the proof. Throughout these lemmas, let A be a plenary

subset of T(G) and let M(g) ={6 €D :9€ G%\G5} be the set of values of g in A.

Lemma 4.1. 1 0 < z, y € G are such that Mly) € M{z) and for all § € M{y), y +Gs > 2+ Gs,

then [z - (z A y)] Alz Ay =0

PROOF: For any 0 < g, h € G 1t is true that M(g) N M(k) € M{g Ah) and M{g)nM(k) =0if
and only if g A b = 0. Thus, under the hypothesis above, M{y) € th Ay). Let § € M{z Ay).
Since A is plenary and y & G5, there is @ € M(y) with « > 6. Since M{z Ay) is trivially ordered,
a = § and so § € M(y). By hypothesis then,

G5<y-—:z+G,s=(y+G5)—(z+G5)
S(y+G5)—-(z-/\y+ Gs)

=y—(zAy}+Gs

Since yEGé,y—(m/\y)eG‘s\Gg and so M(z Ay) € M{y—zAy) But now{z -z Ay) A
{y—zAy) =0implies0=M(z—-z/\y)ﬂM(y—:uAy) D M(z—zAy)N M{zAy) and so

z—zAy]AlzAy] =0

Lemma 4.2. Let 0 < z, y € G. Define w, = (n+2y—aTAalz- nylt. ¥ w, # 0, then every

value of w, is less than or equal to some mutual value of z and y.

PROOF: Let a be a value of wy,. Since z 2 [z — my|t 2 w, > 0, we must have z € G,. Thus z

has a value 8, > a. Similarily (n +2)y > [(n + 2)y — z|* > wn, >0 and so y has a value §, > a.
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Since the regular subgroups form a root system we know that 6z and 6, are comparable. To show
that they are equal first suppose that o < b0z < by. As above, [(n + 2)y — zZIt, [z - ny]t ¢ G,
and thus, since G, is regular, [(n + 2)y ~ z|7, [z -nyl" € G, C Gs, C Gs,. If £ € Gs,, then
[z — nylt € Gs, and s0o z — ny € (s, which implies that y € Gs,, a contradiction. Thus.z £ Gs,

and so by maximality of G5, by = ;.
A similar argument applies to the assumption that o < §, < §,.
The proof of the next lemma uses a technique given in (8] and [2].

Lemma 4.9. Let G be laterally complete, completely distributive, and normal-valued. For any

elements 0 < z, y € G, there exists a component z of z such that M(z) = Mz) n M(y).

PROOF: For each nonnegative integer n define w, = (n+2)y -zt Az - ny]T. Notice that

Wan A Wem =0 = w241 A Wamyy whenever n # m.

To see this suppose, without loss of generality, that m > n. Then m Zn+landso2m > 2n+2.

Thus
Wam A w2n = [(2m + 2}y — 2|7 A [z — 2my]T A (2n+2)y-2]T Az - 2nylt

IA

[z = 2my]T Al(2n+ 2)y — 2]t
Sle~(2n+2)yTAl(2n+2)y - o)t
=0
Let u = v (2n + Dws,, v = c\? (27 + 2)wsnt1. Both of these exist since @ is Iateréily

n=0 n=0

complete. Let § € M{z) n M(y).

Case 1: Gs < 2+ G5 <y + GF5. Then
22+ G5 S 2+ G52+ 05 <2~z 4 G
wo+G5=[2y——z}+A[z]++05=[(2y-—z)/\z}v0+G.s
=[(2y—-z+G5)/\(z+G.s)]\/G5=z—i-G5
and wr + Gs = G for all k > 1. Thus lut+ o)+ G5 =2+ G,
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Case 2: G5 < y+ G5 < z+ G4. Since G%/G; is isomorphic to a subgroups of the real numbers,
there is an integer k£ > 0 such that G5 < ky+Gs < z+Gj5 and G5 < z+Gs < (k+1)y+G;s. Thus
2ky+ G5 < 22+ G5 = (+1)y—z+Gs<z— (k- 1)y+G;s and 224+ Gs £ 2k + Dy + G5 >
T—ky+Gs < (k+ 2)y —z + Gs. Thus we have
We—1 G5 =([(k+1)y—2[* Az~ (k- Lylt) + G
=((k+1)y -2} Alz - (k- 1)) + G5
={{k+1)y-z]+G;

Also
wr +Gs = ([(k+2)y —a]* Az — kylt) + @5

=z - ky+ G

Em<k-2 (m+2y-2z+G5 < ky—-z+Gs < Gs and if m > k, z—my+ Qs <
z—(k+ 1)y + Gs < G5. That 13, Wy, € Gy fm#kandm#Ek-1 Thus
(+v)+ G5 = kwpey + G5 + (k + Dwy + G

=klk+1)y - kz + (k+ 1)z — k{k + 1)y + Gs

= g+ G
We have thus shown that for each § M(z) N M(y), u+v+ G5 = 2+ G and so M(z)n M(y) C
M(u +v). By Lemma 4.2. we have that for all v £ any @ € M(z) N Mly), wx € G, for
all k. Since G, is closed, u +v € Gy for all such v as well. Thus TE Mu+v) = 4 <
some a € M{z) N M(y) € M{u + v) and since M{(u + v) is trivially ordered, we conclude that
M(u+v) = M(z)nM(y). In particular M(2(u+v)) = M(u+v} C M(z) and for all § € M(2{u+v)),
e+9)+ G5 > 2+ G5 Let z = [z A 2(x + v)] and notice that M(z) = M(u + v}. By Lemma 4.1.

zA(z —2) =0 and the proof is complete,

Lemma 4.4. Let 61]|62 be elements of I(G). There is an element 0 < g € G with 81 € M(g) and

52”M(§')~

PROOF: Let 0 < g1 € G4,\G5, and € < 92 € Gs,\Gs,. Since 416, G5, N G, is not prime. Thus
there exists z,y € G such that g A y = 0, but peither z nor y is in Gs, N Gs,. Without loss of

generality € G5,\Gy, and y € G5, \Gs,. Let 0 <t e G%\Gs, and let 0 < 5 G5\@s,. Then
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tAz & Gy, and sAy € G, , because both G's, and G, are prime. Also, 0 < (tAZ)A(sAY) < zAy = 0.

It is now easy to see that the element 9 = 38 Ay satisfies the condition of the lemma.
We can now prove our main result.

Theorem {.5. The lateral completion of a completely distributive, normal-valued {-group Is special-

valued.

PROOF: Let @ be completely distributive, normal-valued with minimal plenary subset A. Then
G* is also completely distributive, normal-valued and has A as its minimal plenary subset. Let
§E€A 0<z€GNGs. If zis not special, then there is §, # § in M(z). By Lemma 4.4, there is
an element y; € G such that 5| M(y1) and 6, € M(y:). Let 4; = M{z)n M(y,). By Lemma 4.3,
there is a component, z;, of z with M{z1) = A;. Also, potice that § € M(z - z;) C M(z) and
b1 € M(2)\M(z - z;). Now let 8 be any ordinal and suppose we have defined 4§, and Zy a3 above
for all @ < A such that (j) a!ﬂ Zq €Xists and is a component of z, (ii) § € M(z ~ a\</,9 Za) C M{z),
and (iii) §o are for all @ < A distinct members of Mz \M(z ~ a\</,9 2e). Hz— a\</ﬂ Z, i3 ot special
then it has a value §g # 5. Again by Lemmas 4.3 and 4.4 there is a component zg of z — a\</,6 2o
with § € Mz — a\jﬂza — z5) € M(z) and cfg € M(z)\M(z ~ ugﬁza — 2zg). Notice also that 25 is
disjoint from a\iﬂ Zy and so z — u\</5 Za— 25 =2 — a\s\./ﬂ 2q. Clearly 65 is distinct from b, for all

@ < A and .ayﬁ 2z, 13 a component of z. Finally, since for each o < B, ba & M{z ~ Z) and

a<f
z -~ a\</;3 Z4 13 3 component of z — a\</,9 Za, we have that for all @ < 4 the o are distinct elements

of M{z)\M(z -

C!S}Bzﬂ,).

Now since M(z) has a fixed cardinality, we must have that z — a\</,8 Za i3 special at § for some

ordinal 4. That is, G¥ € §.

Corollary 4.6. If Q is completely distributive and normal valued, then G is special-valued if and

only if G¥ is an a*-extension of G.

PROOF: (—) This is Corollary 3.16 (+-) By Theorem 4.5, G¥ i3 special-valued and so by Theorem
3.13 K{(GL) freely generates K(GL). Since K~ KNG is a one-to-one correspondence between

K(GE) and K (@), Ki(G) also freely generates K(@). Thus G is special valued.
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Corollary 4.7. For a normal-valued I-group G, the following and equivalent:
a. 7 i3 completely-distributive
b. G is special-valued

¢. (Ball and Davis) G can be embedded as a dense l-subgroup of a special-valued I-group.



SECTION 5: A Generalization of the Conrad-Harvey-Holland Theorem

Probably the most fundamental theorem of abelian l-groups is the Conrad-Harvey-Holland
Theorem [19] which says that for any abelian group G and any plenary subset A of T'(@), there
exists a [-embedding 7 of & into V(A,R) such that for any 6 € A, g € G*\Gs if and only if

7(g) € V4\V;. In this case, r i3 called a v-isomorphism.
In (5], Ball, Conrad, and Darnel gave this generalization of the theorem:

Theorem 5.1. Let G be a normal-valued l-group and A be a normal plenary subset of I'{G). There
exists a laterally complete special-valued H such that A{H) = A and there exists a v-isomorphism

of & into H.

Their proof used several constructions previously developed by Ball ([3] and [4]) and Ball
and Davis [6] with which many persons in the field are not familiar. They also did not show the
hypothesis that A be a normal plenary subset was necessary. The proof we give in this section is
much simpler and more direct than the proof of (5], depending only on cur main theorem of Section

~Four and the following construction due to Bigard, Conrad, and Wolfenstein [9] that embeds any

{-group mnto an [-group with a basia.

Let  be a normal-valued i-group and A a normal plenary subset of I(G). Let 4 be the set of _
all roots € of A and B = C%:ﬂ Zc. Vg € G, let o(g) be the [-antomorphism of B defined by, if € € 4
and b € B, the C-component of #(g)(b), o(g)(b)¢, equals the gCg~! component of b. (e(g) is thus a
“shift” [-automorphism of B.) On the set G x B, define (g1, 1)+ (g2, b2) = {91+ g2, 0(g2) (b1} +b2),
and define (g,6) > (0,0) if g 2 0 and if the projection of b onto {C € 4 : g € NC}, called g(3),
is positive. (G x B, <,+) is then an /-group. In [5], the values of {g,5) are shown to be of the
form C x B, where C is' a value of ¢ in G, and Gp x D, where D is a value of §(b) in B and
Gp={h € G:henC forall CE€ A such that be = 0 for all § € D}. Moreover, the maps
a:G—=GxB:g—{(g0),:B—>GxB:b-~ (0, are l-embeddings and for any 6 € A,
g € G*\Gs if and only if (5,0) € (G x B)\(Gs x B}, and for any C € 4, b is special in B with

value D = C'\L;:C Z¢+ if and only if (0,5) is basic in G x B with value Gp x D. G x B then has a
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basis and so is completely-distributive. Since @ x B € N - N = N[22], T(G x B} has a minimal
plenary subset A{G x B) which is simply a copy of A with a new regular subgroup added under

each root of A.

The proof of Theorem 5.1. is now easy. Let H = (G x B)L. Then H is special-valued and
A{H) = A(G x B). Let K be the closed convex l-subgroup of H associated with the lowest tier
of elements of A(H) that were added to A in building A(G x B). Since (0) x B is an l-ideal of
¢ x B, K'is an l-ideal of H. By Proposition 3.15, A(H/K) & A. Letting o denote the embedding
of @ x B into H and n the natural homomorphism of H onto H/K, for any § A, ge€G%Gs if

and only if no oo afy) € %:—}%.—

Corollary 5.2. (1. Reed) An l-group @ is normal-valued if and only if G if l-isomorphic to an

I-subgroup of a special-valued {-group.

The following example shows that the hypothesis of Theorem 5.1 that A be a gormal plenary

subset of I'(G) can not be discarded.

Let G = R X C(R), where (y, f{z)) > (0,0) if y > 0 orif y = 0 and f{z) > 0 for all 7 & R,
and where {y;, fi(z)) + (y2, f2(2)) = (y1 +v2, A(z)), where h(z) = fi{z+y2) + fa(e). G is then an
{-group [17]. Now since Q is a dense subset of R, every f(z) € C(R) is determined by its action on
<. This implies that the set of maximal convex l-subgroups [20] M, = {f € C(R) : f(q) = 0}, and

g € @, is a plenary subset of I'{C(R)), and consequently the get

1 a plenary subset of I{G).

Now if Theorem 5.1 were to hold for a, thex_‘e would exist an l-embedding r of @ into
H=%x qgQ Rq, with some strange group operation on H, such that if g has value M,, r(q) has

value By = {(he L% :h(g) =0y,

Let 0 < h € Ro in H; the value of A, then, is Hy = {h € qIE_IQéEq : h(0) = 0}, and the value
of any conjugate of A must be of the form H, for some g € Q. Thus any set of pairwise disjoint

conjugates of i must be countable.



Let y, 2 be distinet real numbers and 0 < ¢ < |y — z|. Define 4, € H by

0, T g < —€f2

he(q) = 2hfeq + h, -e<g<0

¢ —2h/eq + h, 0<g<e/2
0, €/2<g

for ¢ € @. Then A is a special component of k.. Note that the support of . is the set of rational

points in the interval (~¢/2, ¢/2).

But now in H, (y,0)+ (0, k.) — (y, 0) is disjoint from (z,0) +{0, h.) — {2, 0}, implying of course
that (y,0) + A ~ (y,0) is disjoint from {z,0) + A - (2,0). Since this is. true for any two distinct real
numbers y and z, the set {(z,0) + & ~ (z,0) : z € R} is a pairwise disjoint set of conjugates of &,

contradicting the fact that such a set must be countable.
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