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boundarz detection, These three Problems are listed in order of
increasing difficulty. Humans go well in Perceiving texture for Several
important Leasons, First, , very large humber of textural features are
extracted in parailel, and Second, the visual System has gan amazing

ability to fing Organizationg within a texture,
In a Structura)l model of texture, the basic components Such as line

Segments o circles frop which g texture ig constructed are called

textural Primitiveg, These may be Organized intg nore complicatad

elementg,
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Zucker distinguishes between ideal textures, which are represented

by regular graphs with primitives at the nodes, and observable textures,
which are obtained from ideal textures by stochastic noise and
distortion processes. His model Corresponds to a competence theory of
texture description and has not been extended to a theory that can
account for the performance of humans in Perceiving textures. Lu and Fu
assume that the relationships among texture elements can be specified by
& tree grammar, and they have used a syntactic approach for texture
synthesis and analysis. The spatial Sstructure within constant sized
windows of the texture image is expressed as a tree. The assignment of
intensities to image points is determined by the rules of a stochastic
tree grammar. Finally, the placement of windows is given by a higher
level syntax in order to preserve the pictorial coherence between
windows. Ehrich and Foith consider texture elements that are
constructed from extrema~based primitives, and in their model the
1nterrelatlonsh1ps among texture elements are determined dlrectly from

the topology of the Picture function.

All three of the above models seem to suffer from uncertainties
about the nature of the texture elements and from the difficult problem
of determining whlch relationships among  texture elements are important
in texture analysis, For exampie, there are several possible
interpretations of the simple texture shown in Figure 1. The first
interpretation ig that the texture consists of two super imposed
textures, one of which consists of small circles with the other

consisting of large circles. The Second interpretation is that the left
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subregion consisting of large and small circles is a mixture of large
and small circles that has its own physical origin and which is

unrelated to the rest of the texture sample.  The first interpretation

o © 0 0o ©

Figure 1 - Ambiguous texture.

leads to the identification of two overlapping regions of different

texture, while the second interpretation leads to three disjoint regions

of different texture. It is clear that scene context is required to

resolve the ambiguity, and there are three mechanisms by means of which

the two alternative hypotheses can be produced;

1} The texture analyzer can generate both hypotheses

2) The téxture analyzer can produce the two region hypothesis, and the

~alternative interpretation is produced by the vision system by

intersecting the overlapping regions, or

3) The texture analyzer can produce the three region hypothesis,. and
the alternative interpretation is Produced by the vision system by
extending the disjoint regions into one another on the basis of the

similarities of the texture elements they contain,
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Actually, the two hypotheses for Figure 1 are produced by complex
interactions between the gestalt grouping principles of proximity and
similarity. For the first interpretation, similarity dominates over
proximity in the mixture region, since associations among texture
elements are not formed by measuring spacing. In the second hypothesis,
Proximity dominates in the mixture region because the density of
primitives is higﬁer there than in adjacent regions. The interpretation
would be biased toward the three region interpretation by proximity if
the small circle density was lower in the mixture region. If some large
circles in the mixture region also contained small circles, a third
hypothesis that there were actually three distinct types of primitives
would also have to be produced. It is not hard tc see that both the
number of suitable primitives and the number of  homogeneous
organizations that have to be considered might be very large.
Therefore, it is not surprising that in much work on texture, very
limiting assumptions have been made about the types of primitives and

the spatial relationships to be considered.

Most of the technigues that have been used to locate texture
boundaries seem to fall into two main categories. In the first
category, a regular grid is superimposed over a scene, and it is assumed
that within each cell is a homogeneous texture with measurable
properties. Then one places boundary elements between adjacent cells
whose textural properties are statistically different. The second
category of techniques contains clustering techniques that group

primitives together on the basis of similarity,
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As is well known, the grid method suffers from the problem of having

to select a cell size. If the cell size is too small there is a serious
difficulty in making meaningful statistical decisions about the cell
contents based upon a very small sample size., If the cell size is too
large, the texture boundaries become inaccurate, and there is an
increasing Probability of finding éeveral different texture types within
a single cell, Generally, the cell sizes used tend to be small, and it
is convenient to use individual picture elements as primitives.
Relationships between primitives at various separation distances were
determined by computing autocorrelation functions [Ka55} or Fourier
transforms [Ba76]. One of the most successful technigues involved
estimating the statistics of pairwise cooccurrences of primitives at
fixed distances in particular directions by computing and analyzing
Ccooccurrence matrices [Ha73, De73]. In addition to the problem of
selecting an appropriate cell size, these methods suffered from the
problem that except in the case of microtextures, primitives are usually
composed of many picture elements, and the wrong kinds of statistical

measurements were being made.

Central to clustering épproaches were the histogramming techniques
made popular by Tsuji [To73]. The basic idea was to compute local image
properties, estimate their pdf's by histegramming them, separate the
modes of the resulting histograms, and then determine the regions that,

by hypothesis, were responsible for the histogram modes [Zu75].
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One of the more useful local features is edge density [Ro70, Ro71].
First an edge image is obtained by applying a standard local gradient
operator to the original image, and then each picture element is
replaced by an average over its local neighborhood. Another useful
local feature is the density of local extrema. Carlton .and Mitchell
[Ca77] use a hysteresis smoothing algorithm to detect only the local
extrema which exceed a certain size. By using three threshold values
they produced three intermediate binary images which showed the
locations of the extrema at three levels. Then another three images are
obtained from these by blurring each intermediate binary image. These
and the blurred originalhwere then used for segmentation by simple

thresholding.

The histogramming approach has also been extended to include the
measurement of cooccurrences of local properties [Dy79]. The main
problem with histogramming is that regions are formed independently of
the spatial relationships among members of the same histogram mode;
consequently, elaborate heuristics are required to fill holes in regions

and to eliminate noise points that form small, undesired regions.
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2. Texture Region Growing

By now it may have occurred to the reader that if clustering
approaches to region growing have difficulties because they do not take
into account spatial relationships, then perhaps it might be possible to
adapt some of the classical region growers to the problem of texture
region growing. However, a region grower such as that of Muerle and
Allen [Mu68] is restricted to use of spatially adjacent primitives. The
more advanced region growers of Brice and Fennema {Br70] and Yakimovsky
and Feldman [Ya73] make use of boundary information which is available
only if the texture region boundaries happen to coincide with

differences in average gray value. .

The work presented in this paper attempts to address the problem of.
detecting textural boundaries by using global region growing technigues
based upon a structural model of texture. A key aspect of the technique
is the general way in which the spatial relationships among texture
elements are used. In the proposed structural model, there are four

main issues of concern; (1) texture elements, (2) attributes of texture

elements, (3) relationships among elements, and (4) aggregation

mechanisms.

First, texture primitives are extracted from the original picture.
The original picture is transformed into a tree structure called a

relational tree (or simply R-tree) which represents the hierarchical

relationships among texture elements. Also, attributes associated with

each texture element are computed and stored in the R-tree. Then




PAGE 11
texture region growing is done by merging or grouping textural elements
together according to their global relationships. In the structural
texture model, the first two issues concern the formulation of texture
elements and the measurements of their associated attributes, while the

other two issues are closely related to the region growing procedures.

2.1 Relational Trees

Ehrich and Foith [Eh76] describe a rela£ional tree representation
for one-dimensional intensity profiles which is briefly discussed here
because it is the basis for much of the work described in this paper. A
relational tree recursively parti;ions a profile into smaller and
smaller segments based upon the values of minimz in the profile, For

example, the lowest valley ¢ in Figure 2a is used for the initial

Figure 2 - (a) Sample profile and (b) Its R-tree,
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division since it is the lowest minimum value. Each remaining segment
1s treated as a profile, and lowest valleys (ie. a in the left segment
and d in the right Segment) are again used for division. Division
continues until all valleys of the profile are exhausted, and the
recursive structure determined by the partitioning is represented by the
relational tree structure. Figure 2a shows a sample preofile, and Figure
2b illustrates its relational tree. The root of the tree indicates that
over the entire profile the lowest valley is point ¢ and the highest
peak is point 6. Since the resultant data structure is a tree, the
hierarchical relationships among the peaks given in Figure 2 can be

répresented in linear form by

(6c(2a(l,2b(2,3)),6d(4,6e(5,69(6f(6,7),8)))))

or simply by a list structure such as,

((11(213))r(4r(sr((617)r8)))) .

Attributes of peaks such as peak height, contrast, etc, can be stored
in the tree using pointers, Textural features can then be extracted at
any level of the tree. Ehrich and Foith use the R-trees extracted from

all scan lines of a textured image as the image representation.

2.2 Two Region Growers
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Two different region growers are Suggested in this paper. One is

based only upon the spatial adjacency relationships among texture

elements. These adjacency relationships are Fepresented by the R-~tree

structure.

Based upon the spatial adjacency relationships among  texture
elements, the region grower functions by merging microtexture elements

into macrotexture elements. It can be described by the following steps:

(1) The original image is transformed into the relational tree data
structure,

(2) Terminal nodes in the tree are "pruned" so that the new tree
reflects the macrolevel structures of the texture elements.

(3) The image is Feconstructed from the Pruned tree structure. The
reconstructed image will contain larger texture elements that
reflect the merged spatially adjacent microtexture elements, that

are spatially adjacent to each other,

Steps (2) and (3}  are iterated until a level is reached at which global

Or macro regions appear.

The second region grower is based upon the structural adjacency
relationships among  texture elements. Structural adjacency refers to
the similarity in the attributes of texture elements, Based upon the
structural adjacency relationships among texture elements, the region

grower looks for similarities among texture elements and groups them
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together if they are similar, The procedure consists of the following

steps:

(1) Construct the relational tree.

(2) Extract texture elements which are Stored in the relational tree.

(3) Compute attributes for each texture element.

(4) Define similarity measures.

(5) Group "similar" elements together,

(6) Reconstruct the image by eXpanding the classified elements to form

Solid regions over the entire image space.

about the Spatial relationships within the cluster, In the proposed _
region grower, the MST technique is expanded in order to take care of
both structural adjacency and Spatial adjacency relationships among
texture elements, In effect, we are attempting in this work to make
explicit use of the two Gestalt Principles of Proximity and similarity
in growing regions. ZzZahn's work, in fact, was done with the same

intent,

forms or Patterns transcend the stimuli used to Create them, The
gestalt laws of organization describe groupings or patterns which are
MoSt naturally seen as wits. Such laws can be used as quidelines while

doing texture'analysis. However, it ig nontrivial +q simulate these
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pPsychological Principles by a computer program, and little work has been
done in the application of thege Principles to texture studies,
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3. A Structural Model for Texture

The work Presented in thig Paper is based upon a structural theory
of texture, The concept of the relational tree ig generalized to two
dimensions to account for the Structural relationships among  texture
elements, In this section, the four main aspects of the Structural
model are discussed in detail. Then the generalized relational tree is

Presented,

3.1 Details of the Structural Model

that textures are composed of primitives Or basic texture elements which
are organized according to certain arrangements, Primitives, attributes
of texture elements, relationships among elements, apg the aggregation

mechanisms are four major aspects of the Proposed struectura] texture

Theoretically, texture region growing is achieved based upon two

assumptions; (1) texture is ap area phenomenon that is describable as

characterized by a 1list of attributes. e simplest Primitive ig the

individual Picture point described by its intensity and its location.




determine their relationships. Examples of Such primitiveg are
Connected Components gof constant gray level, ascending or descending
Components, saddle components, relative maxima Components, relative
minimag Components, etc, Individual pPicture Points are too trivial for
thig Purpose, and there are too many of thenm to contend with, Instead,
we. have found that relative exXtrema are good candidates, If one
considers a texture sample such as the one in Figure 32, the smallest

nontrivial Perceptual unire #re the white blobs (or black blobs) from

Figure 3 - {a) Texture Sample ang (b)  Surface of the picture function
for the Upker right corner of (a).

rarely uniform in intensity as shown in Figure 3b, which is a plot of
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the picture function in the UPper right corner of the texture.

local intensity maximum together with a 1local neighborhood that is

attributes that is sufficiently complete to account for perceptual
differences among different types of elements. Here one is faced with a
potentially infinite pool of features, byt there are probably few usefu]

ones, Ebrtunately, many natural textures have primitiveg that can be

attributes, Examples are gray level locai Properties such ag max imum
intensity, minimum intensity, average intensity, contrast, etc, Others
include Measures of the size, shape, orientation, eccentricity,

irregularity, and homogeniety of the'texture elements,

height ang width can be associated with each extremum, The absolute
height of 3 Peak is defineg as the maximum value, and the relative
height can pe defined as the intensity difference between the max imum
and the average of its adjacent minima. The width of g Peak is the

horizontal distance between its two adjacent minima,
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If one  considers eXtrema in two dimensions, then the situation
becomes much more complicated. (ne way of extracting the 2p eXtrems is
by using the generalized relational tree algorithm which will be
described later, More complex attributes can be measured for 2p

eXtrema. The relative height of 3 Structural peak is the intensity

in the mountain, or the volume of the mountain,

Q,E,Q_Relationships Among Elements

There are two classes of relationships among texture elements. The
first class consists of hierarchical "containment® relationships among

texture elements. These are called spatial adjacency relationships, and

they are Fepresented by the relational tree Structure. The second class
of relationships consist of those that are induced by external

constraints, Thege are called structural adjacency relationships, ang

they inciude relationships due to similarities among texture elements,
In this work Structural adjac‘ency relationships are assumed to exist
only at the frontier of the spatial adjacency hierarchy. For example,
in Figure 4 the dotted lines constitute the Structural adjacency
relationships amorng the frontier elements in the R-tree, while the
Spatial adjacency relationships are reflected in the R-tree itself.
Spatial adjacency relationships are hierarchicai; they are intuitive
and not difficult to understand, and they are naturally embedded in the
R-tree structure. Figure 5 shows somé examples of such relationships,

Pictures 55-5¢ were produced from the Same negative by varying Printing
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S

Figure 4 - S3patial adjacency and Scructural adjacency relationships
among texture elements,

a

Figure 5 - {a})~(c) Three pictures of RUG produced from the same
negative with decreasing printing time,

time to show the details of texture elements in different gray level

fanges. Notice that some of the white blobs that appear distinct in
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picture 5a appear merged in picture Sc. At the Same time, new white
blobs apear in Picture 5c which were not visible in picture 5a. The

small white blobs in pPicture 5a are examples of microtexture elements,

and the larger blobs in picture 5c are examples of macrotexture

elements., It is important to Keep in mind that both macrotexture and
microtexture are simultaneously visible, and there is no basis for

ignoring either.

In the strict Sense, every texture element is structurally related
to every other one, Conceptually, these relationships can be

Iepresented by a complete weighted graph - called the texture graph,

Vertices of the graph are instances of texture elements, and each edge
is weighted by a distance or a weighting function between the pair of
elements it links. fThe weight between a pair of elements, in turn,
depends upon attributes of the elements. This graph will be an

essential part of a region grower to be described later.

3.1.4 Aggregation Mechanisms

Aggregation is one of the least explored aspects of computer vision
but has great importance in determining interpretations of visual
stimuli, Aggregation in this paper is based entirely upon the
assumption that no Prior knowledge is available about the textures
present in a scene. What is significant about the Structural model of
texture used here is that the psychological factors appear only in this
fourth aspect of the structural model and do not become confused with

measurement processes. Two kinds of aggregation processes can be
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formulated based upon  the spatial and the structural adiacency
relationships. The first of these is based upon the containment
relationships that explicitly exist in the relational tree. Pruning
frontier nodes from the tree structure has the effect of mergiﬁg small
peaks into larger ones in much the same way as that demonstrated in
Figure 5, The second aggregation mechanism is based upon structural
adjacency relationships among texture elements. The texture graph
suggests that every texture element is structurally related to every
other texture elament. The closeness of these relationships will be
determined by the similarities of the attributes of each pair of texture
elements, and the graph edges will be weighted by measures of attribute

similarity.

3.2 Generalized Relational Tree

Ehrich and Foith [Eh76] were the first to propose a hierarchical
structural representation of an intensity profile in terms of its peaks
and valleys. Based upon the hierarchical relationships among peaks, a
tree called a relational tree is generated for each proflle. Recently,
Rosenfeld [Ro77] developed a theory called "fuzzy digital topology,” in
order to account for the topological relationships among portions of a
gray level image. In particular cases, Rosenfeld's theory also will
account for the relationships among peaks and valleys of the two-
dimensional picture function. The application of the theory to one-
dimensional profiles is developed by Sankar and Rosenfeld [Sa79]. The
approach proposed by Rosenfeld and Sankar is elegant in terms of using
concepts of fuzzy connectivity; however, it is hard to visualize

intuitively,
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in this section, the concept of the relational tree is generalized
to two-dimensions. 1In principle, the generalized two-dimensional R-tree
is similar to the "image tree" suggested by Krakauer [Kr71i] except that
the algorithm used to generate tree nodes and the features extracted
from the tree are different. The Principles that the new algorithms are
based upon are different from those in Rosenfeld in the sense that the
new algorithms make use of simple topological properties of a binary

image.

g
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Figure 6 - A visualization of the two-dimensional R-tree.
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As in Figure 6, imagine a fixed plane through which the topological
surface of the picture function is pushed from below. As the highest
peaks of the picture function penetrate the plane, the isolated volumes
above the plane define peaks that correspond to the strongeét white
stimuli. At this time, one could generate an external node for each
such peak. As the picture surface is pushed farther into the plane,
peaks begin to merge or to expand or new peaks start to emerge.
Whenever twe or more peaks merge, one dgenerates an internal node to
represent the hierarchical relationship bétween the new peaks and their
subpeaks. = Continuing in this way, as the lowest valleys of the picture
function pass through the plane, one eventually generates a root node
for this super peak. Therefore, the two-dimensional peaks and valleys
fall naturally into a tree structure, which is called a generalized

relational tree.

Let § be a rectangular array of discrete coordinates, and f; 8 —>
{0,1} be a binary picture function. Obviously any point P at coordinate
(X,¥) has 4 horizontal and vertical neighbors, namely (x+1,v), (x-1,v),
(x,y+1), and (x,y~l}. P also has 4 diagonal neighbors, namely (x=1,y=1},
(x—i,y+l), (x+1,y-1), and (x+1,y+1). A path between two points p and g
is defined as a sequence of points p=p0,pl,,,,,pn=q such that p; is
adjacent to P;j_1r where 1 < i < n. ©p and q are connected if there is a
path from p to g and £(p), £(p),...,£(q) all have value 1. Notice that
path and connectedness can be defined based upon either 4-adjacency or
8-adjacency depending upon whether or not one considers the diagonal

neighbors. Connectedness is an equivalence relation that partitions &'
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={(x,y) €5 I E(x,v)=1 } into equivalence classes S'l 5'2,...,5'n

These classes are called the connected components of g,

Now consider g Picture function that has L gray levels. Let f: S
=> [0,L-1] be the picture function. Define S as the set of picture
points whose intensity is greater than or equal to gray level L-i; that
-is,
={ (xy | £(x,y) 2 L-i}
In particular,

50

{(xy) | £(x,y) 2 L1}, and
S

L=1{ 6y | £(x,y) >0 }.
ObViOUSer SO is an empty set, and S;, is the set containing all picture

points, which is the set s,

Let fi be a binary function which maps all points from 5; to 1, and

other points to Q. In other words, s 1 = {x,y) €8s | £ i {x,¥)=1}.  Each

S can be partitioned into disjoint subsets g. i,1r5% ,2r+=<sS; ,R(i) based
Upon the connectedness relation. The subsets Si have the following

Properties:

PROPERTY 1:

Socsic -+ C 5p=5.

PROPERTY 2:

Lt Sy =551 0 51,2 U «+. USj gei) have R(i) components,

and let Sl+l = Sl+l 1V e Y Sl+l JR{i+1) have R{i+1) Components,

Then for any component. 51+1,j Of 8i4+1, one of the following
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three statements ig true.
(1) Si+1,5115; =y,

(i.e. Si+l,j is a new component) ,
(msHLjnsi=%*,muelgkgRuh

(i.e. component Si+l,r is. the exXpansion of Si,k)'
) 8341,40s; = %1,k1 Y S1,55 U -.o,

where 1< kl,kz,...,.g R{i},

(i.e, Component Si+l i contains subcomponents
r

51,1751 jpreee ).

If one defines g4 Plateau as a maximal connected subset of S such
that its f value ig constant, a peak as a plateau whose f value is g
local maximum, .= and g valley as a plateau whose f value is a local

minimum, one has:

PROPERTY 3.

In case 1 of Property 2, Si+l,j is a peak in S.

PROPERTY 4:

In case 2 of Property 2, g.

i+1,5 15 a peak slice,

PROPERTY 5:
In case 3 of Property 2,
let's; » = Si,k1 U Si gy U ...

then Si+l,j’7 §£’K contains some valleys in s.
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Based upon Properties 2-5, an algorithm for constructing a

relational tree can be devised. It is given by the following steps:

ALGORITHM 1:
(1) set i=0,
Extract Si from S.
Extract all disjoint components from 5; -
Generate an external node for each of the components,
(2} Repeat steps 3-S5 while Si+l C s.
(3) Extract Si+l from S.
Extract all disjoint components from Si+l'
Set j=I,
(4) Repeat steps 4.0 through 4.4 while J < R{i+l1).
(4.0) Set TtSi+l’j Ns;. -
(4.1) If T=¢, then generate an external node for Si+l,j'

(4.2) If T=Si'k then stack component Si+l,j with Si,k'

(4.3) If T=s; USi k. U-.., then generate an intenal node for
2

’k
1

Si+l,j and link all possible nodes generated for S; to this node if

their corresponding components are contained by the compenent

Si+1,5

(4.4) Set j=j+1.
(5) Set i=i+1.
(6) Generate the root node (for 8), 1link all subcomponents to it, and

terminate the procedure.
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At the same time that a tree node is‘generated, information about

the peak's relational structure and its attributes can be computed. For
example, an external node defines a peak as it is first generated in
Step 4.1. In Step 4.2, information about this particular peak is
accumulated. In Step 4.3, a peak merges with other peaks, thus inducing
an internal node, peak volume can be computed by accumulating the areas
of all the descendant nodes. Other attributes such as center of mass
and relative height can also be computed. Therefore, a well-defined
peak in the three-dimensicnal X-Y-INTENSITY space can be extracted.
This process can be carried out down to any internal node to form a more

complicated peak structure.
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4. Texture Element Extraction

The two-dimensional R-tree algorithm given in Section 3 consumes
considerable computational resources. In the case of the region grower
based upon structural adjacency relationships, only the primitives at
the frontier of the R-tree are considered. Therefore it is not
necessary to compute all of the deep structure of the R~tree, and two
approximate methods can be used. In the first method, frontier peaks
are computed approximately by using a local peak extractor, and in the

second method, an asymptotic relational tree is computed for which

horizontal crossections of peaks are computed only for a small number of

different intensities.,

4.1 Primitive Extraction by Local Peak Detection

A simple 3x1 local operator can be easily designed to detect local
maxima and local minima of a one—dimensional scan line simultaneously in
one pass. Cne has to be careful to handle flat (plateau) regions
properly, and in this first experiment, peak-valley labels were assigned
as shown in Figure 7 to facilitate a one-pass, left to right analysis.
This one-dimensional operator is then applied to image intensity
profiles row by row and column by column to locate picture points that
are extrema simultaneously in both directions.

In one dimension, peak intensity is measured by its absolute
height. Peak contrast is measured by its relative height, and peak size
can be approximated by its width. Let AHX, RHX, and Wk denote the
corresponding one-dimensional attributes in the horizontal direction,

and let AHY, RHy, and Wy be the attributes in the vertical direction.
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Figure 7 - Peak-valley label assignments,

Let Xp be the horizontal location of g peak,

and let Xu' Xv be the

respectively, Then, the
absolute height and the Peak width are defined by

locations of its left and right valleys,

Ay = £, W= | XX, |
and the relative height is defined by

RH = f(xp)—((f(xu)+f(xv))/2 .

Figure 8 illustrates these definitions. The two-dimensicnal relative

height can be computed as the average of the relative heights in the two
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RH,
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Figure 8 - One-dimensional Peak attributes.

directions. peak area can be approximated by taking the Product of the
Peak widths in the two directions. Let AH, RH, and 5Z denote the
absolute height, relative height, and the beak area in two dimensions,

respectively, Then,

AH = AH = ag

Y
RH = (RHX + RHY)/z
SZ = way

Also, shape measuras such as elongation can be computed by

EL = tan~! W,/ )
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4.2 Asymptotic Relational Trees

Asymptotic R-trees (or simply, ART's) are approximations to true
two-dimensional R-treesg in which texture elements are described by a
stack of approximate Cross-sectional slices of the picture function.
Bach such slice forms 3 binary image in which a picture element is set
to 1 if the corresponding image intensity ig larger than the slice
intensity and ¢ otherwise. For the purpose of representing a texture,
an image is thresholded at a nunber of selected values, and an algorithm
described by Wang [Wa78] is applied for extracting all the connected

components (regions or holes) of the resulting binary images. Then the

determined, and the R-tree is generated. At the same time, attributes
are determined for the various texture elements and stored in the data
Structure.

Wang's procedure performs boundary smoothing and hole filling on
each connected component, It also produces for each binary image an
attribute table that specifies for each Component its area and its
regularity. Each component is also related to the original image by
computing the intensity extremes, contrast, and average intensity over
the area of the component., Figure 9 shows an example of the compenents

produced from Figure 3 by Wang's algorithm with a particular choice of

threshold.

Let S be the discrete coordinate set of an image array, and let f:
5> {0,1,.0.,L~1 } be the picture function with L gray levels., Define

the set Si by

%=Ly 1 Exy) > L ).
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Figure 9 - Components extracted from Figure 3 by Wang's algorithm at a
particular threshold.

According to the algorithms described earlier, in order to compute the
exact relational tree, one has to extract and £ind the relationships

among the regions of two successive 5;.

To find an asymptotic relational tree, instead of working on all
gray levels, one needs to select a subset of gray levels at which to
threshold the original image. Let R = {0/1,...,L-1} be the set of
available gray levels, and let R' = {Il'I2'°"'IK} C R be the selected
subset. A simple scheme to determine this subset is to find R! such that
it divides the gray level histogram into equal area portions. Let T; be
the set of picture points whose gray level is greater than Ii' and let

Qi be the set of picture points whose gray level is between two

successive thresholds, namely Ii-l and I;. That is,

3
i

i=1 &y | Exy) > 15 )

)
1}

i { (7 | Ii—l > E(x,y) 2L b
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Each Q; corresponds to.a portion whose size is 1/K of the size of the
entire image array, and each T{ corresponds to the accumulation of
Ql'QZ""’Qi whose size is therefore i/K of the size of the image array.

These facts are summarized by the following properties:

PROPERTY &:
(1) lQlf=lQ21-=...=tQK;-—;fsl/K.
(ii) =Ty, U Qjr where 1 < i < K.

(111) IT;(=(i/K) IS].

The subset R' attempts to select the intensity thresholds so that

T; contains the 1/K brightest elements of the image array, T, contains
the 2/K brightest elements, and so on. This subset of thresholds is

commonly called the equal-probability quantizations. Each Ti can be

partitioned into disjoint components called the intensity sliced regions

at intensity L;, or at slice i, and the corresponding thresholded image

is also called the intensity sliced image. Algorithm 1 can be modified

to generate a tree structure based upon K levels of guantization. This

tree structure is called the asymptotic relational tree (ART). Besides

the reduced number of quantization levels, another difference between
the ART and the true R-tree is that in the ART, external nodes do not
always represent a peak structure because some peaks merge between two
successive slices. The following is the modified procedure for

constructing the ART:

ALGORITHM 2:




(1)

(4)

(5)
(6)
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For a given intger K, compute R'={Il,12,,,,,zk},

Set i=1.

Extract T, by thresholding the picture function f at Ii.
Extract all components detected in T; .

Generate an external node for each of the components.
Repeat steps 3-5 while i < K-2.
Extract Ti+l (by thresholding).
Extract all components detected in Ti+l'
Set j=1.

Repeat steps 4.1 through 4,3 while j < R(it+l).

(4.1) If Ti+1,7 is a new component, then generate an external node

for this component.

(4.2) If T,

i+1,j 1S not a new component, then generate an an internal

node for T; ., ; and link all possible nodes generated for T; to this
internal nede if their corresponding components are contained by the
component Ti+l,j'
(4.3) Set j=7j+1.

Set i=i+l.

Generate the root node for Ty+ link all nodes generated for Te.1 to

the root node, and terminate the procedure.

An  example is  shown in  Figure 10 with =8  and
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R'={223,220,216,211,202,171,166,154}.

c d

Figure 10 - (a) ART for SKY-CLOUD sample with 8 thresholds and (b) - (d)
Image thresholded at 223,220,216,
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Figure 10 (cont) - (e)~(h) Image thresholded at 211,202,171,166.
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5. Texture Region Growing Using Minimal Spanning Trees

This section is devoted to the development of a texture region
grower that is based upon structural adjacency relationships among
texture elements., The basic assumption is that "similar" elements are
the ones that ought to be grouped. The method to be used here employs
minimal Spanning trees (MST) in much the same way as Zahn [2a71], except
that the edge weights in the texture graph are computed by similarity

measures on a multidimensional attribute space.

5.1 Attribute selection

One would like to have available as many descriptive attributes for
texture elements as possible. These attributes can be stored in the data
Structure to produce a "complete® description of each element., However,
it is not well understood which of them are important in texture
analysis, since there are SO many measurable attributes and so many
possible relationships among the texture elements. The problem hinges
upon psychological mechanisms. Zobrist and Thompson {Z075] performed
psychological tests to determine the pParameters of a distance function
that was used to simulate human perceptual grouping. Their experiment
suggests a way of combining multiple cues. A primitive distance
function is used for each cue to measure the strength of similarity
grouping. The total tendency of two regions to be grouped together is
measured by a linear weighted sum of the primitive distance functions,
and the weights are determined by psychological tests. Therefore, a
distance function for Gestalt grouping on textures can be "built up"

through psychological testing. However, the particular function
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developed under certain conditions may not be useful under others. The
approach in this work is to try to determine first which attributes of
texture elements are the best among those available. This is followed
by the determination of a distance function on the selected attributes.
One possible way of selecting the attributes is called automatic

attribute filtering.

The goal of automatic attribute filtering is to eliminate from
further consideration those attributes that do not have s significant
role in the perception of a particular textured image. For a given
texture sample, it is possible to compute some simple statistics for
each attribute to determine the dominant ones. Then grouping is done
based upon the selected attributes, Since the number of texture
elements is much smaller than the number of picture elements in the
original image array, it is not impractical to compute such statistics,
This procedure resembles the use of redundancy in human perception in
the sense that the human visual system appears to have the ability to

adaptively select appropriate cues from a large pool of cues.

The statistical measures used for attributes were the sample mean,

sample deviation, and ranges. Assume there ar N'texture elements. Let

Aj(i) be the jth attribute of the ith texture element. For the jth

attribute, the sample mean is

My = (Aj(1)ﬁAj(2)+...+Aj(NJ)/N

and the sample deviation is
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The range is defined by

Rj = Max{Aj (l),.-.,Aj(N)} - Min{Aj(l),...,Aj {(N)}.

Then, a busyness measure, called the degree of importance for the jth

attribute is defined by

THETA; = vy/Rs .
THETA is used as the measure for determining the important attributesg,
and it 1is computed for each of the available attributes. Then the
important attributes are determined by selecting those with larger THETA
values. In defining THETA, R; is a nommalization factor. A flat
histogram of attribute values tends to have lower deviation and would
have a lower THETA value. The more modes that exist in a histogram, the
higher the deviation will be, which would result in a higher THETA
value, Figufe 11 shows THETA values and the associated histogram for
four attributes of a texture sample. The four attributes are peak
height, peak contrast, horizontal peak width, and vertical peak width.
The corresponding THETA values are .322, .09, .108, and .093,
respectively., These values indicate that the peak height 1is the most
important attribute. In fact, the texture is the SKY-CLOUD sample which
is composed of two natural textures which differ mainly in their

intensity.
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mean = 202 mean = 7
var = 22.2 var = 4.9
maxm = 232 maxm = 47
minm = 161 minm = 2
8 = 32.2 , g =9,0
| ‘ ]
L\J_l lLif w1l l""”’l " L”,l”ilhlllu..l...x L
Peak Height Feak Contrast
mean = 4 mean = 5
var = 1.2 var = 1.8
maxm = 12 maxm = 20
minm = 10.5 minm = 1
g = 10.8 - g =9.3
L ’ I . ; ! l I f ! [ | D R B
Horizontal Peak Width Vertical Pezk Width

Figure 11 - THETA values and the corresponding histograms.

Having filtered out some of the less important attributes, the next
step involves selecting a distance function for each remaining
attribute. This is a difficult problem because any such distance
function is a parameterization of psychological mechanisms that are
poorly understood. One approach might be to assume the functional form
of the distance function and to optimize it by selecting the parameters

on the basis of psychological evidence as in Zobrist and Thompson.
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Assume there are K important attributes., Let fk(i,j) be the individual
distance function for the kth attribute between texture elements i and

J. Then the overall distance can be defined by

a(i,3) = £5(1,5) + E2,3) + vee + £2(4,7)

Such an approach does not guarantee a solution to the original
texture problem no matter how well the distance function has been
optimized because not even the best functional form is known. Another
approach might be to solve the problem once for each attribute by itself
and to combine the results later. Such an approach would eliminate the
problem of determining the best combination of the primitive distance
functions at the expense of having to combine the individual grouping
results later. The approach used here is to use the same functional
form as in Zobrist and Thompson; however, the individual distance

functions are fixed for all attributes.

5.2 The Region Grower

Once the distance function is determined, a minimal spanning tree
can be constructed for the texture graph. For the purpose of texture
region growing, the MST algorithm is extended to both spatial
coordinates and attribute Space. One may also apply the MST technique
to the attribute space first to determine an initial partition and then
apply the MST technique to the Buclidean space to obtain finer

partitions. The algorithm has three main steps.

(1} Construct the MST using Prim's algorithm fPr57].
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(2) Divide the MST into fragments by deleting inconsistent edges.
(3) Reconstruct the segmented regions that correspond to the tree

fragments.

The MST of the texture graph tends to connect the closest and
therefore the most similar texture elements together. The goal is to
break the MST at selected edges so that the texture elements in the same
fragment bear a closer resemblance to one another. By definition, Iif
one deletes an edge from a tree, the tree is broken into two subtrees,
and the corresponding vertices are partitioned into two disjoint
subsets. Then, the segmented regions of texture are reconstructed from
the partitioned subtrees. The hard problem is that of determining which

edges of the MST should be deleted.

An edge is called an inconsistent edge if its length is not

consistent with those in its neighborhood; inconsistent edges are those
to be considered for deletion. Long edges and inconsistent edges are
not necessarily the same. Consider, for example, the longest edge e
shown in Figure 12; deletion of e does not give us a "reasonable"
partition. This suggests that.an "absolutely long" edge may not be a

good candidate for an inconsistent edge. "Relatively long" edges are

‘better choices for inconsistent edges. Deleting edge e’ in Figure 12

gives us a more plausible partition. The degree of edge inconsistency is
defined as the ratio of the edge weight to the average weight of nearby
edges., Edges with a high degree of inconsistency are candidates for
deletion. At the same time, class labels are assigned to the texture

elements associated with each tree fragment.



PAGE 44

Figure 12 - Illustration of a "long" edge (e) and a "relatively long
edge" (e').

The final problem is to label each picture element of the image
array with the class labels in such a way that the boundaries between
different textures are consistently formed. This problem is equivalent
to the pattern recognition problem of determining decision surfaces that
separate the clusters of points with different labels, A straightforward
method is simply to assign a point the 1labels of its nearest texture
element. A fast algorithm, called a "diffusion algorithm," proposed by

Lai and Ehrich [La79], is used in this work.

2.3 Results Using Local Extrema
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Experiments were run on 8 texture samples of 64 x 64 picture
elements each using the local extrema extraction technique. The
available attributes and their corresponding primitive distance

functions are

"

(L) peak intensity: £(1,3) = (ap(i)-an(s))2

(2) peak contrast: fc(i,j) (RH(i)-RH(j))2

(3) peak size: £(i,9) = (SZ(1)-sz (3))?
(4) peak locations: £ (1,9 = X (1} =x (5} |
fy(i:j) = ly()-y(3) 1 .

The edge weights in the texture graph were computed by using distance

functions that were sums of the various primitive functions given above.

In the experiments, the "nearby edges" used for the edge
inconsistency test are defined as the edges which can be reached within
two steps of a given edge. An edge is broken whenever the degree of
inconsistency is greater than a threshold T, Next, region labels are
assigned to the texture elements of each tree_fragment, and the texture

region is filled using the diffusion algorithm,

In the fifst example, the SKY-CLOUD.texture is shown. in the first
test, peak intensity, contrast, and spatial location were selected, and
in the second test, location information was deleted, Figure 13a shows
the original texture, and Figure 13b shows the MST constructed using all
three attributes. Notice that the edge lengths in the MgT do not
correspond to the value of the distance function because the graph has

been projected onto two-dimensional space for display. Figure 13c shows
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Original SKY-CLOUD sample,
and {d) Reconstructed regions.
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Figure 13 (cont) - (e) MST without proximity measure, (£) Labeled
Primitives, and (g) Reconstructed regions.
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the labeled elements after deletion of the most inconsistent edge, and
Figure 13d shows the result after application of the diffusion
algorithm. Figures 13e - 13g show the result obtained using the same
procedures as in Figures 13b - 134 except that the peak 1location
information is not used. The difference between Figures 13d and 13g is
very reasonable, and biasing the distance function by spatial proximity
of the texture elements seems 1like a reasonable way to eliminate the

white horizontal streak in the left region,

Example 2 demonstrates the difference when contrast information is
used or not in the grouping procedure. Two sets of attributes were
considered; one involved peak intensity only and the second included
peak contrast. In both cases, spatial location information was used.
Figure l4a shows the original TREE-CLOUD sample, and Figures 14b and l4c
show the results. Notice that there i1s a difference between Figures 14b
and 14c due to contrast information, and if one considers the original,
the difference is not surprising. Due to the "law of similarity," the
isolated cloud regions 1in Figure 1l4c would group with the tree regions

when contrast information is used.

Figures 15 - 20 involve additional texture samples, and the
experimental procedures are the same as in the previous examples. The

attributes used for all experiments are summarized in Table I.
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Figure 14 - (a) Original TREE-CLOUD sample, (b) Regions using intensity
and location and (¢} Regions using intensity, contrast, and location.
The examples in Figures 15 - 17 are trivial in the sense that
different textured regions differ in their averaged gray levels. In all
three cases, the two significant regions corresponding to two different
textures were detected. For instance, in Figure 156, the test sample is
a scene composed of a rock against a background of leaves. Obviously the

rock has higher intensity, and the regions match well with the original.
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Available Attributes

Sample LoC AH RH Threshold
SKY~-CLOUD X X X 10
SKY-CLOUD X X 25
TREE-CLOUD X X X 8
TREE-CLOUD X bs 8
BUSH-GRASS (1) X b4 X 15
LEAF-RCCK X X X 10
TREE-SKY X X 6
BUSH-GRASS (2) b4 X 3
LEAF-BRANCH X X b 4 3
BUSH-WALL X X 3

Table I - Attributes used in examples.

4§ 444

D

Figure 15 - (a) BUSH-GRASS (1) sample and (b) Regions.

In Figures 18 and 19 the textured images are more complicated than
the previous samples; quite a few regions are detected in both samples.
It is obvious that only two regions are significant in either sample.
The small insignificant regions might be removed or filled out by a

Smoothing algorithm if it is necessary. Moreover, by Comparing with the
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Figure 16 - (a) LEAF-ROCK sample and (b} Regions.
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Figure 17 - {a} TREE-SKyY sample and (b) Regions.

original images, the appearance of these small regions is not

unreasonable. For instance, in Figure 18, the test sample is a scene
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Figure 19 - (a) LEAF-BRANCH sample and (b) Regions,
composed of two bushes Separated by the grass field as background. The

two bushes are assigned the same label in most parts, and the grass



PAGE 53

-1

»
&
-

444

4

o

1t

11
3ttt

-

e p

-~ e .b

Figure 20 - (a) BUSH-WALL sample and (b) Regions.

field is assigned a different label, One might expect a few small
regions with grass labels to appear in the lower Parts of the bushes;
also, small regions with Still other labels might be expected at the

boundary between bushes and grass.

Figure 20 is the most difficult one among the samples tested. In
this sample, the scene is composed of a bush against a heavily textured
wall. Due to insufficient resolution, there are a few portions of the
wall which resemble the bush in features such as average intensity.
Therefore, these portions are grouped with bush, but the results are

still satisfactory. *

In the experiments, the results of applying a MST technique for

texture region growing based upon structural adjacency relationships are
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very encouraging. The number of elements extracted is only about 1/10 of
the number of elements in the image array. Moreover, one may speculate
that additional attributes such as orientation and shape would preduce
additional improvements. Finally, the results shown here are based only
upon the pseudo-2D primitives obtained by the one-dimensional peak

detection operator.

5-4 Results Using the ART

In this section we describe experiments in which texture elements
were extracted using the ART, rather than the local peak extractor. The
asymptotic relational tree algorithm described in Section 4.2 does not
represent peak structure directly. It describes only the slice-to-slice
relationships between the intensity sliced regions of the picture
function. 1In order to extract peak structure, a consolidating procedure
is required. This consolidation procedure traverses the ART along ail
paths from frontier to root. Wnenever a node is found that has no
brothers, it is merged with its parent node as shown in Figure 21. This
prevents a high contrast texture element with no substructure from being
repeatedly sliced, and it eliminates from the ART redundant vertices.

The consolidation procedure provides the technique for extracting
the peak structures that are used as the texture elements. The next
Step is to measure the attributes from these X-Y-INTENSITY blobs. The
attributes computed from these 3D blobs are called 3D attributes. At the
same time that the tree nodes are consolidated, information about each
pPeak's relational structure and its 3D attributes can be computed and

stored.
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Figure 21 - (a) An ART, (b) The consolidated ART, (¢} Contour graph of
(a), (d) Contour graph of (b) , and (e) 3D peak structure.

Experiments were run on the same 8 texture samples as in Section
5.3. The available attributes are illustrated in Figure 22, and the

corresponding primitive distance functions are

(1) base center: SNAENS) K)=X ()| + 1Y) =Y () |
(2) absolute height: £ (led) = (AH(i)-—AH(j})2

(3) relative height: fRﬂ(i’j) (RH(i)--RH(j))2
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X

‘Figure 22 - Illustration of attributes measured from a 3D X-Y-INTENSITY
blob.
As before, the edge weights in the texture graph were computed by using
distance functions that were sums of some of the primitive distance
functions given above,

All the original textures have 25§ available gray levels, and the
number of slices used for the construction of the ART's is 16. Figure
23 shows the ART and the consolidated ART for the TREE-CLOUD texture.

Table II shows the attributes that were used for the distance function

for each of the 8 texture samples.
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Figure 23 - (a) ART and (b) Consolidated ART for TREE-CLOUD texture.

Available Attributes

Sample Lo AH RH Threshold
SKY-CLOUD X e b4 5
TREE-CLOUD X X X 3
BUSH-GRASS {1) X X 1C
LEAF-RCCK X X X 25
TREE SKY X X X 3
BUSH-GRASS (2) X 5
LEAF-BRANCH X X 2 b
BUSH-WALL X X % 4

Table II - Attributes used in examples.,

The results after application of the MST technique on the extracted

3D blobs are shown in Figures 24-31,
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Figure 24 - (a) Reconstructed SKY-CLOUD, {b) MST, (c) Labeled blobs, and
(d) Regions.
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Figure 27 - (a) Reconstructed LEAF-ROCK and (b) Regions.
B

Figure 28 (a) Reconstructed TREE-SKY and (b) Regions.
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Figure 29 - (a) Reconstructed BUSH-GRASS(2) and (b) Regions.
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Figure 30 - (a} Reconstructed LEAF-BRANCH and (b) Regions.

Cne result that is very striking is that the MST's constructed are far

simpler than those for the previous results due to a tremendous
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Figure 31 - (a) Reconstructed BUSH-WALL and (b) Regions.

reduction in the number of texture elements. For instance, in Figure
24, only 28 blobs were extracted from the corresponding ART. The result
after application of the diffusion algorithm is shown in Figure 24d. if
one compares the regions obtained withr the original, the boundary is
acceptable even thouwgh it is less precise due to the small number of

texture elements that were extracted,

The results shown in Figures 26 and 27 are satisfactory even after
the application of the diffusion algorithm due to the fact that a
sufficient number of blobs were extracted which were evenly spread out
over the entire image space. The situation in Figure 28 is the same as
in Figure 24 in the sense that an insufficient number of blobs were

extracted for good results from the diffusion algorithm.
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Compared to the experimental results using the 1local - peak '
extractor, the results in Figures 29-31 are also satisfactory, but the
appearances of the boundaries are not so good. This is due to the small
number of texture elements and also to the fact that'only 16 slices were

used in constructing the ART.
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8. Region Growing by Tree Pruning

In this section a texture region growing technique is explored that
functions by making use of the spatial adjacency relationships among
texture elements. The basic idea is to merge microtexture elements at
the frontiers of the asymptotic relational tree until texture elements
are eliminated from the regions that contain them. The region grower
consists of the following steps:

(1) Constructing the asymptotic relational tree (ART)

(2) Pruning frontier vertices from the relational tree structure

(3) Reconstructing the texture from the pruned tree
Steps (2) and (3) are iterated until a level is reached at which global

or macro regions appear.

Reconstruction of a texture from the ART is done quite easily by
assigning the average gray level of a texture ‘element to the points
which it contains. Other attributes such as area and shape can also be

used for the reconstruction.

Figure 32 gives an example of the reconstrction of a texture from
the relational data structure. The original textue sample (RUG) is
shown in Figure 32a, and the reconstriicted texture is shown in Figure
32b. Notice that the essential features of the texture are preserved

while the extremely complex but irrelevant details have been removed.

Pruning frontier vertices from the relational tree is a natural way

to group peak substructures; under the assumption that macrotextures are
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b
Figure 32 - (a) Original RUG sample and (b) Reconstruction from 8-level
ART. '

those elements which are composed of spatially adjacent microelements,
images with microtextures can be transformed into macrotextures by
utilizing the pruning procedure. Pruning is an iterative procedure;
first the ART is constructed for é texture image, and then pruning is
done for several iterations. Next the texture is reconstructed from the
pruned tree structure. The reconstructed texture will contain larger

texture elements that reflect the merged microtexture elements.

Removing frontier vertices whose size is insignificant has the
effect of two-dimensional smoothing when the texture is reconstructed.
The size of the texture element can be determined by computig the area
of the corresponding region or the volume of the corresponding peak

structure.
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Pruning based upon the spatial adjacency relationships among
texture elements is closely related to proximity grouping in the human
visual system since pruning has the effect of merging spatially adjacent
elements .together. The spatial adjacency relationships are
hierarchically represented in the relational tree structure. Two simple

tules have been devised for doing the tree pruning.

6.1 Pruning Techniques

Rule P: (Pruning only)

(1) For each frontier vertex check if it has any non-frontier brother.
(1.1) If YES, check NEXT frontier vertex.
(1.2) If MO, prune the frontier vertex.

(2) After all frontier vertices have been scanned, mark the associated
father vertices frontier.

(3) Reconstruct the texture from the updated tree stfucture.

{4) Return to step (1).

Rule G (Pruning and Grouping)

Besides pruning, rule G attempts to group together ffontier
vertices which came from the same parent vertex even if they have one or
more non-frontier brothers. The updated information about- grouped
frontier vertices is stored in the eldest brother, The procedure is
implemented by modifying step (1.1) of Rule P in the following way:

(1.1) If ¥ES, group the frontier vertex with the eldest brother.
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A s Y

Figure 33 - Iterative pruning using Rule P; (&) Original, (b) First
iteration, and (c) Second iteration.

Rule G has the remarkable effect of grouping those subregions that
would not have been merged until many iterations were performed if only
rule P were applied. Figure 34 shows the corresponding trees of the

step-by-step iteration.

In our experiments with proximity pruning, the only information
used was the spatial information in the sense that in most cases the
regions are expanded according to the hierarchical containment
relationships embedded in the relational tree. However, in specific
applications where semantic information is available, pruning can be
guided in a more intelligent way. For example, information such as shape

and size of the texture elements can be used as constraints for pruning.

6.2 Ezamples
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Figure 34 - Iterative pruning using Rule G; (a) Original, (b) First
iteration, and (¢) Second iteration.

Figure 35 - (a) Reconstructed BUSH-GRASS(1) and (b) Pruning after 3
iterations.

Shown in Figures 35 through 39 are examples of pruning experiments
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b

Figure 36 - (a) Reconstructed BUSH-GRASS(2) and (b) Pruning after 3

iterations.

b

Figure 37 - (a) Reconstructed BUSH-WALL and (b) Pruning after 5
iterations.

using Rule P. The original samples have size 64 x 64 and 256 available

gray levels. 1In all examples, the number of slices used for the



Figure 38 - (a) Reconstructed LEAF-ROCK and (b) Pruning after 7
iterations.

b

Figure 39 - (a) Reconstructed TREE-CLOUD and (b)  Pruning after 9
iterations.

construction of the ART is 16. Experiments using Rule G are not shown

because the results are not significantly different.
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7. Discussion
The two region growing érocedures suggested in this paper are based
upon a structural model of texture. It is assumed that texturé can be
described by the texture elements which are three-dimensional X-vy-
INTENSITY blobs; each such blob is characterized by a 1list of
attributes, The proposed structural model attemps to provide a
framework for describing these texture elements from which a texture is
constructed and the aggregation mechanisms by which these elements form
Gestalts. Then the boundary detection problem is approached by looking
for changes either in the eiements themselves or in the relationships
between them, The structural approach transforms a difficult
statistical problem into a difficult structural pfoblem, but we believe
it is more feasible to deal with the pieces of the structural problem
because the computational and the psychological issues are not all mixed
in together. Both procedures also make use of Gestalt grouping
Principles. The procedures are region growing approaches rather than
edge detection approaches, and no differentiation or other preprocessing
of the image is required. Compared to the conventional region growing

techniques, the region growers provide the following advantages.

(1) The regions growers make explicit use of Gestalt principles such as
similarity and proximity.

(2) The consequences of applying Gestalt principles leads to region
growers that use a more global approach.

(3) The relational tree and the spatial data structure provide a

dependable and efficient data structure for experimentation.
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7.1 Region Growing Using the MST

The MST based region grower is attractive because proximity and
similarity grouping of texture elements can be very explicitly
controlled by specifying the weights on the edges of the texture graph.
The MST itself connects the texture elements together in such a way that
each element is connected to its closest neighbor., Even though
constructing the MST requires 0(n2) computations, since we are dealing
with macroelements, n is small. Furthermore, there is no reason why
approximate computations could not be used to construct the MST, such as

Hall's [Ha73], which is o(nl.33).

There are a number of other experiments that still need to be done
with the MST. FPor example, since the regions one obtains depend upon
which edges are broken in the MST, it might be worthwhile considering
other definitions of inconsistency or increasing the neighborhood over
which inconsistency is computed. We have not yet found a good algorithm
for setting the inconsistency threshold automatically. The number of
regions 1labels one obtains depends upon this threshold. Another
important problem involves the definition of the distance functions by
means of which proximity and similarity are defined. The entire grouping
procedure can be run by using a single distance function as we have done
in our experiments, or grouping can be done independently for each
attribute. In Figure 40, for example, grouping according to similarity
would produce three region labels. If grouping according to spatial
proximity were to be done next on the small circles alone, two distinct
regions would be produced ~— small circles left and small circles right

— so that four regions would be produced in all.
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Figure 40 ~ Texture sample with three element types and four regions.

7.2 Region Growing by Tree Pruning

The pruning based region grower is attractive because the
computations are simple once the R-tree has been constructed. Frontier
vertices of the tree with close common ancestry are spatially close, and
the "tree can be searched vertically to check the similarity of
microtexture elements whose merger is rending. However, it 1is not
necessarily true that spatially close elements are also closely related
in the R-tree since two low contrast elements might be separated by a
deep valley. Thus, at the same time one achieves simplicity, one gives

up some of the freedom to elect grouping criterea.

If one compares the results in Section 6 with those of Section §,
it appears that as a region grower, pruning is less successful than MST

techniques on the same images. However, pruning is a fairly useful
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technique for producing macrotexture elements from microtexure elements,

and pruning might be successfully combined with the MST region grower.

7.3 R-trees

Clustering by MST or by tree pruning relies upon the extraction of
texture eléments based upon the relationships among the light and dark
regions of a texture. Of course, since no prior world knowledge is used
in extracting these texture elements, if such knowledge is available, R~
trees will not be a sufficient technique.

One other major consideration in the use of R-trees is figure-

ground. R-trees are not symmetric in the sense that the same R-tree will

not represent simultaneously white primitives on black background and

Figure 41 -~ (a) Original CAPS scene, (b) Pruning after 5 iterations, and
{(c) Pruning the negative image after 5 iterations.

black primitives on white background. Figure 41 shows the effect of

pPruning on a capacitor scene by merging white elements (41b) and by
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merging black elements (41c). Since the capacitors are black objects
with white spots, white macrotexture elements are produced in Figure
4l1b, whereas in Figure 4lc, the black capacitors "consume" the

microtexture elements to produce excellent silhouettes. Five pruning

iterations were done in both cases.

The results obtained by using the ART were slightly worse than
those obtained by using the local peak extractor. As noted, this is
atﬁributed to the small numbér of levels in the ART and to the small
number of primitives that were extracted. The problem of having a very
small texture sample {or one with large primitives}) may be a drawback
for any procedure, and since our software was limited to 64 x 64
samples, we also encountered such problems. A sample called MIX was
generated by taking one quadrant from each of four different but similar

textures from the Brodatz collection {Br6e]. The original image is

=]

Figure 42 - (a) MIX texture collage and (b) Negative.
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shown in Figure 42a and the negative is shown in Figure 42Zb. By looking
at the four quadrants in Figure 42a, one notices that the upper left one
shares shape similarity with the lower left one, but they differ in
orientation. The upper right quadrant shares similarity with the lower
right, but they differ in size. No matter how the distance function was
constructed, the MST procedure was not able to separate the top and
bottom halves satisfactorily. ©One of the problems is that due to
insufficient resolution, global information about textured regions is
lost during the construction of the ART structure. In addition,
important information required for the discrimination of the four
quadrants are size and shape; these were not computed due to computer

memory limitations.

7.4 Further Investigation

The following are considered important areas for  further
investigation.
(1) More attributes

As mentioned above, it would be good to include shape measures such
as base area and peak volume. No 3D shape measures have been tested to
date. The underlying.principle of the current work has been to keep the
attribute measurements as simple as possible, since the use of
complicated measures would have required greater computational resources
than we had available.
(2) Figure-ground

The CAPS example illustrates the importance of the figure-ground

problem. Peaks and valleys are dual structures, though they are not
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treated symmetrically. If figure—ground issues are considered to be
resolved at the time when region labels are attached, then it would be
desirable to keep simultaneously the competing figure—ground assertions.
In that case one would have a data structure that contains not only the
relational tree of the original image, but the tree for the negative as
well. | )

{3) Deep structure

In our work to date it has been assumed that all grouping' of
texture elements in the R-tree involves only the vertices at the
frontier of the tree. However, it is reasonable to assume that on the
basis of similarity, rmerging regions that correspond with internal
vetices of the R-tree would produce even better results. The MST might
provide an effective technique for grouping regions in the deep
structure, Suppose all internal tree vertices are treated as
representations of completely independent texture elements; in forming
the texture graph one would discard edges between an R-tree vertex and
any of its descendants Dbecause the descendants are spatially
superimposed over the parents. Then, region growing is done in exactly
the same way as before, but now, similarities among texture elements at
different levels of the R-tree can be identified automatically.
(4) Other clustering algorithms |

The reason for selecting the MST technique for similarity grouping
is that Zahn has noted the ability of such an algorithm to simulate
Gestalt grouping. Burr and Chien [Bu76] also used the MST technique as a
tool for grouping the elementary square regions in a scene. Their

procedure is developed based upon a priori knowledge which is not a
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general approach to low level processing. Clustering algorithms other
than the MST method might also work well provided that they can be
extended to multidimensional attribute spacé. A broad survey can be
found in Ball [Ba6h]. In particular, Jarvis and Patrick [Ja73] use
shared nearest neighbors for a similarity measure; Gowda and Krishna
[Go78] use the conceptrof mutual nearest neighborhoods; Narendra and
Goldberg [Na77] developed a homogeneity measure called directed trees
for image segmentation. Jarvis [Ja77] also applied the shared nearest
neighbors to feature sets extracted from color imagery for image
segmentation. A generalized k-nearest neighbor rule is proposed by
patrick and Fisher [Pa70]. An algorithm for finding nearest neighbors

can be found in Friedman, et al [Fr75].
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