*HRkk** SUBMITTED FOR PUBLICATION ***#%%

Technical Report CS81005-R
Modeling of MULTISAFE Protection Enforcement

Processes with Extended Petri Nets#*

H. Rex Hartson
and

Earl J. Balliet**
March 1981
Pepartment 6f Computer Science

Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

* The work reported herein was supported, in part, by the National Sci-
ence Foundation under Grant Number MCS-7903936.

** Present address: Bell Telephone Laboratories, 6 Corporate Place, Room
1D-217, Piscataway, NJ 08854.

Modeling of MULTISAFE Protection Enforcement Processes

with Extended Petri Nets*

H. Rex Hartson
and
Earl J. Balliet**

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

ABSTRACT

The various kinds of access decision dependency within a predicate-
based model of database protection are classified according to cost of
enforcement. Petri nets and some useful extensions are described.
Extended Petri nets are used to model the flow of messages and data dur-
ing protection enforcement within MULTISAFE, a multimodule system archi-
tecture for secure database management. The model demonstrates that
stated criteria for security are met within MULTISAFE. Of particular
interest is the modeling of data dependent access conditions with predi-
Cates at. Petri net transitions.

Keywords and phrases: Database security, Petri nets, predicate-based
protection, modeling, data dependent checking, MULTISAFE, enforcement

* The work reported herein was supported, in part, by the National Sci-
ence Foundation under Grant Number MSC-7903936.

** Present address: Bell Telephone Laboratories, 6 Corporate Place, Room
1n-~-217, Piscataway, NJ 08854,

1. INTRODUCTION

A contiﬁuing problem in computing systems is the need for controls
on the access to stored data. Database access contrels have commonly
been ad hoc, infle#ible, and sometimes circumventable, pointing out the
need for a.more structured approach. In particular, modular system
architectures and security mechanism modeling are indicated, The Data-
base Security Research Project at VPI & SU has developad a modular sys-
tem architecture called MULTISAFE, discussed in [TRUER81]. The chief
conceptual feature of MULTISAFE is the logical (and, possibly, rhysical)
isolation of all protection and enforcement mechanisms from the users
and from the operations on the database. This was accomplished by sepa-
rating the database s?stem into three distinct modules. Criteria for
Security have been presented in terms of the flow of inter-module mes-
sages [TRUER81].

Modeling of MULTISAFE has been done from several points of view,
including cost and performance (based on access condition classifica-
tions), implementation with a relational database approach to storing
and retrieving authorization information, and distributed protection in
a distributed database environment. This pPaper describes & Petri net
medel of MULTISAFE which is descriptive, which helps verify security
conditions, and which provides insight into implementation.

Petri nets have been shown to be a useful tcol in the study of con-
current activities and the modeling of the flow of control throughout a
system. However, Petri nets do not pPosSsess enough structure to effi-

ciently model message flow in MULTISAFE. Several extensions to the

theory of Petri nets exist in various forms in the literature. ‘These
extensions include the association of identifiers with tokens, so that
tokens can be distinguished, the association of tokens with messages
which have data content, the queueing of tokens in a place, and ﬁhe
resolution of conflicts in a net by the association of a predicate with
a transition. 1In this paper these extensions are gathered and enhanced
in 2 novel application of Petri nets to database protection. In parti-
cular, it is the first time that Petri net transition Predicates have
been used to model data dependent access conditions. The concept of
Queues of predicates at transitions is introduced to facilitate the
evaluation of those access conditions.

A conflict-free Petri net model of MULTISAFE message flow is pre-
sented. First, this model is useful as a descriptive model of MULTISAFE
data security, especially as it provides insight into possible implemen—~
tations of a predicate-based model of database protection. The model is
aiso shown to preserve the criteria for security in MULTISAFE. Binding
time, access condition evaluation, and enforcement pelicy are analyzed
in the process of demonstrating that the conditions for security are
maintained., The use of a counting function at a transition is intro-
duced to verify the completedness of a Petri net.

The predicate-based model of authorization and enforcement of
[HARTH76] provided the motivation for studying types of access ceondition
dependencies. In this paper, access conditions are categorized into
three distinct types: system, query, and data dependent. The data
dependent access conditions are further refined into several categories

of increasing complexity and increasing performance demands.

2. CLASSES QF ACCESS DECISICN DEPENDENCY

A prediéatewbased protection model has been described in [HARTH76].
The generality introduced there by the use of predicates as conditions
of access implies a variety of ways in which the access decision can be
dependent on different kinds of system information. Three broad catego-
ries of access conditions which can be placed on a user of a database
are:
1. System dependent

2. Query dependent
3. Data dependent

2.1. System Dependent Access Conditions

An access condition (predicate) is a system dependent conditicn if
its Boolean value can be ascertained from information .available about
the general system state. Such a condition might require that the time
of day be between 8 a.m. &and 5 p.m., allowing database operations only
during regular working hours, or only on certain days of the week or

month,

2.2. Query Dependent Access Conditions

A condition is a query dependent condition if itsg Boolean value can

be ascertained from the query itself., A SEQUEL~type [CHAMD76] language
is used to illustrate. A simple SEQUEL request takes the form:

SELECT <attribute-list>

FROM <relation—name>

WHERE <selection-predicate>
A query dependent access condition can limit the relations upon which
the user can operate, the attributes from which the user can SELECT, and
the attributes which can be used in the WHERE clause.

The following database of three relations is used to illustrate the

various kinds of dependency. (Much of this discussion of access deci-

sion dependency is taken from [BALLES]1, HARTHB0].)

EMP (EMP#, NAME, SALARY, BIRTH YEAR, DEPT, YRS SERVICE)
containing information about employees with attributes of
employee number, name, annual salary rate, year of birth,

department, and years of service
TAX. (EMP#, NBR DEPS, EARNED)
containing tax information about employees, with attributes of
employee numbar, number of dependents, and year-to-date earn-
ings
MGR (DEPT, MGR NAME, STATUS)
with the manager names for each department and information on
"clearance status"
Managers, being employees as well, are also listed in the EMP rela-
tion. EMP and TAX are separate relations for operational reasons and
not, for example, because of third normal form requirements. The clear—

ance status information in the MGR relation is provided by each manager

for his/her department; the semantics are unimportant here.

As an example of a gquery dependent condition, consider an
authorization which allows the selection of ' NAMEs from the EMP relation
as long as Ehe WHERE predicate does not specify. SALARY values., Simi-
larly, a selection of SALARY from the EMP relation may be disallowed if

NAME also appears in the SELECT clause attribute list.

.2.3. Data Dependent Access Conditions

A condition 1is a data dependent condition if its value cannot be

ascertained without a retrieval (or perhaps several retrievals) from the
datzbase. The classes of data dependency are presented in approximate

order of increasing complexity.

- 2.3.1. Class A Data Dependency

A condition has a class A data dependency if it has truth values in

a one—-to—one relationship with the tuples retrieved in response to a
query, and the wvalues depend on the retrieved fields of the retrieved
tuples. With such a dependency, an access decision must be made for
each tuple retrieved. Consider the following simple, unqualified query,
Qs

SELECT NAME, SALARY
FRCM EMP

For Q, an example cf a class A access condition is:

SALARY < 20,000

2.3.2. Class B Data Dependency

A condition has a class B data dependency if the condition has

values in a one-to-one relationship with the tuples retrieved in res-
ponse to & query, but the information needed to evaluate the condition
is not present in the retrieved fields. Instead, it is in another field
(or other fields) of the retrieved tuples; For Q, this access condition
(which must be computed from BIRTE YEAR) is class B:

age < 40

2.3.3. Class C Data Dependency

A condition has a class C data dependency if the condition has

values in a one-to-one relationship to the elements retrieved in res-
ponse to a query, but the information needed to evaluate the condition

is not present in any fiel&é of the relation. Instead, the information

is available from another relation (or relations) in the database.

The following access condition is of c¢lass C with respect to query

NBR DEPS <= 3

2.3.4. Class D Data Dependercy

A condition has a class D data dependency if the condition has

values in a one-to-n relationship with the tuples retrieved in response
to a query, and the information needed to evaluate the condition
requires only one database retrieval. This information may be:

1. in the response to the query,

2. in the non-response attributes of the response tuples, or
3. found by making a single additional request to the database, indepen-

dent of the user's query.

For simplicity, in all cases, an extra access from the database is

conservatively assumed to be needed.

Given query Q, this access condition is of class D:
name of manager ¢f finance department # 'Joe'

An access to the MGR relztion is needed. If the name (MGR NAME} of
the finance department manager is Joe, access is immediately denied to
all tuples selected in response to Q. If the name of the finance
department manager is not Joe, then access is allowed to all of the res-

ponse tuples.
2.3.5. Class E Data Dependency

A condition has a class E data dependency if the condition involves

aggregate inﬁormation (sum, count, average, or derived data). Five sub-
classes of E are discussed in [BALLEB1l], but are not detailed here. The
subclasses are distinguished by the kinds of data used in the aggre—

gates. ‘The subclasses of dependencies in the aggregate information,

approximately parallel the classes of the non-aggregate dependencies
described above. Some examples of aggregate- and derived—déta—dependent

access conditions are:

average age of employees retrieved < 30
average salary of all employees in finance department < 25000

age of employee when hired < 21
2.3.6. Summary of Data Dependency Classes

For easy reference, a summary table of the data dependency classes
is presented. In the table below, 1-1 means one decision per tuple,
whereas, l-n means one decision per query. Ret;ieved tuples mean tuples
of the original relation retrieved in response to the query, before -
being projected down to tﬁe list of attributes named in the SELECT

clause,

¥

| Summary of Cata Dependency Classes

]

| | RELATIONSHIP/
I | WITH f
l
|

ACCESS CONDITION IS
DEPENDENT ON:

| RETRIEVED
CLASS| TUPLES

l

I

i

l i

! |

[A i-1 | retrieved fields of retrieved tuples |
| B | 1-1 | non-retrieved fields of retrieved tuples |
c | i-1 | not in retrieved data |
i D | 1-n | data anywhere, often independent of query |
| E | 1-n | aggregate i
| I (usually) | |
| Ea | 1-n | retrieved fields of retrieved tuples l
I b | 1-n | non-retrieved fields of retrieved tuples |
| Ec | 1-n | data anywhere, cften independent of gquery |
| 24 | 1-1 [derived from tuples retrieved]
| Ee | 1-1 | derived from other data |

10

2.4. Dependency and Binding

The time at which each part of an access condition can ke shown to

be satisfied for a given query is called the binding time for that part.

The time at which a complete access decision can be reached depends upon

the type of dependencies within the access conditien.

2.4.1. Binding of System Dependent Access Conditions

.If a condition has only a systemldependency, it can be evaluated as
soon as the system state can be determined. A system dependent condi-
tion can be applied at any time from the legging in of the user (possi-
bly even earlier), to the time the results of a service request are
returned to the user. As an example, a.policy may limit database access
to times between 8 a.m. and 5 p.m. For most purposes that can be
interpreted to mean that database operations may be allowed only if the
request for service occurs in the prescribed time range. Or, if timing
is critical, it may mean that the response be returned to the user oniy
within the $ame time interval. These two interpretations imply two dif-
ferent binding times, one at the start of the service ané one at the

end.
2.4.2, Binding of Cuery Dependent Access Conditions

If a condition has only a query dependency, then enforcement can be
performed upon receipt of a query, leading to a relatively early binding

time. If the query is:

11

SELECT NAME, SALARY

FRCM EMP

WHERE DEPARTMENT = 'finance’
and the access policy for this user and the EMP relation is that NAME is
allowed as long as SALARY is not also requested, then the query can be
immediately rejected.

A query dependent access condition may involve combinations of the

SELECT attributes, relations used, and attributes in the WHERE clause.

All forms of query dependent access conditions can be bound at query

processing time.
2.4.3. Binding of Data Dependent Access Conditions

If a condition has a data dependency, the binding time depends upon
the class of the dependency. Class A or B conditions (being one-to-one
with retrieved tuples) must be bound repeatedly as the responses to a
Query return from the database. A class C condition requires one addi-
tional database retrieval to be made for éach respense to a query.,
Thus, class_c conditions require a later (and more costly) binding time
than that of classes A and B. Upon completion of this retrieval, a
decision can be made which affects only one response. A class D condi-
tion requires that one additional database retrieval be made for the
entire query; Upon completion of this retrieval, a decision can be made
which is in effect for all responses to the query. Therefore, although
the class D binding time is very late, it is not as costly (because it
is not as frequently needed) as that of class C conditions. A class E
condition requires that aggregate information be computed before the

condition can be evaluated.

12

3. ENFORCEMENT AND DISCLOSURE POLICIES

Policy considerations at a high 1level are fundamental to the
behavior of the system. Two enforcement resolution policies and two

disclosure policies are considered. An enforcement resoluticn policy,

introduced in [HARTH77], is a policy which determines how much data is
to be returned to the requester when only part of the response to
“his/her query is accessible according to the authorization information.

A disclosure policy, introduced here, is a policy which decides how

informed the user should be of the authorizations that pertain to
his/her datzbase operations. Enforcement policy applies only to how the
enforcement process is performed, whereas disclosure policy is used only
in formulating user messages wnich explain the response cr lack of res-

ponse.

3.]1. Definitions

1f any part of any response to a guery fails to meet the authoriza-

tion requirements for access, a full enforcement policy requires that no

information at all be passed to the user. Full enforcement is an

'all-or-nothing' pelicy. In contrast, partial enforcement is a policy

which permits the user to be passed all the individual responses to the
query that pass all applicable access conditions. Cnly the responses

that fail an access condition are withheld.

13

Associated with full and partial enforcement are two disclosure

policies, complete and null disclosure. Complete disclosure is a policy

under which a user is made aware of all the authorizations that control

his/her database operations. Null disclosure is a policy whereby the

user is kept completely unaware of the authorizations placed on his/her
database activities.

In a database system none of the four possible policy combinations
may be universally applicable. A different’policy may be chosen depend-
ing upon the individual_ ‘user and on the information that is being pro-
tected. Eetermiﬁing which of the four policies best suits a particular
user over a given part of the database is generally left to the discre-
~ tion of the authorizer.

If, under a full disclasure policy, the user is told s/he may get
‘the NAME and ADLCRESS of all employees, s/he, nevertheless, is still not
told about the existence of other information, possibly in the same
relation. The user merely knows that there may or may not be other
attributes of the relation that s/he cannot query. Full disciosure can
also lead to illegal inference of data values., For example, if the user
asks for the SALARY of the employee named Jones and the access condition
is to allow SALARY if SALARY < $20,000, the user upon being informed of
the access condition that is violated will know that Jones earns more
than $20,000. Further discussion of the inference problem ig beyond the
scope of this paper, but is treated extensively in the literature (as

examples, see [DENND79, DCBKD79]).

14

3.2. Partial Enforcement

The INGRES database system is an interesting example of a partial
enforcement policy, arcund which the entire protection system is built.
The protection mechanism of INGRES [STONM74] is used to mo&ify incoming
queries so that the resulting query 1is guaranteed to reguest only
authorized data. The modified request is then processed by the database
retrieval programs without further need for enforcement of access rules.
To greatly oversimplify (details are found in [STONM74]), data dependent
access conditions are ANDed to the search qualification predicate (in
the WHERE clause) of the incoming query. For examplé, if a given
employee of the ABC Company has access only to records of Department &,
his/her general request for information akout the entire company is
modified with a predicate such as: DEPT = 'A'. Thus, there is a res-
ponse to the request, but it contains no information from tuples having
a Department value other than A.

It is possible for this éolicy to cause difficulties if the reques-
‘ter does not understand that the response corresponds to a guery other
than the one s/he submitted. It ié particularly serious if the reques-
ter asked for, say, the average salary in'Company ABRC. If the user was
unaware that the result was an average for only Department A, s/he would
unknowingly be dealing with false information. Of course, a full dis-
closure policy would provide the information necessary to know that the
results are inéccurate and why they are inaccurate. On the other hand,
a null disclosure policy may be suitable if a user does not need to be

aware of some parts of the database. For example, if a user, whose view

¢f the world includes only a certain department, asks for the average
salary, s/he gets only the average salary of the employees that s/he has
the authorizaﬁion to acgess, and need not be concerned as to the res-
trictions placed on his/her'request by an authorizer. This approach is

exemplified by the early ASAP security measures, based on user views

[CONWR72].

3.3. Full Enforcement

In contrast, consider a full enforcement access policy which allows
all employee salaries except the salary of a manager. If the user asks
for the average éalary of all employees, s/he is told that ne response
is allowed. Only a correct (from a global viewpoint) Query, requesting
the average salary of all employees except the manager, is allowed, and

it produces a correct response.

16

4, PETRI NETS

The foilowing section reviews Petri nets only briéfly to provide
some bgckground, for the unfamiliar reader, to other sections that fol-
low. The reader interested further in the theory and application of
Petri nets should begin with Peterson's survey [PETEJ77] and pursue some

of the references therein.

4.1, Introduction to Petri Nets

A Petri Net [AZEMP78] is a four tuple (P,T,I,0) where: P is a set
of places, drawn as circles; T is a set of transiticns, drawn as bars; I

is an input function and O is an output function. Places and transi-

tions are connected variously with arcs.
I: PXT—>1{0, 1}
0: PXT—>1{0,1}
If pi € P and tk € T, then: |
i1, if there is an arc from plaée rl to
l transition tk

i 0, otherwise

+

| 1, if there is an arc from transition tk

| to place pi

O(pi,tki= <
| 0, otherwiss
+ _

17

In the standard graphical representation of Petri nets, the direc-
tion of the arcs that connect the places and transitions is generally
not indicateé, it being the assumption that all flow ina net is in a
downward direction. Any ambiguity is, of course, resolved by the input
and output functicns. However, In this paper, arrows are drawn on the
arcs, whenever an ambiguity is possible.

A Petri net 1is populated by the presence of tokens in the places.
A token 1is represented as a dot. A place can contain zero or more
tokens, Given a transition t, a place p for which I(pst) = 1 is called
an input place for t. Similarily, a place p for which Q(p,t) =1 is

called an output place for t.

A transition t is said to be firable if each place p, for which
I(p,t) = 1, has at least one token. Once a transition is firable, it
can fire, removing one token from each of its input places and adding
one token to each of its output places. By this movement of tokens, the
Petri net exhibits dynamic behavior. Although a firable transition
transition can wait a non-zero time before firing, the firing itself is
considered to occur in zerc tipe. Thus the state of the net, which is
represented at any instant of time by the number of tokens in each
place, is always well defined. Further, it follows that the probability
of more than one transition firing at any given instance of time is

ZEeYro.

Throughout the paper, the folliowing notation is adopted:

¥ ‘'for all' (the universal quantifier) & ‘'logical AND'

'not equal to! [‘'logical OR'

€ 'is a member of' (set membership) T 'logical NOT' (negation)
& ‘'exclusive-or?

i8

The state of a net is indicated by its marking. A marking of a net

is a function, M,
M:P—>12

where P is the set of places and 2 is the set of non-negative integers,
such that ¥ p € P, M(p)= the number of tokens in place p. A marking M
shall be denoted by a vector with dimension equal to the cardinality of
the set P. The coordinate values of the vector are the values of M(p)
for each place. The net changes states by the £iring of transitions,
which préduces new markings.

Given a net and an initial marking of the net, M0, a Marking M is

derivable from MO if there exists a seguence of transitions tl1, t2, ...,

tk which when successively fired, result in the marking M. The forward

marking class of a net given MO is the set of all markings derivable

from MO. The forward marking class of a bounded net with initial mark-
ing MO is finite.
The forward marking class of a net can ke graphically represented

using a tree diagram. A reachability tree of a net, given an initial

marking MO, is a tree, the root which is an initial marking MO and each
other node of which is a marking derivable from its ancestor by the fir-
ing of one or more transitions. The arcs connecting the nodes c¢f the
tree are labeled with the transitions that have been fired.

A transition t which has no input places (i.e., I(p,t)=0, ¥ p € P}
is called a source. A source acts as a communication port to the exter-—
nal environment through which the net can receive information. A tran—
 sition which has no output places (i.e., O(p,t)=0, ¥p € P) is called a
sink. A sink allows information to pass as output to the external envi-

ronment.

Petri nets have been successfully used to model concurrency in a
System, as several paths in a net ﬁay be active concurrently [AZEMP7S,
PETEJ77]. This concurrency is illustrated in the reachability tree by
labeling'the arc, that connects two nodes, with the set of transitions
that have béen fired concurrently. ‘Here, 'concurrent!' does not mean
'exactly simultaneously,' but that the transitions fire essentially in
parallel; their order is immaterial.

A firable transition tj is disarmed by a transition ti if Ehe fir-
ing of ti removes a token from an input place shared with tj, with the
result that tj is no longer firable. If two or more transitions are
firable in a given marking, and the firing of one disarms the others,

then the transitions are said to be in conflict. Transitions t1 and t2

pi ¥4 p3

Figure 1. A Conflict in a Petri Net

of the net in Figure 1 are in conflict. Since it cannot be ascertained
which transition will fire, the net is nendeterministic. Firing orders
(PETEJ77] have been introduced in an attempt to eliminate this nondeter-

minism. However, this approach greatly complicates the model.

20

4,2, Extended Petri Nets

'Pure' éetri net theory is not adequate to model the concepts dis-—
cussed in this paper. This lack of modeling power has been noted by
other investigators (PETEJ77, AZEMP78, ELLIC77, NUTTG7/2Z]. It is neces-
sary to completely resolve conflicts, attach meaning to a token as a
message which may contain data, order the tckens in a place (in a
queue), develop a mechanism to determine when all entered tokens have
arrived at a sink of the net, and be able to fire a transition when no
token is at any of its input places. Most of these extensions are scat-
tered in the 1literature in various forms. This paper attempts Eo

gather, enhance, and unify them.
4,2,1. Predicates for Conflict Resolution

in [AZEMP78], ccnflicts are resolved by the associaticn of a predi—
cate, p, with each transition, t. The predicate is a function of a vec-
tor of program variables, x.. Its association with a transition, t, is
denoted by pt(x). {The x in this notation is omitted unless it is
necessary for clarity.) For a transition to be firable now, each input
rlace must have at least one token, as before. However, the transition
will not fire unless, in addition, pt = true.

Consider a predicate associated with each of transitions tl and t2
in Figure 1. No conflict exists, 1if either ptl or pt2 has a value of
false. Given a marking, the existence of a2 conflict now depends upon

the values of the predicates associated with the transitions.

1

The‘following is proposed as a condition to ensure that a net is

conflict-free,.

Proposition 1: No conflict exists in a Petri net provided that

¥piepr, if Ti = {tjf I(pi,tj) = 1}

and if ptk = true for some tk & Ti,

then ptm = false, ¥ m # k.
(Note: For all k, ptk is the negation of the logical OR of the ptm,
where m # k). That is, given a place pi, the predicates associated with
those transitions for which Pl is an input place are such that at most

one predicate can be true at any given time.
4.2.2. Informaticn Content of a Token

Tokens, so far being rothing more than marks in places, are indis-
tinguishable one from another. In order to associate the movement of
specific tokens with events in the modeled system, it is useful to
attach an identifier to each token. This first step in assigning data
content to a token leads directly to the generalizatien in which an
entire message is associated with each token. Data is transported via
these messages. This leads to conflict resolution based on the informa-
- tion that is passed as the transition fires. The predicate associated
with a transition can be a condition whose value depends on a wide var—
iety of elements. In particular, a predicate can deperd on the system
State, as well as data content of tokens that are in input places to the

transition. This also leads to the ability for output transitions to

22

channel tokens into different places based on the information content of

the tokens.

t0

t1 t2

p2 P3

t3 t4

¢

Figure 2. Data Dependent Predicates to Rescolve a Conflict

For example, if a token represents a NAME and a SALARY value, in
the context of a database relation about employees, then in the net of
Figure 2 with ptl = "SALARY < 20,000" and ptZ = "SALARY > 20,000," the .
given ﬁet separates all tokens into two categories: the NAMEs and
SALARYs of all people who earn less than $20,000 and those that earn
equal to or greater than $20,000. Clearly in the above example, ptl &
pt2 is true, where @ designates the 'exclusive-or' between ptl and ptZ.
Thus, tl and t2 are never in conflict, according to Proposition 1.

& place, now, contains tokens which have information content. As
tokens build up in a place, transitions fire to remove the tokens one
at a time. When tokens were indistinguishable, there could be no order—
ing to the tokens in a place, and it could not be determined which token

had been removed by the firing of a transition. In [ELLIC77, NUTIG72],

27

evaluation nets, which allow incoming message queues as well as places
in a net model, were introduced as usefu] extensions of Petri nets.
Here, now that tokens are distinguishable, each place shall be consid-

ered to be a queue, which Preserves the sequencing of the tokens in that

place,
4.2.3. The t count Function for Completedness

Consider a net that is conservative (the nuﬁber of tokens is invar-
iant as the transitions fire) and which does not trap tokens (in endless
cycles through the same transitions). In such a net the sum of the num—
ber of tokens appearing at sinks will eventually equal the sum of the
number of tokens entered at sources. When those sums are equal, the net
is said to be completed. The determination of when all inputs have been
Processed through such a net is now a matter of counting the tokens at
the sinks. Clearly, completedress of a net holds specifically for some
fixed time period, with a given start time and end point.

Consider the following queue, Ql, of five NAMEs and salaries.

I Joe | 10K |
| Harry | 15K |
[Mary | 20K |
| Rita | 8K |
| Jane | 9 K |

Let the source transition t0, in Figure 2, have the Cueue Ql, given
apove, as as its input. After transition t0 fires (five times), place
pl has all five of the tokens. If transition tl has the predicate ptl =
"SALARY < 10 K" and transition t2 has the predicate pt2 = "SALARY > 10

K," then transition tl delivers inio place p2, the queue Q2:

24

Rita
Jane

-
T
4
T

WO
R

1
]
1
T

while transition t2 produces in place p3, the gueue Q3:

Joe	10K
Harry	15K
Mary	20K

Now that queues have been implanted in each place and the tokens
have been given order, it is desirable to be able to tell when all
tokens in a queue have been processed by the net or subnet that is cur-
rently under consideraticn.

In order to determine when all the tokens in a queue have been pro-—
cessed, a t count function is introduced.

t count : T —> Z
where T is the set of transitions and Z is the set of non-negative
integers. The function t count asscciates with each transition ti, an
integer (initially.zero) which is incremented by one each time that the
transition is fired.

Assuming that the original length of Ql is known to be five, the
net in Figure 2 will have the entire queue put into place pl as scon as
t count(t0) = 5. DNow, either transition t2 or t3 fires, depending upon
the value of the conditions pt2 and pt3 associated with t2 and t3. The
queue, Ql, has completely been partitioned inte Q2 and Q3 when

t count(tl) + t count(t2) = 5
Thus, it can be determined by & numerical check of the t count values,

that the entire queue, Ql, has been processed and that no new tokens

s

have been created and that hene of the tokens from Q1 have been lost

within the net (i.e., that the net is conservative) and completed. This

is important in verifying the security of message flow.
4.2.4, An Inhibitor Arc
A transition can fire only if each input place has at least one

token, In [PETEJ77] the concept of an inhibitor arc which allows for

zero-testing is discussed. An inhibitor arc is an arc from a place p to

a transition t which allows the transition to fire only if the place has
zero tokens. The inhibitor arc is denoted by a small circle at the end
of the arc which connects the place to the transition. For a more com-—
Plete description of the power added to Petri net theory by the intro—

duction of this concept, see [PETEJ77].

4.3. A Module of a Petri Net

The concept of a subnet of a Petri net, which allows a net to be
analyzed at several 1levels of abstraction, is presented in {AZEMP78].
This subnet is called a module.

The behavior of a Petri net is analyzed by the evolution of the
successive markings. The input and output conditions are often the main
points of interest of a particular module. The reduction abstraction
consists of merging the internal transitions of a module into a new set

of transitions (generally this set has only one element) which directly

26

connect input places to output places. Reduction preserves the
input/output behavior of the medule while suppressing its internal
details. |

-The concept of medules can be used to greatly simplify a complex
Petri net by compacting a module into one transition. It can also be
used to expand a transition into a_Petri net whenever the current view
of the net requires, respectively, less or greater detail. Thus differ-
ent portions of a net may be viewed at several different levels of
abstraction at one time.

In [AZEMP781, Petri nets have been used to model communication pro-—
tocols. A modular approach was usea to produce a bottom-up analysis of
the global behavior of a module with respect to its environment, once
its modeling and verification have been performed at a lower level. In
the next section, using a similar approach, the major functicnal parts
of MULTISAFE are abstracted into Petri net medules, hiding the internal
details of MULTISAFE implementation and highlighting the intermodule

comminication structure.

27

5. PETRI NET MODEL OF MULTISAFE

5.1. Introduction to MULTISAFE*

A MULTImodule system for supporting Secure Authorization with Full
Enforcement (MULTISAFE) for shared database management is being devel-
oped [TRUER79, TRUER81] by Robert Trueblood at the University of South
Carolina and Rex Hartson at Virginia Polytechnic Institute and State
University. Performance improvements are expected to be achieved by a
combination of multiprocessing, ripelining, and parallelism. The MULTI-
SAFE protection processor can meet complex policy requirements with
tlexible, generalized protection mechanisms.

The system configuration is based on functional division into three
major modules: ‘

1. the user and application module {UAM)

2. the data storage and retrieval module {SRM)

3. the protection and security module (PSM)

Each medule is implemented on one or more processors forming the multi-
processor system. In MULTISAFE all three modules function concurrently.
The UAM coordinates and analyzes user requests at the same time that the
SRM generates responses for requests. Simultanecusly, the PSM continu-~
ously performs security checks on all activities. Figure 3 illustrates
the logical relationships among the three modules. All processing

within MULTISAFE is initiated and controlled by events occurring within

* This section is adapted from [HARTHS81].

28

-
=1 =]

1w i LEZR AND APPLICATION
! : MODULE
PEOTECTIEN : '
DATMBRSE 1
=y PROTECTION AND SECURITY
MCDULE
e’
SR STORAGE AND RETRIEZVAL
N MCDULES
D
USER
DATABASE

Figure 3. Logical Relationship Among the Three Modules

the message flow, including such events as the transmission of dataz to
and from the database.

Typically, the concepts of isclation and separaticn have been con-
sidered important for supporting data security. However, the protection
question can still be considered to be open, because physical isolation
is not a guarantee of security. It is at the logical level that evi-
dence must be glven that an architecture dees indeed support data secur-

ity. Unless communication among the system components can be shown to

29

be logically secure (in terms of both message control and message
content), security is not necessarily gained by isolation. - Conse-
quently, speéial attention Is given to intermodule communication in
[TRUER81] and in this paper.

In MULTISAFE, messages are sent between modules via an encapsulated
data type. Its contents are set and checked by protected ﬁrocedures
which are invoked parametricallyi No user or user process can directly
access these message objects. fThe primary mechanisms are structured and
verifiable. For a single user, it is shown in [TRUER81] that the only
message path between the UAM and the SRM is established by a sequence of
carefully defined operations on abstract objects in the PSM. It is also
shown that the message sequences from multiple users, introduced for the
sake of concurrency, can be effectively serialized, leaving intact the
security of the single user case.

Messages from either authorizers or users are subject to two kinds
of security checking: 1) checking specific to the request, and 2) sys-
tem occupancy checking. System occupancy checks rélate to overall per-
mission to be an active user of the system, without regard to how the
system is being used. The systenm occupancy check is always made in con-
junction with login. For example, the conditions (separate from user
identification} for a given System user may be that occupancy is allowed
enly between 8:00 a.m. and 5:00 P.m. System occupancy checking at data

request time and other times provides {eptional)

30

5.2. The Petri Nat Model of MULTISAFE

In the Petri net model of MULTISAFE the places correspond to the
three modules and the two databases. The transitions correspond to the
lines of commﬁnication between modules and databases. Tokens correspond
to messages flowing from module to module.

Using Petri net modules to represent the major parts of MULTISAFE,
the interpreted Petri net model, in Figure 4, has the form (P,T,I,0)
where: | |

P = {UAM, PSM, SRM, LB, PDB}

T

{£0, t1, t2, t3, t4, t5, t6, t7, t8}

and with the indicated values of I and 0.

5.3. Resolution of Conflicts in the MULTISAFE Petri Net

In the Petri net for MULTISAFE (Figqure 4), it is observed that the
place PSM has three transitions that are in conflict. Whenever the PSM
has a token the transitions t£2, t4, and t8 are all firable, and the fir-
ing of any oﬁe disarms the other twoc. However, there are conditions to

govern the firing order:

Transition t2 is meant to be fired if the token represents a reguest
for a Protection Data Base, PDB, operation.

Transition t4 is meant to be fired if the token represents a request
for a Data Base, DB, operation; t4 cannot be fired unless the PSM
has made all required data independent checks.

Transition t8 is meant to be fired if the token represents a message

to be returned to the UAM; t8 cannct be fired unless the PSM has
made all required data dependent checks.

31

T—,_ t0
UAM
t8 [— tl

PSH PDB

t7 1 ¥ _
i L

@

E

Figure 4. Petri Net Model of MULTISAFE

If a predicate reflecting the above mutually exclusive conditions
is attached to each of the transitions t2, t4, and t8, then no conflict
can occur. Different lines of communtication between the modules are hot

needed if al] messages contain a target module code [TRUER81], so that

each transition can determine if 3 given message is a token upon which
it should act, In other words, token content is used to evaluate the
transition predicates.

Similarly, the Place SRM is connected to two transitions that are
in conflict whenever the SRM has g token. Predicates ara also used at

t5 and t7 to ensure the following conditions.

32

Transition t5 is meant to be fired if a token represents a request for
a database operation on the database, [B.

Transition t7 is meant to be fired if a token represents a message to
be be returned to the user or a result from the database, [B, to be

passed to the PSM.

5.4. Assumptions and Definition of Security®

Saveral assumptions which help to focus this work are as follows:

Assumption 1. Controlled Physical Access
The system is accessed only via terminals. Consider that the sys-

tem is physically protected by an jmpenetrable wall with small
holes through which wires protrude to terminals in the outside
world. Any information or signals can be sent in through those
wires. If the modules of MULTISAFE are rphysically distributed, the
equivalent of the impenetrable wall can be provided by anti-eaves-
dropping technigques such as encryption.

Assumption 2. PSM Programming Impervious to Modification
PSM programming is built into a Programmable Read-Only Memory
(PROM). It is physically impossible for PSM programs to be modi-.
fied by a user, via a terminal.

2Assumption 3. Correct User Identification
User identification (authentication) is assumed to be done cor-
rectly. User identification is being attacked elsewhere as a com-
pletely separate probiem [EVANA74, PURDG74, COTTI77]1. Further, 1t
is assumed that user identification can be reauthenticated whenever
necessary or desirable, so that the relationship between user and
terminal remains constant to MULTISAFE.

Assumption 4. Separation of Users in UAM
The UAM provides ordinary primary memory protection, so that muiti-

ple users are prevented from interfering with each other's pro-
cesses, data, or messages.

Assumption 5. Limitation of Scope
Security in this work refers to access controls, and not informa-
tion flow controls [DENND76] or inference controls [DENND791. The
fiexibility of a generalized PSM processor, of course, admits to
future additicon of these and other controls.

Assumption 6. Discretionary Access Control

* This section is adapted from [TRUER81].

33

Discretionary authorization is assumed, being a more general case
than non~discretionary (security levels), but not ruling out non-
discretionary policies. an important implication is that many
users are typically also authorizers.

211 that follows, particularly the definition of security and its
constituent conditions, applies to systems subject to the constraints of
these assumptions. The definition of data Security in this work empha-

sizes security explicitly as a relationship between authorization and

enforcement :

Definition_i: A system is data secure if, in that system, the
enforcement process allows the system to perform only those
access operaticns which are specified by the authorizers.

At this point, it is useful #o havée a clear understanding of the term

"access." In this work the following definition of access is used.

Definition 2: Access includes all operations used for reading,
writing, or modifying data stored in the system.

Definition 1 can be restated as a set of four conditions:

Condition‘l. Correctness of Authorization Process
All authorizations specified by the authorizers {(end only by proper
authorizers) are Properly stored in the bSM Protection Data Rase.

Condition 2. Correctness of Enforcement Process
All access decisions made by the PSM are correct with respecr to
(1) the access request, (2) the stored authorization information,
and (3) the system state, including data values, at the time of the
decision.

Condition 3. Complete Mediation
All access requests (authorization and database requests) are sub-
ject to enforcement (an access decision by the PSM).

Condition 4. Prohibition Against Spurious Data Transmission

No data may move between a user and either database (in either
direction), except as a correct response to an access request.

34

These conditions are intuitively shown in [TRUER81] to completely
embody Definition 1 as follows. (The informality of the definition and
the conditioﬁs precludes a formal proof of completeness.) Condition 4
states that every data access is in response to an access request. {The
requirement that it be a correct response also eliminates secondary
trickery, such as a "Trojan Horse" in the SRM trying to deceive the PSM
by sending prohibited data disguised as the response to some other
request.) By condition 3, then, every data access that occurs is sub~
jeét to an enforcement decision. Condition 2 implies that every data
access is subject to an access decision that is correct with respect to
the stored authorization information. Finally, by condition 1, every
data access is subject to an access decision that is correct with res-
pect to a proper authorizer's specifications of access privileges, and
this is a restatement of Definition 1.

Condition 1 is assumed to be true; as the verification that author-
ization information, as specified by authorizers, is properly stored is
outside the scope of this paper. Similarly, the correctness of the
enforcement process (condition 2} is assumed. That is, it is assumed
that the enforcement algorithm given in [HARTH76, HARTHB80] is a correct
algorithm and is implemented correctly.

The modeling power of Petri nets allows, by inspection of the net
model in Figure 4, conditions 3 and 4 to be verified.

Condition 3 (all access requests are subject to enforcement) is
verified since:

1. By inspection of Figure 4, I{(UAM,tl)} = 1, and I(UAM,ti) =0, ¥ ti €

(T-{t0,tl}). If t0 fires immediately following a user request, it

35

amounts to a trivial echo of the user's own message. Therefore, the
only meaningful wWay a token bearing a user request can leave the UaM
is for trahsition tl to fire.

2. Since O(PsSM,tl) =1, upon the firing of transition tl, the token frem
the UAM must enter the PSM, where the request is subjected to
enforcement.

3. Also, since O(pi,tl) =0, ¥ Pl €(P-{PSM}), the token can go'nowhere
else but the pgM.

4. Therefore, all access requests are subject to enforcement by the PSM.

Condition 4 (no spuricus data movement) is also easily established.
Consider the binary relation "<" which - imposes a partial order on the
Set of transitions of a Petri net in the following way: a < b if and
only if the first firing of "b" is preceded by the first firing of "a"
[AZEMA78], given an initial marking. (Technically, the relation "<M" is
required for a partial order. However, the equality condition is needed
only to satisfy the refiexivity property of the partial order (a < a).
In faét, a = b implies that a is identical to b, because ne twe transi~-
tions can fire at the same time. Therefore, the re}ation a < b is suf-
ficient for partially ordering the transitions of a Petri net.)

A transition may fire only if all its input places have received a
token. In the net of Figure 4, because every transition has only one
input place, 1o transition can fire unless a message (a token) has
arrived in that place. Thus, given an initial marking with no tokens in
the net, the oniy way a message can originate is by the firing of tran-
sition tC, which is the source for the net. And transition t0 fires

only upon the submission of a request by the user.

36

It is established above that, when £0 does fire, the token must
arrive at the UAM and must then fire tl (except for the trivial "echo™
back to tO).‘ Since I(pi,tl) =0, ¥ pi € (P-{UAM}), the only way transi-
tion tl can fire is by a token from the UAM, Therefore, any firing of
tl must be preceded by a firing of t0. By similar arguments the foilow-
ing partial ordering of transitions is established. For legin and
authorization operations:

0 < tl € £2 < t3 < t8
and for data access operations:
0 < 1l < 2 € £3 < 4 < 5 <6 < &7 < t8

These orderings depend, in part, on the predicates associated with
the transiﬁions (discussed in the previous section). For example, the
requirement that t8 cannot fire until the PSM has made all of its data
dependent checks ensures that t2 < £3 < t8 for data access requests.
The state information in these conflict resolving predicates could, in
fact, be represented by adding places and transitions to the Petri net
of Figure 4. In such a case, the Petri net structure alone might be
enough to determine the partizl ordering.

Since data can move to or from the PDB only by the firing of tran-
sition t2 or t3, respectively, and to or frem the DB by the firing of
transition t5 or té, respectively, and transition t0 precedes the firing
of these transitions, no data may move between a user and either data-
base, except by a sequence originating at t0, whose £firing is always
initiated.by a user access request, Thus, no data (or any messages)

will move spuricusly within the system.

37

3.5. Message Flow in the Petri Net Model

In [TRUERSL], the description of MULTISAFE message flow is divided
into two cases: the single terminal (but multiple user) case and the
multiple terminal case. It was established there that the multiple ter-
minal case added only concerns relating to the proeper separation and
synchronization of user messages and resulting concurrent processes, and
these problems are well solved elsewhere in the literature. Thus, ana—
lysis of message flow for the general case is reduced to analysis for
the single terminal case. Therefore, for simplicity, it is here assumed
that the system does not Support more than one terminal and/or active
user connected to the UaMm. The nets of Figures 3y 6, and 7 are used to
describe message flow for various database activities, from login to

database requests and the responses to those requests,
5.5.1. Login Request

In Figure 5, once a user submits a login request at the terminal *o
the UAM (fire t0), a user Work area is created within the UAM and the
login message is sent ro the PSM (fire tl). This message causes the PSM
to set up a work area in the PpSM memory for this transaction and, con—
currently, to send a request to the PDB for the retrieval of the user's

access franchise (fire t2) [HARTHS0]. The user's access franchise is

the user's effective access rights as dynamically computed for a given
query from the authorization information. Upon completion of this PDB

retrieval (fire t3), the PSM now contains the user's login request, as

38

18

t2

Pst PoB

t3

Figure 5. The Net for PDB Retrievals

well as the user's access franchise. Should the user have no access
franchise, and hence have no rights whatever to access the system, a
message is returned to the UAM denying login access (fire t8). The net
terninates at the sink {(transition t0). The SEM has not béén entared,

and no information held in either database has been violated.

5.5.2. Query and System Dependent Condition Checking

Further requests may be submitted by a user who has an access fran-
.chise stored in the FDB, and who passes ali login eccess conditions.
The user may be proﬁpted to submit a request for an operation on the
database, DB, or if the user is in an authorizer role, on the PDB (in
either case, fire t8). Upon submission of a request to the PSM (fire

tl), system dependent and query dependent access checks can now be made.

39

The database, the requested operation, and the names of the relation(s)
to be operated upon are all available in the statement of the query.
The access franchise relations are checked to determine if the query
dependent access conditions are satisfied. If S0, access is tentatively
allowed (that is, no grounds have yet been found to deny access, but
further analysis of the data dependent access conditions must be done

before a final access decision can be made) ,
5.5.3. Authorization Request

If the user has requested an autherization operation, that is, a
database operation on the FDB, the SRM module is not contacted and no
information resident in the DB is accessed. Data dependent access con-—
ditions on the requested operation are now evaluated, should there be
any such conditions on a PDB operation. This requires access to the FDB
(fire t2), with information being retrieved from the PDB into the PSM
(fire £3)., 1If authorizaed, the required change in the PDB ig effected or
the requested information is returned to the user {(fire t8). If the
access operation is not authoriéed, the PSM sends a message to that
effect to the UMM (fire t8). In either case, the net is depictad in

Figure 5.
5.5.4. [ata Base Access Request

For a request for an operation on the database, DB, the procedura

that is followed depends upon the requested operation. If an update,

insert, or delete operation is requested, all data dependent access con—

ditioﬁs must be evaluated prior to physical data access. For a

retrieval operation, data dependent access checks are made after the

physical access occurs, but before logical access is completed (i.e.,
before the data is passed back to the UAM and the user.) In order to
evaluate the data dependent access conditions, several additional

accesses to DB could be required. The net for this sequence is depicted

PSM

¥ 4

t7 —t—

DB

SRM

t6

Figure 6. The net for DB Retrievals

in Figure 6. A separate working area in the PSM is created for the
evaluation of these conditions (fire t4, t5, t6 and then t7).

If the enforcement process determines that the required operation
is not authorized, it is not performed and a message is returned to the
UAM to that effect. Otherwise, the operation proceeds as requested and
the UAM is notified upon completion of the operation (fire t4, t5, t6,

t7, and t8). The net depicting this sequence is shown in Figure 7.

41

() UAM

t8

PSM

7 t4

t5

SRM CB

t6

Figure 7. The Net for Requests after Successful Login

For a retrieval operation, the SRM can be sent the database request
and can begin the retrieval operatioﬁ while the PSM concurrently checks
the data dependent access conditions. The PSM may submit additional
requests for database retrievals to the SRM in order to evaluate the
data dependent access conditions. These PeM-originated DB requests are
queued at the SRM, the same as any other requests are, as described in
[TRUER81]. The Petri net model is well suited for illustrating this
asynchronous evaluation of access conditions. This aspect of Petri nets

is seen again in Figures 8 and 9.

42

5.5.5. PSM~GRM Interplay for Data Dependent Checking

A retrieval request can cause considerable interplay between the
pSM and the SRM. request is now considered. The PSM has a work area
assigned to the query and a work area éssigned to the evaluation of the
data dependent access conditions. A semi-private memory configuration
[TRUERS1] can be used to ensure that no data used to evaluate access
conditions is passed to the area of memory whose contents can be passed
from the PSM to the UAM., Also, as the data retrieved in response to the
query is sent from the SRM to the PSM, 1t can be placed in an area of
meﬁory whoSe contents can never be passed to the UAM until an access

decision has been reached.

The Problem of Evaluating Data Dependent Conditions

The effective access condition with respect to a given user and a
specific query can be a logical combination of the access conditions
from several authorizations [HARTH80]. Thus, it is potentially complex,
although in practice it usually is not. In general, one can assume that
there are n different data dependent authorization conditions (predi-
cates) say Cl, C2, ..., Cn, each of which must be satisfied {i.e., they
are ANDed) for the query currently under consideration. Each of these
predicétes is a boolean combination--using & (AND), | (OR}), and ~
(NCT)—of simple data dependent conditions as classified in section 2.3.
('simple' here is meant in the sense that each such condition corres-—

pronds to one dependency classification.} For example:

Ci=c(i,l) & c(i,2)_| c(i,3) & c(i,d) | c(i,5)

43

The problem, then, is to evaluate (assign a truth value to) each of
the Ci predicates. The problem of evaluating a Ci predicate reduces to
the'evaluatioﬁ of all of its component c(i,3) simple conditions.

In the PSM, a template is constructed for each Ci, with the depen-
dency class of each c{i,j) designated. A "slot" exists for the truth
value of each c(i,j). The time at which each slot can be "filled"
(assigned a truth value) depends on the binding time requirements of the
corresponding c(i,j). The main criterion for binding at this roint is
whether the c(i,j) in question is one-to—one or one-to-n with the query
responses. The one~to-n condition can be evaluated once for the entire
query and, therefore, has constant (for the guery) truth values. The
one~to-one <(i,j)'s must remain variables because their truth values are
determined by the individual response tuples (or by other tuples that

are one-to-one with the response tuples).

Variable Simple Conditions

Several sources of data are used to evaluate the one—to—oné varia—-
ble conditions. First, ~there is the data directly associated with the
query responses. The SRM, upon querying the database, DB, to fulfill
the user's request, stores the responses into two Jueues, One queue
(the query response queue, or CRQ), contains the attributes specified in
the SELECT clause of the query {i.e., the target attributes), and is
used to evaluate Class A and Class Ea data dependent access conditions
{which depend only on those attributes requested).* The other queue {(the

Query response tuple queue, or CRTQ), «contains the entire tuples

* The reader may £find the summary table of data dependency classes,
given in section 2.3.6, a useful reference for what follows.

44

selected in response to the query, including values for the attributes
that were not requested. These attribute values are kept in order to |
evaluate any:data dependent access conditions whose value depends upon
this information, - that is, Class B and Class Eb data dependent access
conditions. -

There is one more source of information for evaluating varible con-
ditions: other (non-response) data that is one-to-one with the response
tuples. A separate guery must be sent by the PSM to retrieve these
values in the SRM. There are, therefore, often several concurrent data-
base requests in operation at one time.

The variable simple conditions are summarized as follows:

1. Class A~—dependent on QRQ
2. Class B=-dependent cn QRTQ
3. Classes C, Ed, and Ee——dependent on other dataz that is one—to-one

with the tuples of the QRQ and CRTQ

Constant Simple Conditions

Constant conditions can depend on aggregate values of the CROQ
(class Ez), on aggregate values of the QRTQ (class Eb), on aggregate
values from other sources (class Ec¢), or can be dependent on data values
other than any of these sources (class D). As mentiocned earlier, quer-
ies may be broadcast from the PSM to the SEM for this infofﬁation. The
responses to these queries return at their own rate, allowing the truth
values of the constant c(i,j)'s to be assigned and put into the corres-

ponding slots in the template, for the Ci conditions.

Evaluation of Variable Simple Conditions

Because the lvariable simple condition truth wvalues are one~to-one
with the individual query resronse tuples, each Ci must have its varia-
ble simple conditions evaluated against each response tuple. In what
follows, the basic procedure is to select an access condition whose con—
stant simple conditions have already been evaluated, and apply it
against each of the response tuples. The variable simple conditions of
Ci are evaluated with respect to the tuple, and then the entire condi-
tion Ci can be evaluated for that tuple. Ci is then evaluated against
the next tuple, and so on. The process is repeated for each other Ci
after its constant simple conditions have become evaluated. The outcome

of the procedure varies according to the enforcement policy.

Evaluation Under a Partial Enforcement Policy

Recall that under a partial enforcement policy an individual res- _
ponse to the user query is acceptable, if and only if it satisfies all
the access conditions. Since the conditions Ci are ANDed, a response
causing any Ci to be false is deleted from the CRG. At the end of the
process the CRQ contains only response tuples satisfying all Ci. Thus,
the original QRQ may become reduced in size as the process progresses,
decreasing the amount of checking to be done against each succeeding Ci.
This evaluation of variable simple conditions proceeds concurrently with
the evaluation of constant conditions for other Ci's. Since the con-
stant simple conditions become evaluated in an unpredictable order, the
Ci's become ready for variable evaluation in an unpredictable order.
Because the Ci's are ANDed together, however, their order of application

is immateriai.

46

The process of checking variable simple conditions, <¢(i,j), and
their overall conditions, Ci, against response tuples (and other data
that is one-to—one with the response tuples) is terminated in two dif-
ferent ways:

1. The QRQ becomes empty, resulting in no allowed responses to the
query. ‘This case can result from having every tuple fail to satisfy
at least one access condition because of its variable parts, or from
a single Ci that has no variable simple conditions and whose value is
false. Checking is terminated immediately and an access denial is
sent to the user.

2. The QRQ has been subjected to &ll the conditions C1, C2, ..., Cn, and
what remains 1is a queue of responses that have satisfied all data

dependent access conditions.

A Petri Net Model of Variable Simple Condition Evaluation under a Par-

tial Enforcement Policy

Figure 8 is a net depicting this sequence of events. The data upon
which variable simple conditions are dependent is gathered into three
types of queues in the SRM: QRrQ, CRTQ, and OTHER (as described ear-
lier). These queues, having their elements in one-~to~cne with query
responses, 2ach have the same number of elements and each have them in
the same order. |

There are several steps in the process:

1. The data in the three queue types (QRQ, ORTQ, and OQTHER) is sent in
parallel from the SRM to the PSM through transition 0. It can be-

assumed that the parallel transmission of c¢ne tuple from each of the

47

(:;::) GRQ/GRTQ/OTHER in SRM

t0

QRO/QRTQ/OTHER in PSM

{t1, —Ci) t3
Not_Allowed
TerTatively
Allowed
s, a .
(t_pount(t])= {23, al? Ci tested)

t_count(t0))

Response_A}lowed

Figure 8. A Petri Net Model of Variable Simple Conditicn

Evaluation under Partial Enforcement
Queues corresponds to the movement of one token in the net. ‘Thus,

when t count(t0) = the cardinality of QRQ, all the data is in the

corresponding set of queues in the ESM.

48

2. At this point it is useful to introduce the concept of a queue of

15
)

5.

predicates at a transition of a Petri net. Their control is very
much the éame as that of the data queues at the places. The Ci's and
their templates form a queue of predicates at t2, (There is a cor-
responding queue of predicates, “Ci, at tl.,) Those Ci's having their
constant slots filled with truth values are selected one at a time to
evaluate against the QRQ/QRTQ/CTHER data. One more slot per Ci can
be provided and tagged to indicate which Ci's have been tested
against the ORQ.

The tuples from QRC/QRTO/OTHER are considered one at a time, and
either transition tl or transition t2 fires £for each tuple. The
predicate for transition t2 allows it to f£fire only if the current
condition Ci is true, placing the response in the Tentatively Allowed
place. Transition tl fires if Ci is false, shuntirng the response off
to the Not Allowed place (a dead end}.

As each tuple passed by t2 arrives in the Tentatively Allowed place,
if then fires t3 and goes back to the queuves CORQ/QRTQ/OTHER. The
first element of the gueues is specially marked, so that a new Ci is
selected at tl and t2 each time it comes up.

1f, at any time, there are no tokens in QRQ/QRTQ/CTHER and no tokens
in Tentatively Allowed, transition t5 (which has an inhibitor arc)
fires, sending an empty queue to the Response Allowed place. This
causes an access denial to be sent to the user.

When the first element of CRQ appears as an input to t2 and there are
no Ci's left untested in the predicate gqueue, transition t4 fires,
delivering all the contents of QRQ to the Response Allowed place to

be sent to the user.

49

Implementation Aspects

Although this paper is not about implementation, a brief discussion
of implementahion with respect to Figure 8 might help the reader better
to visualize the process. The moving of the data from the set of queues
in the SRM to Fhe corresponding set in the PSM may not actually require
physical movement of data. In [TRUERB1], a scheme is described to
accomplish this by electronically switching segments of primary memory.
The QRQ, CRTQ, and OTHER queues can be implemented, as an example, by
arrays or linked lists, and they are traversed in parallel. ‘The tuples

to be deleted can simply be tagged as Not Allowed.

Evaluation Under A Full Enforcement Policy

Under a full enforcement policy an individual response to the user
query is acceptable if and only if all of the responses satisfy all the
access conditions. If any individual response has a false value for any
Ci, the entire access evaluation process can stop and a "ro response
allowed" message returned to the user. If all individual responses have
a true value for all Ci, the process stops and the entire CRQ is
allowed. Only a few simple changes are necessary to the Petri net of
Figure 8 to illustrate the full enforcement policy.

Should a mix of full and partial enforcement be used, the enforce-
ment policy used for any condition Ci must be attached to that condition
by appending the enforcement policy to the stored authorization informa-
tion in the PDB. If a condition Ci has a partial enforcement attribute,
ard an individual response to the éuery in the QRQ is evaluated and

found to be unacceptable, the response is deleted from the CQRQ, and the

50

process continues. If a condition Ci has a full enforcement attribute,
and an individual response in the CRQ is evaluated and found to be unac-
ceptable, tﬁe evaluation process can terminate and the OQRQ emptied.
Thus a mix .of enforcement policies presents no new difficulties to the

enforcement process.

6. CONCLUSION

A review of Petri nets and their properties has shown that Petri
net theory is a valuvable tool for the study of concurrent processés.
Extensions to the basic structure of Petri nets were used to remove some
limitations. These extensions were primarily in the area of conflict
resclution by predicates associated with transitions, information con-
tent of tokens, and the ordering of tokens by considering places to be
gueues. Counting functions and gueues of predicates at transitions were
alsec introduced as further extensiops, respectively for detecting com-
pletion of data flow through the net and for evaluating data dependent
access conditions. Conditions on transition predicates were stated for
ensuring that a net is conflict-free.

Agcess conditions were classified on the basis of various kinds of
dependencies and binding time requirements. These classes facilitated
the analysis of checking enforcement. A Petri net model of protection
and enforcement in MULTISAFE was shown to be conflict-free and to pre~-

serve some of the the stated criteria for security. Due to the modeling

51

power of Petri nets, the satisfaction of these criteria for security was
easily demonstrated upon inspection of the net. The use of Petri nets
also provided insight into how access gonditions can be implemented and
evaluated.

Petri nets were found to be a powerful modeling tool for providing
insight into system structure and into the relationships among system
components, Although the decisioﬁ power of Petri nets is an area of
current research elsewhere [PETEJ77], the decision power of Petri nets
is not of crucial importance in this work, since the reachability set is
finite.

The medular nature of MULTISAFE makes extension into a distributed
database enviromment a logical step. Research in the area of distri-
buted protection of distributed data is now being conducted by the Data-

base Research Group at VPI & SU.

ACKNOWLEDGEMENTS

The authors acknowledge earlier work on Petri net medeling by

32

Robert P, Trueblocd.

REFERENCES

AZEMP78

BALLE81

CHAMD76

CONWR72

COTTI77

DENND76

DENND79

Azema, P., Ayache, J.M., and Berthomieu, B., "Design and Veri-
fication of Communication Procedures: A Bottom-up Approach,"
3rd International Conference on Software Engineering (Proceed-
ings), May 10-12, 1978, Atlanta, Georgia, 168-174.

Balliet, Earl J., "Modeling of MULTISAFE Protection Enforcement
Processes with Extended Petri Nets," M.S. Thesis, Department of
Computer Science, Virginia Polytechnic Institute and State
University, Blacksburg, VA 24061 (January 1981).

Chamberlin, D. D., et al., "SEQUEL 2: A Unified Approach to
Data Definition, Manipulation, and Control," IBM Journal of
Research and Pevelopment, 20, 6 (November 1976), 560-575.

Conway, Richard W., W.L. Maxwell and Howard L. Morgan, "On the
Implementation of Security Measures .in Information Systems,”
Communications of the ACM, 15, 4 (April 1972}, 211-220.

Cotton, Ira W., and Paul Meissner, "“Approaches to Controlling
Perscnal Access to Computer Terminals," in Tutorial on Computer
Security and Integrity, pub. EH 1124-8 by IEEE Computer Scciety
(1977) .

Denning, IDorothy E., "A Lattice Model of Secure Information
Flow," Communications of the ACM, 19, 5 (May 1976), 236-243.

Denning, Dorothy E., Peter J. Denning, and Mayer D. Schwartz,
"The Tracker: A Threat to Statistical Database Security," ACM
Trans. on Database Systems 4, 1 (March 1979), 76-96.

53

DOBKD79
ELLIC77
EVANA74
HARTH76
HARTHT77
' HARTHS0

HARTHS1
NUTTG72
PETEJ77
PURDG74

STONM74

TRUER79

Dobkin, David, Anita K. Jones, and Richard J. Lipton, "Secure
Databases: Protection Against User Inference," ACM Trans. on
Database Systems 4, 1 (March 1979), 97-106.

Ellls, C.A., "A Robust Algorithm for Updating Duplicate Data-
bases," Proceedings, 2nd Berkeley Workshop on Distributed Data
Management and Computer Networks, 1977.

Evans, Arthur, Jr., and William Kantrow1tz, "A User Authentica-
tion Scheme Not Requiring Secrecy in the Computer," Communica-
tions of the ACM, 17, 8 (August 1974}, 437-442,

Hartson, H. Rex, and Hsiao, David K., “A Semantic Model for
Data Base Protection languages," Proc. of the International
Conf. on Very Large Data Bases Brussels (September 13/6).

Hartson, BH. Rex, ™Dynamics of Database Protection Enforce-
ment—A Preliminary Study," Proc. of the IEEE Computer and
Software Applications Conf. Chicago (November 1977), 349-356.

Hartson, H. Rex, "Implementation of Predicate-Based Protection
in MULTISAFE," Technical Report CS8001C-R, Department of Compu~
ter Science, V.P.I.&S.U., Blacksburg, Va. 24061

Hartson, H. Rex, "Database Security—System Architecture,”
accepted for publication in Information Systems.

Mutt, G.J., The Formulation and Application of Evaluation Nets,
Ph. D. Dissertation, Univ. of Washington, 1972.

Peterson, J.L., "Petri Nets," ACM Computing Surveys, 9, 3 (Sep-
tember 1977}, 222-252.

Purdy, George B., "A High Security log-in Procedure," Communi-
cations of the ACM, 17, 8 (August 1974), 442-444,

Stonebraker, Michael, and Eugene Wong, "Access Control in a
Relational Data Base Management System by Query Modification,”
Proceedings of the ACM Annual Conference (November 1974},
180-186. '_

Trueblood, Robert P., Multiprocessor Architecturss for Support—
ing Secure Database Management, Ph. D. Dissertation, Lepartment

of Computer Science Virginia Polytechnic Institute and State
University, Blacksburg, VA (June 1979).

54

TRUERE1 :Trueblood, R.P., Hartson, H.R., and Martin, J.J., "MULTISAFE ~
A Modular Multiprocessing Approach to Secure Database Manage-
ment," Submitted for publication.

55

	CS81005-Ra.pdf
	CS81005-Rb.pdf

