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ABSTRACT

A relational model for describing three-dimensional
objects has been designed and implemented as part of a
database system. The models which provide rough

descriptions to be used at the top level of a hierarchy for
describing objects, were designed for initial matching

attempts on an unknown object. The descriptions are in
terms of the set of simple parts of the objects. Simple
parts can be sticks (long, thin parts), plates (flat, wide
parts), and blobs (parts that have three significant

dimensions). The relations include an attribute-value table
for global properties of the object, the properties of the
simple parts, binary connection and support relationships,
ternary connection relationships, parallel relationships,
perpendicular relationships, and binary constraints.

An important use of the system is to characterize the
similarity and differences between three-dimensional
objects. Toward this end, we have defined a measure of
relational similarity between three-dimensional object
models and a measure of feature similarity, based only on
Euclidean distance between attribute-value tables. In a
series of experiments, we compare the results of using the
two different similarity measures and conclude that the
relational similarity is much more powerful than the feature
similarity and should - be used when grouping the objects in
the database for fast access.



I. Introduction
In scene analysis, we are given one or more views of a
three~dimensinal scene. As part of the analysis, we must

identify the three dimensional objects using only the two-
dimensional views. The data are arrays of numbers
representiné light intensities or distances or other
measurable quantitiesg, depending on the sensor. Noise,
distortion, and sampling érror are common. Segmentations of
the data into objects or surfaces or cylinders are far from
perfect,

In éhis kind of environment, it seems reasonable that the
first atttempts at matching should involve only very rough
three~dimensional object models. Exact dimensions and exact
geometric specification will] not be useful until the
analysis procedure has narrowed down the choice of models.
Instead, rough models that characterize the Structure of the

object can be used.

In Section 1III, we motivate and define our relatioﬁal
model for three~dimensional objects. The object models are
intended for use in a Scene analysis system. A database of
such models has been Set up, as described in Section V.
However, our first experiments with these models are not

-

concerned with scene analysis. Instead, we look at the more
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fundamental question, "What makes two three-dimensional
objects similar?" Surely, if we cannot answer this
question, we cannot hope to answer the harder question, "To
which three~-dimensional objects 1s this two-dimensional
pProjection most similar?" In Section IV, we define a new
‘kind of two-way relational matching to be used to compare
two reiational descriptions. In Section VI we describe
several kinds of experiments comparing two three-dimensional
models using 1) only their global features and 2) the entire

relational structure.

iI. Related Literature

We have divided the relevant literature into two
categories: three-dimensional object representation and

matching.

ITI.1l Three-Dimensional Object Representation

We have chosen to use relational models to represent
three-dimensional objects. In this section, we survey these
and other 3D object representations. There are several
Categories of applications that require modeling of three-
dimensional objects. These include mechanical design and

manufacturing, computer graphics, and computer vision. We
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will restrict our discussion to the representations used in
computer wvision. Other representations can be found in
Badler and Bajecsy [3] and the proceedings of the Workshop on

the Representation of Three-Dimensional Objects [44].

Surface~Edge-Vertex Models

All of the early work in vision and much of the present

work used surface-edge-vertex models of three-dimensional

objects. Roberts! [29] model included points, lines and
Planar surfaces in three-space implemented as a ring
structure. The object of his work was to find junction

points in a given line drawing that fit a transformation of
some stored model. Huffman {19], Clowes [10], and Waltz
[43] 1labeled the 1line segments of a line drawing as
corresponding to concave, convex, boundary, and, in Waltz's
work, crack or shadow edges in three-space. Regions
delimited by line segments could be labeled asg cackground or
as a surface of one of the objects in the scene. There are
no stored object models; what is stored is knowledge, in the
fofm of all two-dimensional junction labelings that ean

‘correspond to trihedral blocks world objects.

Analiysis by 1line labeling has been extended to curved

surfaces as in Shapira and Freeman [33], Turner [40], and
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Chakravarty [8]. The model that Shapira and Freeman employ
allows either quadratic or planar surfaces, edges which are
all or part of the 1intersection of two surfaces, and
vertices which are the intersection of three or more edges.
In their model a boundary is a closed chain of edges, a face
is a bounded portion of a surface, and a body 1is a closed
connected part of three-space, delimited by a finite number
of faces. They used multiple views of objects in their
analyses and were able to validate junctions that correspond
to real vertices, connéct.some pairs of junctions by empty
lines where no line appeared in the line drawing, and create
synthetic Jjunctions where the real junction was hidden.
Their program finds the faces of each body and the

corresponding region in each view.

Chakravarty worked with planar-faced or curved-surface
solid bodies having vertices formed by at most three
surfaces. Junctions are labeled with respect to the number
of regions at the junction, the junction type (based on the
arrangement of the 1lines), and the number of regions
associated with the 1line leaving the junction. Lines are
labeled as limb, non-occluding, occluding, partial limb,
partial non-occluding, partial cccluding, and concave. He
developed a junction transition graph where a cycle having
consistent line labels represents the traversal of a

region's boundaries.
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Another extension is to the Origami world where objects
are created by folding paper. Origami world objects can
have surfaces that are not part of a solid. Kanade [20]
extends line labeling to the Origami objects where he will
usually get several legal labelings per drawing. He then
maps geometric properties of the 1line drawing such as
parallel lines and skewed symmetry into gradient space where
a gradient represents how a plane is slanted relative to the
line of view. His- problem is to uniquely determine the
gradients of the surface of each object, and he has

succeeded with several simple objects.

Surface~edge-vertex models have also been used by Nagao,
et.al., [26] whose method was to estimate defects in the two-
dimensional description, produce imperfect models from the
perfect models, and match to the imperfect models; McKee and
Aggarwal [23] who performed recognition on partial views of
known objects; Richard and Hemami [28] who used Fourier
descriptors of the silhouettes of objects stored as wire-

frame models; and numerous others.

Relational Models

Relational or graph models have become very popular since

it was discovered that the relational matching problem
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(Barrow, Ambler, and Burstall [S]) can be greatly reduced by
using relaxation processes. Twe recent studies are of
particular interest tb our work. Chien and Selander [9] use
object models that include networks of surface, edge, and
vertex atoms, each having several properties and connected
by surface-edge and edge-vertex arcs. The surfaces in their
models may be planar, cylindrical, or spherical. A complete
object model consists of several networks representing
several views. Matching is from an image graph, extracted
from the input image into a library of object models. The
network matching utlizes a cost function and tries to find a
low-cost association that pairs image parts with object

parts.

Schneier {32] represents objects by primitives and
relations, but with the special feature that common
primitives and relations are shared across models and within
models. His program produces a scene graph from several
views of range data of an object. It tries to find an
Isomorphism between the scene graph and a structure derived
from the graph of models where all three-dimensional models
are represented. The matching pProcess utilizes fast
indexing; primitives and relation schemata index all models
in which they occur, and models index all primitives and
relation schemata within them. The main advantage 1is the
elimination of the need to match against every one of a

library of stored modeis.



Generalized Cylinders

The second major type of three~dimensional model used for
computer vision is the generalized cylinder model suggested
by Binford [7] and first used with laser range data to
produce descriptions of curved objects (Agin and Binford
[1]). A generalized cylinder is a volume defined by a space
curve axis and the cross section function at each point of
the axis. In Nevatia's work (Nevatia and Binford {27]), the
three-dimensional models consist of generalized cylinders
with normal cross sections for primitives, plus connectivity
relations and global properties. Cylinders are described by
length of axis, average cross-section width, ratio of the
two, and cone angle; Global properties of an object include
number of pieces, number of elongated pieces, and symmetry
of the connections. In the matching phase, an indexing
scheme is used to access objects that are likely to match an
unknown. Each object has a three bit code describing each
of its distinguished pieces. Encoded are 1) connectivity
(one end or both) 2) type (1§ng or wide) and 3) conical
(true or false). Objects with the same code are grouped
together and the correct group is found before full matching

is started.

Marr and Nishihara {22] think of objects as stick figures

where each stick is the axis in one or more generalized
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cylinders. They advocate hierarchical models; at the top
level a hand may be represented by a single cylinder which
is broken down further at subsequent levels. In order to
describe the connections between cylinders they employ two
vectors: $AXIS which can be placed along the axis of a
cylinder whose connection is to be described and $SPASAR
which can be wused to describe the rotation of a second
cylinder about the first. °~ The relationship of two touching
cylinders is described by a triple (p,i,g) where p is the
position at which $SPASAR attaches to $AXIS, i is the
inclination of $SPASAR to $AXIS, and g is the girdle angle
describing the rotation of $SPASAR about SAXIS. If the
cylinders do not touch directly, then the description uses
the pair (d4,e) where d is the ©perpendicular distance from
$AXIS to the beginning of $SPASAR, and ¢ 1is the girdle

angle.

Marr and Nishihara also believe in the use of indexing in
recognition. They distinguish between indexing clues that
can be used before there is a guess at the three-dimensional
configuration (for example, connectivity and some length
comparisons) and those that cannot. Their matching scheme
uses relaxation to rotate the model 1into the appropriate
view to match the description obtained <from the two-

dimensicnal image.



9

Hollerbach [18] used generalized c¢ylinders in his
hierarchical models of pottery vases. His model of a vase
is a main cylinder segmented into possible parts: foot,
body, neck, and lip. Parts can be described by a general

shape (i.e. ovoid) pPlus modifiers (i.e. protrusicns, size,

position). Soroka [39] used generalized cylinders with
elliptical Cross sections to model three-dimensional
biclogical data obtained from tomographic data. In other

recent work, Agin [2] has developed a new system where
objects are modeled by generalized cylinders and arbitrary
spatial relationships. Relationships include snakes
(several cylinders grouped along a single axis), attachment
points, and arbitrafy transforms. Users can code 8-
expression descriptions such as (CUBE2Z (ATTACH CUBE2 TOP)

CUBE 1) to describe objects to the system.

General Knowledge Models

The models discussed so far have specific primitives
(éurface, edge, vertex, or generalized cylinder), some
description of the properties of those primitives, and often
some kind of <connection relation. Several more general
models have been proposed. Minsky {24] has defined a
"frame" as a data-structure for representing a stereotyped

situation. A frame is like a network of nodes and relations
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where the top levels are fixed and represent things that are
always fixed about the situaticon and the 1lower levels have
slots that must be filled with specific information. For a
stereotyped scene of three~dimensional objects, Minsky's
model is a set of frames describing the scene from different
viewpoints plus the transformations between pairs of these
frames representing the effect of moving the camera. A
related model has been proposed by Ballard, Brown, and
Feldman [4]. Their model is a semantic network where nodes
represent primitive and complex objects and concepts such as
assertions or procedures. Given this model, an image, and a
query pertaining to a particular object, their system would
construct a sketch map (an instantiation of part of the
model that matches the scene}) and wuse it to answer the

query.

II.2 Matching and Constraint Satisfaction

Our three-dimensional models are relational structures.
Relational matching, the process of finding relational
homomorphisms between two structures is an NP-complete
problem; in the worst case, 1its behavior is expected to be
exponential. However, 1t has been shown that the use of
look-ahead or relaxation operators can speed wup the tree

search used for finding a match. Since our relational
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matching will require some form of relaxation, we will

survey some of the recent work in this important area.

Discrete Relaxation

In {17], we defined a general network constraint analysis

problem, called the consistent labeling problem, which was a

generalization of specific problems from several different
specialty areas. In the general problem, we are given a
compatibility model (U, L, T, R) where U = {1,...,M} is a
set of M objects called units, L 1is a set of names for the
units called labels, T EIU**N specifies N-tuples of units
that constrain one another, and R € (U x L)**N specifies N-
tuples of unit-label pairs ((ul, 1), (u2, 12), v vy {UN,
IN)) where unit ul can have label 11, unit u2 can have label
12,..., and unit uN can have label 1IN, all at the same time.
A labeling of U is a mapping f: U ==> L that assigns a
label to each unit. The consistent labeling problem is to
find all labelings f that satisfy (ul,...,uN) € T implies
(ul,f(ul),...,uﬂ, f{uN)) € R. We have shown that the
relational homomorphism problem is a consistent labeling

problem.

Consistent labeling problems have traditicnally been

attacked by a depth search where the search procedure
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assigns labels to units as long as it can find a label for
each new unit that 1is compatible according to R with the
labels already fixed to previous units. Whenever the
procedure cannot find a label for a new unit, it backtracks.
Such a procedure suffers from thrashing; a poor choice of
labels for one of the first units can cause failure of all

paths stemming from that choice.

Ullman [41] first tried to avert this thrashing behavior
in a matching application. Waltz [43] popularized .discrete
relaxation by using it in a program to label the edges of a
line drawing as concave, convex, boundary, shadow, or crack.
His ‘'filtering' program was applied prior to the tree
gearch, and it removed so many possible labelings, that
frequently the tree search became unnecessary. Rosenfeld,
Hummel, and Zucker [30] formalized the relaxation operator
used by Waltz, Using our consistent labeling notation, U is
the set of édges, L is the set of edge labels, T = {(line 1,
line 2) | line 1 connects to line 2}, and R = {{(line 1,
labél 1), (line 2, label 2)| (line 1, line 2) € T and there
is some physically possible labeling of the Jjunction where
line 1 and line 2 meet in which line 1 can take label 1

while line 2 takes label 2}.

In the Rosenfeld, Hummel, Zucker formalism a labeling is

an N-tuple of sets Lk = (&(1,k),...,E(M,k)) where E(i,k) is
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a set of labels that are still allowed for line i at
iteration k. E(i,o) is the set {label | ((line i, label),
(line j, label j)) € R for some j}. L(k+l) is obtained from
L (k) by discarding from each &(i,k) any lapel 1 such that
there exists a j with {{((line i, 1), (line j, 13)) € r | 17
€ E(i,k)} = ¢. The relaxation procedure obtains L{l) from
L{O), L(2) from L(1),¢.., until some L(k+1l) = L (k) whereupon
it halts. If L(ky = (7, ﬁ;,e,, Z), there 1is no legal
labeling; if L(k) 1is single-valued, the single consistent
labeling has been found; énd otherwise a tree search in a

reduced tree is necessary.

Discrete relaxation operators have also been proposed in
Haralick and Shapiro {17] and by Ullman [42], Montanari
[25], Haralick and Kartus [16], Mackworth [21], PFreuder
(12], Gaschnig [13}, Davis [11], and others. In a recent
paper, Haralick and Elliot [15) compared several discrete
relaxation operators by constructing random binary
compatibility models on which to test the operators. It was
found that a very simple operator that they call forward
checking performed best; that is it had fewer operations and
smaller execution time, The more powerful. operators
searched less nodes of the tree than forward checking, but
took many more operations to do so. Haralick and Elliot
also found that a strategy of ordering the units by always

taking the next wunit having fewest possible labels left
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tended to cause more backtracking to occur higher in the

tree and thus reduced search time.

Inexact Discrete Relaxation

In our past work we developed a structural model for
describing two~-dimensional shapes and a corresponding
procedure for matching an unknown shape to a stored model
[35]. sSince the unknown shapes could be distorted or noisy,
their decompositions into simple pieces and intrusions and
the corresponding relational desciptions were generally not
identical to the stored models. To deal with this problem,
we define an inexact match or an €-consistent labeling as a

function £: U --> L that satisfies

EE w(t) L€

terT
£)

£( € R

where w is a function assigning a weight to each N-tuple t
in 7. .In continued work [36)], we further generalized the
concept of an inexact match and developed relaxation
operators for inexact matching corresponding to the forward
checking and lookahead-by-one operators used in exact
matching. We found again that the forward checking operator
used less operations and less time than the lookahead by one

or the backtracking tree search.
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Continuous Relaxation

Rosenfeld, Hummel, and Zucker [30] propesed a continuous
version of the binary consistent labeling problem. In the
continuous version, each possible label 1 for unit i has an
attached weight (pi(l) indicating the certainty with which
label 1 is attached to unit i. The weights for each label
are between 0 and 1, and the sum of the weights of all
labels of a given unit must be 1. The constraint relation R
also has a weight attached to each tuple. In their notation
this amounts to a set of coefficients {rij,i,j,e U} where
rij(l,L") denotes the compatibility of label I on unit i
with label 1' on unit j. The rij's range from -1 to 1. The
job of the relaxation operator is to increase pi{(l) if other
units' labels that have high weights are nighly compatible
with 1 at unit i and decrease pi(l) if other highly weighted
labels are incompatible with 1 at unit i. The relaxation

operator that updates the pi's at iteration k+1 is given by

pi<k> (1)1 + gi<k> (1)}
PIKK+1ID (1) = mmcmmm L

where gi<k> (1) = Z:<iij Zzgrij(l,l')pj<k>(lﬂ
3 1

and the dij's are «coefficients that weight the total

interaction between units i and j.
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Continuous relaxation has been used by Hanson and Riseman
[14] for edge enhancement, by Barrow and Tenebaum [6] for
scene analysis, by Zucker and Hummel [45] for clustering,
and by others. Current work in the area deals with
theoretical analyses of the continuous relaxation process to
determine exactly what problem it 1is actually solving. To
this end Zucker, et al [46] have shown that under certain

restrictions, continuous relaxation is equivalent to local

maxima selection.

III. A Relational Model

In this section we first describe a relational model that
provides a rough description of the structure of three-
dimensionai objects. This model is to be used at the top
level of a hierarchy for describing objects. Lower levels
will be more precise descriptions, including finer details.
The rough descriptions will be used for initial matching
attempts and as input te a clustering procedure that will

group similar objects together.
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The Parts of an Object: Sticks, Plates, and BRlobs

The objects that we propose to work with are complex man-—
made objects, such as office furniture and industrial
manufacturing parts. These objects are physically built
from parts. The parts can have flat or curved surfaces, and
they exist 1in a large variety. Instead of trying to
describe each of these many parts, at the top level we
classify each part as either a stick, a plate, or a blob.
Sticks are long, thin parts that have only one significant
dimensiqn. Plates are flatish, wide parts with two nearly
flat surfaces connected by a thin edge between them. Plates
have two significant dimensions. Blobs are parts that have
all three significant dimensions. All three kinds of parts
are "near-convex™; that is, a stick cannot bend very much,
the surfaces of a plate cannot fold very much, and a blob
can be bumpy, but cannot have large concavities. Figure 1

shows several examples of sticks, plates, and blocbs.

Because we wish to analyze the structure of objec£s, we
need to define sticks, plates, and blobs more precisely.
Formally, a stick is a 4-tuple ST=(En,I,Cm,L) where En is
the set of two end points.of the stick; I is the set of
interior points of the stick; Cm is its center of mass; and
L is its length. Since straight line segments have each of

the components of a stick, we will be able to informally



STICKS

s @ < \

BLOBS

Figure 1 illustrates several examples sach of sticks, plates, and bigbs.
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represent all sticks by straight line segments to simplify

our thinking about them.

A plate is a 4-tuple PL = (Eg,S,Cm,A) where Eg is the set
. of edge points; S = {S51,S52} is the set of surface points of
the plate, partitioned into the two surfaces; Cm 1is the
center of mass; and A is the area. Again, to simplify

analyses, we can informally represent all plates by circles.

A blob is a triple BL= (S,Cm,V) where S is the set of
surface points; Cm is the centef of mass; and V is the
volume of the blob. We can informally represent all blobs
as spheres. We choose line segments, circles, and spheres
because they have no corners that we might be tempted to use
in our descriptions. At the top level, the descriptions are

to be as general and as rough as possible.

Constraints on Assembling the Parts

Qur three-dimensiconal models must describe how the

sticks, plates, and blobs are put together. These
descriptions will also be rough; they cannot specify the
physical points where two parts Jjoin. The stick has two

logical end points, a logical set of interior points, and a

logical center of mass that can be specified as connection
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peints. The plate has a set of edge points, a set of
surface points, and a center of mass. The blob has a set of
surface points and a center of mass. We will now discuss

how to use such minimal information in the models.

Binary Connections

Clearly the connections between pairs of parts are an
integral part of any three-dimensional relational model. We
.specify a connection between two parts by specifying 1) the
type of connection and 2) the constrained angles of the
connection. The type of <connection describes which
distinguished entity of the first part touches which
Gistinguished entity of the second part. Thus possible
connection types are end-end, end-interior, end-center, end-~
edge, and so on. For each type of connection, there is a
corresponding set of angles which, when specified as single
values or as ranges, constraig the binary connection
further. For example, when two sticks Jjoin end-end or
interior-center (as illustrated in Figure 2) a single angle
constrains their connection. Figure 2 specifies the full
range of this angle. If the angle is restricted to a single
value, the connection is restricted to an exact form. If
the angle is specified as an allowable range of values, then

the form of connection 1is more flexible. At most three



¢(/’—\3 TYPE ANGLE

b ST CONSTRAINT

End-End 90° < & < 180°

b2
TYPE ANGLE
9 CONSTRAINT
: =\ > Interior- j
51 Center of Mass!0° < 3 < 90

ANGLE

" TYPE CONSTRAINT
" Interior- | 0° <, g < 180°

Interior 0° < 5 < 90°

a: angle between projection of
C2P on plane of C1 and C2P

g8: angle between projection of
C2P on plane of C1 and C1P

d: angle between N1 and N2

Figure 2 illustrates three examples of the constrained connections
of two simple parts. '



20

angle ranges are required to uniquely describe a binary

connection between two arbitrary parts,

Ternary Connections

- —— --The--binary connections are not sufficient to entirely
describe a three-dimensional model since they do not place
“rany " 'global constraints on the resulting object. For
example, two sticks each connected end-end to thé same third
stick might be at the same or opposite ends”éﬁd,' if at the
same end, might coincide in space or not coincide, but might
still be at the same angle with respect to the third stick.
If'we were trying to describe the object very precisely, we
might need ~ to specify N-ary connections for arbitrary N,
However, we have determined that we can add powerful
constraints to the model by considering triples of simple
parts. Since at this level, our descriptions are rough
anyway, we will only go as far as ternary relations to

describe connections.

Let (sl,s2,s83) be a triple of simple parts satisfying
that sl and s3 both touch s2. The description of the
spatial relationship between sl and s3 with respect to s2

has two components. The first component specifies whether
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sl and s3 meet s2 on the same end (or surface). The second
component constrains the angle subtended by the centers of
mass of sl and s3 at the center of mass of s2. This angle
constraint can also be a single value or an allowable range.
Figure 3 illustrates several connections between the parts

and the full range of the angles to be specified.

Support Structure

Another important aspect of a multi-part three-
dimensional object is its support structure. The legs of a
chair are not only connected to the seat, but they also
support the seat, The support structure is related to the
function of the object and its parts. For example, objects
that have four upright sticks supported by the ground and
supporting a horizontally-oriented plate tend to be
stationary objects and tend to be used to set another object
{book, wvase, persaon) on. In addition to its importance in
the three-dimensional description, the Support structure can
be useful in helping to identify two-dimensional perspective
pProjections of an object, since much of the support
structure of an object is often evident in a right-side-up
two-dimensional view, Thus the support structure seems to
be an essential component in a three-dimensional object

model.
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Figure 3 illustrates three examples of constrained connections among three
simple parts.
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Additional Constraints

‘The biﬁary and ternary connection relations plus the

Support. structure provide a basic description “of ‘the

- structure of an object. Additional Constraints on groups of

parts that do not touch each other may aiso be necessary to
completely characterize some objects. Consider the standard
table shown in Figure 4. The four sticks are all the same
length, all parallel, and their centers of mass are
equidistant from the center of mass of the piate;
Furthermore, there are constraints on the angles between
adjacent pairs of 1line segments from stick centers of mass
to plate center of mass. These constraints rule out certain
three-dimensional objects that are not standard tables,
although they may have four sticks connected to a plate,
The constraints are illustrated in Figure 4. For a given
class of objects and a given application, there will be a

Set of relations that are important additional constraints.

The Relational Data Structure

In [34] we proposed 3 general relational data structure.
The structure, which has also been called a spatial data
Structure or a Structural description, can be formally

defined as follows. A relational data Structure D is a set
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D = {Rl,...,RK} of relations,. For each relation Rk, k =
l,...,K, there is a positive integer Nk and a Sequence of
domain sets S(l,k), ..., S{Nk{k) such that Rk c S({l,k)x ...
X S (Nk,k). The elements of the domain sets may themselves
be atoms (nondecomposable) or relational data structures,
in most relational data Structures, one of the relations is
an attribute-valye ﬁable '(A/V) and contains the values of

global properties of the object being represented by the

structure,

The relational data structure for a three-dimensional
object will consist of an attribute-value table plus nine
other relations. The unary SIMPLE PARTS relation is a list
of the parts of the object, Each part is repfesented by a
relational data structure consisﬁing of an attribute-value
table. The attributes of g3 simple part consist of TYPE
(stick, plate, or blob), RELATIVE LENGTH, RELATIVE AREA, and
RELATIVE VOLUME. The length, area, and volume values may be
real numbers or may be marked “don'ﬁ—care“ when they are

unimportant or inappropriate.

The CONNECTS/SUPPORTS relation contains some of the most
important information on the structure of the object. It
consists of 10-tuples of the form (sl,s2,SUPPORTS,
HOW,vll,vhl,le,vh2,vl3,vh3}. The components sl and g2 are

simple parts, SUPPORTS is true if sl Supports s2 and false
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ostherwise, and HOW describes the connection type of sl and
s2. The wvalues in the HOw field are elements of the set
{end-end, end-interior, end-center, end-edge, interior-
center, center~center} where ‘end' refers to an end of a
stick, 'interior' refers to the Iinterior of a stick or
surface of a plate or blob, 'edge' refers to the edge of a
plate, and ‘'center' refers to the center of mass of any
part. The field pairs (vll,vhly), (v12,vh2), and (vl3,vh3)
hold thé 1low and high values for the allowed angle ranges
for the (at most) three angles that can be specified for a

binary connection.

The other eight relations express constraints, The
TRIPLE CONSTRAINT relation has 6-tuples of the form
(sl,éZ,sB,same,vl,vh) where simple part s2 touches both sl
and 83, SAME is true if sl and s3 touch s2 on the same end
(or surface) of s2 and false otherwise, and vl and vh
specify the permissible low and high wvalues for the
constrained angle as shown in Figure 3. The PARALLEL
relation and the PERPENDICULAR relation have pairs of the
form (sl,sé) where simple parts sl and s2 are parallel (or
Perpendicular) in the model. The LENGTH CONSTRAINT relation
has triples of the form (11,12,0) where 11 and 12 refer to
Specific line segments or part lengths and 0 g

{>:2,<,<,=,#}.  The components 11 and 12 of this relation

must be powerful enough to express such concepts as the line
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segment joining the centers of mass of two parts or the
length of a stick. The BINARY ANGLE CONSTRAINT relation has
triples of the form (dl1,d2,0) where dl and 42 Specify angles
and again o ¢ {>,Z,<,i,=,#}. Finally, +the AREA and VOLUME
relations have triples of the form.(al,az,o) and (vl1,v2,0),
respectively, where a1l and a2 refer to areas, vl and v2

refer to volumes, and o @ {>02,<,8,=,#}.

Note that specification of areas and volumes in the
constraint.relations may be redundant due to the fact that
each part has a RELATIVE AREA and RELATIVE VOLUME attribute,
The constraint relations wil} only be used when the
constraint is meant to be emphasized ag important to the
object. It is expected that the inexact matching process to
be used will pe quite lenient about relative area and volume
requirements in general, When a few constraints on area or
volume need to be more severe, the thresholds that the
constraint relations have to satisfy can be increased,
Similarly, the PERPENDICULAR relation is redundant and will
only be used for emphasis or severe Constraints, See
Shapiro and Haralick, 1979  [36] for the definition of

inexact matching and for some fast algorithms to do it,

The attribute-value table of a tree~dimensional object

contains its global Properties. OQur intention is to include

>

&S many properties as Possible while kKeeping the description
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Figure 5 i1lustrates the logical structure of a relational data structure for
& three-dimensionaj object model.
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at a gross level, The set of attributes currently planned
are number of base Supports, type of topmost part, number of

sticks, number of plates, number of blobs, number of upright -

- -parts,.. number of horizontal parts, and number of slanted

.Parts, number of support levels, and position of topmost

part.  The logical Structure of 3 three~gimgg§ionalVgpjgcgw

is illustrated in Figure 5, Notice that most of the

information in the relational structure is invariant with
.f;épeéé.to orientation of the object. Oﬁz§-7£hé-36;§5éfé
field of the CONNECTS/SUPPORTS relation and the attribures
that mention position (upright,* horizontal}'”'slanted)" or
SUpport are related to orientation, These were included in
the model because we eéxpect to analyze SCenes. where objects

are usually in their normal upright position. When this is

not the case, these attributes can simply be ignored.

IV. Relational Matching

Going from relational descriptions to three-dimensional
objects is ‘essentially g matching problem: matching the
relational description from the 1image to the relational
description of the object. Poing this matching in g
database of one hundred or one thousand Separate objects
would be computationally expensive. Given an unknown object

(three-dimensional object or two-dimensional view), we do
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hot want to compare its description with every object in the
database. A solution to this problem which has been used by
Salton [31] in ap information Storage and retrieval system
is to cluster the objects in the database, represent each
cluster by a profile description, and compare the
description of an  unknown object only to each profile
description. If the unknown object ig judged sufficiently
close to one or more clusters, then it is compared only to

objeéts in those groups.

Comparing Relational Descriptions

Suppose we are given two relational descriptions D = {R1,
R2,..., RK! and D' = {r17, R2',..., RK'} where for each k =
l,...,K, Rk g S{l,k) X...x S (Nk, k) and Rk' C S5'"(l,k X...X
S'(Nk,k). Intuitively, description D is similar to
description D' if relation Rk is similar to relation Rk' for
k = l1,...,K. Thus to measure the distance between two
relational descriptions, we must first be able to measure

the distance between two relationsg.

Let R = s and R' ] ™ be two N-ary relations, and let f
be a binary relation £f ¢S x T that associates an element of
S5 with an element of T, We will define a measure of the

error of the association f. We define the composition Ref

of N-ary relation R with binary relation f by
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Ref = {(tl,...,tN) € N | there exists (sl,...,sn) € R

with (sn,tn) € £ for n = l,...,N}

There are four sets of N-tuple that can be used to describe

the error of the assocliation f.
l) Ref - R

This set consists of N-tuples that arise when an N—
tuple of relation R is transformed by f to an N-
tuple of ™, Byt this new N-tuple is not a part of

RI°
2) R'eg~l _ g

This set consists of N-tuples that arise when an N-
tuple of relation R' is transformed by £71 to an N-
tuple of SN, but this new N-tuple is not a part of
the relation R. ~This set 1is the symmetric
equivalent of set 1) and is used here because we

are interested in two-way matching.
3) R = Rfa g1 .
This set consists of N-tuples of R that are not

included in the group of N-tuples obtained by

applying £~1 ¢o each N-tuple of R!'.
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4) R' - Ro f

This set consistg of N-tuples of R! that are not
included in the group of N~tuples obtained by

applying f to each N-tuple of R.

Examgle

Consider the two chairs € ang ¢ shown in Figure 6 and

the corresponding simplified binary connection relations

R = {(1,2),(2,3),(2,4),(2,5),(2,6)} and

R' = {(A,B),(B,C)p(BpDJ,(B;E):(B,F)f

(C:G),(DfG);(E,H),(F;H}}-

Suppose we wish to measure the error of the association f
given by

f = {(lIAI)I(er)I(3IC)7(4IG)I(6!F)}'
Then the two compositions are given by

Ref = {(A,B),(B,C),(B,G),(B,F)} and

Rieg™l = 111,2),(2,3),(2,6),(3,4)},

and the four sets of interest are

SET . NUMBER ELEMENTS
Ref - R' = {(B,G)} 1
R'ef™l _ g = {(3,4)} 1
R -~ R'ef~l = {1 2,4)(2,5)) 2
R'" = Ref = {(B,D},(B,E),(C,G), 6

(D,G),(E,H), (F,H)}.
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R= (1,2), (2,3), (2,4) R = (A,B), (B,¢), (8,D),

(2,5), (2,6) (B5E), (B,F), (C.g),

(DSG)! (ESH)S (FSH)

Figure 6 i1lustrates two similar

relations. Two shapes match when

chairs and their oinary connection
low,

their structural errgr is sufficiently
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One method of defining the €rror of f is by a weighted

normalized sum of the number of elements in each of the four

alRef] + blR'e 71| + <Ry + dir*|

This measure wil}l be 0 when R*' ig an isomorphic image of
R and £ is the isomorphism; ang it will be‘ 1 in the worst
possible case when Ref M R' = R'e £7IAR = g, It has the
advantage of simplicity and the disadvantage of Counting all
N-tuples of a relation equally when some relationships may

be more important than others,

Once such a Measure of relational error has been defined,
‘Wwe can define the Structural @ error SE(D,D*) of two

descriptions D and D! by

SE(D,D') = min 5 wk By
£ k=1 ’

where wk is the weight assigned to relation Rk,
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The global attributes of 3 three-dimensional object are
Stored in the attribute-value table A/v = {(a,v) | a is an
attribute and v is jtg value}l. The attribute-value table is
essentially g3 feature vector and by itself cannot fully
describe an object. Yet it is an important aspect of the
total description. A human, when asked to describe & chair
might answer, "It is an object having four legs, a3 back, ang
a seat, The legs are long, thin, and vertically driented,
the back ig flat, wide, and horizontaliy oriented. The legs
connect to and Support the geat which connects to and
Supperts the back," Note that inp this description, it is
Very natural to mention the parts ang their features before
coming to the relational Structure., Similarly, . the human,
when asked the difference between a chair and a table, might
SaY, "The table Has no back."” Here the presence or absence
of a part is important. This al1 Suggests that when
comparing +wo objects, we should first compare their
attribute-value tables ang only if these are judged similar

enough should we continue with the full relational matching.
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V. The Experimental Database Systenm

In order to perform exXperiments {n three~-dimensional
object matching, angd for future use in scene analysis, we
have implemented an experimental relational database system
for the three-dimensional relational models, The system,
which is written in PL/I and FORTRAN and runs on an IBM
370/158 under VM/CMS, gqgives the eXperimenter the ability to
input, edit, compare and cluster three~-dimensional object

models,

Organization

Bach object model is accessed by a wunique integer, An
object model consists of an attribute-value table plus five
relations: SIMPLE PARTS, CONNECTS/SUPPORTS, TRIPLES,
PARALLEL, and PERPENDICULAR, The relations contain the
fields described in Section III, but the angle and size datsa
has been omitteg at this stage of experimentation and the
Supports component for a pair of parts (i,3) is true if i
Supports j or J supports i and false if no support is
involved. Thus, . in the objects on which the experiments
were performed, we have five relations R1, R2, R3, R4, ang

R5 where

Rl = SIMPLE-PARTS ¢ parts x {stick, plate, blob},
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R2 = CONNECTS-SUPPORTS c parts X parts x { (supports, how) |
supports € {true false} and
how € {end to end, end to edge,
end to interior, edge to
interior, interior to

interiori,

R3 = TRIPLES c parts x parts x parts x {same, opposite},
R4 = PARALLEL ¢ parts x parts, and
R5 = PERPENDICULAR ¢ parts x parts.

The attribute~-value tables of 57 objects have been entered
into the database so far. The full S5-relation structure has
only been entered for 14 objects. The 57 obiects are

iiiustrated in Figure 7.

The database is organized as a set of possibly
overlapping clusters of similar objects. In the current
setup, only the attribute-value tables of each pair of
objects were used in judging their similarity. With the
attributes "number of upright pieces", "number of horizontal
pieces" and "number of slanted pieces” weighted by 1 and the
other seven attributes weighted by 10, the Euclidean
distance between each pair of attribute-value tables was
determined and thresholded, producing a binary relation.
The relation was fed to the graph-theoretic <clustering

procedure which has been described in Shapiro and Haralick
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Figure 7 illustrates the 57 objects whose attribute-value tables
are in the database.



Figure 7. Continuation of 57 objects.
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Figure 7. Continuation of 57 objects.
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[37]. The set of resulting clusters currently being used in

the database are shown in Figure 8.

In the standard mode of operation, an unknown objé&ct may
be entered into the database or merely compared to some of
the models without being entered. For object entry, the
attribute-~value table and five relations are input by-the
user, the attribute~value table is compared to the cen;ﬁgia
attribute-value tables of each cluster, and the obiect is
added to those clusters that it 1s most similar to. For
matching, 1instead of being added, the unknown object is
-compared to each object in the best clusters and the peéﬁiés

displayed to the experimenter.

Matching

The relational matching is performed using a treesearch

with lookahead. Let U = {Sl, Sy+ S3, Sy S5} be the unknown
object, represented by its five relations and M = {Tl' To,

T3' Tyqs T5} be the model. For a given asscciation £, the

total structural error is given by

5
Eg(£) = 2:1 (#(Sief - Ti) + #(Tief™l - Si))
i=

and the total completeness error is given by
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Figure 8 gives the clusters of the 57
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5
EQ(E) = 2. (${Ti - Sisf) + #(Si - Tief 1))
i=1

where # denotes cardinality. In our matching experiments,

we used a combined measure of total error:
= *
E(f) =4 * E_(£) + E(£),

which stems from our intuitive feelings that structural
error is more important than completeness error. The goal
of a matching experiment between two objects U and M with
parts P.(U) and P(M), respectively, is to find that
association £ ¢ P(U) x P(M) with minimum total error. In
the experiments reported in this paper, we restricted the
mapping £ to being single-valued and one-one, to reduce

search time.

Finding the best association is achieved with the help of
two tree searches. Tréesearch I, the "super-quick™ search,
follows only one path from the root of the tree to the
bottom. At each level, it chooses that pair (p,p'), P €
P(U), p' € P(M, with least accumulated error in the
lookahead tables and performs forward checking [15,36] with
respect to the new pair and the so-far-uninstantiated parts.
The forward checking operation updates the lookahead tables
and determines if this pair can be instantiated. If so, it

is added to the association being constructed.
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The association £ obtained from Treesearch I £falls into

one of three categories:

1} Exact Match: Es(f) = 0 and E_(f) = 0
2) Subset Match: Es(f) = (0 and Eq(f) # 0

3) Approximate Match: Es(f) Z 0,

In case 1) <clearly the best association has already been
found. In case 2}, one object is contained in the other and
the similarity of their attribute-value tables guarantees
that not too many parts are missing. 1In case 3) there is no
guarantee that £ has minimal error and Treesearch II 1is

called.

Treesearch II is similar to a Dbranch and bound search
using forward checking. 1Its job is to find an association g

such that

1) E(g) < E(£)

{g's total error is not greater than £'s]

2)  #proj, (g) > t* (¥P(U))

#prod,(g) 2 t*(#P(M))

{The ©projection of g onto its first (second,

respectively) coordinate gives a set whose
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cardinality is at least the percentage specified
by parameter t of the number of parts in U

(respectively, M).]

3) E(g') £ k¥ %. (#51 + #Ti), g' ¢ g
i=1
[At each stage of Treesearch II, the partial
association g' must satisfy the requirement that
its total error is not greater than the percentage
specified by parameter k of the sum of the nﬁmber
of N-tuple in all of the relations involved. The
parameter k allows the user to control the size of
the tree searched at the risk of not finding a
best mapping whose error is very high near the top

of the tree and very low near the bottom.

The extended forward checking algorithm used in TREESEARCH I

and TREESEARCH II will be described in a forthcoming paper.

VI. Experiments

We have run several kinds of experiments using the
database of relational models. The purpose of these
experiment was to study the relationship between the

Euclidean distance between a pair of objects obtained only
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from their attribute-value tables and the total relational
error obtained from the tree search. Figure 9 illustrates
the fourteen objects whose relational descriptions and

attribute-value tables were used in these experiments.

Table 1 gives the Euclidean distances for each pair of
the fourteen objects of Figure 9, = Notice that, as far as
the grouping in the database which was obtained using a
distance threshold of 8, objects 1-7 and 9 £fell into cluster
1, objects 8, 10, 11, and 13 fell into cluster 2, object 12
fell into cluster 3, and object 14 fell into cluster 4,
Table 2 gives the structural and completeness errors for
each pair of Ehe same fourteen objects as obtained only from

Treesearch I. Note that this matrix is not symmetric since

TREESEARCH I does not necessarily find the minimal error
mapping and may find a different upper bound when matching
object i to object j than when matching object j to object

i.

Table 3 gives the structural and completeness errors for
each pair of the same fourteen objects as obtained from the
full matching process =-- Treesearch I, followed by
Treesearch II, I{f necessary. Table 3 also gives the k-
parameter used in Treesearch II for those matches where
Treesearch IT was required. An asterisk (*) next to the k-

parameter indicates that Treesearch II ran out of time after



Figure 9 illustrates the 14 objects whose full relational models
are in the database.



1 2 3 4 5 5 2 8 3 16 11 1z 13 1k

1 0 3.6 5.20]5.57| 5.57[ 7.21| 6.24] 9.64 1 5.66 | 9.70 | 10.69 11.64 10.19 8.56 1

2 ¢ [6.28186.58) 6.56| & ?.81| 8.72(6.32 ) 10.30 11.29 11.91 ¢.75 ] 6.93
3 0 7481 72.481 8.66( 7.21 ) 10.66 4.36 ] 10,720 11.68 11.70 11.29 8,54
4 0 0 | 4.58 2.83] 9.00 [ 7.9% | 9.11 19.17 | $2.06'10,59 6.63
5 C 1 4.58(2.839.01|7.9% 9.1 [9.17 |{12.0510.58 6-é3

6 9 | 5.20] 7.81 [ 9.17 | 7.87 | 7.55 | 11.14 9.5% | 8.06
7 0 {9.27| 9 19.22[9.17 |12.21]10.84 7.2t

8 0 1118 6.58 [6.48 1 7.9% | 5,66 11.22
g ¢ 11.22/12.12{ 12,171 11.63 8.19
10 0 |4.538{9.17 ;5,74 11.27
11 0 10.25/7.35(11.31
(2 ¢ |8.66]13.51
13 Y] 12.49
b 0

Table 1. Distance Matrix for the Objects of Figure 9.
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Table 2. Completeness and Structural Errors Obtained after

TREE_SEARCHI for Objects of Figure 9.
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three-minutes and the best mapping found so far is reported
rather then the true best mapping. The t-parameter used in
these experiments was 75%. Again, notice that the matrix is
not symmetric, although it ideally should be. This is due

to our restriction on Treesearch II which forces it to find

a single-valued function from one object to another instead

" of an unrestricted binary association. In the cases where

they differ, the smaller of the two total errors may be used

to estimate the relational distance between the two objects.

In Figure 10, we graphed the Euclidean distance between
attribute-value tables versus total error (four times
structural error plus completeness error) as determined'by
TREESEARCH II. As can be seen from the figure, there is
some correlation, but the graph is far from a straight line.
Part of the reason for this is that in the normal mode of
operation of the database system, an object would only be

matched against those objects that are in clusters whose

-centroid is deemed similar to the object. However, in these

experiments, we allowed every object to be matched against
every other. Comparing two objects that are extremely
different can result in meaningless mappings. On the other
hand, we did not expect the graph to be a straight line,
since this would have indicated that structural descriptions
are unnecessary and feature vectors are sufficient to

distinguish between objects!



§u .

R .
+ " 2 !

13 4Y 2 3= =d 80 sa B2

=

§d

S

§d

* 3

L

an
&

@3 N

tar
13
©
na
vy
o

v 50 108 150 133 52

TATAL EZSRCR

Figure 10 illustrates the graph of total error after TREE SEARCHII
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To analyze the situation further, we thresholded the
total error between each pair of the fourteen objects to
produce a binary relation. The threshold (59) was chosen so
that this binafy relation had the same number of pairs as
the binary relation previously derived from the Euclidean
distances with distance threshold 8. Clustering the
relational distance binary relation, using the same graph-
theoretic clustering procedure with the same parameters as

used previously, gave the following results.

Cluster ~ Objects
1 1,2,4,5,6,7,9,14
2 3
3 1,8,10,11,12,13

Recall that the clusters obtained from . the FEuclidean

distance binary relation were as follows.

Cluster Chjects
1 | 1,2,3,4,5,6,7,9
2 8,10,11,13
3 12
4 14

The main differences are:
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1) Object 3 which grouped with 1, 2, 4, 5, 6, 7, and 9
using Euclidean distance, did not group with any

objects using relational distance.

2) OQObjects 12 and 14 which did not group with any of
the other twelve objects using Euclidean distance,
each found a (different) group using relational

distance,

3) Object 1 falls into two different clusters using
relational distance, but only one using Euclidean

distance.

What caused the differences? Consider object 1 and object 3
whose relational models are shown in Figure 11. As far as
the attribute value tables, they differ in number of sticks,
number of uprights, number of slanted pieces, and number of
levels. 1In the highly-weighted attributes (number of sticks
and number of levels) they differ only by one. In the low-
weighted attributes (number of uprights and number of
slanted pieces) they differ by 3 and 4, respectively. Thus

the total difference was relatively small.

The mapping used in Table 2 from object 1 to object 3 had
a structural error of 19 and completeness error of 57. It

was a very unintuitive mapping that sent part 1 of object 1



OBJECT 1

ATTRIBUTE VALUE TABLE

khdkhkhkrkkhhkhRAhhhhkikhhk

BASE SUPPORTS 4
- TOP TYPE 2
. NO. STICKS 4
NO. PLATES 2
5 NO. BLOBS 0
NO. UPRIGHTS 5
HORIZONTALS 1
SLANTEDS Q
2 it NO. LEVELS 3
'~ TOP PCS. POS. 2
l 3
SIMPLE PARTS RELATIONS CONNECTS-SUPPORTS RELATIONS
SIMPT TYPE  LENGTH AREA  VOLUME SP1 SP2 SUPPORTS HOW
1 1 1.00 0.0 0.0 1 5 TRUE 12
1.00 0.0 0.0 2 5 TRUE 12
3 1 1.00 Q.0 0.0 3 5 TRUE 12
4 1 1.00 0.0 0.0 4 5 TRUE 12
5 2 1.00 1.00 0.0 5 6 TRUE 23
6 2 1.00 1.00 0.0
RELATIONS ’
ggingi SP3 SAME PARALLEL RELATION PERPENDICULAR RELATION
1 S5 2 TRUE spl  sp2 SP1l SP2
1 5 3 TRUE 1 2 1 3
1 5 4 TRUE 1 3 2 5
1 5 6 FALSE 1 4 3 5
2 5 3 TRUE 2 3 4 5
2 5 4 TRUE 2 4 5 6
2 5 6 FALSE 3 4
3 5 4 TRUE
3 5 6 FALSE
4 5 6 FALSE

Figure 11 illustrates the full relational structures of objects 1 and 3
of Figure 9.



OBJECT 3

ATTRIBUTE VALUE TABLE

kxkkkkkhdhkhhhkrhrhhk

BASE SUPPORTS 4
TOP TYPE 2
KO. STICKS 5
NO. PLATES 2
NO. BLOBS 0
NO. UPRIGHTS 2
HORI ZONTALS 1
SLANTEDS 4
NO. LEVELS 4
TOP PCS. POS. 2
SIMPLE PARTS RELATIONS CONNECTS-SU
-~-SUPPORTS RELATIONS
fifg?-m_ffff__wgffffg_ AREA  VOLUME SP1 SP2 SUPPORTS HCW
1 2 6.00 28.26 0.0 1 2 TRUE 23
2 2 6§.00 28.26 0.0
2 3 TRUE 21
3 1 2.00 0.0 0.0
3 4 TRUE 11
4 1 4.00 0.0 0.0
3 5 TRUE 11
5 1 4.00 0.0 G.0
3 6 TRUE 11
6 1 4,00 G.0 0.0 3 7 TRUE 11
7 1 4.00 0.0 0.0
. 4 5 TRUE 11
4 6 TRUE 11
4 7 TRUE 11
5 6 TRUE 11
5 7 TRUE 11
5 7 TRUE 11
TRIPLES RELATIONS D
Spl SP2 SP3  SAME PARALLEL RELATICN PERPENDICULAR RELATION
““““““““““““ ;;g;g' gpl SE2 SPL  s5p2
FALSE 3 2 2
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{leg) to part 1 of obﬁect 3 (back), part 2 of object 1 (leg}
to part 3 of object 3 (central leg), part 3 of object 1
(leg) to part 4 of object 3 (slanted leg}) and part 4 of
object 1 (ieg) to part 5 of object 3 {(slanted leq) _and”was
the best match found within the time limit rather than the
best possible. To study this further, we reran the
experiment letting the program execute longer andfobtained a
better mapping that sent part 1 (leg) to part 3 (central
leg), part 3 (leg} to part 4 (leg), part 5 (seat) tolpart 2
(seat), and part 6 (back) to part 1 (back). This mapping
had a structural error of 8, completeness error of 49, and
total error of 81, Since the threshold we calculated for
deriving a binary relation from the relational distances was
59, even this much better mapping would not have allowed
ocbjects 1 and 3 to be called similar. The main problem is
the lack of connectivity between the legs and seat of object
3 which causes differences 1in the connects/supports and
triples relation and the slanted legs that cause differences
in the parallel and perpendicular relations, The

information in the attribute-value table is insufficient to

detect all of these differences,

In the attribute-value table comparisons, object 12 had
several more plates than the other objects, and object 14
had several more sticks than the others. Thus they were toco

dissimilar in heavily weighted attributes to the other
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objects to cluster with them. In relational matching,
however, object 14 shares with objects 1, 2, 4, 5, 7, and 9
a seat and four legs in the same connection and triples
relationships. In this case the relational matching is more
powerful than the attribute-value table matching. Object 12
was considered similar to objects 8, 10, and 13 in the
relational matching. This is really the case of a subset of
object 12 having structure similar to objects 8, 10, and 13,

since partial matches were allowed.

As far as object 1, it was deemed relationally similar to
objects 2, 4, 5, 6, 7, 8, 9, 10, 13, and l14. Again we find
that alsubset of object 1 (the seat and back) has the same
simple parts and same structure as a subset of objects 8,
10, and 13. Another subset of object 1 (the seat and four
legs) has the same simple parts and same structure as a
subset of all of objects 2, 4, 5, 6, 7, 9, and 14. This
accounts for object 1 clustering with two different groups

and makes intuitive sense also.

One criticism of these results might be that the total
relafional error, as used, was dependent on the number of N-
tuples in the relations of an object. Cbjects with more N-
tuples would necessarily generate more errors. To study the
effects of this problem, we 'normalized' the total errors by

dividing the error for cbject 1 vs object j by the total
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number of N-tuples iIn object i plus the total number of N-

tuples in object j.

The results were, again, three clusters,

Cluster Objects
1 1,2,4,5,6,7,8,9,10,14
2 3
3 8,11,12,13

as opposed to the former relationally obtained clusters:

Cluster Objects

1 1,2,4,5,6,7,9,14
2 3
3 1,8,10,11,12,13.
These results are, of course, somewhat dependent on the

threshold that produced the binary relation to be clustered.
The threshold was again chosen so that the binary relaticn
would include the same number of pairs as the previous two

binary relations.

One other set of comparisons were made to help study the
use of the attribute-value-table-based <c¢lusters. For each

object, the five best relational matches with other objects



With Clustering Without Clustering
Structural  Completeness Structural | Completeness
Candidate frror Error Object Error Error Object
0 27 2 0 27 2
0 7 4 0 7 4
1 0 16 6 0 i6 6
| 0 29 9 0 29 9
0 47 14 0 39 g
) 27 1 0 27 1
| 34 4 ] 34 -4
2 a 43 6 ¢ 66 8,10
& 54 g 0 43 b
3 2 7
3 47 7 2 3b 3,10
B 52 4 B 52 4
3 30 49 1 3 42 7
52 64 E & 43 6
g 43 B
0 I 0 7 1
0 6 0 9 .
4 0 22 9 0 22 9
0 34 2 0 34 2
] 40 14 Q 40 | 14
) 7 I 0 7 I
0 9 & 0 3 i B
5 0 22 g 0 2
0 4 14 0 40 14
0 34 2 0 34 2
Table 4,

Best 5 Matches with and without Clustering



With Clustering Without Clustering
. Structyral | Completeness Structural | Completeness
Candidate Error Error Object Error frror 3 Object
a 9 4 0 9 4
b 15 i g 16 1
6 a 43 2 0 43 z
d 31 9 0 31 3
0 49 14 0 49 14
d 72 14 0 72 14
1 56 1 58 © g
7 3 19 3 19 8
3 28 3 28 5
3 35 1 3 35 1
2 12 10 2 12 -
24 8 1 0 20 13
8 0 48 12 1 52 |3
0 20 13 0 48 | 12
0 62 |2
0 2 y 0 2 4
0 23 1 N 28 ]
3 g 31 5 0 1| 5
3 50 7 1 52 8
5 S4 2 2 52 ; 10
2 12 8 1 68 ST
14 5 11 2 0 1 i3
i0 P 43 12 2 36 3
2 20 13 2 12 g
2 35 1
I | }



With Clustering

Wwithout Clustering

N Structural  Completeness Structural  Complateness

Candidate Error Error Object Error Error Jbject
24 i0 8 20 13

2 12 10 12 10

11 12 52 12 12 23 6
1 20 i3 12 24 7

12 32 4

0 48 3 d 43 8

3 50 10 0 45 13

12 13 52 11 3 50 10
0 45 13 13 52 11

48 51 6

0 20 3 a 20 8

2 20 10 0 45 12

3 i 20 11 1 20 il
g 45 12 2 20 pe;

12 70 2

0 40 4 [ 0 40 &

0 57 I w1l

14 19 5 1 o 49 5

14 &0 3 i 1 68 0,11
: 7 7 74 7
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in its own cluster were compared to the five best relational

matches with any other objects. These comparison are shown
in Table 4. For four of the objects, the results were the
same. For four of the objects, one out of the five best

matches was with a different object (one not found 1in the
clusters deemed similar enough). Fgr four of the objects,
two out of the five best matches were with different
objects. For the two remaining objects, three out of the
five best matches were with different objects. This

seriously questions the use of the attribute-value clusters.

VII. Conclusions

We have defined a relational model to be used as a rough
description of a three-dimensional object. A database of

such models has been constructed and used in a preliminary

set of matching experiments. The database is currently

organized into <clusters of objects with similar features,
based on the Euclidean distance between their attribute-
value tables. When an unknown object 1is analyzed, its
attribute-value table is compared with the centroid of each
such cluster and relational matching takes place against the
objects in those clusters deemed similar enough. The
relational matching produces a mapping from the unknown

object to the model plus a measure of their relational

distance.
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Qur experiments comparing relational distance to
Euclidean 'feature' distance showed that they are related,
but not similar enough to trust the attribute wvalue
clusters. Clustering is a viable alternative, but it should
be based on relational «clusters. This relational grouping
introduces some important new problems to study. In
particular, how can we define the centroid of a relational
cluster and how do we match an unknown object against the
centroid description? These and other methods of reducing
the number of models that participate 1in full relational
matching are crucial to the use of a large object database.
Thus, the results of the experiments reported here are to

define important new work for the future.
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