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ABSTRACT

The Pitt-Kraft model of buying versus photocopying results in a
small, but complex, nonlinear program. This paper identifies a Kuhn-
Tucker point and demonstrates that for certain parameter values it is
not optimal. A policy generation procedure 1is presented; the purpose
is to prevent convergence of a primal algorithm to this inferior policy,

which satisfies the Kuhn-Tucker optimality eonditions.



INTRODUCTION ’

Pitt and Kraft [2] presented a resource allocation model for a
branch library system to determine how much capital should be allo~

cated to the acquisition of new information items (e.g., monographs,
serials, reports) and how much to allocate to the photoduplication

‘of demand items not in inventory. The four decision variables

(for a one-year planning horizon) are:

variable meaning

X number of information items to be
1 .
acquired by the branch

x number of trips to the main library
2
(to photocopy)

X3 number of photocopy requests for
~each trip
X, dollar cost to users for photocopy

Their objective is to maximize demand satisfaction, expressed as

a function, f(x), subject to a budgetary constraint of the form:

<
g(x) = b,

and a demand'limit of the form:
h(x) b d,

where x = (xl, Xys X, x4). Further, the first three decision variables

must be nonnegative and integer-valued.

Thus, the Pitt-Kraft model is a nonlinear program with four
decision variables and two constraints. The policy space consists
of vectors in 4-space with the first three components required to

be nonnegative and integer-valued, fThis is denoted:



P: maximize f(x):
(1) g(x) < b
(2) hx) = ¢

(3 G5 x5 %) 20

(4) (xl, XZ’ x3) integer-valued,

The functional forms, f, g and h, were derived by Pitt and Kraft and

are of the follbwing form:

fx) = Cl 1n {62 + Xl} + p(x)

gx) = Cyx + C, x, + (C5 - %) px)

il

h(x) = x_ x_ + Cl In (02 + xl)

273
where p(x), appearing in the definitions of f and g, is:
P(X)=A1X2 X3 exp {-q(xl) Xq ~ Ay X, + q(xl)}

q(x1)=A3/(A4— Ag ln{C2 + xl}).

| The twelve constants (Cl, 02, 03, 04, C5, Al’ AZ’ A3, Aﬁ, AS, b, 4)
..depend upon input parameters (e.g., cost of photocopy, annual growth

rate of the main library collection, number of days the branch is open );

see ref, [2] for details.

To solve this nonlinear program a number of algorithms may be applied
[1]. A feasible poliecy is not difficult to identify; namely, x=0 (the
*do-nothing’ policy).. Thisg is feasible since
g(0) = h(0) =0

and b, d>0, The objective funectional value is:

£(0) = ¢; 1n(C,) .

This is the_expected number of demands satisfied by tﬁe branch with its

current inventory (no new acquisitions and no photocopy from the main

library).



This suggests the use of a primal algorithm (i.e., one which itera-
tively improves the policy while remaining feasible), perhaps based on a
direct ‘ascent method with a penalty function or projection (see [1]). 1In
our discussion the integer restriction (4) is relaxed. This may be justi-
fied by the largeness of noninteger values permitting roundoff (truncation
to remain feasible); however, even if the integer problem is to be solved,
the continuous approximation may be solved in conjunctibn with a branch-

andfbound gcheme,

Generally, primal algorithms converge to a Kihn-Tucker point [1] - i,e., a

policy, x, which satisfies constraints (1) - (3) (but may not be integer—valued),

and for which there exists nonnegative multipliers (u, v) to satisfy:

: . <
(1) for §= 1, 2, 3, 4: 'gi o gi -V gz =0 (=0 if k. > 0)
j J hj

X=X

(2 2@ i b implies u=0 and h(x) < d implies v=0.

The point of this paper is first to identify a Kuhn-Tucker point, -
Then, we shall demonstrate that there are realistic parameter values for
which this point is not optimal. Finally, a policy generation procedure
is given such that the objective value is greater than that of this Kuhn-
Tucker point-(if possible). This would prevent convergenée to the inferior

Ruhn-Tucker policy when starting at the generated policy.

A KUHN-TUCKER POINT

Let us consider the policy which specifies no trips to the main
library to photocopy. Specifically? let x; = xg = xz = (0, With this
part of the policy fixed, let xi be as large as possible without violating
the constraints, Then, since p(xo) = 0 (no wmatter what x; is), we require:

C3 xg St
and

0, <
¢, 1n (C, +x7) = d.



This implies

x; = Min {b/C3, exp {d/Cl} - Cz}.

Notice that x; maximizes f(xl, xg, xg, XZ) over the feasible choices of X; .

Theorem 1: x° is a Kuhn-Tucker policy with multipliers:

u®=0 and vP=1 if x;—< b/C3

= ¢ /(b + C ) and v° = 0 if x

= b/C3

=0

The proof immediately follows upon substituting.x0 and (uo, vo) into

the Kuhn-Tucker conditions.

We shall develop a strategy to generate a feasgible policy which can be

~used to initiatiate an exact algorithm, such asg those described in [i1.

In so doing, we shall also demonstrate that tﬁe Kuhn-Tucker policy (x3 is not
optimal for certain values of the inpuﬁ constants. The analysis is followed
by an example, to illustrate the policy generation algorithm which we shall

define.

POLICY GENERATION

In this section we develop a two-phase method to generate a feasible policy}
Starting with the Kuhn-Tucker policy (x%), we investigate a class of policies

that maintain the acquisition level, Xl’ and examine potential improvement

by using Photocopy. The result of the algorithm generates either x® or an

improvement, if one exists, in the class of policies considered.

Fixing x1=£i removes one decision variable, and at least one of the two
constraints holds with equality, For definlteness, we shall suppose

the budget is tight, so that x; = b/C3. The remaining demand is

D24~ £(x%).



Now observe that if-we consider no photocopy (i.e. x5 x5 = 0), the

objective functional value cannot be increased. Therefore, we want to
consider only those policies for which x; x5 > 0. From the budget constraint
(1), this implies the photocopy price (X4) must exceed the cost to the

branch (Cg).

This leads to the ‘following subproblem:

Fl1. Maximize p(x{ﬂ Xqs XS? X4):

A

(') €4 xy - (x4 - C5Iplx)s %2, X3, x4)
zhH Xy X3 £ D

(3") (%9, x3) > @ and x, > C5.

The maximand in the above subproblem is the amount of Improvement we can
obtain in the objective functional value; i.e.

E(x], Xy, X3, %)=E(") + p(x], X3, X3, %),

We shall now prove that, in subproblem Pl, the demend limit (2'")
must hold with equality in any (sub-)optimal solution. The significance
of this fact is that we can eliminate the number of trips (xz) as a

decision variable (as well as remove the demand constraint, itself).

Theorem 2: Every optimal solution to subproblem P1 must satisfy

(2') with equality.

To prove Theorem 2, first note that satisfaction of the budget
constraint is independent of the nﬁmber of trips (xz). - That is, we
can divide (1') by X4, and, using the definition of P(*), we obtain

the equivalent inequalitj:

CA—(xa—Cs)Alx3expQuq(xi)XB-A2x4+q(xl)]

I~

0.

Therefore, 1f the demand limit does not hold with equality for a policy,

then we can increase the number of trips (XZ)' This increase results
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in a proportional increase in the objective functional value, so the
policy could not be optimal.
In other words, if we charge enough to photocopy and meet only some of the

demand, then we can increase demand satisfaction by making more trips.

It should be emphasized that the subproblem may not be feasiblé; indeed P1
cammot be feasible if x° is optimal. Part of the analysis below considers

this, and a test condition is derived which compares the relative values of

the input constants to determine feasibility. 1In particular, notice that
Pl is infeasible if D=0 (i.e. both the demand and budget constraints are
simultaneously tight at Xo). That is, constraint (2') forces X2X3—O
which contradicts (3'). In other words, if there is no remaining

demand to be satisfied, then the objectivé functional value cannot be
increased, by Photoduplication. In view of this fact, we can, and shall,

assume D»0 for the remaining analysis.

Using Theorem 2 let us eliminate the number of trips as a decision
variable by using the equation:

= D/x3.

Then, rearranging (1'), our subproblem is reduced to the following:

P2: maximize P(X3,x4):

>
x3(x4 - CS)P(X3, x4) =C4 D

and
X3 >.0, Xy > CS’

where

P(x3, x4) = pf, D/xs, X3, %,).
Let us recapitulate the 31gnif1cance of subproblem P2, if‘it has a
feasible solution, then we can improve the obJective functional value
{in P) by the amount, P(x3, x4), the maximand in P2. If we solve P2,
we shall have an optimal policy in the class for which the acquisition
level is kept at x;. If,.on the other hand; subproblem P2 is not feasible,

then x° is optimgl ovur the class of policies for which X=X,




Thus, in any case we shall be able to generate a feasible policy which is
optimal over the class that maintains the acquisition level at xf). For
certain parameter values, this will be the Kuhn-Tucker policy, xo, and

. 0
for other values we shall generate an improvement over x°,

We shall now derive a necessary and sufficient condition for the
subproblem, P2, to have a feasible solution. Thisg condition will compare the

relative values of the input constants.

First, note that the maximand, in P2, satisfies:

P (x3,x4)=Al D exp {—QX3 - A, X, + Ql,

where

Q=q(x;).

Therefore, the constraint to be satisfied ig:
>
X, exp {—QXB} x4exp{—A2x4} =
where
B = (04/A1) exp {-Q + A, cs}
and
X = x,-C..
4 475

This must hold for Xq, x£=>(1

Theorem 3: Subproblem P2 ig feasible 1f, and only if,

T B QA e? S,

The proof uses the fact that the constraint function is maximal when
X4=1/Q and x; = 1/A2. Therefore, substitution of these values yields the -

largest value, and the result immediately follows.




An implication of Theorem 2 is that the Kuhn-Tucker policx (xo) can be improved
by allowing photoduplication if enough revenue can be generated by charging
users to cover costs, while the budget is spent totally on new acquisition.

If the test condition in Theorem 3 fails,then subﬁroblem P2 has no

feésible solution, This means we cannot improve x® while maintaining

Xl = ;clo and x

5 = D/x3.

If the test condition in P2 succeeds, then we can improve the policy. 1In
particular, we could define Xy = 1/Q and %, = C5 + 1/A2, gince this must be

feasible in P2, However, we can do better by actually solving P2 (globally).

Theorem 4: If P2 is feasibie, then an optimal solution is given by:

x3 = y/Q and x; = y/A,

> - where' y is the least solution to:

2
vy exp {-2y}= B @ Ay.

The proof follows from classical Laprange Multipliér Theory [1]. The

<

"parameter, ¥, must exist when B Q A2 ehz, and the smallest root will occur

in the interval, (0, 1].

- To compute y, any interval reduction method may be employed, such as

‘bisection. Putting these facts together we have the




rfollcy bLeneration Algorithm

This algorithm generates a feasible policy whose objective

functional value 1s at least as great as f(x7).

= (0 and

1]

step 1 (initialdize). Set X "Xy = X,

compute x, = b/CB’ f= Cl in (02 + xl).
step 2 (test assumption). Compute D = d-f.
If D = 0, EXIT; if D<0, transfer to analogous procedure (with

X, = EXP{d/cl] - C

1 20

step 3 (compute constants). Compute

Q = Ay/ (A, -AgE/C)), ,
. )
B = (C,/A)) EXP [-Q + A,Cq 1.

2
c

BQAZv
step 4 (test subproblem). If C e2 >1, EXIT.

step 5 (compute y paraﬁeter). EXECUTE procedure to compute
y in (0, 1I: y2 EXP (-2y) = C.
step 6 (update policy). Compute
x3 = y/Q

X, = C5 + y/A2

i

D/x3

EXAMPLE

We shall illustrate the Policy Generation Algorithm with an example. The

following input values were derived from [2]1.
PARAMETER : VALJE »
1967
30001
10
20
0.4
0.61
0.2
0.5
200
15.7
35000
25000

Q0O 0O n
b'u?'hfbrj>t;3;> NIV T

o~

u$>

o
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" The acquisition level is computed:
X = b/<':3 = 3500.
This implies £(x°) = 20494, so the remaining demand is:
D =d ~ £(x° = 4506.
Next, the constants in step 3 are compu£ed to be:
Q = 0.0137 B = 33.24 C = 0.0913
We note that Ce2 = 0.674 <1, so problem P2 is feasible. We mext proceed
to compute the parameter, y, from the equation:

yzexp {~2y} = 0.0913

A (near) value for y is 0.50 The pdlicy is then updated by:

1]

Xq y/Q = 36.42

X

4
X9 = D/x3 = 123.72

CS+y/A2 = 2,90

The amount of improvement is:

P(x3, x4) = 853.23,

Using truncation the generated policy is:

number of acquisitions (1) - = 3500
number of trips (xj) = 123.
average amount of photocopy per trip (x3) = 36 X
photocopy price (x4) s =2.90

In closing, we point out that the above example was solved (including the

multiplier search) with a pocket calculator in about 30 minutes.
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