Technical Report CS75022-R

An Extension of the Direct Method
for Verifying Programs

by

Andy ¥. C. Kang
Department of Computer Scilence
V. P, I, & 8. U.
Blacksburg, Virginia 24061

Shih-Ho Wang
Department of Electrical Engineering
University of Colorado
Colorado Springs, Colorado 80907

October 1975

Abstract

A direct method based on a finite set of path formulas which describe
the input-output relations of a given program can be used to verify programs
containing no overiapping loops. One major difficulty in verifying programs
with overlapping loops using the above method is that too many path formulas
(possibly infinite) needed to be considered. In this paper, we circumvent
the above difficulty by applying the concept of modularity; The idea is to
divide a program wifh overlapping loops into several smali modules so that each
module contains no overlapping loop. This can always be achieved if the
program is in structured form. Then the path formulas will be derived for
each module. By combining the path formulas for the modules, one can further
obtain the path formulas for the given program and theﬁ use them to verify

the program,

(1)

I. Introduction

In [1] a direct method is given to verify programs containing no overlapping
loops. Basically, the idea is to find a finite set of logical formulas called
"path formulas" which describe the input-output relations of a given program,
Then one tries to verify the program by deducing the desired input-output
specifications from the above set of path formulas. This method is direct and
intuitive and avoids the difficult process of finding the inductive assertions
which are commenly used for verifying programs. However, only programs without
overlapping loops are considered in [1] . As suggested by the authors, their
method might be extended to prove the correctness of programs with overlapping
loops. To verify programs with overlapping loops using their procedure
one major difficulty is that too many path formulas (possibly infinite) needed
to be considered, In the present paper, we circumvent the.above difficulty by
applying the concept of modularity, The idea is to divide a program with overlapping
loops into several small modules. Each module contains no overlaﬁping loops,
hence the path formulas for each module can be derived. "By combining the path
formulas for each module, one can further obtain the path formulas for the given
program and then use them to verify the program.

In the next section, some définitions and preliminary results are given,

In section III, an example is used to illustrate our method.

IT. Preliminary Developments

We begin with the following definitions.
Definition. A program consists of an input vector % = (Xl""’xL)’ a program

vector ¥ = (¥y,...,¥y), an output vector z = (215+++52y), and a finite directed

(2)

graph (V, A) such that the following conditions are satisfied:

1. In the graph (V, A), there is exactly one vertex, called the

starting vertex S € V, that is not a terminal vertex of any arc;

there is exactly one vertex, called the halting vertex H ¢ v,

that is not an initial vertex of any arc; and every vertex v is on
some path from S to H.

2. In (v, A), each arc a is associated with a quantifer~free formula

P, (X, §) called testing predicate and an assignment Y*—fa(ﬁ, v).
3. TFor each vertex v, let 215+++5a,. be all arcs leaving v and let

Pal,...,P .

87544258, respectively., Then for all X and ¥, one and only one

5. De the testing predicates associated with arcs
r

Pal (%, §)""’Par(§’ y) is true.

To analyze a program, we associate every vertex v in the program with an

access predicate Qv(i, ¥) (or Qéi, z) if v=H), which represents the condition

that control is passed fromvertex S to vertex v with the values of the input and
program vectors being X and ¥ respectively (or the values of the input and the
output vectors 5eing X and Zz, respectively). Using access predicates, we can
associate a path from vertex v to vertex u with a logical formula, For example,
if a path consists of only one arc a with v and u being the initial and terminal
vertices of arc a, then a formula Wé associated with path a is as follows:

| Wi QE Y &P R V) QG & T
This formula indicates that if control is at the initial vertex v of the path with
the values of the input and the program vectors being x and ¥, respectively, i.e.,
Q (X, ¥) is true, and if P,(X, ¥) is also true, then control will pass along to the
terminal vertex u of the path, with the value of the program vector changed to
Q, (%, f_(%,7))

£4(%, ¥), i.e., is true. In the subsequent section, we shall first find

T

(3)

all paths for S to H. Then we shall associate a path (from § to H) with a
logical formula (called path formula) for describing control passing aleng
the path. Once path formulas for a program are obtained, they can be used to

prove the program correctness.

III. Main Result

In a flowgraph, we say two loops are overlapping if they share some common
arcs. In [1] only programs having mno overlapping loop .are considered. In this

section, we give an example to illustrate how to derive -the path formulas for

programs with overlapping loops. This example is taken from [3] with modifications.

Example:

Consider the program shown in Figure 1, where x is a non-negative integer.

. This program calculates the sum of VE: Vri..., VFE, where Vi is defined as

an integer k such that Kk? =1 < (k+l)2. Prove that this program is correct,

fie., z= VI + V3 +.,.+Vx,

Figure 1,

(4}

The regular expression [4] associated with the flowgraph is a(be(de)®e)*£,
This means that for an input x, if the program is going to terminate, the
control has to take the path from vertex § along arc a to vertex 1, then take

the path "be(de)*e" a number of times (possibly 0) and back to vertex 1, and

finally take arc f to vertex H, Each time the control takes the path "be(de)®e",

it has to take path be, then takes path de several times (possibly 0) and
finally takes path e,
The flowgraph of Figure 1 has an overlapping loop. Let us first consider

the portion of the flowgraph within the dotted line and redraw the flowgraph

0,
Y+ yl + 1
Yy 0
V5o 1

as follows:

b

Y3*_ Y3 + 1
V5 ¥t 24d e V4T Y, F s

e | V3o Yyt ;3

Figure 2.

Now this flowgraph does not contain overlapping loops. Thus, we can apply the
procedure in [1] and derive the following path formula:

(12$(y1+1) Y&. ., &(ﬁz;é(yl+l) V& ((n+1) 2>(y1+1))—>Q1 (y1+1,y2+n,n, (n+1)2,142n),
This formula means that if the control begins at vertex 1 with the program

vector (yl,yz,yS,y4,y5) and takes the path be(de)?e and arrives at vertex 1",

then the program vector will become (yl+1, y2+n,n, (n+1)2,1+2n), This will

T

(5)

happen 1if the conditions (n+l)2>(yl+l), nz?(yl l),...,lz?(Y1+l) are satisfied.
Now we can simplify the original flowgraph into the following one, where
&, denotes the path bc(dc)ne and n denotes the number of times the control has

taken path dec.

Y1+0
YZ*“‘O

yp#e &L ? o (5141) Jaln2h(y, +1))

yl<— yl+l
¥o© Yo
Yj* n

_ LA (n+]_)2
Figure 3, Vg 1+2n

Notice that the new graph does not contain an& overlapping loop. So we can
follow the procedure described in [1] to derive path formulas for the following
path types:
(i) Path type af
Wagt x=0-Q,(x,0) (1)
(ii) Path type agnlgnz,., gnmf
Wagnlgnz...gnmf: Ofx & (n1+l)2>1 & n%}l
2
& 1#x & (ny#1)>2 & nd2
& ...
2 2
& m-l#x & (nm+l) >m & n 4m

& m=x —> Qqx, npin tooitn), (2)

2

Using these path formulas, we can prove the program correct. Since x is zero

Or a positive integer, we consider the following two cases:

(6)

Case 1., x=0

Using (1), we obtain QH(X,O). This implies =z=0.

Case 2. x =0

Since x > 0, we can find integers My My, n2,...,nm such that m=x, m-1#x,
+vey 0#x, and n1=1 (i.e, (nl+l)2>l & ni ?1),
. 2 2
n2=1 (i.e. (n2+l) >2 & n, ?2),

LI

. 2 2
n = maxf [£2 #m] (i.e. (D" m & n Bm).
Applying (2) we obtain QH(x, n1+n2+...+nx). This means that z=njtn,t...4n,

=VI + V2 + ...+ Vx. Q.E.D,

IV. Conclusions

For some programs with overlapping loops, it is possible to write down the
path formulas as described in 1) without dividing the program into several
medules, For instance, in our previous example, one can write down the following
path formula: a(be(de)"1) (be(de)"2.). .. (be(de) Pmyy ¢ However, as those path
formulas are usually very complicated, it is rather difficult to deduce the desired
program specifications from them,

In this paper we have considered the problem of verifying programs by using
logical formulas. Our method extends that in [1)] with several important features,
Based on the concept of modularity, our method can be used to verify programs
with overlapping loops. Another definite advantage of dividing programs into
several modules is that one can easily locate the error of a program in case

there is any,

(7}

It is obvious that the concept of modularity should play an important
role in verifying programs. However, it is still not clear how to divide
a general program into several modules in a most convenient way., Much future

research effort should be led to this direction,

T

References

1. C. L. Chang, R. C. T. Lee and J. D, S5lagle (1974): ™A Direct Method
for Verifying Programs", submitted for publicaticn,

2. C. L. Chang and R, C, T. Lee (1973): Symbolic Logic and Mechanical
Theorem Proving, Academic Press.

3. S. M. Katz and Z, Manna (1973): "A Heuristic Approach to Program
Verification", Proc, of Third International Joint Conference on
Artificial Inteélligence, Stanford University.

4. M, Minsky (1967): Computation, Finite and Infinite Machines,

Prentice-Hall.

