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ABSTRACT

A convergence theorem is presented for the standard column generation
algorithm which embodies GLM. The prihmary extension of earlier pub-
lished theorems is the allowance of equality constraints. A related

stability theorem is introduced to demomstrate robustuness.
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INTRODUCTION

We are concerned with solving semi-infinite linear programs using col-
umn generation. This embodies the Generalized Lagratige Multiplier method
-
(GLM) when the multipliers are searched by linear programming. Our
main result may be considered-én extension 6f Nemhauser and Widhelm's
(6) convergence theorem. They extended the earlier work of Brooks and
Geoffrion (1) who first observed the relation to the Dantzig-Wolfe de-
composition principle. Subsequent analysis by Murphy (5) showed when
old columns (previously generated) may be dropped while preserving
convergence. Murphy's laws remain intact under the more general the-
ory herein described.
Earlier analysis (viz., .(1):and (6)).:assumed inequality constralntsisatig—
fying Slater's imgferiority condition (J), so their hypothesis could
not be satisfied by the usual transform of an equality constraint to
a pair of inequalities. Further, their theorems are stated in such a
way that the presence of gaps leaves the question of convergence (and
meaning of a GLM solution)'éﬂanSWeredL By taking a different approach,
based partly on Charnes, Cooper and Kortanek's semi-infinite program-
ming duality (2), we shall resolve both of these difficulties. An-
other result we observe is that the Nemhauser-Widhelm conjecture on
redundant cuts is false.
In addition, we investigate a related question of stability and dem-
onstrate infimax value convergence even when multipliers (ise,,:duil

variables) do not exist. f v



PROGRAM DESCRIPTION

Let us now specify the problem under study and point out some basic
properties. We suppose we are given the ordered.set,: (8,f;g;P), where
(1) § is a nonempty, compact set in Rn,
(2} £ is a continuous functional on S,

. m
(3) gisa gqn;inuogs_fun;tion from.S into R,

ULWheiE'EaQ§f§&~

. 4y ¥ is a relatiomal “vector;
P !“",OI"E‘;' T ol

policies to be; :

‘ SW_-.éX in §: 'W(X)?O}"( :
Now we are ready to define the set of such functionals induced by S5,
namely,
= o \ e a-, = ll”;
Wz fwr 590,1] ¢ I8 e an gsww(z:) ¢
Notice that the normalizing summation is well defined since there are

only a finite number of used policies (i.e., ISW’ is finite ).

We next define a linear operator on the induced set of functionals
_ k .
which we call the "expected value" of a function,F:S5»R ; thatiis, i
E_(F) = > a(x) F(x).

XESw '

The semi-infinite program induced by (S,f,g,f) is now defined to be
Maximize Ew(f):w in W and Ew(g).P 0.

The decision elements in the above semi-infinite program are the
functionals in W. One may interpret these as "mixed-strategy sol-

utions" to an ordinary mathematical program of the form,

Maximize £(x) : X in S and g(x)‘P 0.



If we restrict the semi-infinite ve|
rogram t =
: prog 0 have(8 \— 1, then we have

a natural correspondance with the ordinary mathematical program, and such
>
. 4 1
decisions are called "pure-strategy solutions." Thus, one may consider the
semi-infinite program to be a relaxation (or linearization) of an ordinary

mathgyag a@igrqgram. “It”is easy to prove thet GLM solves the semi-infinite

the well known saddle point theory applies

When the ordinary program is convex;
which is equivalent to streng Lagrangian duality. Equivalently, one may note

that every mixed-strategy, w, is dominated by the pure strategy having x=E (X}
. R

where X is the identity fumction, X(x)=x. When convexity structure is

not present, weak Lagrangian duality still applies, and thls is the

foundation of GLM. The standardﬁcqlgmn:%eneratlon method applled to

the set of generated policies, say [X %f

4
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strategy is found from ordinary linear programming. Using

the associated dual variables the Lagrangian is maximized to generate ot

and a sub-optimal mixed-

o

deduce optimality. In the former case the process continues and may become of in-

finite duration. o
Finite termination results in an optimal mixed-strategy solution and a minimal
multiplier (associated with GLM). Our concern is with infinite duration and

optimality of 1limit points. (It should be noted that tactical variations, such



.~ .For the case of'allfihéqualities (where P, is '¢' For all i) the Nemhauser-Widhelm

theoren séys thét.if.g(x)410 for some x in §, and if there is no duality gap, then
convergence is assured. Their result (and proof) is essentially the same as Zang-
will's (8) application of his cutting-plane theorem. Zangwill's assumption of con~
vexity was only to set up the duality and dismiss the gap problem. His dual conver-
gence proof does not rely upon any cogﬁexity_structure in the primal. Tt should be.
noted that the Nemhauser-Widhelm theorem leaves dualrconvergence in doubt if a

nogap prevails. 1In the next section a more general theorem is presented to

resolve these difficulties.

An examination of Zangwiil's proof reveals that we need only be able to set up.an

appropriate dual where the column generation procedure (applied to the primal)

‘cotresponds £o 4 cutting-plane procedure (applied to the dual). Then, 1t ?écomes

4

 7faamétte£i;f“$ou;éing the dual variables. é;gis is where Slater's con@itién is
.” ﬁséé;)
The dual of interest here is as follows:
Minimize z: v In Y and
z +y g(x) z'f(x) for all x in S,
HWhere YEE{y in Rméofiyi for i:Pi is not '=1}. Using the Charnes-Cooper-

Kortanek theory (2) we need only establish "canonical closure" in order to deduce

the stwvong duality relation. First, the compactness and continuity assumptions

imply a compact range of (f,g) on S, so it only remains to construct a point

—_— . [, -

. in dual space to satisfy their "uniform Slater conditiom.’ This'is_achieved ;f *. ﬂ-ﬂ

1S
il

R - . - (. ‘ o
by setting y = 0 and =z 1+ Max'if(x);"x ip S}? for then we have ¢ .

Zf(x) + 1sfor’all x.in.S.

z + v g(x)
It now remains to provide a qualification on g that ensures a dual solution. To

that end we define the



)
kY

There eX .
1st
S POlntS ln 5 for each i= 1 C
se ol as Folloua:

j . s ! '

g..j('ul)f 0 ;
; for 3 .
gﬁ(vl)ﬁ 0 TiFd

quall_y cons_ra1nts onlv {3) applies, so the extended Slater
'Condltlon assumes the ex1stance of 2m voints with (3) holding. Since
inequalities can be converted to equalitieszby adding a slack or surplus

variable, there is no loss in generality to always assume 2m points satisfyving

2

'&' and we convert to gl(x) + &° = 0, then v

(3). For example, if we have,fi as

suff1c1ently large for an arbltrary X in S Only existance

-ex1sts_by ch0031ng s1

ster conﬁltion 51nce ‘we mav have ‘the:

_”ca is: weaker than the usual

points, iu_n_, and not have a single point, say %, such that g(x){0. O0f course,

if g is explicitly gquasi-convex, then the conditions are equivalent by defining

= (;Egui) /m.
1 -

:e that the Extended Slater Condition is sufficient to bo

i 1 ithout loss
s in optimality. First, observe that z can be bounded wit

‘constant K

_ U
in optimality (trivially), so there ¢ sue@ﬂﬁget.?:. y g

restricted to

n particular, by setting X = u and then.to' v



Hence, Zangwill's theorem may now be applied to prove the

DUAL CONVERGENCE THEOREM:

k

Suppose gyt} are dual variables generated by the column generation procedure and
(]

g satisfies the Extended Slater Condition. Then,

, . . t
(1) there exists at least one limit point of %y ,

(2) every limit point of g;%% minimizes L*(y) = Maxn{f(x) -y g(x) : x in %}.

Thus, dual convergence is assured under mild assumptions {even when there is a
Lagrangian duality gap). Notice that the Nemhauser-Widhelm example (5, p. 1055)
cannot happen under these assumptions (which are implied by theirs). 1In fact,
every cut generated in multiplier space by maximizing the Lagrangian supports
the epigraph of L* and hence cannot be redundant as they conjéctured. However,
since the converse is also true (i.e., the cut is a dual support only if the

Lagrangian is maximized), redundancy may arise from variation in pricing. (3, e

not actually maximizing the Langrangian, but merely look for improvement) ,

Now let us consider convergéhce”injtheiprimal-functional space. At each

iteration we have an optimal mixed~strategy solution,:wk, to a relaxed probleﬁ

which ignores those policies not generated or those which are dominated by

the present set of generated policies. Since W is not compact, {wkg need not.

have a limit in W. However, let us supposefﬁg?is a limit point of gwk} and thg%f-"

wPis in W. Furth mixed=strategy solution.

From elementary duality we have .. . ...

Ewk(f) = 2% $Inf {L’S(y)} = E"W*(@‘?»

where w¥ ds an optimal solution. Therefore, w is an optimal solution, and



PRIMAL CONVERGENCE THEOREM:

Under the assumptions of the Dual Convergence Theorem every limit point

of {wﬁfis an optimal mixed strategy.

STABILITY
We now consider a relaxation of the Extended Slater Conditiom to require
only feasibility and consider limits of perturbation. Namely, consider the
perturbed program,

. . a f . - é i . _

Maximize E_ (£) Ew(gi) £ for i ﬁ; is 'z

Z - { =] i Tt
B (g,) Z-gfor itf; 1s >

;,37 £ Fir( 2 G for 4:f. is =" cnd ow oo ¥
£ < W\gi) £ g 0 1f1

and w in W
where £>0. Our concern is withE-—a‘*O_'_.

3
From the Dual Convergence theorem we know that a dval solution, say v , exists

(and may be approached) for any & 20.

First, consider the perturbed dual helow:

Minimize z: v in Y and

z" Yy g(x) = f(x) + q€ for aij .
We have o S}
Lim ze = 711 '
e of im Inf ), z + vy 2
+ir EBor ¥ 8(x) = f(x)of
+ Xi4q for all x 1 }
5 + 4 n 8,

.=€£3§+{Inf {L*CY) + qﬁf}

= Inf{L*(y?} + 1im &
£ S L



Therefore, zi#ini'iL*(&ij &f é@O, Te prove the latter recall thHe bounds

dertved earlier,.sb thiat there exists-cqnstant53 Kl and X2, such that

El. g oo
]yi:]'" %'\:z—,

where K2#£0.this implies

Iq?,g m K1 & "
K2 - ¢

&
so g=»0.

We have now proven the

PERTURBATION THEQREM:

£ )
Let y solve the perturbed program. Then, for84(hﬂ the minimax value
vt rnzof the Lagrangian (i.e., L*(&E)) converges to the infimax value of the

original program (i.e., Inf L*(y))

In ciosing it is also interesting to note the effect of approximation when
maximizing the Lagrangian. Suppose we only generate £-solutions so that
k . |
x need only satisfy
k ke 2 .
FE) -y s(x) = x5y} -£.
Then, this merely redefines thHe dual constraints to be

z + yvg(x) 4 f(x) -€ for all % in S,

It is easy to see that
26) = Inf JL5(y) - €}= Inf §L5(3 - €,
so z(&) = z(0) =&

This means that the minimizing multipliers, if they exist, are still
minimal in the dual approximation resulting from seeking &-solutions when

"maximizing" the Lagrangian. . .
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