STRUCTURAL DESCRIPTIONS AND INEXACT MATCHING
by

Linda G. Shapiro
Robert M. Haralick
Department of Conmputer Science
Virginia Polytechnic Institute
and State University
Blacksburg, V& 24061

Technical Report #C579011-%

Novémber 1979

This research was supported by the National Science
Foundation under grants MC3-7923827 and MCS~7919741.

ABSTRACT

In this paper we formally define the structural description
of an object and the concepts of exact and inexact matching of
two strucfurai descriptiohs- We discuss the p;oblems associated
with a brute-force backtracking tree search for inexact matching
and develop several different algorithms to make the tree search
more efficient. We develop the formula for the expected number
of nodes in the tree for backtracking alone and with a forward
checking algorithnm, Finally we present expefimental results
verifying the theory and showing that forward'checking is the

most efficient of the algorithms tested.

Key Words: structural description, matching, inexact matching,
relational homorphism, tree search, backtracking, forward

checking, lookahead, relaxation.

I Introduction

A structural. description of an object consists of the
descriptions of its parts an& their interrelaticnships. For
example, a simple chair is made up of six parts: a back, a seat,
and four legs. ‘The back, seat, and legs can sometlles be
descrlbed as rectangular parallelepipeds with varicus constraints
on their lengths, HldthS, and depths., The interrelationships
between the parts specify how they fit together. For instance
the top of tﬁe seat and the frdnt of the back may be at right

angles to each other.

The parts of an object can be primitive (nonde¢0mposablé) or
they may be further brokén down into subparts. ¥hen the parté of
an obﬁect are not primitives, the structural description of the
object consiéts of one level of descriptions for each 1level of
Subparts. Such a multi-~level description is called a hierarchic
description ang is useful for . complex objects . with many

repetitions of parts and subparts.

In this paper we will be conceraed.onlyr with'single—level
-structural deécriptions cbnsisting'of a sef of primitive parts
and their interrelationships. ¥e will formally define the
structurél_dgsériptiqn of an object and the concept of a match
between two structural descriptioné. We will extend the cohcept

of a match to an inexact ratch and describe and compare several

2
algorithms for inexact matching using a tree search with
backtracking'alone, with an operation called forward checking,
and with an operation called looking ahead. All the ideas in
this paper can be further extended to multi-level deécriptions
using hierarchic structures (Shapiro and Ha:alick, 1979 [14]) and

hierarchic relaxation {Dévis [3), Zucker [18]).

II Structural Descriptions amd Exact Hatching

A structural description D of an object is a pair D = {P,R).

P = (Pl,...,Pn} is a set of primitives, one for each of the n
primitive parts of the object. Each primitive Pi is a binary
relation Pi c A x V .where A 1is a set of possible attrihufes
and V is a set of possible gggggg. R = [PR1,ve.,PRK} is set of

named N-ary relations over P. For each kK = 1,..+,K, PRk is a

pair (NRk,Rk) where NRk is a name for relatiom Rk, and for some
positive integer Mk, RK ¢ P**¥MK. Thus the set P represents the’
parts of an object, and the set R represents the

interrelationships among the parts.

One way that structural descriptions are used is to define
prototype objects, {See Barrow, Ambler, and Burstall [2] and
Haralick and Kartus {[5%) The structural descriptions of

prototype objects are called stored models and are used as part

of the knowledge base of a recognition systen. Such a systenm

-3
‘inputs candidate objects, computes their structural descriptiqns
and tries to identify each candidate with a stored model. Thus
instead of asking Qhether two structural descriptions match each
other, ve will only ask whether a candidate structaral
description matches a prototype structural description. This
one-way matching will be defined in terms of exact métching in

this section and in terms of inexact matching in Section IITI.

Note that the dictionary definition of the .verb "match® is
"to ¢ofrespond; to be of corresponding size, shépé, color,
pattern, etc" [1j. When we speak of two objects matching, we
often assume that matchinq is a symmetric process; A matches B if
and only if B matches A. The wmatching defined in this paper is
ggg‘necessatily a symmetric.process. The next few paragraphs
describe some figures illustrating what kinds of matching_are-not

necessarily symmetric and which kind is symmetric.

Ih exact ﬁatching, a candidate primitive C€j patches a
prototype primitive Pi if the binary'relation Pi is a subset of
the binary relation Cia Thus, evéry attribute—value pair {(a,v)
in the primitive Pi is also an element of the'primitive Ci. To
define the matching of a cahdidaﬁe relation fo a prototyée
relation, wve aéed the conéépt of composing a rélation with a

mapping and the concept of a relational homomorphisnm.

4
Let R ¢ P**N be an N-ary relation over a set P and h
be a function h:P-->Q mapping elements of P into a set Q.
We define the copposition R°h of R with h by
R®h = {(g@1,.--,90) € 0 | there exists

(P1yee-,pR) € R with h{pi) = qi, i=1,ee.,N}

Figure 1 illustrates the compositionr of a binary relation with a

mapping.

Let S QVQ**N be a second N-ary relation. A4 relational
homomorphiss from R to S is a mapping h:P-->Q that satisfies
R%h ¢ S. That is, when a Trelational homomorphism is appiied to
each component qf an N-tuple of R, the result is an H*tuple of s.

Fidure 2 illustrates the concept of a relational homomophism.

A relationai homomorphism maps the primitiﬁes of P to a
subset of the primitives. of Q havinq' all the sanme
interrelationships that the original primitives of P had. If P
is a much smaller set than ¢, then finding a one~one relational
homomorphism is equivalent to finding a copy of a small object as
part of a larger object. Finding a chair in an office scene is
an example of such a task. If P and Q are about the same size,

then finding a relational homomorphism is egquivalent ¢to

determining that the two obijects are similar. A relational

ponomorphism is a relational homomorphism that is one-omne. Such

R
h: 1 » A
2+ B
3+ C
4 -+ p
5 = D

Figure 1 illustrates the composition of
binary relation R with mapping h.

Reh

h: 1 -+ A
2+ B

3> C
4 -+ D
5> B

Roh € 5

Figure 2 illustrates a relational homomorphism
n from binary relation R to binary
relation S.

.

a function maps each primitive in p to a unique primitive in Q.
| A monomorphism indicates a stronger match than a homomorphisn.
Figure 3 illustrates a relational monomorphisn, Finally, a

rela;;gnal-;somogggigg h from an N-ary relation R to an N-ary

‘relation S is a ocne-one relational homomorphism from R to S and
h#%(~1) is a relational bomomorphism from S to R.. In this case P.
and Q have the same number of elements, each Primitive in P maps
to a uynique primitive in Qs and every primitive in ¢ is rapped to
by sone primitivel of P. Also, every tuple in R has a
corresponding tuple in S, and vice versa. An isomorphisn is phe
strongest kind of matéh: a symmetfic matcha. Figure 4
illustrates a relational isomorphisnm, and Figure 5 shows the
difference hetween.a relational .isomorphism and a relational

nonomorphism that is onto.

In this paper, we will only require relational homomorphisams
for matchiﬁg,l_but fhe reader shéuld realize thai‘algorithms'for
the ronororphism and isomorphism are essentially idéntical to the
homomorphism. algorithms. The onlf difference 1is that the
incorporation of the stronger constﬁaints ¥ill tend to make the

algorithms execute quicker.

Now we are ready to define the meaning of an exact match
from one strﬁctural.description to another, Firét, there nrust be
a function h which giées the correspondence fronm the primitives
of the first description to the pfimitives of the second

description. Second, h must be a relational homomorphism from

P~ e k=
R IR
HOOE

Roh & S; h is one-one

Figure 3 illustrates a relational monomorphism
h from binary relation R to binary
relation S. There 1s a copy of R in S.

(S SO
b4
g Qs

Roh = S and h is 1-1

or equivalently,

Roh £ 8, S_cah_1 E.R, and h is 1-1

Figure 4 illustrates arrelationai isomorphism h from
-binary relation R to binary relation S.

o po
N T A A
T oW

Reh € S, h is 1-1, and h is onto

Figure 5 illustrates a relational monomorphism from
binary relation R onto binary relation S.
This mapping h,is not a relational isomor-
phism sirce h = is not a relational monomor-
phism from S to R,

6
each relation of the first description to the relation with the
Same name of the second description. Hore Precisely, 1let bp =

{P,R}) be a pPrototype structural description and pe = {Q,S) be a

It

candidate Structural . description. Let P = {P1,...,Pn}, 0
{Qz,..,,gm}, R = {{Nm,as),...,(nak,axn, and s =
{{NS!,SJ),;..,{NSk,Sk)}. He say that pc matches Dp if the;e is

4 mapping h 2 p =-> Q satisfying

1) ‘h{Pi) = 04 implies Pi

tcy

Q3j, and

2) NRi = Nsj implies Rioh <€ Si.

That is, if a relation Ri in Dp has the same nane as a relation
53 in bpe, then h, which makes the correspondence from the
Primitives of the prototype to the primitives of the candldate,

must he a relational homomorophism from Ri to S1.

For example, consider the prototype object and candidate
object shown in Figore 6, .Given below are a struotural'
description Dp for the Prototype object and a structural
description bpc for the candidate object., The parts of the
prototype are the priﬁitives P1, P2, P3, P4, . and P5, = and the
parts of the candidate are tﬁe brimitives c1, C2, c3, CQ; and
C5. The primitives ﬁave possible'attribﬁtes {shape color} and
90551ble values {rectangular, triangqular, c1rcu1ar} for shape ana
{hlack, white} for color. Note that more attributes have been

neasured for the candidate object than for the prototype object.

Pl p3 l

Prototype Object Candidate Object

Figure- 6 1llustrates a prototype object and a candldate
object, both made up of primitive parts.

7
This ié hecapée at fhe time of measurement, it is not clear what
Prototype the candidate wiil match, and the attributes required
for several differént prototjpes may have to bhe measured. The
relations named Lefi are sets of pairs of the form (x,y) where «x
is adjacent to angd directly_left of f. The relations named Above
are sets_éf pairs of the fornm (x,¥) where x isg adjacent to and

directly above Ve

Prototype Description Dp

Dp = {P,RP}

P = {P1,P2,P3,P4,P5}

RP = {{Left,Left_P},
{Aboée,hbove_P)}'

Left_P = {(P1,P4), (P4,P3)}

Above_P = {(P2,P4), (P4,P5)}

P1

]

_{(shape, rectangulary,

‘{color,vhite)}
P2 = {{shape,triangular)}

P3 {{shape,rectangular)}

P4 = {(shape,circular)}
P5 = {{color,hlack}}

Thke candidate description

description Dp via the mapping h:P-->C given by h{Pi} = ci, i

Candidate Description Pc

Dc = [C,RC}

¢ = {€1,c2,C3,C4,C5}

RC = [{Left,Left_C),}
{Above,Above_C)}

Left_C = {{C1,C4),{C4,C3}

Above C = {{C2,CH4),(C4,C5)}

1

{{shape, rectangular),

{color,white)}

c2 = {{shape,triangqlar),l
{color,white)}
C3 = {{shape,rectangular},

{color,black)}
C4 = {{shape,circular)}

CH = {(shapg, triangular),

(colof,black)}

De matches the prototype

| -9
= 1,...,5.- Note that the conditions of a match .are satisfied
even though C5 has a different shape than P5, and €3 has a
differeﬁt cﬁlor than P3. This is because the protctype primitive
PS5 only'specifies.a colbr attribute, and the prototype primitive
P3 only specifies a shape attribute. Note alsg that Left;P ¢ h =
Left_C and Ahove_P.°'h = Above_C, instead of just satisfying the.
subset condition. In this case, the candidate is a homomorphic

image of the prototype.

I11I Weighted -Prototype Structural Descriptions and Inexact

Matching

In a.world vhere fhere is no observation ﬂoise and no tandOm
_alferations of the entities for‘any enti@y'class, exacf ﬁatching.
of étructural descriptiosns is an ap?ropriate procednre.
Unfor tunately in the real world, random structural alterations of
entitiés .occur_ if for no other reason than the fact that
thervationror measurement of structural relationships has some
associated randonm noise component. Thus, | ¥e cannot expect two
entities of the same class to have exactly matching structural

descriptions.

This naturally leads to the concept of inexact nmatching.
Here we seek matches which are not necessarily peérfect, only good

'enouqh.. The model which is behind the inexact matching assumes

10
that the ideal structural description for an entity is randomly
altered. Associated with each possible altered structural
description'is a probability that such a structdral description
will result from the random alteration process., we exéect'that
structural descrptions in which there afe only a fev alteratioms
will have higher probabiiity of bccuring than those with many
aiterations. We might also know tﬁat certain structural

alterations are less likely to happen than others.

As soon as we admii that the inexactness occurs because of
random alteration, ve must becone sensitive to the fact that the
inexact matches ve might find might be entirely due to a chance
- match with an altered structural description for an entity of an
- entirely different entity c¢lass. This kind of event is much more

likely to happen with inexact matching than with exact matching.

One way of bhandling this situation is +to cémpute our
confidence in the inexact match, where confidence is measured not
on the basis bf the inexactness of the nmatch, but by the
liklihood ratio wvhose numerator is the probability that the
alteration determined by thé inexact match would cccur for the
structural déscription of an entity din the class and whose
dencﬁinator is the probability that the computed iﬁexact match
would arise from just a chance inexact match to a completely
random structural description. Thus the probadbility model
naturally sets up the information required to measure our

confidence in the inexact match.

11

¥e leave +he detailed discussion of the associated
éroﬁdbility models to another paper. In this papeﬁ we
concentrate on giving a precise meaning to +he inexactness of an
ipexact match, keeping in the back of our minds that associated
with every valuoe of inexactness will bé tWo probabilities: the
probability tﬁat the 'cdmputed jnexactness arises -~ from an
alteration of the structural ‘description for an entity in the
given entity class and thé probability that jt arises from

jnexactly matcking a random structural description.

In inexact matching, the parts of the candidate object may
not be exactly the same as the parts of the protetypé object--in
fact some of them may be badly distorted or missing altogether.

similarly, some oOf the interrelationéhips_ present in the

prototype nmay not hold in the candidate. . The prdblem of

distorted parts has been addresSed by Tsai_and ~Fu [15]. Since
our main concern in +his paper is with telétionShips, we will
handle the part matching probler with a simnple distance measure.
Tﬁat ig, = for each attribute a, there is a thfeshold . ta -py
which the vﬁlne_ of a in a candidate primitive ~can differ from
+he value of a in the corresponding prototype primitive. Thus
a candidate primitive €} inexactly .mat;heg a protOtype'primitive
pi if for every pair (a,v) in the prototype primitive Pi, there
is a pair {a,v') in the candidate primitive Cj with | v-v? | £

ta.

12

In handling missing parts and missing relationships, we want

to take into account the fact that some parts.are more important
than others and sonme relationships- are more important than
others. We represent this fact by assigning a weight to each
part and each N-tuple in the nmodel. fhis extends our definition

of the prototype as follows.

A weighted ~Prototype structural description D is a
4~tuple D = {P,vp,R,¥R) vhere P = ({P1,...,Pn} is a set of

primitives as before, and wp is a primitive-weighting function,

wpiP-->[0,1] that assigns a weight to each primitive in P and

- satisfies ¥p(Pi) = 1. R = {(NR1,R1),...,{NRK,RK)} is again
i

a set of named N-ary relations over P. H®R = f¥l,00a,%K} is a set

of N-tuple-weighting functions. ~ For each k= Toeeas K, =Wk

assigns weiqghts to the Mk-tuples of relation Rk. Thus each wk is
a function wk:Rk—~>[0,1] satisfying | |
wk{r) = la

r € Rk
Example

Suppose that the prototype object in . Figqure 2 can be
recognized without the part labeled P2, although the Fresence of
P2 does aid in the recognition of the object. In this case, we
can assign a lower weight to P2 than the rest of the primitives
and a lower wveight to the N-tuples containing P2 than the rest of
the N-tuples. Ignoring the primitives (which remain the same) we

obtain the following-weighted prototype structural description.

13

Weighted Prototype Descriptiom Dp

pp = (P, wp, RP, WRP}
p» = {pP1, P2, P3, P4, P5}
-wp = {{P1,.23), {p2,.08), (P3,.23), (P4,.23), {P5,-23)}

RP

]

{{Left,Left_P), {(Above,Above_P}}

WRP = {¥1, w2}

Left_P = {{P1,P4),(P4,P3)}

wt = {({P1,P8),.5) ((P4,P3,.5))}

Above_P = [{P2,P4), (Pi4,P5)}

w2 =.{((P2,Pu),.08},'{(PQ,PS),.QZ)}
g;ﬁomomofghism§

Since the érototype relations - are now weighted, the
relational homomorphisms must_take ‘these weights into éccounf.
suppose R is an N-ary relation over a set P , wiR-=->{0,1] is
a weighting function for R, and S is an N-ary relation over set
0 .- Let h be a mapping h:P-->Q from set- P to set Q; AnVN-

typle r of R is satisfied by h with respect to S if h{r)

is an element of S. An E*hosomorghisg from R to S with respect

to w is a mapping h:P-->Q such that:

' 14
E wir) <« €
r € B_

hir) € S

That is, the sum of the weights on those N~tuples that are not
satisfied by & with reSpect to S 1is less than the thtesbold.

€.

The inexact matching problem may now be stated as follows.
Let Dp be a weighted prototype sfructural description, and let

Dc be a candidate structual description. Suppose bp =

{P,wp,RP, WRP) wvhere p = fPlseceePn}, RP =

{(NR1,R1} ,uu., (NRK,BK)}, and WRP = {Wl,...,wk}. Suppose Dc = (C,
RC) where C = {C1,...,Cm} and RC = {(NS1,51),..., {NSK,SK)}. Let
A be the set of attributes in P and C, and 1let ¥V be the set

of values for the attributes. Then Bc inexactly mpatches Dp

with respect to the attribute-value thresholds T = {ta i a € A};
the missing parts threshold tm, and the relatibn thresholds E =
{€1] PRi € BP} if there 1is a mapping h:P~->C U {null} that

satisfies

1) If h{Pi) = Cj € C, then Cj inexactly matches Pi with respect

to T.

2) E_ wp{Pi} < tn.

P € P

h{Pi} = pull

15
3) If NRi = NSi, theﬁ h is anm ei-homomotphism with respect to wi

from Ri to 5.

Example

Suppose part C2 is missing from the candidate‘object of
Figure-é. Then {omitting the Primitives) +the candidate obdject

can be described by the following structural description.

De = {C,RC}
C = gc1,c3,cu,c55 ‘ | ,
BC = ((Left,Left_C), (Above,Above C)} |

Left_C = {(CI,CQ),(CQ,C3)}

Above_C = ((C4,C5)}

Define hzp --> ¢ gy (null} by

[

h{Pi) Ci, i = 1,3,4,5,

h{pP2) null

Then h{?i) matches Pi for i = 1,3,4,5,

E_ WB(P) = wp{(P2) = .08, E v1(r)=0,

P€p . T € Left_p

h{p) = null h(r) ¢ Left_cC

16
and E w2{r) = .08 . Thus h is a .08 homombrphism'from
r € Above_P

h{r) ﬁ Above_P
Dp to Dc.

In searching for a match between a protdtype object and a
candidate object, " we are looking for a wmapping £from the
primitives—of the prototype-té the primitives of the candidate.
The mapping mnust satisfy 1) that each candidate primitive
inexactly matches its corresponding prototyfe primitivé according
to a threshold associated with the prototype primitive; 2) that
the sum of the weights of - those prototype primitives that do not
rap to a candidate.primitive nust not exceed another threshold,
and 3) that it is an €-homomorphism from each prototype relation
to a candidate relation, where the threshold € is associated with

the prototype relation.

One idea that we have not mentioned is the concept of a best
mBatch. A best métch is a mapping that somehow minimizes the
error incurred. Since for n primitives and k relations in a
structural -description, there are ntk+1 error measurements
involved in an inexact match;‘ the defimition of a best match is
not immediately'ohvious. A mapping might incur n errors on one
relation and satisfy no N-tuples of a second relation. or, it
might do well in primitive matching and relation matching, but

only involve ten percent of the prototype primitives.

17

Tbe definitioﬁ of a best match depends on the priorities
reqnired for the matching task to bhe perfornmed. 'For that reason,
¥e will not attemét to define a best nmatch in this paper.
However, the reader should note that once the concept of a best
match has been defined,'_there are standard ways of nodifying the
tree search described in Section IV so that the' best match will

he found.

1V Matching Structural Descriptions

The relational.homomorphism problem (for 0-hdmomorphisms or,
exact matches) | has been shown to be a special case of ‘a more
general problem called the consistent labeling broblem (Haralick
and Shapiro, 1979 [8]). ‘The consistent labeling problem is

defined as féllows-

Let U be a set of objects called unjts and L be a set of

objedtS' called labels. Let T ¢ U#%§ be a unit constraint

relation. That is; if an N-tuple {ul,...,uN) is an element of T,
thén'the'lahel of one unit ui in the N~-tuple is constrainead by

the labels of the other units in the N—tuple. Let R ¢ {U X L)*=y

be a anit-labe1.¢oa§§raint gglatiog. That is, if an N-tuple
{(ul,11),...,(a¥,1¥)) [written as (1,11,...,u8,18)] is an

element of R, then unit u1 may have label 11, unit u? may have
label “12, . . . ', and unit ux ‘may have label 1N, all

simultaneously. The consistent labeling problem is to find a

18
papping £ : U --> L satisfying that if (ul,...,uN) is in 7, then

(ul,f(ut),-.c,uN,f{uN)) is in R. The #4-tuple {U,L,T,R) is called

e L S i e s S .

The relatioﬁél homomorphism problem fits into this model as
folldws._u ‘Let Bp ¢ P**N be a relation that is part of the
prototype and Bc ¢ C**N be the corresponding relation in the
. candidate, 1f we take U = P, L =C, T = Rp, and R = Rp X ac,
then f is a relational hombmorphisﬁ from "Rp to Rc if and only if
f is a consistent labeling with respect to the compatibility
model (U,L,T,R). This'was.proved in Haralick and_sbapiro, 1979

[8].

. The .genéfal consistent labeling probiem and thus the
relational homomorphism problem can be solved by a tree search
incorporatinq.a look-ahead, forward checking, and/or relaxation
operator. In this section, we make the extension to E-consistént
1abeiings and define some look-ahead operators to aid in the
problem oi finding then. The problem of finding e-hdmdmorphisms

will then be solved by finding €-consistent labelings.

Lookahead for Lpexact Matching

Let (U,L,T,R) be a compatibility model. We will assume that

if an N-tuple (1,.--,uN) is an element of T, theh T does not

19
contain anj'permhtations of {ul,...,uN). Also we expect no two

components of any N-tuple in T to have the sape ?alue.
Let Ew 1 T X L%%§ —-> [0,1) be a non-negative function.
Eu{u?,a,.,uN,11,-..,lN) is the error that ocecurs when the N-tuple

(11;...;1N) of labels is applied to units (u?,..¢;uN),

The inexact consistent labeling problem is to find all

mappings h : U --> L so that the sum of the errors incurred by h
on all N-tuples of units that constrain one another is less than

a given €0. That is, we must fing all h satisfying

Ew(ulpeco,uN,h(ul) ,au., hiaN)) < €0

(2l,...,uN) €T

Note that when Ew(na,;..,uu,11,.,,,1u) is éefinea " to be
wi{ul,...,uf} when ({u1 ,ll),...;(uN,lN)) is not an element of R
and 0 otherwise (where W is the weighting function discussed‘in
_ Seciion I11), then the inexact con31stent labellng problem is

equlvalent to the problenm of flndlng e homomorphlsms.

The labeling problem 1s comb;natorxal in nature and can be
solved by a brute force backtracking tree search as shdwn.in the
program of Figure 7. As discussed by Mackworth [101, the

backtracklng strategy suffers from thrashing behavior. That is,

20
the search fails at several different places in the tree, all for
the same reason. = If the reason_ for failure could be remembered
or. anticipated, then the tree search could be made more

efficient.

Simplified Backtracking Tree Search

CONTROL := forward; _
while CONTROL = forward or some units have been assigned labels

if all units have a label then CONTROL := back;
if CONTROL = back then back up one level;

U := next unit to try;

CONTROL := back; ' ' ‘

while there are labels to try for unit U do

L := next label for U;
PERR := error of partial labeling so far;
BERR := BACKER{U,L,partial labeling);
~if PERR # BERR £ € then
begin :
CONTROL := forward; '
add {U,L) to the partial labeling;- _
if all units have labels then print the
labeling; _
move forward one 1eve1‘
exit

end

procedure BACKER({U,L,f);
BACKER 2= 0;
for each past unit UP do
begin ' . A _
if (U,L,U0P,f{UP)) is in the unit~label constraint relation
then ERR 1= 0
else ERR := WEIGHT(U,UP);
BACKER 3= BACKER + ERR
end '
end BACKER

Figure 7 illustrates a brute force
backtracking tree searche.

21

- To understand this thrashing behavior better, consider why
the tree search could fail vithout oﬁr expéctiﬂq it to fail. He
right not expect it to fail because of our shortsightedness:: Ve
have faken into account the error incurred against all past units
{(those units which have already been assigned labels) but have
hot tdken' into account the minimum error that the current
labeling must incur against future units or the wminimum error

that future units have with future units,

To take these errors into account We must divide T into
various pieces based ﬁpon the set Up of past units which have
been assigned 1labels and the set Uf of future units which have
not been assignéd'labels.- T intersect TUp**N is the set of all
N-tupies composed of anits which have glready " bheen assigned

labels and which, therefore, have an exact error of

Ew(ul, -0, u,k{al) reme,h(uNy).

(u1,..;,uN) € T intersect Up**N

T interséct Uf*xy is the set of all K-tuples composed of
units which have not already been assigned 1abeis, ' Heﬁce, the
partial labeling h which is oniy defined over Up cannot influence.
or fbrce any errors in T intersect DEfx#N, Ve may_téke the
smallest possible future error due to N—tupleércf units in T
intersect Uf**N as zero, or if we like a better lcwer bound, we

can use

22
min Ew{uly...,uN,11,...,1N).
(11440, 1N)

{ul,ae.,uN} € T intersect Uf**j

T has N~tuples other than those in T intersect Upﬁ*ﬂ and T
intersect Uf**N. For example, there are those N-tuples having
{N-1) units from Up and one unit from Uf. This subset of T will
have aﬁ associated minimum error that strongly depends on the
partial labeling h. ¥e can give an expiicit expression for this

minimum error if we define the subset T(n,i:Up) cf-T.hy
T{u,i;0p) = {(ul,.e.,uN) € T | ui = uw and n # i implies un € Up}

: N
Obviously, kd} kg) T(u,i?ﬂp) is the set of a11 ﬁ-tugles ia T
n€vE i=1
- having {n-1) conmponents being units in Up and one com?onent being
some future unit in Uf. Also notice that since no two components
of an N-tuple in T can have the same value, T{u,i;0p) inte:sect
T{u,j:Up) is the empty set when i 7 j. Hence for a given future

unit u and label 1, the quantity

epf{u,1;Up,h) =

..

¥{dlgace 0 {i-1,u,0 (it ,eaa,uN, h{ul), e, h{ufi-1}),

1,h{u{i+1),-=.,h{uy))

i=1 (Ulya..,uN) € T(u,i;0p)

23
is the error that the current labeling h on .past upits in Up.
Causes on future uanit .u with label 1. Should this error be -
greatei than the error budget for future units, label 1 can be

excluded from farther consideration.

The smallest error that future unit u can incur given h is
minp epf{u,lﬁUp,h).' The smallest error that the future units

1€1 _
individually incur given the partial labeling h is

min epf(u,l;Up,h).
l1€rL
neuf
Should this error exceed the error bndget for future unlts, then

the tree search pust either +ry the next label on the current

unit or backtrack.

There are yet. other subsets of N- tuples in T whlch we have
not accounted for and for which the labeling h forces some error.
The next one we might consider is that set of N~tup1es from T
having {N;2) of its components being units in Up and two of-its
cbmponénts being units in Uf. To 'help Us give an explicit
expression for this error, we define.the-subset T{u,i,v,js;Up) of

T by

24
T{u,i,v,3:0p) = {{ul,sece,uN) € T { ui=u, uj=v, an&

n # i,j implies un € Up}

Then k_) k‘) kh) k,) T{u,i,v,j:Up) is precisely the set of

u € 0f v € Uf i=1 =1
v >
all N-tuples in T having {(N=-2) components being in Up and two
components being in Uf.r These sets are all mutually exclusive
when u # v. Hence, for'a given pair of future unit-label pairs

(2,1} and {v,m) the guantity

N N
: : : : z :Ew(u1,...,u,...,v.,...,uu,h(u‘n,..,,1,...,m,...,h(u1~z))

i=1 j=1 {(lyee-,uN) € T{u,i,v,3:Up)

is the error that the current labeling h on Up causes on the
future unit-label pairs {(u,l) and {v,m). One lower bound of the

error that future units {a pair at a time) incur on each other is

E min min eff{u,l v,m:0p,h)
1€L nEL _
u € gf v uf

v u
Also the m@minimal total error any .particular future unit-
label pair {u 1) incurs against the other future units can be

obtained as

25

E min eff{(u,l,v,n;Up,h)-
n€L .

vEUf
v¥u
From this we obtain another lower bound of the error that future

apits {a pair at a time) incur on onre another as

nin min eff(u,1,v,m;Up,h).
1€l neL

uf

u

07 PVY

u € Uf v E
v 7
Each of thése error bounds, 'as discussed in the next subsection,'
cap be used in the confext_ of the sténdard backﬁracking tree
search to make it smarter by precomputing, rememherihg, or
anticipating some of the causes for future failures, | thereby
avoiding them and making the tree search more efficient.
Haralick and Elliott [9] discuss the specialization of these
ideas to exact rélational homomorphise problems arising .from

binary constraint satisfaction problems.

et
-3
]
Iy
[T

Searching”

In this section we discuss some different algorithms for tree
searching that find inexact matches by determining

€~homomorphisnms.

26

V.1 Backtracking

In the standard backtraéking approach, each partial labeling
h defined on the set of past wunits Up incurrs an error ep{Up,h),

vhere

ep{Up,h) = _ Eﬂ(u1,;..,uﬂ,h(u1),...,h(uﬁ);.

{ul,ce.,uN) € T intersect Up%*N

If at any time in the tree search, the error incurred by this
partial labeling exceeds the error budget then the tree search
must either try the next label for the current unit or if there

is no next label, it must backtrack.

¥.2 Forward checking

Forvard <checking proceeds in a nmanner similar to
backtracking. But it recognizes that in addition to the error
ep(Up,h) which the partial labeling h incurs against the #ast
units Up, the partial 1labeling h commits the'past units with

- their assigned labels from h to have a minimum error with the
future units Uf. By doing some forward checking, le£ting_the
past units with their assigned 1labels broadcast to each future
unit-label pair this incurred error, it beconmes easy to keep

track of the minimum error the past units nmust have with the

future units. Recall that ef{u,l;Up,h) is the total error

27
accumulated by future unit-label pair. (u,1) from all the past
units in Up with their assigned labels fron h. Fcrward checking

uses
ep{Up,h) ¢ E_ min epf{u,l;Up,h)
' - 1 el :
u € gf

in the error -budget check. If this quantity exceeds the error
budget, forward checking fails and we must either try the next

label for the current unit or backtrack.

¥.3 Ldoking-aheég by Gne

Looking ahead by one procéeds in a manner siﬁilar to forward
checking. But it recognizes that in additionrto the minimum
error that a.partial labeling creafes by past units agalnst past
units and past units against future units, there is some mirimum
error of future units against future uniis.- We called
eff{u,l,v,m;Up,h) the error that future upit- 1abel pair {u, lj has
with future unlt label pair (v,m) taklng 1nto account that past
units in Up must have the labels a551gned to them by ha Then the
Binimum error that a future upit~ label pazr {a,1) incurs_with the

future unlts {taken one at a time) is

28

E min eff(u,l,v,mﬁﬁp,h}-
nEL
If for any unit-label pair (u,l}) the gquantity

ep{tip,h) +) min epf(v,m;Up,h) + E min eff(u,1l,v,n,Up,h)
n€L mEL

vEUE veUf
vFu
exceeds the error budget, then the pair {(u,l} can be dropped from
consideration as a possible participant in the extension . of.
labeling'h. This idea may be applied iteratively, vhereupon it
becomes a weighted discrete relaxation: operator, the natural
generalization of the discrete relation operator originally
defined by Ullman [16], independently rediscovered by Waltz {171,
and also discussed in Rosenfeld, Hummel, and Zucker [12],
Haralick, Davis, Rosenfeld, and Milgram [6], Haralick [7 3.

Haralick and Shapiro [8], and Gaschnig [4].

We have already observed that the smallest error future
units can have with future units taken one at a tinme given the

partial labeling h on Up is

Z sin min eff{u,l,v,m;0p,h)
1€Ln , REL

n € 0f v € Uf

v > u

Hence looking ahead by one uses the quantity

- 29
ep{Up,h) + E pin epf{u,l;0p,h) ¢ E min E min eff{u,l,v,m; Up,h)
' 1€L 1€L nEL
u € Uf _ u € Uf v
v u
in the error “budget check. If this guantity exceeds the error

budget, looking ahead by one fails and we must either try the

pext label for the current umit or backtrack.

V.4 Lookjng Ahead 51 T¥O

Looking ahead Qy two does the same sort of thing ‘done by
looklng ahead by one, but in addltlon, it takes into account the
minimum error 1ncurred by a pair of future unit-label pairs as
they look ahead to other future units. . Recall that the error
iﬁcufred by future anit-label pair {u,l) against future unit-
label pair {x,q) is computed by ef{u,l,x,q;Up,Uf,h)¢ Fbr a given
pair'i(u,l),(v,m}) of future unit-label pairs, the besf labél q
that another future unit x can have is one Hhicﬁ miﬁimizes'
ef{u,l,x,q;ﬂp,h)r + ef(v,m;x,q;Up,h)a The smallest error that
{(ﬁ,l),(v,m)) can incur on all future units including itself is

then

'eff{u,l,v,m;ﬂp;h)+ E min-[eff(u}l,x,q;ﬂp,h] + eff(v,m,x,g;Upgh)]
o . g€L _ : : '
x € Uf
X#u, v

Whenever the above guantity plus the guantity

' _ 30
ep{Up,h) + 2 ‘min epf(xlqlupl'h} :
_ ; - g€L '

x € Uf

exceeds the error bﬁdget, looking ahead.by.two'may thiow out the
pair of unit-label pairs ({u,1),{v,m)). Applied iteratively,
this becomes a wéighted discrete relaxation operétor, the natuyral
generalization of the operator used by ﬂoatanaii [11j.and the @2

operator of Haralick, Davis, Rosenfeld, and Milgram [6].

Recall that

E min 2 min eff{u,1,v,m;Up,h)
1€L BeL '

u € uf v € Uf

is a lover bound on the error that all future units have among
themselves (taking them twoc at a time), given the. partial
labeling h on the past units in Up. Then whenever this quantity

plus.

ep(Up,h) ¢ E min epf(x,q,Up,h)
g€L '

x € Uf

exceeds the error budget, it is impossible to extend B to a
labeling which has a small enough error. In this case the
looking ahead by two fails and we must go on to the next label

for the current unit or we must backtrack.

31

In this section ve have descrlhed several 1bok—ahead or
relaxation operators to be uéed in conjunctlon wlth a tree search
to find €-homomorphisms. ¥e have defined the operators based on

only a single relation. These operators can and should be used

cooperatively when nmore than one relation is involved. For -

further information or cooperative calculation, see Zucker [18]

and_Davis {3

vyl. Performance Evaluation

gur past experiments in inexact matching have been in shape
matching {Shapiro [13)}. Im these experiments, a SNOBOi& progran
found homomorphlsms from a pair of ternary relations representing
a prototype shape to a second pair of ternary relations
representxng a candidate shape. 1IN order to more thoroughly test
our 1nexact matching alqorlthms we have developed a statistical
- model that allows us to generate random bimary relation
consistent labeliﬁq problems and a set of criteria on which to
compare the performance of the algoriﬁhms in fiﬁdingre—éonsistent

labelings. garalick and Elliott {9] used a similar model to

explore the pehavior of various algorithms for finding exact or

zero-consistent labelings.

In this section we will define the criteria used and discuss
the generaflon -of-the random problems. ' ¥e will also use an

approprlate random model +o develop the expected numpber of nodes

[ey s

32
- per level in the +tree search. Finally we will describe the

experimental results.

YI.1 Criteria for Evaluating Search Algorithas

Figure 7 in Section IV gave the brute force tree search with
backtracking that finds €~consis£ent' labelings. The aigorithms_
for the same tree search with fcrward checking and with lonkahead
by one have been implemented and are glven in ‘Appendix A. The

following termxnology refers to these algorxthms.

A consistgn_x check for binary relations is the operation
that’ determlnes if a palr {{ul, 11),(u2 12)) is an element of the
-unlt-label constraint relation. A1l three of the algorithams

require consistency checks. & back check is a consistency check

performed in the context of straight backtracking. In the
hacktiacking tree search of Figure 7, back checks are performed
in procedure BACKERR, and these are the only consistency checks
'performed by the straight backtracking algorithm. No back checks
are performed by the forward checking or 1lookahead by_ one
.algorithms. A lookahead is a consistency check performed in tﬁe
context of forward checking or lookahead by one. Lookaheads are
executed in routine UPDATE for forward checking and in routine
BPSI for lookahead by one. The straight backtracking tree search,

of course, does no looking ahead.

33

rhe forvard checking and lookahead by one algorithms use a
table to keep track of accunulated €ITOor. The table; referred to
as ULTAB in fhe algorithms, is actually a stack cf tables, one
for ea#h level in the tree, At the current level ULTAB{U,L)
gives the error accumulated by the forward checking and lookahead
by one operations for unit ﬁ and label L. Labelé vhose
accumulated error for a given unit is too high afe no lbnger
eligible 1labels for <that unit. A lookup is a table 1lookup
performed in the context of'forward checking or lookahead by one.
Lookups are counted both when adding information and retrieving
information from ULTABR. Finally, the ierm node réfers to a node
of the +tree in fhé.tree search and represents the operation of
assigning a particular label to a unit. The criteria measured by
the program include number of consistency checks, sumber of back
chacks, number of lookaheads, number of lookups, and number 6f.
ﬁddeé in the tree. These gquantities can. be measured .fbr the
entire tree and for each level in the tree. We also récorded the
time to perform a tree search although tﬁis is machine and
language dependent. The time is, of course, highly correlated

with total number of consistency checks.

¥Ir.z Generation of Randon Consistent'gﬂbeliug Prohlegg

We generated random consistent labeling probléms'to use in
thoroughly testing the search algorithnms. In this section we
define the statistical model for generating consistent labelihg

problens.

34

Let N be the number of units, L be the number of labels, and

€ be the inexact matching <threshold of +the problems to be
generated. We will assume that all pairs of units {ul,u2) with

ul # u2_constrain one another,_ and that if {(u1,11),(u2,123} is

an. element of the unit-label constraint relation, so is
((u2,12),{ul,11)). Thus the unit constraint relation bhas,
effectively, N(N-1)/2 unit pairs. We assign each such unit pair

an equal' weight of 2/(K{N-1)). That is, for each unit pair
{ut,uz), u(u?,uZ) = 2/(Niﬁ-1)), and Evw(ut, u2,11 12) = w{ul,n2) if
({ut,11), Iu2 12y £ B and ¢ otherwlse.

The generation of the-unit—labei constraint relation R is
based on the assumption that the probability that a given
consisféncy check succeeds is independent of the pair of units or
labels involved and independent of whatever labels nmay already

- have been assigned to past units in the tree séarch. That is,
1. P{{({u,1),{u*,1%)}) € B) = P({(v,®),{v',mn?)) € R),

and 2. P({{u(K+1),l(K+1)), (u,1)) € R i 11,...,1K are
consistent labels of u1,...,uk) =
P{{{u(Ks1) 1(K*1}),(u,1)3 € R} for every

unlt u and label 1.

Given that every possible element of R is equally probable,

ve can use a random pumber generatotr to determine which pairs of

35
the form {1:1,1)',{11',1')), 1<u, uw < K, 1<1, 1' <L, are
elements of R and wﬁich are ﬁotﬂ .Let the pérametér p specify
what percentage of these possible pairs are actually eleﬁents of
R. Ffor example, if N =8, L. =8, € = .08, and p = .4, then there
are 8%7/2 = 28 pairs in the unit constraint relation, the weight
of each pair is 1/28 or .0357, and +the generated unit-label
constraint relation will contain 40% of all possitle elements,
raadonly'chosén. Since € is .08, an €-consistent labeling may

have 0 errors { the sum of the weiqhts of the unsatisfigd_unit

constraints = 0.0), 1 error (the sum of the weights of the
unsatisfied unit constraints = .0357), or 2 errors (the sum of
the aeights' of the wunsatisfied unit constraints = .0714).

However, if thére.are 3 errors, then the sum of the weights of
the unsatisfied unit constraints is .1061 which is greater than €
= .08. Thus a labeling with 3 errors is not a .08-consistent

labeling.

¥1.3 Expected Number of Nodes iy the Tree for Backtracking and

for Forward Checking

Backtracking

At level K, K wunits have been assigned latels. With L
possible labels per unit there are L¥#K different functions that
assign labels tb the K units. ¥e need to determine the

probability that any of these L**K labelings is. successful

3%
through level K. Successful means that there are nc more than M

consistency tests that fail for the 1abelihg.'

Since at level K; a labeling must have passed EK{K=1}/2
consistency tests, the maximum number of consistency tests that a
labeling could fail and yet still succeed as a labeling is
nin{M,K{kK-1)/2}. Now for any number of failufes m, 0 < m <
min[ﬂ;k(x—1)/2], the probability'that n tests haveffailed out of

the K{K-1)/2 performed is

K{K-1)/2 | _
| K{K-1) /2-n oom
B | p (1-p) .

The probability that' min {#,K{K-1) /2} or fewer tests have failed

is

min{¥,K{K~1) /2} -
' K{E-1) /2 K(K-1}/2-m m
o p ' - {1~p) -

il 0

Hence the expected number of labelings from the L*%K possible

labelings that will have succeeded is

min(4,K/K-1)/2}
K ' ' _
L : : K{K~-1) /2 K(K-1)/2~m m
: P ' {1-p} .
m=0 . m o :

- 37

Forward Checking

lFor a labeling to have succeeded through level K in forwvard
checkiﬁg, the labeling ﬁust have succeeded ié the sense of
haéktracking. ‘It also must succeed in the following sense. Let
Nf be the number of failures committed by the labels of the past
units wiih thémsglves. Thus Nf = #{(u,v} 1' u,v € ﬁp and
fu,f{ay,v,f{v)) is not in R}. Let Mf be the sum of the smallest
number of failures some label for e&ch future unit has with the
labels of the past units. Then Nf plus Hf pust be within the
failure tolerance. To compute this prohahility, we distribute
the total number M of allowed failures in all possible ways amoﬁg

the past and future units.

~ We allow m failures for the pastlunits and F (k) failures for
the kth future unit, k = K+1,...,N. As before the probability of

exactly m failures in the past units is

K{k~1)/2 K (K=1) /2-n . oom
p (1-p) -
i:}

The probabilify of F(k) or more failures in K consistency tests

for a label of the kth future unit is

KI) . -
Ei [k n ., K-n
n; {i-p) p -
n=F{k}

_ 38
The probability 'that all 1L labels fail F{K+k) or more

consistency tests out of K tests for each label is .

X | L

:E_ K n K-n
nj {1-p} p

n;F(k) _ _ -

Then the probability that the smallest number of tests failed by

some label is exactly F{k) is

K S L K) L
z K) a K-n Z (K) -~ n K-n
n) {1-p} P - - n/ {i-p)} P .
n=F (k) n=F {(k+1) '

And- the probability Q(F(K+1),...,F{N}) that future units K+1
through ¥ have their best labels fail exactly F{K#1},;;.;E{H}

times is Q(F(K+1),e-e,F(N)) =

N . K L K L
P] K n K-n o /K n K-n
I Z()wm P - Z()(1-9) P -
n a = 'n
k=EK+1\ [n=F{k) n="F{k+1)

Therefore, the expecte& number of labeling to succeed through

level X is

39

min {%,K({K~1/2} . ' min {K,N-m}
' _ K{E~-1)/2\ K(K-1)/2-m m
K Z P (1-p) z e
L mn ' .
n=0

Fl{k+1)=0

ﬂin{K,H-m—E{K+1)—4..*?(N-1)}

.. Z QUF (K+1) guuu, F(N})
F{N)=0 '

i

Experimental Results Comparing the Three Search‘§§§§9g§

Iﬁ cComparing backtracking alone, backtracking plus forward
checking, aﬁd hacktracking plué lookahead by one, we looked at
the number of consistenéy checks, the number of nodes, and the
executida time for a tree search, In generél, we found that
backtracking plps forward checking had. the ieast number of
consistency checks .and the least tipe, backtracking. pius
1ookéhead by one was next, aﬁd backtracking alomne had the highest
number of consistency checks and the nost timea Figure 8 shows
the total number of consistency checks as a functicn of number of

units for the three different search algorithnms vith p = .5 and €

H

«la Figure-9 shows the time in milliseconds on an IBM 370,158
of number of units. The times are, of course, dependent on the
- machine, the language, and the compiler. In this set of
.lexperiments the number of labels was the same as the naumber of
units and each data point shows = the average result of five

~trials.

TOTAL NUMBER OF CONSISTENCY CHECKS

® BACKTRACKING ALONE
@ BACKTRACKING WITH LOOKAHEAD BY ONE

~ § BACKTRACKING WITH FORWARD CHECKING

Figure 8 illustrates the number of consistency checks as a function of
number of units for p=,5, €=.1, and three different

5 6 7
NUMBER OF UNITS

.search methods.

8

9

TIME IN MILLISECONDS

T T T T 7

' ® BACKTRACKING ALONE

@ BACKTRACKING WITH LOOKAHEAD BY ONE
0 BACKTRACKING WITH FORWARD CHECKING

L -
5 6 7 8 g
NUMBER OF UNITS .

Figure 9 illustrates the number of milliseconds of CPU time on an
IBM 370/158 as a function of number of units for p=.5,¢ =.1,
and three different search methods.

40

Sifh respect to the size of the portion of the tree actually
searched, we found that backtracking alone searched the most
nodés, backtraékinq with forward checking was next, and
backtracking with lookahead by one searched the fewest nodes.
Figure 1Q shows the number of nodes searched as'a function of
. level in the tree for problems with 8 units, 8 labels, p = .5,
and € = 1. Thus the forward checking and looking ahead by one
beat the straight backtracking in number of consistency checks,
time, and number of nodes. The lookihg ahead by one beat the
forward checking in number of nodes searched, but used many more
consistencf checks {and therefore time) to do so. This would
indicate that as vas the case for exaét matching (Haralick and
" Blliott [9)), in inexact matching, forward checking is tﬁe_most

efficient of the three methods of search.

In [9] Haralick and Elliot showed that for éxact matching,
the number of consistency checks could be minimized by ordering
fhe tree Seafch so that the units most likely td'fail are done
first. A unit is likely to fail if nost of the labels have been
ruled out for it. The forward checking routine keeps track for
each future unit of +the number of labels that have not yet been
ruled out for that unit. At each levei, ‘the tree searcﬁ
progedure decides which unit to try at thét level by Chqosinq the

unit with the smallest nusber of labels left. As in the exact _

NUMBER OF NODES

o | I | 1 !

@ BACKTRACKING ALONE
4 BACKTRACKING WITH FORWARD CHECKING

8 BACKTRACKING WITH LOOKAHEAD BY ONE

Oro

1 1 I R 1

b _ .2 ' 3 4 5 o 6. -7
LEVEL '
Figure 10 illustrates the number of nodes processed as a function of level
in the tree for N=8, 1=8, p=.5, €=.,1, and three different

search methods.

41
matching experiments, we found that ordering the search in this
manner did cut the number of consistency checks by a émall
amount. Figure 11 shows the comparison of nuﬁber of consistency
checks aé a.function of number of units for p = .5, € = .1,
backtracking with forwvard checking, and backtracking with farﬁard

checking plus ordering by worst unit first.

gountigg Table Lookups apd Lookaheads

The forward éhecking and the lookahead by one operators use
a table to keep track of the status of each possible 1label for
each future unit. The table, ULTAB, wo:ks as follows.
ULTAB(i,j) holds the error so far accunulated for ﬁuﬁure unit i
| and label 1. - Iﬁitially ULTAB(I,J) is set to 0.0 for all units i
and labels j. When a 1label 1 is assigned io a unit wu, this
assignment affects all the future units that do not yet bave
labels. For each future unit i and label j where ({u,1),{i,3))
is not an element .of the unit-label coastraint. reiation,
ULTAB(i,j) is incremented by the weight of {ﬁ,i) {in our progran
2/{N{N-1)). Whenever the error of_the Jabeling so far plus the
minimum possible error for all future units plus ULTABfi,j)
becomes greater than the error threshold €, then label J ié no
lonéer a possible labei for umit i. In this case Nﬁﬁ(i), also
considered a part of the table, is decremented'by cne to indicate
one less possible label for umit i. Finally, the minimum error
of all labeis for wunit i is stored in MINERE (i) énd also

considered part of the table.

NUMBER OF CONSISTENCY CHECKS

o

o
D

4]

@ BACKTRACKING WITH FORWARD CHECKING
a BACKTRACKING WITH FORWARD CHECKING PLUS ORDERED BY
WORST UNIT FIRST

v g

5 : 5 7 8 : 9
NUMBER OF UNITS '

Figure 11 illustrates that ordering the tree search by worst unit first
reduces the total number of consistency checks (p=.5, e=.1).

42

Whenever the table is accessed, either for a store or a
fetch,r the number of lookups is incremented by one. In forward
checking, for a node at level K where there are N-K future units,
the érogram counts 1 ¢ 2% {N-K)¥*(L+1) lookups éer completely
proceséed node. For the same node, the program counts (N-K)*L
lookaheads {consistency checks during forward chécking). . Por
lookahead by one, the progran performs an additional (N~
K) $L* (2¢ (N-K~1) *L) lookups and (¥-K)*L*(§-K-1) *L lookaheads.
Figure 12 illusﬁrates lookups as a funétion of level in the tree,
and Figure 13 illustrates lookaheads as a function of level for
5,6,7,8, and 9 units, P ='.5, _e = .1, and forward checking.‘
Figure 14 illﬁstrates lookups as a function of level in the'tree,
and Figure 15 illustrates lookaheads as a functicn of level in
‘the tree for 5,6,7,8, and 9 units, P= .5 €=.1, and lookahead

by one.

The §.i.zg'9;f, the Problem as a Function of Error

Because forward checking proved to be, the most efficient
search methods, we ram a separate seriea% of experiments for
forward checking only. In these experiments we varied the error
allowance while holding everything else constant, So that we
COhld better compare these reSﬁlts for 5,6,7,8,9, ‘and 10-units,
ve varied € in terms of the number of pairs of the unit
constraint relation that could fail to be satisfied. We counted

one error for each pair of the unit constraint relation that was

LOOK AHEADS

Figure 13 illustré
backtrac

3 4 5 6
LEVEL

tes lookaheads as a function
king with forward checking.

T T | T !] I | I
al .
10 ~
3l B
10 '
gUNITS
SUNITS
TUNITS
6UNITS
2L
0 5UNITS -
_ 1 | \ 1 1 i {1
10° 2 7 8 9

of level for. p=.5, £=.k,

and

9UNITS

8UNITS

7UNITS

- BUNITS

LOOKUPS

5UNITS

)] | L i 1 | 1 1 i

2 3 4 5 6 7 8 9
LEVEL |

Figure 14 ill_ustra_.t_:es, lookups as a function of level for p=.5, ¢=.1, and
' backtracking with lookahead by one, '

LOOKAHEADS

H | 13 I L 1 1] |
10°F N
9UNITS
8 UNITS
7 UNITS |
41 -
10
6 UNITS
G’ F 5 UNITS .
2L _
fo)
1O : .1 o AR 1 1 1 I]

- 2 3 4 5 6 7 8 9
LEVEL

Figure 15 illustrates lookaheads as a function of leﬁel for p=.5, e=.1, and
backtracking with-lookahead'by one, .

43
not satisfied in a given labeling. We varied € so thﬁt for éach'
‘nukbef of upits, #e¢ could study number of labelings Qith
1,2,3,4,5,6, and 7 errors. Pigure 16 illustrates the total
éumher of labelings for 5,6,7,8,9 amnd 10 units each with
2,3,%,5,6, and 7 errors for p = .4 and.backtracking with forward
checking. He-st#:t at 2 errors because for p=.§, there are no
labelings in sone cases with 0 and 1 errors., These results
indicate fhat thé inexact consistent labeling problem involves

much more work as € gets larqger.

ggggarinq'Theorv 1o Experimeptal Results

To check our -experimental results ﬁe comparéd.the nuaber of
nodes as a function of level derived-according to tﬁelthedry in
the previqus' secfion with the number of nodes as a fuhction of
level in +the experimental trée searches. Figure_l? shows the
comparison for backtracking_ alone, and Figure 18 shows the
compafison forlbacktrécking‘with forward.checking. These results
are shown for.8 units with P = .56 and 0,1, ard 2 errors. The
vélué of p was chosen so that there would be approximately one

Zero-consistent or exact labeling.

 VIX. <cConclusion

‘¥#e have defined the concept of an inexact matchk of a

candidate structural description to a Prototype désdription and

TOTAL NUMBER OF LABELINGS

o
)

6.

7 ERRORS

6 ERRORS

5 ERRORS &~

4 ERRORS o

3 ERRORS

2 ERRORS

5 6 7 g8 9 10
NUMBER OF UNITS

Figure 16 illustrates total number of labelings as a function of number of
of units for p=.4, forward checking, and € varied to give '
2, 3, 4, 5, 6, and / errors. o ' '

NUMBER OF NODES

r__“" o S i 1 i I .l -i
L] " v
’ -]
_.
| a~ 2 ERRORS
]
[)
102 N -
| ERRORS
[
®
1o ' -
- O ERRORS
R TR I I b4 1

[2 3 4 5 6 7 8
' LEVEL

Figure 17 illustrates number of nodes as a function of level for 8 units,
p=.36, 0, 1, and 2 errors, and straight backtracking. The
straight lines indicate theoretical results and the circles
indicate experimental results where they differ enough to show
11y o1 the ovanh

" NUMBER OF NODES

1] 1] I T I L]
3 2 ERRORS
- L]
® L]
102} *
®
o | ERRORS
L e :
Iof 1
. -
o O ERRORS
o IS D | i i I 1 !
! 2 3 4 5 6 71 8

LEVEL

Figure 18 illustrates number of nodes as a function of level for 8 units, p=,56,
0, 1, and 2 errors, and forward checking. The straight lines indicate
theoretical results and the circles indicate experimental results where

they differ enough to show up on the graph. ' ‘

44
have_shasn'that iﬁexact_matchiag is a special case cf-thé inexact
consistent 1abéling problem.. He have rdiscussed the problens
involved in finding €-consistent labelings ana have described and
analyzed four methods: tree search with backtracking alone, tree
search with backtracking and forward checking, tree search with
| backtracking ~and lookahead by one, and tree search ﬁith
backtracking and lookahead by tﬂc; ¥e have given high-level

algorithms for the first three methods.

In order to test the algdrithms, we have developed a
statistical_ model that allo¥s us to generate random binary
relation €-consistent labeling problens. Cur experiments
indicate that with respect to number ofrconsistenéy checks and
time, fofward checking was best, looking ahead by one next, and
straight backtracking worst. Looking ahead by one searches less
nodes of the tree than forward checking, " but uses many ﬁore
ope:atiéns to do so. The extra operatons include consiétency
 checks and table lookups. We haie_shoun how these vary as a
fgncﬁioﬁ of level in the tree. . The number of table lookups is
greater than, = but appears to be proportional to, - the number of
consistency checks.
ﬁé.have developed formulas fér the expeqted'tree size for
.forward checkinglés étraight backtrécking and found thét the
experimental results _correspond closely to the theoretical_

results. Fipally we have studied the size of the problem as a

45
function of the amount of error allowed. Our results show that
the inexact comsistent labeling problem, and therefore inexact

matching, is a much harder problem than the exact version.

10.

1i.

12.

46

REFERENCES

ry

Barnhart, C.L. {eﬁ), The American Collete Dict onary, Random
House, New York, 1958, : :

Barrow, H.G., A.P. Ambler, and R.M. Burstall, 9"Sone
Techniques for Recognizing Structure in Pictures", Frontiers
Oof Pattern Recognition, S. ¥atanabe {ed), Acadenic Press,
New York, 1972, Pp. 1-29. : : :

Davis, L.S., "Hierarchical Eelaxaton for Shape Analysis®,
Proceedings and the IEEE Copference on Pattern Recognition

of Image Processing, 1978, PP~ 275-279.

Gasching, J., "2 General Backtrack Algoritham that Eliminates
Most Redundant Tests®, Proceedings of the 5tk Interpational

~Joint Conference or Artificial Intelligence, 1972, p. 457,

Haralick, R.M. and J. Kartas, "Arrangements, Homomorphisms,
and Discrete Relaxation”, IEEE Transactons oD Systems, Man,
and Cybernetics, Vvol. SHC-8, Aug. 1978, pp. 600-612. :

Haralick, R.M., L.S. Davis, A. Rosenfeld, and D. Milgranm,
"Reduction Operations for Constraint Satisfaction™®,
Information Science, Vol. 14, 1978, pp. 199-219,

Haralick, R.M., "Scene Analysis, Homomorphisms, - and
Arrangements", in Computer Vision Systems, A. Hanson, and E.
Riseman {(eds), Acadenic Press, New York, 1978. ‘

Haralick, R.M. and L.G. Shapiro, "fThe Consistent'Labeling
Problem: Part 1", IEEE Irapsactons on Pattern Amalysis and
Hachine Intelligence, Vol. PANI-1, No. 2, April 1979, . pp.
173-184.

Haralick, R.M. and G.L. Elliott, "Increasing Tree Search
Efficiency for Constraint Satisfaction Problenms"”,
Broceedings of the 6th International Joint Conference on
Artificial Intelligence, 1979, -

Mackworth, ., "Consistency in Networks of Relations®,
Artificial Intelligence, Vol. 8, 1977, pp. 99-118. -
Montanari, Uay "Networks of Constraints: Fundamental
Properties and Applications to . Picture Processingv,
Information Science, Vol., 7, 1974, pp. 95-132.

Rosenfeld, A., R.A. Hummel, and S.¥W. Zucker, "Scene Labeling
by Relaxation Operations", IEEF Transactons on Systenms, Man,

and Cybernetics, Vol. SMC-6, June 1976, pp. 420-433.

13.

14.

15,

16.

17.

18.

47

Shapiro, L.Gs, "A Structural HModel of‘Shape", to appear in
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1980.

Shapiro, L.G. and R.M. Haralick, "A General Spatial Data
Structure", Proceedings of the IEEE Conference o9n Pattern
Recognition and Image Processing, May 31 - June 2, 1978,
Chicaqo, pp. 238-289. :

Tsai, W¥.H. and K.S. Fu, Error-Correcting_Isomorghismg of
Attributed Relational Graphs for Pattern Apalysis, School of

i P M A . St el . P A S

Electrical Engineering, Purdue University, 1979.

Ullman; " J.R., . "An Algorithn for Subqraph Homomor phisms¥,
Journal of the ACM, Vol. 23, Jan. 1976, pp.31~42.

Waltz, Da.L., Generating Semantic Descriptions from Drawings
of Scenes with Shadows, MIT Tech. Rep. A1271, Nov. 1972.

Zucker, S.W. and J.L. Mohammed, " A Hierarchical_ﬁelaxatian
System for Line Labeling and Grouping", Proceedipgs of the
1EEE Conference on Pattem Recognition and Image Processing,

i e ——————— i L MR | PR, | P - e et

1978, pp- 410-u415.

ug

APPENDIX A
Simplified Backtfabking Tree Search with Forward Checking

.ggggggg- UL?AB and MINERR are actually stacks, one table per
level; | | |

CONTROL := forward:

¥hile CONTROL = forward 9or some unité have been assigned labels

do

begin
if all units have a label thep CONTROL := back:

if CONTBOL.= back then back up one level;
U := next unit to try;
CONTROL := backy

while there are labels to tfy'for unit U do

begin
L := next label for U:
PERR := error of partial labeling so far;

BERR :

FORER{ULTAB,U,1L)

FERR : FOTMIN (future units)

if PERR + EERR + FERR < € then
begin. _
ERRF := UPDATE (ULTAB,U,L,PERR + BERR);
if UPDATE fails then (try) pext (lébel):
CONTRb = forward; |
add (U;L) to the partial labeling;

';g all units have labéls theg'print the

49
labeling;
move forward one level;'.
exit

end

-]

12
2

13
fo 1

procedure FUTHMIN (future units);

FUTHKIN := 0;

for each future unit UF do
FUTMIN := FUTMIN + MINERR(UF)

end PUTHIN

procedure UPBATE{ULTAB,U,L,PASTERR);
UPDATE := 0;
for each future unit UF dg
begin
SMALLERR := 95999.;

for each label LF that is still eligible for UF do

beqin
if fB,L,UF,LF) is in the: unit-label coastraint
relation

then ERR 2= {
else ERR = BEIGHT{U,U0F) ;
ULTAB{UF,LF) := ULTAB(UF,LF) + ERR;

if ULTAB(UF,LF) < SMALLERR

then SMALLERR := ULTAB(UF,LF)

end ;
UPDATE = DPDATE + SMALLERR

' if (UPDATE + PASTERR > €) them fail return:

MINERR{UF) z= SMALLERR

]

nd

end UPDATE

50

51

Simplified Backtracking Tree Search with Lookahead by One

comment ULTAB and nrnzﬁs are actually stacks, one table per
level;
CONTROL := forward;
while CGHTRQL-¥ .fbrward or some'units have been assigned labels
o | :
| begin
if all units have a label then CONTROL := back:
if CONTROL = back then back up one level;
U := next umit to try;
'CONTROL := back;
while there are labels to try for unit U do
begin
'L := next label for U,
PERR := error of pariial labeling so far;

BERR :

FORER (ULTAB,U,L);

FERR :

"

PUTMIN {future units);
;ﬁ PERR + EERR + FERR < € then
begin
ERRF := UPDATE(ULTAB,U,L, PERR + BHERR)
if UPDATE fails then {try) next (label);
ERR1 := PSI{ULTAB,U,L,PERR + BERR,ERRF)

if PSI fails them (try) next (label):

CONTROL 3= forward:
‘add (U,L) to the partial labeling;

if all units have labels then print the

labeling;
- move forward one level;
£xit

end

. .

12
[«

m .
!&.

procedure PSI(ULTAB,U,L,PASTERR, FUTERR) ;
PSI := 0; | |
for each future unit Ur do
begip
UFSMALLERR := 99999, ;
for each label LF that is still eligible for UF do
begin
SONV := 03

for each future unit VF ¥ OF do

begin
VYFSMALLERR == 99999, ;
igg-each label MF that is still eligible for
 do
begin

if (UF,LF,VF,MF) is in the upit-label

constraint relation

then ERR =0

D -

lse ERR := WEIGHT (UF,VF);

52

VF

if EBR + ULTAB (UR,LF) + ULTAB (VF,HF) +

PASTER + (FUTERR - NINERR(UF) -

MIKERR{VF)) > € then (try) next

{label);
_i_ﬁ_ ERR < VFSHALLERR

then VPSMALLERR := ERR

&nd

SUMY := SUMV + VFSMALLER;
if SUMV ¢ PASTERR + FUTERR > €
then begin

ULTAB{UF,LF) = infinity;

exit

end
end 5 |
if SUSV < UFSMALLERR then UFSMALLERR := SOUNV
end |

PSI := PSI + UFSHALLERR/2;

if PST + PASTERR + PUTERR > €

thep fail return

end ;

end PSI

53

