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1. INTRODUCTION AND BACKGROUND

1.1 Purpose of MULTISAFE

MULTISAFE [TRUER79] 1is designed to provide securely controlled
database access, and to do it in a way that:

1) is verifiably secure

2) does not incur a prohibitive performance penaity

3) produces a modular system in accordance with the modern structured
approach to design

4) is naturally extendible to the protection of distributed data

5) provides flexible mechanisms able to adhere to complex protection

policies

The MULTISAFE architecture derives performance advantages from its
concurrency, and its protection processor allows for generalized protec—
tion mechanisms (such as those in [HARTH76a, HARTH76bL]). Work is cur-
rently being done on the application of MULTISAFE to a distributed data
enviromment and on the pefformance pehavior of MULTISAFE.  However, the
purpose of this paper is to introduce MULTISAFE and to focus on its

security related aspects.
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1.2_Re1ated Work

Functional modularization of database systems has appeared in sev-
eral forms since Canaday et al. [CANAR74}’introduced the "back-end" com-
puter to do DBMS processing concurrently with a non-DBMS host processor.
Bigbey and Popek [BISBR74] encapsulated the operating system and secur-
ity processes on a minicomputer, separate from user and application
procedures. Downs and Popek [COWND77] placed data security functions in
a "DBMS kernel," which controls all physical I/0. Some work at I. P.
Sharp [GROHM76, KIRKG77a, KIRKG77b] has attempted to apply the security
kernel and feference menitor concepts of operatiﬁg systems'directly to
the database problem. Under the direction of David Hsiao, the Data Base
Computer (DBC) [BANEJ78] has become an integrated system architecture
for secure data management. The DBC uses specialized hardware based on
near—-term future technology. It combines and extends the concepts of
back-end and assoclative processors. Lang, Fernandez, and Summers
[LANGT76] have proposed a division of application software into three
classes of object modules: (1} the application, (2) data interaction,
and (3) data control. Cook [CCOKT75] has investigated the use of sepa—
rate virtual machinesfin a DBMS design. He prbposed the concept of a
"user machine" which gives each user his/her own structural view of the

database.

The problem of security verification has been studied with respect

to proving program <c¢orrectness, primarily within operating systems.
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Much of this work has concentrated on security kernels [MILLJ76,
NEUMP77, ROBIL77, POPEG78, POPEG79, MCCAE79, GOLDB79, WALKB80], the
objective Qf which 1is to construct a virtual machine in which security

mechanisms are isclated from other mechanisms.

It 1is evident from the above that the concepts of isolation and
separation have been considered important for supporﬁing data security.
However, the protection question in these approaches can still be con-
sidered to be open, because physical 1isolation is not a guarantee of
security. As pointed out in a recent workshop on distributed computing
(reported by Peterson in [PETEJ79]), physical isolation can provide
"more apparent protection of information by providing physical control
over that part of the éystan; information can flow in and out only over
easily idéntified wires., This produces 'warm feelings' in the user of

the system."

It is at the logical level that evidence must be given that an
architecture does indeed support data security. Unless communication
among the system components. can be shown to be logically secure (in
tems of boﬁh message control and message content), security is not

gained by isolation.
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2. OVERVIEW OF THE SYSTEM ARCHITECTURE

A data management system can be functionally divided into three

major modules {a module being a combination of hardware and software):

~ 1} the user and application module (UAM)

2) the data storage and retrieval module (SRM)

3) the protection and security module (PSM)

Each one of these mecdules is treated as a separate and isolated
process which is connected in a precise manner to the others to form the
multiprocessing system called MULTISAFE. In MULTISAFE all three modules
function in a concurrent fashion. That is, the UAM coordinates and ana—
lyzes user requests at the same time that the SRM generates responses
for previous requests. Simultaneously, the PSM continuously performs

security checks on all activities. Figure 1 illustrates the logical

relationships among the three modules.

The ﬁodules of MULTISAFE are logically separated. The correspon—
- dence from its logical separation to a physical separation (i.e., the
implementation of the modules on physically distinct processors) is nét
critical to security, but may help improve performance by introducing
actual concurrency. Further discussion of implementation will be defer-

red until a later section.
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Figure 1. Logical relationships among MULTISAFE modules

2.1 The Protection and Security Module (PSM)

The PSM has much in common with some of the concepts reviewed in
section 1.2, in the sense that security mechanisms are encapsulated or
isolated from other modules. On the other hand, the PSM also differs
from most of those views, because the PSM is dedicated to security
checking and is not mixed in with other operating system functions
(e.g., 1,0 handling) or database functions. The PSM offers fine resolu-
tion (granularity) and, as a Separate processor, can be sufficiently

sophisticated to make data Security checks in a way which can more pre-
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cisely adhere to the complex protection policies needed for database
systems. The PSM performs only security checks and does not perform

database I,/0.

The PSM can make access decisions based on three classes of depen-—
dency:
1) data-independent’

2) data-definition-dependent
3} data—-value-dependent

Data independent access conditions can depend on user and/or termi-
nal identification information and dynamic system variables such as time
of day and various kinds of system status information. Data-definition—
dependent conditions invelve attributes (attribute names) , but not their
values. For example, a user may have permission to access names and
addresses (from an employee information file) but never salary informa-
tion. Data-value~dependent conditions require the values of attributes
to be checked. For example, no user may have permission to' see the
salary of anyone who has a value of 'ménaqer' for the 'job title' attri-

bute, -

In addition, the PSM can perform other functions. Some of these
are history keeping, auditing, integrity checking, cryptographic pro-

cessing, and backup/recovery control.
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2.2 The User and Applications Module (UAM)

The UAM acts as an interface between the user and the system by
reading and analyzing input quéries and by formatting and displaying (or
printing) results. It also provides working storage and computation for
the user. All security and I/0 routinés are removed from the UAM and
are completely isolated from the user. One exception is that the UaM
will provide low level primary memory management and protection for
memory shared by multiple users within a single UAM. (This memory pro-
tection is accomplished by existing operating systems techniques and is
not part of this present work.) Much of what is traditionally part of

the operating system will execute within the UAM.

: The UAM differs from its counterpart in other proposed'systems in
the operétions that are performed. For example, in the back-end System
of Canaday et al. the host performs security operations, whereas the UAM
does not. In Bisbey and Popek's encapsulation approach the central com-

puter. is allowed to do I/0 operations, whereas the UAM is not.

Thefe are several ways to view the UAM in a multiuser envirorment.
First, the UAM can be viewed as a large conventional multiprogrammed
processor, with several disjoint user address spaces. An alternative
view is a collection of very "intelligent" terminals each with its own
private memory and processor.  In this view some or all of the UAM

resides in each of the terminals. With an intelligent terminal a user's
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software and local data buffers become physically isolated from those of
other users. Further details of the UAM are not within the scope of

this paper.

2.3 The Storage and Retrieval Module (SRM)

The primary task of the SRM is to perform database accesses for the

UAM and PSM,

The SRM processor can be conventional computer hardware (mini- or
maxi-computer) and/or conventional DBMS software. It can also be in a

back-end processor or a database machine with specialized hardware for

storage and retrieval operations.

Since the SRM resides on its own processor(s), it is also possible
for the SRM to perform éertain data manipulation operations in addition
to data retrieval. That is, the SRM can compute SUM, COUNT, and AVERAGE
or other special functions, such as JOIN and PROJECTION and materializa-

tion of views for a relational database.

In addition to managing database storage and retrieval operations,
the SRM maintains private application files for non-DBMS users. That
1s, for a non-DBMS application program being processed by the UAM, the

SRM performs the "simple" (e.g., reading next record on a tape) I,0
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operations on the file, forcing all I/0 to be controlled by a common set

of mechanisms.

3. THE SERVICES PROVIDED BY MULTISAFE

MULTISAFE provides secure, controlled access to shared data in a
multiuser database environﬁent. MULTISAFE serves two classes of users:
authorizers and data accessers. Correspondingly, the PSM has two parts:
the authorization process and the enforcement process. In reality, the
authorizers are probably a subset of the data accessers.  However, they
can be treated as two distinct sets, since at any given time the roles
will always be distinguishable, For both groups MULTISAFE provides
secure login and logout, including user identification and authentica-
tion. Ihitially, only one authorizer (the system administrator:
SYSADMIN) exists. The SYSADMIN can designate users (create accounts)
and, by issuing autﬁorizations, can grant them access rights to various
parts of the database. The SYSADMIN can also designate other authoriz-

ers.

The authorization process provides the ability to add, delete,
modify, and display authorization information stored in the Protection
Database (see Figure 1). The right to make, modify, or see authoriza-

tions depends on the concept of "ownership." An authorizer becomes an
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4. ASSUMPTIONS AND DEFINITION OF SECURITY

Several assumptions which help to focus this work are as follows:

Assumption 1. Controlled Physical Access
The system is accessed only via terminals. Consider that the Sys—
tem is physically protected by an impenetrable wall with small
holes through which wires protrude to terminals in the outside
world., Any information or signals can be sent in through those
wires. If the modules of MULTISAFE are physically distributed, the
equivalent of the impenetrable wall can be provided by anti-eaves-
dropping techniques such as encryption.

Assumption 2. PSM Programming Impervious to Modification
PSM programming is built into a Programmable Read-Only Memory
(PROM) . It is physically impossible for PSM programs to be modi-
fied by a user, via a teminal.

Assumption 3. Correct User Identification

- User identification (authentication) will be assumed to be done
correctly. User identification is being attacked elsewhére as a
completely separate problem (EVANAT74, PURDG74, COTTI77]. Further,
it is assumed that uger identification can be reauthenticated whe—
hever necessary or desirable, so that the relationship between user
‘and terminal remains constant to MULTISAFE.

Assumption 4. Separation of Users in UAM
The UAM provides ordinary primary memory protection, so that multi-
ple users are prevented from interfering with each other's pro-
Cesses, data, or messages.

Assumption 5. Limitation of Scope
Security in this work refers to access controls, and not informa-
tion flow controls [DENND76] or inference controls [HOFFL70,
SCHLJ75, SCHAM79, DOBKD79, DENND79, KAMIB77]. The flexibility of a
generalized PSM processor, of course, admits to future addition of
these and other controls.

Assumption 6. Discretionary Access Control
Discretionary authorization is assumed, being a more general case
than non-discretionary (security levels), but not ruling out non-
discretionary policies. An important implication is that many
users are typically also authorizers.
All that fellows, particularly the definition of security and its

constituent conditions, will apply to systems subject to the constraints

of these assumptions. The definition of data security in this work
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emphasizes security explicitly as a relationship between authorization

and enforcement:

Definition 1: A system is data secure if, in that system, the
enforcement process allows the system to perform only those
access operations which are specified by the authorizers.

At this point, it is useful to have a clear understanding of the temm
"access." In this work the following definition of access is used.

Definition 2: Access includes all operations used for reading,
writing, or modifying data stored in the system,

Definition 1 can be restated as a set of four conditions:
Condition i. Correctness of Authorization Process
All authorizations specified by the authorizers (and only by proper
authorizers) are properly stored in the PSM Protection Database.
Condition 2. Correctness of Enforcement Process

All access decisions made by the PSM are correct with respect to

(1) the access request, (2) the stored authorization information,

and (3) the system state, including data values, at the time of the

decision.
Condition 3. Complete Mediation

All access requests are subject to enforcement (access decision by

the PsM).

Condition 4. Prohibition Against Spurious Data Transmission

No data may move between a user and the database (in either direc-

tion), except as a correct response to an access request.

These conditions are intuitively shown to completely embody Defini-
tion 1 as follows. {The inféfmality of the definition and the condi-
tions ﬁrecludes a formal proof of completeness.) Condition 4 States
that every data access is in response' to an access request. (The

requirement that it be a correct response also eliminates secondary

trickery, such as a "Trojan Horse" in the SRM trying to deceive the PSM
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by sending prohibited data disquised as the response to some other
request.) By condition 3, then, every data access that occurs is sub-
ject to an enforcement decision. Condition 2 implies that every data
access is subject to an access decision that is correct with respect to
the stored authorization information. Finally, by condition 1, every
data access is subject to an access decision that is correct with res-
pect to a proper authorizer's specifications of access privileges, and

this is a restatement of Definition 1.

In this paper correctness of the authorization process and the
enforcement process (conditions 1 and 2) will be asstmed. This could be
shown, given a formal model of authorization and enforcement such as is
found in [HARTH76a]. Conditions 3 and 4 are of interest here, as these
deal with intennodule communication--message content and message
paths--which controls the sequences by whiéh modules invoke each other's

functions.
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5. INVCCATION STRUCTURE AND MESSAGE SECURITY

The problem of message securiﬁy is now approached in two stages.
First, discussion is focused on a simple system that supports only cne
terminal; then the solution obtained is adapted to the general system of
arbitrarily many terminals. In this section the problem of intermodule
communication is abstracted to a discussion of function invocations, to
eliminate implementation details involved in a message system that might
be used to deliver the calls and returns from module to module. A

description of such a message system follows in later sections.

5.1 The Single Terminal Case

The system discussed first is simplified in that it does not sup—
port simultaneous access of several users. Of course, many users can
access the system and share data, but only through the same temminal,
that is, not simultaneously but one after another. Discussing this sim-
plified system first permits treatment of the enforcement mechanism for
access rights independently from the problem of separating simultaneous

processes.

Figure 1 reveals that the system is composed of a sensitive part

(the SRM and its protected data) and a nonsensitive part (the UAM and
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the users), and the focus here is concentrated on the communication of
the nonsensitive part with the sensitive one. The PSM can be interpreted
as the gate to and from the sensitive part; all messages between the two

parts have to pass through the PSM.

The basic pattern of information flow between the UAM/user portion
of the system’and the SRM is reflected in the following program executed
by the PSM. The program is invoked upen a LOGIN request from the UAM and
remains to bhe the monitor‘of all transactions until a LOGOUT request is

received and executed.

PSM P:  PROC; .
ID := USERID; /* USERID is a function that converses with
the user in order to establish her identity.
ID is the internal code for the user and
the basis for all later access decisions. */
IF VALID(ID)
THEN BEGIN ' .
Q := USER REQUEST /* prompts and obtains request
ffom user via the UAM */;
WHILE NOT LOGOUT (Q)
DO IF CHECKL (Q, ID) /* may ID ask for Q7?
(data independnent checking) */
THEN BEGIN
R := SBERVICE Q) /* obtain response

to request Q from SRM,
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Potentially, R is a file
that consists of many
blocks */;
RU := EXTRACT (R, ID} /* extract what
ID may see of R {data
dependent checking and
partial enforcement) */
IF IS_EMPTY(RU)
THEN CALL DENIAL (Q)
ELSE CALL RESPONSE (RU);
END;
ELSE CALL DENIAL(Q);
Q := USER REQUEST;
END;
CALL LOGOUT_RESPONSE;
ELSE CALL LOGIN DENIAL;
RETURN;

END;

The function USERID determines, possibly by a probing conversation,
the user's identity. It may also inform the UAM whether the user has
logged on successfully and, thus, established system cccupancy. The var—

iable ID, local to the PSM, is then used for all later Security checks.
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The function USER REQUEST prompts the user and obtains his next
service request. If this is not a LOGOUT request then it will be checked

{by CHECKl) against the user id to determine whether it is authorized.

Although some of the subprecgrams used in PSM P converse either with
the user (USER_REQUEST, RESPONSE, DENIAL) or with the SRM (SERVICE),
none converses with both; the only information path between the UAM and

the SRM is established by the sequence

Q := USER_REQUEST;
CHECKL (Q, ID);

R := SERVICE (Q);

RU := EXTRACT R, ID);

CALL RESPONSE (RU);

where a security check is performed on both the information Q that

enters the sensitive area and the information R that leaves it.

The security of the system is therefore determined by the proper-
ties of CHECK1 and EXTRACT. The correctness of these is assumed here

(conditions 1 and 2 of section 4).
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5.2 The Multi-Terminal Case

If more than one terminal is attached to the system, there is the
problem of keeping interactions originated by different temminals sepa-
rate. This is partially accomplished by tagging all messages that belong
to the interaction originated by a particular terminal t[i] with the
identification of t[i], say, 1. It may be assumed, for example, that
the UAM contains a polling loop that interrogates, in turn, all termi~
nals, picks up existing messages and tags them with the temminal identi-
fication code. These terminal id's accompany all ccmmuhication messages
exchanged among the different.modules and finally, for output messages,

determine at which terminal the message is to be displayed.

In order to ensure that no confusion arises among the different
processes, simultaneous and pseudo-simultanecus, a mechanism is needed
that uses the temminal id's for controlling the association of messages

and processes.

This mechanism will now be described. It has two important proper-
ties:

a) It is transparent to the programs written for the different modules.
This, for example, makes it possible to use the program PSM P, described
above, for a multiple terminal system without alteration. The advahtage
of maintaining its simplicity and, hence, clarity and verifiablity is

obvious.
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b) The mechanism is the same for all modules. Thus, verified once, its

correctness is quaranteed wherever it is used.

The mechanism consists of a calling sequence (invoked by all func-
tion or subroutine references to programs in other modules), a return
Sequence (invoked by the return statement of a program that was called
.from another module) and a control loop. Each modple>owns a process
table and an input queue, devices needed by the.communication mechanism

but invisible to the other module programs.

The input queue may accomodate the requirements of a priority sche-
duler and need not follow the strict queuing discipline. It must store
tuples used by the calling and returning sequences described below, of
either two or four components. Any‘module of the system may feed a queue
but only the module that owns it may inspect or remove members of the

queuve,

The process table permits a module to file the enviromment of a
program (local variables, return address, etc.) under the terminal id.
The mechanism is now described informally, starting with the calling

sequence.
The Calling Sequence
When a program Fl that executes in module i needs to call a program

FZ2 in module j with the parameter set P—invoked fomally by F2j(P)--the

following events occur {see Figure 2):



(3)

(4}
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INPUT QUEUE OF MODULE j

{3} [T}D‘ parameters, i, FZ]
Fl catling Fe
sequence
nirol i {4)
4
control i
loop ||
d
_ (2}
WORK SPACE
environment of
F1 filed under TID
PROCESS TABLE
MODULE T MODULE j

Figure 2. The calling sequence

The calling sequence is activated, which then

files the enviromment of F1 {including its return address) under

the current terminal id, in the process table of module i,

puts the 4-tuple [terminal id, P, i, F2] onto the input queue of

module 1 (see next section for explanation), and

transfers control to the contol loop (see next section) of module

i.
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The Control Loop-

The control loop of module i (active only 1f no other program is
being executed in module i) removes the 'next' item from its input queue
(it waits if there is none). It then determines whether the item is a
reference from another module to a function in module i or whether it is
the response to a function reference previously issued by module i
itself, now being returned from ancther module. If the item is a func—
tion reference, then it is a 4-tuple (see description of the 'calling

sequence’ above) of the form:
[terminal id, parameter set, source module id, function name].

In this case, the control loop (see Figure 3a) sets up a skeleton envi-
ronment (1) for the program called and = inserts the temminal id and the
source module code into it. It then transfers control {2) to the func-
tion requésted with the parameter set given. The control loop itself

- relinquishes control.

If the item found on the queue is the response to (that is the
return from) a function reference, then the item is the pair (see the
next paragraph on the return sequence):

{terminal id, result set]

In this case, the control loop (see Figure 3b) reinstates the environ—

ment retrieved from the process table under the terminal id (1), depo-
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INPUT QUEUE OF MODULE |
[TID. parameters, i, F]

1
/ control

set up F's 1
environment '_') control

include loop
i, TID, and
puramelers

WORK SPACE

i

PROCESS TABLE
MODULE |

Figure 3a. The control loop (calling)

sits the result set (2) at the place ordinarily used by functions for
returning their results and transfers control (3) to the return address

(also retrieved from the process table).
The Return Sequence

When a function that executes in, say, module j issues a
RETURN (result) statement the following happens (see Figure 4):
(1} The return sequence is activated, which

(2) enters the pair: [terminal id, result set]
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INPUT QUEUE OF MODULE i
[TED, resuii]

]
result | (2) control |
loop

envirgnment

WORK m
SPACE ﬁ(;) o

[ STSp—"

PROCESS TABLE
MODULE i

Figure 3b. The control loocp (returning)

into the queue of the source module i, (recall that the terminal
id and the source module code are part of the function's environ-
ment) and

(3) transfers control to the control loop of module J.

The coding of these three operations is straightforward and the
verification 6f their correctness can 2asily be achieved by axiomatizing
the queuve and process table operations using the technique of algebraic

specifation [GUTTJ78].
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INPUT QUEUE OF MODULE |
[TID R resun]

{2}

F1 F2 _..(_”_.. return
control |sequence

\..-.__....\L‘ confroi\ \‘(3)

3

control}
loop |j

WORK SPACE

PROCESS TABLE
MODULE i ' MOODULE |

Figure 4. The return sequence
Simultaneous Transactions by the Same User

The mechanism described above prevents a transaction from influenc-
ing any other -transaction, provided that the terminal ids are unigue.
This uniqueness, however, may not always be ensured for the following
reasons:

1) The user might enter a new request before the previcus cone has been
fully processed. Thus, if the temminal id consists of only the ter-
minal number, two or more message sequences could build up which
wouid interact causing undesirable results. There are two basic

solutions to this problem:



a)

b)
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The situation would be detected by discovering that the process
table of the mcdule addressed already contains an entry that
indicates a pending process for the given teminal id. (Recall
that a control loop, which picks up all messages, can only be
active if all processes of the corresponding module are domant,
that is, have thelr environments stored in the.process table.)
Immediately, an alternate function could send a message back to
the user asking for patience. This process would not alter the
current state of the process table and, thus, leave the ongoing
process undisturbed.
The second message could be forced to have a different terminal
id by qualifying the terminal id with the addition of a time
stamp. Now, the two requests would be treated independently, in
fact, since the communication mechanism is transparent to the
program that invokes it, such a program has no means of discover-—
ing that more than one message ris currently processed. This
method is not recommended for the following reason. Letting the
user issue new reguests into a ?ending process is meaningful only
if a related sequence of transactions (such as a guestion and
answer interchange) is to be established between the module and
the user. The apparently different tasks would create different
environments preventing the desired coherent discourse. Such a
discourse is, for example, needed for the LOGIN process and it

may also be desired for request cancellations and modificatons.
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The problem could be overcome by giving up some of the tran-

.sparency of the communication process and allowing the higher

level programs to examine the terminal id. However, this gener—

ally is_undesirable because it undermines the simplicity of the
overall scheme in an essential way.

2) The second situation where interference could occur arises if a
more complex processing pattern is needed. Suppose a module A
calls a function executed in module B which, in turn, calls a func-
tion performed by module A. (This could happen rather often.)
Since all processes have the same terminal id the last process des-
troys the enviromment of the previous one. This problem is over-
come, however, by attaching a level number to the terminal id. The
calling sequence inérements the level number before putting the
information packet on the queue of the next module and the return

sequence decrements it.

6. INTERMODULE COMMUNICATION
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6.1 Introduction

The purpose of this paper is to describe logical concepts, not to
provide a blueprint for a physical implementation. Whersas more spe-
cific physical views are required to discuss performance and cost, a
logical view is often most suitable for discussing security. An actual
implementation will translate the logical view into one of several pos-
sible physical manifestations. It is crucial to guarantee that, during
this translation, the loéical characteristics are preserved with regard

to security.

For many readers, however, it is helpful to supplement an abstract
discussion with a concrete example in order to convey a more complete
understanding of the kind of syétem being described. This section pro-
vides an example of an implementation with physically separate {(but not

distributed geographically) processors.

6.2 Procedure Calls as Messages

It has been suggested [LAUEH78, as described by Sturgis in PETEJ79]
that message passing and procedure calling are essentially equivalent
constructs for communication within a single processor system. The dis-

cussion in [PETEJ79] further suggests that this duality between calls
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and messages may not apply aé well to distributed syétans. The apparent
difficulty arises in a pipeline situation (for example) where informa—
tion flow continues in one direction. BHowever, in any implementation, a
response message or réturn to a call is eventually necessary, if only to
acknowledge the request message or call (i.e., a pipeline eventually
flows back to return the resulting data). 'If the messages or calls do
not require an immediate reply, they can ‘be stacked or nested and
replies can be delayed uﬁtii the requested data can be sent back te the
requester. In such a case, the duality appears to stand. In MULTISAFE
procedure calls and returns are conveyed by messages (for requests and
responses), but immediate responses are not required for request mes-—
sages. Further} there can be concurrency between those messages which
are simple acknowledgements and those which contain data (discussed in
sections and ). Typed languages with special facilities for sending
and receiving messages [HUNTJ79] are interesting to consider for the

construction of a system such as MULTISAFE.

There is, of course, a correspondence between the functional
request and response roles of the messages (described later in section )
and the call and return mechanisms of the procedures (described in sec-
tien 5). Bowever,'because the messages and the function calls are dif-
ferent kinds of abstractions, the correspondence is not one—to-one. In
particular, it is useful for the PSM to remain "in charge;" i.e., to
weolicit" requests from the UAM with a USER REQUEST call. Then, no
unSOIicited requests can be autonomously generated by the UAM. (It is

generally the case in most systems, anyway, that the system signifies
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its readiness to receive requests.) The user states his/her request -
(via the UAM) in the return to that call. The relationship between a
request and its response is discussed further in the.section on message

sequences.

6.3 Message Structure

Messages are used tb carry function calls (requests) and returns
(responses) between modules. Recall the form of the function reference
A-tuple:

. [terminal id, parameter set, source module id, function name]
The terminal id, source medule id, and functien name are short, fixed
length identifiers which are grouped together into & header called a
"message descriptor."” The parameter set contains variable Ilength tex-
tual material and comprises the "text" of a message. In cases where the
message 1s conveying large quantities of data, the textual part can be
very long. However, intermodule message channels afe likely to be of
relati&ely low handwidth. For performance reasons, then, it is conven-
ient to send the text separately. In Figure 6 the two different types
of paths, for hessage descriptors and for text, can be noted. A physi-
cal mechanism for safely transmitting text among modules is described in
the next section. It will be assumed thereafter that the text is free
from tampering. Further, no text can be transmitted without a proper

corresponding message descriptor. The composition of the descriptor
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part is described below and the way in which these two parts are tran-
smitted through the system is discussed in the next section. After
that, it is sufficient to consider only the descriptor and how it is

transmitted through the system.
The message descriptor is composed of three parts:

1) a message classification

2) a message identifier (or ID)

3} a message text address

The "message classification” is a numeric code (discussed in sec-
tion ) which identifies, among other things, the source module and func—
tion name of the 4-tuple. The "message ID" contains unchangeable mes-
sage identification markings which associate the message with a specific
terminal id. It can also contain information about user identification,
job name, etc., and even a thne.stamp to indicate when the message was
initiated. The "text address" is the memory address of the message.
text. As an example of a message descriptor and text, congider a Call
DataBase (CDB) message as illustrated in Figure 5. The CDB message des-
criptor contains the classification code of 105 (explained later), the
"message ID" that associates this CDB message with a particular user,

and the text address of (or pointer to) the request tables constructed

in the UAM memory.
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DB Message Descriptor

105 | MESSAGE
st 1 Q)

CDB MESSAGE TEXT (IN UAM MEMCRY)

DATA WHERE TO CRITERTA
ITEMS p HAKE THE FR
10 BE SELECTION SELECTION
SELECTED

Figure 5. Example message descriptor and text for CDB

6.4 Message Paths

Primary Memory Connections

A proposed basic (or minimal) architecture for MULTISAFE is shown
in Figure 6. Although MULTISAFE can be implemented in many ways,
including by virtual processes on a single hardware processot, its
architecture is best described as a multiprocessor configuration com-
posed of three separate processors which are connected to three separate
primary random access memory blocks. This system organization follows
the concepts outlined by Enslow [ENSLP77] for a multiport-memory organi-

zation with private memories. A multiport-memory is a primary memory
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LEGEND
A B
...__...._.0 A CAN READ/WRITE B,
BUT NOT VICE VERSA
—mresmnss  MESSAGE TEXT (DATA) PROTECTION USER
DATASASE DATABASE
- e e MESSAGE DESCRIPTOR

Figure 6. Message paths in MULTISAFE architecture

block with additional switching logic in its interface unit to allow
access by more than one processor. The interface logic contains a pri-
ority arbitrator for resolving concurrent memory accesses. When a pro—
cessor is connected to more than one memory, the ability to access any

one memory block is the same except for priority waits.

A memory block can be made "private” by connecting only certain
processors to it, thereby providing physical separation between, for
example, the user's memory and the PSM and SRM memories. In a virtual
processor implementation, the multiport and private merory features can

be emulated by controlling the way in which address Spaces are shared.
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Efficient Flow of Text

Some implementation aspects are concerned mainly with performance.
To illustrate, consider the flow of retrieved data among the modules.
By expanding the multiport memory Switching logic somewhat, it is possi-
ble to achieve logical transfer of data from one primary memory to
another without having actual physical movement of daﬁa. For example, a
portion of SRM memory can be "lent” to the PSM, logically transferring
its contents in a hardware switched version of the way buffer pointers
are exchanged within operating systems. Logically, the PSM passes
judgement by making an access decision before relaying data from the SRM
to the UAM and éventually to the user. The logical view, then, puts the
PSM in the data path between the SRM and the UAM.  An efficient imple-
mentation might accomplish the transfer directly from the SRM to the UAM
under strict control of the PSM. It is the burden of the implementor to
show conclusively that such a PSM—contrélled switching mechanisn is
equivalent, in tems of security, to the logical view discussed earlier

in this paper.
The PUSH/PULL Mechanism

The fixed format descriptor is sent between modules via an encapsu-
lated data type (involving the 4-tuples, the pairs, and the queues of
section 5.2). Its contents are Set and checked by protected anq veri-
fied procedures which are invoked Parametrically. No user or uger pro-

cess can directly access message descriptors.
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All message text is sent memory-to-memory within the private memory
structure under the control of the PSM ejther by "PUSHing" (the PsM
depositing the text in the UAM's or SRM's memory) or by "PULLing” (the
PSM retrieving the text from the UAM's or SRM's memory). The PUSH/PULL
mechanism is represented by the double-headed arrows in Figure 6 and
protects the PSM memory from any kind (read or write) of access by
either the UAM or SRM. The PUSH/PULL mechanism is implemented within

the hardware switching logic of the private multirort memories.

The relationship between the PUSH/PULL mechanism and access deci-
sion binding times (see [HARTH77]) is important. For example, it might
be possible .that the text of a message from the UAM to the PSM be
altered in the UAM, as the UAM is not completely verified and is also
more open to inputs from other places in the system. However, no such
alteration can occur after it has been PULLed into the PSM, since the
PsM will be‘verifiéd and no other module can modify its memory contéhts.
Thus, delaying access checking until the message is safely in the PSM
ensures that the checked form of the request is the form which is
finally processed by the system, and the door to further tampering is

closed.
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6.5 Processing Steps

IMULTISAFE functions in a multiuser environment. Each processor
tries to remain busy. For the sake of fast response to legal requests,
the basic philosophy is to assume that each incoming requeét is in fact
a legal, authorized request—unless and until it is otherwise deter—
mined. The UAM and the SRM proceed to perform as many user oriented and
DBMS functional operations as possible, independently from the PSM but
without returning any informatidn to the user or modifying the database
in any way until they receive permission to do so from the PSM. The
result is concurrency which is a combination of parallelism and pipelin-

ing. -

It is now useful to trace the Step by step processing of a single
user request through MULTISAFE. The numbers in Parentheses in each step
correspond to those numbers in parentheses in Figure 6. A previous

valid login is assumed to have been accomplished,

1) The user's request enters the UAM by (1) and is placed in
the UAM memory through (2).

2) Next the UAM performs syntax analysis on the user's request
and constructs request tables for the SRM.,

3) When the PSM is ready to process a new -query, it requests
one from the UAM through (3). When step 2 above is com-
pleted, the UAM responds with a notification through
(3)-——which is passed on to the SRM through (7)-—that a
user’s request is ready for precessing. The message which
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starts the SRM is a "CDB" (Call DataBase) call which is
similar to "SIO" (Start I/0) supervisor macro c<all in an
0S. At this point, the UAM enters a wait state (or begins
processing another user's request) for the query results.

4) Next the PSM extracts throuwgh (4) a copy of the request
tables in the UAM memory, and through (8) places these
tabes into the SRM memory. The SRM begins database
accesses.

5) Upon notification of the access request in step 3 above,
the PSM retrieves from its database, through (6), the
appropriate part of = that  user's authorization
information--the security procedures and access conditions
which apply to this request (predicates that determine
access privileges). The PSM processor through (5) begins
the enforcement process as specified by the user's author-
ization information. If a security procedure requires
additional information from the user, such as a password,
then the PSM sends a message through (3) to the UAM. The
UAM interrogates the user and returns his/her response to
the PSM through (3).

©) While the SRM is busy in step 4, the PSM examines the copy
of the request table through (8) and the access conditions
through (5) to determine the need for data-independent
and/or data-dependent checking. First, the PSM performs
the data-independent checks such as attribute name check-
ing. Some of the things that can be checked are user ID,
teminal number, time of day, and other status informa-
tion. Some data definition dependent checking can be done
here, also. For example, for a request in a query lan-
guage like SEQUEL [CHAMD76], the selection and predicate
domains (attributes) can also be checked at this time. If
data items for data-dependent checks are required, the PSM
informs the SmM through (7) that additional data items are
to be retrieved for security checking. A 1list of these
data items is constructed in the SRM memory through (8).

. 7) After the SRM has received notification through {(7) from
the PSM about data items for data-dependent checks, the
SRM initiates the retrieval for these items, if additional
retrieval is necessary.

8) Data retrieved by the SRM is placed in the SRM memory
through (10), and the SRM processor performs any needed
data manipulations on the retrieved data through (9).
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9) When the SRM has prepared a set of data items (record or
block), the PSM is notified through (7). The SRM contin-
ues the retrieval process by collecting the next set of
data items in another buffer area. That is, the SRM pro-
cessing returns to step 8 unless the CIR is satisfied, or
unless the PSM orders the SRM o halt because of an unau-
thorized access attempt.

10) After the SRM has netified the PSM as in step 9 above, the data
is pulled through (8) from the SRM memory and into the PSm
memory. through (5). The PSM examines the data through (5) and
performs the data-dependent checks.

11) If access to the retrieved data is authorized, the PsSM puts the
data into the UAM memory through (4) and notifies the UAM of
this action through (3), At the same time, if this completes
the CDB, the next query is requested from the user. (For unau~
thorized access attempts, the PSM takes control and administers

alarm and/or recovery procedures.) If this does not complete
the CDB, the PSM returns to step 10 to get the next set of data

from the SRM.

12) When the UAM has been notified by the PSM, as in step 11 above,
it returns the results to the user through (1).

From the processing flow given above, two Processing loops can be iden-—
tified. One lcop is in the SM where steps 8, 9, and 10 are repeated
for each set of data (block) that is retriéved for the user. The other
loop is in the PSM where steps 10, 11, and 12 are repeated for each
block of data that is retrieved. These two loops‘are being processed in

parallel with each other.
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6.6 Message Classification

A message is characterized by four attributes. These attributes

are:

1) class
- 2) source

3) target

4} type

Messages are grouped into two classes——request and response.  For
each message there is a source {module), a target (module), and a mes-
sage type. The source is the module which generates the messaée. The
message target is the module which receives the message. The UaM, SRM,
and PSM can each be a source and/or targeﬁ- module (depending on the
other attributes). The user and authorizer have been subsumed into the
UAM, since all messages from the user/authorizer are sent to only the
UAM and all Messages to the user/authorizer are from only the Uam.
(This also eliminates any differences between interactive user initiated
Queries and calls to the database from host programs executing on behalf
of a user.) The message type identifies the function being returned
from or called. Authorization type meésages-are' those messages which
inquire about or modify the authorization information in the psM.
Information type Messages request or return additional information
needed by the PSM to make an access decision. The other types are more
or less self explanatory. The rarge of each attribute is a finite set

of values:

CLASS = {request, response}
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SOURCE = {UAM, PSM, SRM}

{UAM, PSM, SrM}

TARGET

TYPE = {log, access request, authorization, information}

The set of all possible Message Classifications, MC, is given by
the cartesian product of the above four sets:
MC = CLASS x SOURCE x TARGET x TYPE
A specific classification is represented by the four-tuple
(¢, s, £, P)

where ¢ € CLASS, s € SQURCE, t € TARGET, p € TYPE.

The security constraints of the architecture are such that not
every classification in MC is allowable in MULTISAFE. For example, a
database user as a source is not allowed to send a message directly to
the PSM as a target. There is a non—empty proper subset of MC which

will be referred to as the secure message classification (SMC) set.

The four attributes are used to establish a hierarchy of secure
message classifications. At the root of the structure is the collection
of all secure message classifications. The next four levels are used to
represent - the four attributes-—class, Source, target, and
type--respectively. Each terminal node in this structure is assigned a

numer ic code,fcalled an SMC number, denoting the message classification.
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Request Class

The class attribute partitions the set of message classifications,
MC, into two equivalence classes (subtrees). These classes are for
requeéts and responses. The reguest class contains those messages which
are calls for data or information. These messages require a response
from their receiveré. The structure for classifying messages in the
reéuest class is a tree. The terminal nodes of this tree structure

represent four tuples, the meaning for each of which is found in Table

TABLE I

REQUEST MESSAGES

e s

SMC | | i

NO. |Source|Target| Type Meaning
] —t. !

user wants to login (call which

I

i

]

1 ]

PSM | iog [
]

I
101| uaM

l I activates PSM _P)
102 UaM PSM |access |database access request

| ! | (return from USER REQUEST call)
103] uam psM |auth'n lauthorization request

1]
1
i
|
|
!
! l | o (return from USER_REQUEST call)
104| PpsM ] uaM |info ladditional information required for
| % | lenforcement decision (e.g., USERID call)
|
f
|
I

105| PSM SRM  |access |SERVICE call (Call DataBase), pass user
| I | request to SRM
106| PSM SEM | info jadditional information required for

i | enforcement decision

l

I. The first column of the table gives the SMC number which is used in
each message as the "message classification.” The first digit of the

SMC number, which is the digit 1, identifies these messages as belonging
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to the request class. The last two digits are sequence numbers used to

identify each specific request,
Response Class
Those messages in the response class are answers to the messages in

the request class. The structure for classifying messages in the res-

ponse class is a tree. The termminal nodes of this tree represent four-

TABLE II

RESPONSE MESSAGES

SMC | I !

NO.|Source [Target| Type Meanings
. ? 1 ]

|
|
T 3
UAM flogin |login decision (and solicits acc. req.
I
l
l

1
201 psM |

I I | by USER REQUEST call)
202] PSM | UAM |access |returns retrieved data (and solicits

| [ ] next acc. req. by USER REQUEST call)
203| PSM | UAM Jauth'n Jauthorization results or response
2041 UaM | PSM |info | returns additional information

I

| I | (e.g., return to USERID)
205] SRM | PSM |access |return from SERVICE call (CDB)
2061 sRM | PSM |info | returns additional information

tuples, the meaning for each of which is found in Table II. In the
first column of the table is the SMC number which is used in each mes—
sage as the classificatioh code. The first digit of the &MC number,
which is the digit 2, identifies these messages as belonging to the res-
ponse class. The remaining two digits in the SMC number are sequernce

numbers used to identify each specific response.
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The request and response trees are very similar. The main differ-

ence between the two trees is that the target of a given request has
become the source of the Corresponding response and vice versa. Every
path from the root to 3 teminal node in the request tree has a corres—
ponding path in the response tree where the source and target have been
interchanged. This relationship implies that for every request in the
MC éet there is a response in the SMC set. The last two digits of a
response SMC number match those of the corresponding request SMC number.
(This is not a security requirement, but a useful mnemcnic device.)
Notice also that the PSM is either the target or the source of every

message, a necessary condition for all messages to go through the PSM.

6.7 Message Sequences

A message sequence is an ordered series of messages (calls and
returns} among the modules of MULTISAFE, in response to a request from a

user or an authorizer.

All message sequences are subject to two kinds of security check-
ing:

1} checking specific to the request

2) system occupancy checking
The specific check for a login request involves user identification ,

project name, etc. possibly augmented by password, authentication dia—
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logues, etc. The specific check for a data request employs data-inde-
pendent and data-dependent access conditions. System occupancy checks
relate to overall permission to be an active user of the system, without
regard to how it is being used. The system occupancy check is always,
at a minimum, made in conjunction with login. For example, the condi-
tions (separate from user identification) for a given system user may be
that occupancy is allowed only between 8:00 a.m. and 5:00 p.m. System
occupancy checking at data request time provides an (optional) addi-

tional binding time for these conditions.

Nesting and Subsegquences

Within a message sequence every request message has a response. A

request and its response form a request/response péir. It is possible
for request/response pairs to be nested within other pairs. For exam-
ple, a user's request to login may contain another pair of messages such
as the request/response for a password before a login response is given.
Even though nesting of message pairs is a key building block used in the
construction of message sequences, not every message sequence is a per-
fect nesting of pairs. That is, message sequences can have non-nested
adjacent pairs. Further, although requests and reponses can always be
.?aired up, in practice several responses may pair up with the same
request. This is because responses containing large amounts of data
must be broken up and sent back a block at a time, each block being part
of the response to the same request. But, logically, the blocks can be
viewed as a single response. (Examples and explanation are given in the

next section.)



PAGE 45

The request/response pairs of a message sequence are illustrated in

a) Login/logout messages

103

b) Authorization messages

¢) Database access messages

Figure 7. Illustration of request/response pairs

Figure 7. The arcs in the figures represent the_messages. The direc-
tion of the arcs illustrate the flow of messages from source to target.
The numbers on each arc correspond to the SMC number as given in Tables
I and II. Request/response pairs are identified by the commonality of

the last two digits of their SMC numbers. The nesting of some pairs is
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illustrated by nested arcs. be example, in Figure 7a the pair (104,
204) is nested within the pair (101, 201). Such a nesting represents a
request to login which requires a request/response for, say, 4a password
before the login response is made. Figure 7c shows an example of
another nesting-—the pair (105, 205) in the pair (102, 202). Such a
nesting within the message sequence (which does not result in nested
arcs) illustrates how the database access request gets passed alorg to

. become a CDB, in the form of a request/response pair (105, 205}).
Examples of Message Sequences

Presented below are some examples that illustrate the flow of mes-
sage sequences through MULTISAFE. Accompanying these examples are fig-
ures that show the message direction, message type, and nesting of mes-
sages. Message direction is depicted by an arrow, each of which is
identified by the message SMC number (see Tables I and II). Message
nesting is depicted by loops. Some of these loops are forméd with a
dashed line that comnects the request message with its correspondiné

response message when other pairs are embedded.
User Initiated Message Sequences
The first example, in Figure 8, illustrates a message sequence for

the login message type. Using the SMC numbers, the order of the mes-

sages in this message sequence is as follows:
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Figure 8. Login message seguence example

101, 104, 204, 104, 204, 201

In this message sequence, representing a login check, the first

nested pair (104,204) is a request and a response for a password. The
first password was incorrect, in this example, and the PSM had to make a

second reqguest for the password. Once the PSM has the correct password,

the login check (which is the initial system occupancy check) is com-
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pleted (at the point on the PSM line between the adjacent 204 and 201

messages) and the user is allowed onto the system.

If the second password had also been incorrect and the user was not
allowed on the system, the message seguence in Figure 8 would not have
changed. Only the message text for response 201 and the user status in
the PSM would be changed. (The number of times a user can attempt to
enter the correct password is within the pelicies of the authorizer and

is not limited by MULTISAFE.)

Figure 9 illustrates the message sequence for query processing in
which several blocks of data are retrieved and passed to the user. The
message sequence begins with the UAM response to the PSM's USER_REQUEST
call with a 102 message, asking for database access. The PSM copies the
102 text from the UAM's memory to its memory. At this point in time the
binding of the database access request takes place (i.e., the access
request text can no longer be modified by the user). Next, the PSM per-
forms data independent security checking. This is done by the CHECKL
function in PSM P. For this user request, it was nedessary to reauthen-
ticate the user's identity, using the (104, 204) messages. After clear-
ing CHECKl, the PSM calls the SERVICE function, initiating the 105 mes-
sage. The SRM retrieves the blocks of data from the database and
returns them to the PSM for data-dependent checkiﬁg (205). For this
particular query the PSM needs additional information from the database
before data~dependent checking is completed by the EXTRACT function.

The message pair (106, 206) furnishes the PSM with the needed data. The



PAGE 49

UAM PSM SRM

CHECK1

" o
©
Q
g [=
%
“
&
b ‘{lv"
= 2
=
h —1'\'C
[=]
3
[ad
"
[+]
el

" cai; d105

atabeSe
SERVILE

202 i ock®
2
~ Teur® ¢

HEEd
addf >

en gd i3 fot:ond?
EXTRACT Crcemgn,

0%
2 “iond)
n addd
dat3

N retut

q\,\e \‘Y
4%?

Figure 9. Query processing message sedquence example

PSM completes its security checking and passes these blocks of data

(202) to the UAM.

Sometimes blocks of data are not authorized. This can result in
only certain blocks of data being passed on to the UAM and the user. In

such a situvation, given a partial enforcement policy [HARTH77], the
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EXTRACT function deletes theée unauthorized blocks and the unauthorized

data ventires no further than the PSM.

If the volume of data retrieved from the database is large, multi-
Ple 205 messages may occur. Instead of waiting for all the data, SER-
VICE may return some of these blocks so that the EXTRACT function can be

processing them while the SERVICE is retrieving more blocks.

It is possible for data access attempts to be denied by the system
occupancy check. As an example of how the system occupancy check denies
a data access, consider the case mentioned earlier in which the user is
allowed to occupy the system only between 8:00 a.m. and 5:00 p.m. A
potential penetrator logs in just before 5:00 p.m. in hopes of returning
later, when the office is empty, to print a hard copy of an "eyes-only"
file——an action which could readily be detected by co-workers during
normal working hours. In this example, the plan could be defeated by
the system occupancy check which can re-bind the login condition (just
before the 105, 106, or 202‘on the PSM line in Figure 9) at each

request,
Authorizer Initiated Message Sequences
An authorizer is a user who 1is authorized to grant and revoke pri-

vileges for access to some of the system resources. Authorizers also

set the conditions under which these accesses can take place.
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Illustrated in Figure 10 is a message sequence for processing a

request to display some authorization information (stored in the DPSM

UAM PSM

CHECK1

SERVICE & EXTRACT

03
nse
Thorization respo
au

-

Figure 10. Authorization message segquence example

database as a result of previous authorizatiops). The UAM makes a
request to the PSM (103) for the authorization information to be dis—
played.  In the process of evaluating and checking the request, the PSM
needs (in this example) sgome authentication information from the author— :
izer to verify his/her identity, thus the (104, 204) sequence. The
authentication process is completed, along with any system occupancy
checks, between the adjacent 204 and 203 messages on the PSM line.
(Notice that the SERVICE and EXTRACT functions are used as in the case
of database access; the main difference is thaé the PSM database is

accessed instead of the SRM database.) If the enforcement procedure
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governing the authorizer's actions determines that the authorizer has
the right to see the requested information, then the authorizer's dis-
play request is honored through the 203 message. Otherwise, the author-
izer's display request 1is ignored and he is notified via the 203 mes-

sage.

A message sequence for changing authorizations follows a pattern

similar to that for the display.

7. FUTURE WORK

On-going and future work includes extensions, in several direc-
tions, of the work described in this papef. For example, an analysis of
cost and performance is being undertaken. Simulation is being used to
study both feasibility and performance. Petri nets are being appiied to
model the asynchronous concurrent processes and are being considered as

a means to verify certain aspects of message security.
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