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Abstract

This paper considers the design and evaluation of memory management
algorithms to be applied to multiprogramming computer systems with virtuél
memory. The operétipn of the Denning working set algoritbmris studied and
is recognizéd to be a replacemeht process of time indices based on a rule
closely related to the replacement rule of the First-In-First-Out replacement
algorithm. Basing on these analyses, &8 framework in the time domain is then
proposed. A duality rule capable of transforming a replacement algorithﬁ
in the space domain into a working-set-like algorithm (retention algorithm)
in.the time domain igs designed, Some properties of these newly-designed
retention algorithms are derived. The performances of some fetention
algorithms with respect to their space duals are experimentally gstudied by
gimulation. . Results show generally better performance for retention algorithms

than for their space dual replacement algorithms.



Key Words and Phrases: Memory management, Space sharing;-dynamic storage
allocation, multiprogramming, virtual memorys, working sets, replacement
algorithms, program behavior, retention algorithms, space-time duality,

demand—-paging.

CR Categories: 4,30, 4.32, 4,35, 4.6

ey T



1. INTRODUCTION

This paper is concerned with the problem of dynamic memory management in
2 multiprogrammed computer system capable of supporting multiple virtual address
spaces [1]. The basic hardware configuration, which includes a hierarchical

memory system consisting of two levels, is presented in Fig. 1. There ate in

e, o

the system & numbér of processors having direct access to main memory, but not
to auxiliary memory. Therefore, {nformation to be processgd must be resident
in main memory at the time it is used by the processors. In general, main
memory.is of very.limited size because it is made up of fast and therefare
expensive memory devices, whereas auxiliary memory has 2 much larger capacity,
but is relatively.slow.

The rationale behind a memory hierarchy is the basic gize~cost~performance
tradeoff. If the memory hierarchy is intelligently managed so that information
needed by the processors is found for mest of the time in main memory, then a
memory system with access time close to that of the main memory, but of a larger
capacity and at 2 lower cost, is achieved. Finding an intelligent way to useé

a memory hierarchy is the objective of the memory management problem.
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Figure 1. Basic System Hardware



The system in Fig. 1 is assumed to be multiprogrammed even if it may

T

contain only one central processor (i.e., several processes are being

concurrently executed and therefore parts of their programs and data must be
in main memory at any instant). The partitioning of main memory may be static

(i,e., each program is given a fixed portion of memory for as long as it executes)

—————

or dynamic (when the partitions separating the precesses in main memory are
allowed to vary in time), Since the memory requirement of a program 1is 1ikely -
to vary during éxecution, dynamic partitioning can provide, if the moving of
partitions is properly handled, better memory utilization and higher system
efficiency [2].

We also assume that the portion of main memory allotted.to a process
(either statically or dynamically) is in general not sufficient to contain all
the informationgcf that process. 1In other words, only portions of a process'
virtual address spaée can be mapped into that process‘. aliotﬁed'physical memory
§pace at any given time.

A well-designed memory management scheme has to deﬁermine for each process
which part of its'virtual address space should be placed into its curremnt main
memory allotment SO that the goal of minimizing information £low between levels
of the memory hierarchy can be achieved. In other words,.é process' working
information (i.é., that part of its virtual address space.having the best
chance to be used in the immediate future) should be.estimated. 1f main memory
is assumed to be dynamically partitioned in the system in Fig. 1, the methoﬁ uged
ro dynamically.estimate a process' working information’should fit nicely into

guch a memory management scheme.



The problem ofrprogram working information estimation.has attracted a
lot of attention in the past, and a fair number of algorithms have been
proposed to tackle it. Some of these algorithms have actually been implemented
ecither in hardware or software in existing systems. To facilitate thelr
discussion, we éhall assume that in our system virtual memory is implemented
by the paging techmnique, i,e., that memory management deals with uniform-size
blocks called pages [1}. Furthermore, we assume that paglng is done on a demand
basis. This means that no pagés are loaded into main memory until they are
referenced. Then whenever a page is needed and not found in main memory, an
interrupt, called a'Eag' ault i{s generated, and page 1oading is performed

through this page fault mechanism,

Under these assumptions, the task of estimating a program's working information

can be simplified. 1In the case of static memory partitioning in which a program
is allocated a fixed number of page frames for execution, thése page frames are
first filled up one at a time. No memory management actions are taken until

an additional page is néeded and no vacant page frame is found, Then an

algorithm, called a replacement algorithm, is activated that selects for removal

from main memory one page among those currently present in memory to make room

for the incoming page. Different ways to select a page for replacement result

in different replacement algorithms, If main memory is dynémically partitioned,

it is desirable that an algorithm used to estimate a prograﬁ's working information.
has the additional_capability of estimating the program s current memory demand

o as to facilitate the dynamic partitioning of main memory among several programs.
As page loading is done on demand, this amounts to determining how many and Whlch
of the previously loaded pages retain in main memory as_the ‘estimate of a program's

current working information.
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In a paging:system, the representation of a program's dynamic behavior

can also be simplified, since an address trace, l.e., the sequence of virtual i

addresses generated by the progtam during one of its executions can be replaced | :

by a string of page numbers called a page trace or & reference string., Let
alaz.,...at.....a£ be an address trace representing a program; where a; is a

virtual address referenced at virtual time t (virtual time is taken to be

discrete, t = 1,2,3,...,3). Then, if r, is the page containing address aj,
rlrz..,.rt....rz is the pagé trace. Since virtual time is measured diseretely,
t is actually an index to the reference T, in the page trace. Consquently,

we will refer to t as the tiﬁe‘index of the'réfefeﬁcé ry. UNote that, in general,
 the lengths of (virtual) time intervals between successive references in the
reference string differ from each other. But these time intervals are actually
very short with réspect to the time required to move a page between 1evels of
the memory hierarchy so their variations can indeed by neglected in our study.

Tn the next section, we shall review most of the methods proposed so far to

estimate a process' working information.

II. REPLACEMENT. ALGORITHMS AND THE DENNING WORKING SET ALGORITHM

As mentionéd in Section I, replacement algorithms are gsed to estimate
a program's working information in a fixed-space eﬁvironmeﬁt, and different
replacement algo'r_ithms are characterized by different replacement rules, .Which,
in turn, can be traced to some (generally heuristic) models-of program behavior.
More specifically, suppose that a program has n pages and is given m page framés
in main memory for execution, where n > m = 1. Then, oﬂce the m page frames

are occupied and an additionmal page is referenced that is not one of those pages



currently contained in the m page frames, a page fault ia generated, A
replacement algorithm is then activated which selects one outl of the set ol
m pages for removal from main memory according to its replacement ruie.

It is clear that the above situation corresponds to a uniprogramming
system in which only one program is given control of the system, or to a
statically-partitioned multiprogramming system in which each program is given
a fixed portidn:of main memory for execution, Replacement algorithms applied
in these situations are said to be lgggl_algorithms as they'deal with.a single
program, Only when replacement algorithms are locally applied can we talk about
the models of program behavior underlyiﬁg them. Indeed, local application of
replacement algorithms was the framework aséumed when they were first.proposed
and studied [3 - 5]. |

However, the same replacement algorithms can.be applied to multiprogramming
systems without any modifications, provided that the virtual address space in
such applications is taken to be the sum of virtual address spaces belonging
to all processes pértially 1oadéd in main memory. Thus, no distinction is made
between pages belonging to different concurrent prograﬁs even though these

programs can be logically independent. This is called the global, or system-wide,

application of replacement algorithms. Since global replacgment algorithms may
' cause an excessive paging activity {the thrashing phenonenon i61), we shall
restrict ourselves to the local application of replacemenp'algorithms.

Given any program with n pages$ and main memory space of m page frames with
m < n, the requiﬁement placed on a replacement algorithm as a tool in memory
management is to make nwigse" replacement decisions so that a minimum number of

page faults is genefated when this program is executed in the allocated main
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memory of m page frames, The questions to ask are: (1) whether a minimum

can actually be attained, and (4i) what information is required to do so.

These questions were first answered by Belady [4] who proposed the MIN replacement
algorithm, The principle of optimality underlying MIN states that at each
replacement the page that will be referenced next in the most distant future
should be replace&. Accordingly, knowledge of the future reference pattetn is
needed in order to make a current replacement decision, Thus, even though MIN
yields a minimum number of page faults When a program completes execution, it

is nonetheless unrealizable. It should be noted that MIN assumes no model of
program behavior énd can be applied to any program,

Realizable replacement algorithms, however, cannot waif for future
information and must rely on past information about a prpgpam'é referencing
pattern to make replacement decisions. Different replacement rules use this’
past information in different ways and each particular rule reflects aJparticular
assumption about how a program makes references to its pages, OF how a program
behaves, which we call an underlying model of progfam behavior. Inspired by the
true principle of optimality discqssed above, all these algorithms use an
"informal principle of optimality" that states that the pagé to be replaced is
‘that which has the longest expected time until next reference [7]. Of course,
the program model underlying a replacement algorithm plays an important role in
the estimation of a page's expected time until next reference. Thus, after
initial loading, a replacemént algorithm always attempts-to keep iﬁ-main_memory
the m pages that have a better chance of being references again as dictated by
its underlying prbgram model, In this way, replacement algorithms fulfill their
role as estimators of a programis working information. But they do not estimate

a proeram's memory demand, as thev are designed for a fixed-space environment.
g y s g



Let us consider, for example, the Least Recently Used (LRU) replacement
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algorithm, When & page faults occurs, LRU selects the page that has not been

referenced for the longest time. As with any other replacement algorithms, the

jdea behind LRU is that a page that has not been needed during the recent past

may have 1ittle chance of being referenced in the near future.

1RU is the most popular stack replacement algorithm. A replacement

algorithm is classified as a‘StaCk algorithm [5] if for every page trace and

at every point in time along the page LTace, the "inclusion property" of memory
contents holds,_that is ,the set of pages contained in an m~page—frame memnory

is a subset of the pages contained in an (m+l) - page -~ frame memory, for all
m+1=<mn, A sufficient condition for a replacement algorithm to qualify as

a stack algorithm is that it induces a total ordering of all previously
references pages at every point in time and bases its replacement decisions on
this priority 1ist. In stack processing, at every point in time, every page

in the program has a position, finite or infinite, in the:stack. All previously
referenced pages have a finite stack position; & page at the kth position:in
the stack at that instant 1s contained in a memory of at jeast k page frames,
but not less. Pages that have not been referenced before are assnmed to hane a
stack position at infinity. The stack is updated at every reference in the page
trace and updatiné is based'on the priority list induced by the replacement
algorithm. The stack position of the page just referenced pbefore the updating

of the stack is called the stack distance; clearly, & distance striqg_corresponds

to any given reference string for a given stack algorithm,
The model of program hehavior underlying the LRU replacement algorithm

(known as the LRU stack model [11]) can be obtained by assuming the LRU distance



string to be a séqueﬁce of independent and identically disﬁributed random
variables and by superimposing a probabilistic structure on the LRU stack
positions: for any stack position 1, 1 =1 =n, Py is‘defined to be the
probability that the page in this stack position will be referenced next
(of course, these probabilities sum to 1), If, in addition, these probabilities
are monotonically decreasing (p; = py = seeeoZPy), then siﬁce pages are
arranged in the LRU stack a;cording to their reéency of reference, the page
that is least recenfly referenced then has the smallest.probability of being
referenced nexf and hence is the candidéte for replacement if it is in memory.

Tt can be shown [8] that the monotonically decreasing probability
distribution defined on the LRU stack positions in this model does guarantee
the implementation of the "informal principle of optimality"in page replacement
for the LRU replacement algorithm., That is to say, the least recently used page,
and hence the page with the smallest probability of being referenced next
according to the LRU stack model of program behavior, is indeed the page with
the longest expectéd time to its next reference. |

The question of whether there is a "best" replacement algorithm for a giﬁen
program or set of programs must unfortunately Be'given a negative answer:. our
as yet limited experimental findings (see for example {9]).seem to indicate that
a program does not_generally behave according to any single program model; rather,
its behavior may be represented as a "shronological" mixture of sevéral models,

Unlike replacement algorithms, the Denning Working Set algorithm (DWS) tries

to dynamically estimate not only which subset of pages a program requires, but
also the cardinality of such a subset, i.,e., the memory demand of a program,

DWS produces a subset of a program's pages at every point t in time, called the



working set at time.t, according to the program's past referencing pattern,
and uses 1t as an estimetor of the program's current wofking information.
Not only are the contents of such working sets a function of time, so is
their cardinality.

If rlrz,..rt..,rﬂ is a program reference string, then the working set of
pages at time t (1=t=f) is the set of distinct pages refefenced in the interval
[t-T+1,t] inclusively, where T is a parameter of DWS called theé window:eize.

The working set at time t is denoted by W(t,T), and its cerdinality by wft,T).
Conceptually, the procedure for computing the worklng set according'to the DWS
algorithm can be considered as the one of sliding a (backward) window of constant
size T along the reference stfing and extracting the set of distinct pages
referenced within this window.

Tﬁe most important difference between DWS and (local) replacement algorithms

.is that DWS, Wﬁich has the capability to estimate an individual program's memory
demand, is suitable to use in systems with dynamic memoryepartitioniog. Also,

Denning [6] recormends a working set principle for memory management which states

that a program may be active (i. e,, eligible to use a processor) only if its
working set 1is 1oaded in main memory. Denning shows that, if the worklng set
princlple is followed the thrashing phenomenon may not occur, Thus, DWS is a
memory management algorithm which can interact with the echeduling'component
of the operating system Lo avoid thrashing.

How is the procedure for computing the working sets_by;DWS related to
program feferencing_petterns? An answer to this questioﬁ will be given in the

next section.
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ITI. SPACE-TIME DUALITY BETWEEN MEMORY MANAGEMENT ALGORITHMS

In Seection TI, we have seen that. conceptually, the application of the
DWS algorithm involves sliding a window of constant gsize T along ﬁhe reference
stfing and at every time instant using the references covered by this window
to identify the working set of pages. Now it should be clear that for any
given reference string of length {, any subset of time indices of the set
{1,2,...,£} uniﬁuely_defines a set of distinct pages. Then the process in
which the DWS algorlthm computes a program's working set can be viewed as one
in which a subset_of time indices is collected at every time instant (i. €.
the set of time indices within the constant-size window) for the purpose of
identifying the.wnrking set at that instant. We shall noﬁ show that this
collection proéess éan jndeed be interpreted as a replacement process.

When t=<T, the window éovers the references rlrz....rt,-and when t>T, it
covers the references rt—T+l""rt‘ If the window is thoﬁght of as a container
capable of holding T time indices, then it is first filled up with the iniﬁial
T time indices. At t = T, the window is full and contains the set of time

indices {1,2,...,T}. At t = T+l, the window will contain the time indices

{2,3,...,T,T+1}, Thls change in the contents of the w1ndow from t = T to t = T+l

is clearly a replacement process in which the time index l is removed from the
window to make room for the time index T + 1. The same replacement procedure
repeats itself at t = T+2 and beyond, up to t = £,

This alternative description of the process involved in applying the DWS

algorithm would be uninteresting if it were not for the strong analogy it bears

to the process involved in applying any replacement algorithm. While replacement

[ S, S el
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algorithms are designed for a constant-space framework, the DWS is seen to
operate with a constént—size window; While a memory spacé Qf constant size can
contain a fixed number of pages, a window of constant size is seen to be able
to contain a fixed number of time indices. When a fixedméiZe memory space is
full and a new page is needed, a page 1s chosen for replacement by the.incoming
page: this is the replacement process associated with replacement algorithms,
When the fixed;size window is full (for t=T), a time index is chosen for
replacement by the next time index: this is the replacement process associated
with the DWS algorithm.

There are twbsapparent differences between these two types of replacement
-process, First, for replacement algorithms, a replacement of pages is not
necessary for.every reference even when the memory space is full. This is so
because references at different times can be made to the same page. But a
replacement of time indices is necessary for every reference in applying the
DWS algorlthm once the window is full, as no two time indices are the same,
Second, once the memory space is full, a replacement algorithm uses the fixed
number of pages currently in main memory as an estimate of a program's working
information. But under the DWS algorithm, the working set size can change
dynamically, as references corresponding to different time.indices can be made
t6 the same page..'These two differencés are indeed complementary in nature.

On one hand, no replacement (of pages) 1s needed for eﬁery reference but no

(or just a constant) memory demand of a program is estimated. On the other hand,
a replacement (of time indices) is necessary for every reference but the memory
demand of a'progfam is estimated dynamically., In fact, this is a classical case
in which the complexity (and hence the cost of implementation) of an algorithm

is traded for its performance.
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As replacement algorithms are characterized by replacement rules, it 1is
of immediate interest to find out what rule guideé the DWS replacement pfocess.
It is easy to see that, by proper interpretation, the replacement rule
associated with DWS 1s closely related to that for the First-In First—-Qut
(FIFO) replacement algorithms, which assigns the lowest priority to the page
that has been réferenced first.

At time t = T; the window contains timé indices {t—T*l,t-T+2,...,t};
at t+l, the contents of the window change to {t—T+2,t—T+3,;..,t,t+1}. Clearly,
in order to admit the time index t+1 into the window, the time index t-T+1 is
selected for rémoval, and this time index always corresponds to the page that has
been first referenced among all pages in the current wofking set. Note that
there may be more than one time index in the window corresponding to this page
in the working set; in such cases, t-T+l proves to be the smallest such time
index, Thus, the replacement rule (of time indices) for the DWS algorithm can
be stated as follows: Replace the smallest time index that corresponds to the
page which has Eeen referenced first among all pages in the current Working
set, In other wor&s, in the replacement prbcess associated with the DWS
algorithm, the time index replaced corresponds to the loweét-priority page in
thé ﬁorking set, and the page that is assigned the lowest priority ameng all.
pages in the working set is the one that has been first.reférenced.

Thus, both the replacement rules of FIFQ and DWS assign the lowest priority
to the page whiéh was refefenced first, For this reason, FIFO and DWS are said
to have dual repiacement rules (in fact, the replacement‘rule of DWS will be

called a retention rule)., We shall now define a framework in the time domain

built around the constant-size window in which DWS operates, and define a principle

of duality between replacement algorithms in the space and in the time domains.
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We have seen that replacement algorithms operate in a memory space of
cﬁnstant size, whereas the DWS algorithm éperates with a winddw of constant
gize, Since.a constant-size memory space consists of a fixed number of page
frames each of which can hold a page, it is possible to conceptualize the
constant-size window as consisting of a fixed number of timé frames each of
which can hold a time index. To complete the conceptual framework in the
time domain, the term "window" will be replaced by "memory span". The reason
for this is that, unlike the DWS algorithm which alwayé'keeps consecutivé time
indices so that it makes sense to talk about a window, other DWS-type algorithms
may not always do that and therefore cause the window to_be "broken". While
a framework in thé space domain consists of a memory space with a fixed number
of page frames, a dual framework in the time domain consists of a memory span
with a fixed number of time frames. Algorithms operating in the space framework
to estimate a program's working information are known as replacement algorithﬁs.

We call retention algorithms those operating in the time framework to estimate

a program's working information. The dual components of these frameworks are

listed in Table I.

Table I. Dual Comﬁonents of the Space and Time Frameworks

Space Time
Memory Space . Memofy Span
Page Frame Time Frame
Page Time Index
ﬁeplacement Rule Retention Rule
Replacemeqp Algorithm. Retention Algorifhm
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It has been seen that the DWS algorithm is a retention algorithm which
bases its replaceﬁeﬁt of time indices on a rule dual to the replacement rule
of FIFO, The resulting set of time indices contained in the memory span
(window) is then ﬁsed tb identify the working sét. Thus, one may wonder whether
and how other retention algorithms may be derive& from known repiacement
algorithms, Indeed, the following duality rule can be used to create a
retention algorithm from a given replacement élgorithm.

Duaiity Rule: Given a replacement algorithm X, the dual retention

algorithm DX operating in the dual ffamework in the

time domain replaces the (smallést) time index

corresponding to the lowest priority.ﬁage in the

working set designated by the replacemenf rule of X.

As an examplé,'the retention rule of LRUT, the dual retention algorithm

of LRU defined by this duality rule, calls for the replacement of the tsmaliest)
time index corresponding to the least recently used page in the working set;
LFUT, the dual retention algorithm of the LFU (Least Frequentiy Used) replacement
dlgorithm, is similarly defined. In Tables II and III, we illustrate by an
example how the LRUT and LFUT retention algorithms work. Note that time iﬁdices
contained in the memory span are not always consecutive and that the resulting
working set size varies dynamically in much the same way as with the DWS
algorithm, Note also that, in Table III, laxicographic 6rdéring is used to

break ties for the LFU priority list.

IV, SOME PROPERTIES OF RETENTION ALGORITHMS

In this section, we present a few properties of retention algorithms in
the form of propositions. To this end, the formal definitions of some of the

concepts introduced informally in the pfevious section need be given,
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Definition 1; The alphdbet N = {A,B;C,...} of a progfam is a finite set

of pages the program makes reference to at least once during its execution.

sequence of references, each of which is an element of the alphabet N, For any
reference r., 1 = t = £, t is called the time index of this reference and the

finite set of positive integers {1,2,...,£} is called the index set I of R.

Definition 3¢ A time frame is an information container which either is

empty or contains any time index from the index set I,

Definition 4: A memory span is a finite collection of time frames.
A memory span of T time frames, T > 0, is said to have capacity ot size T.
The subset of time indices from the index set I contained in a memory span

of capacity T at time t is denoted by M(t,T).

Definition 5: Given a program reference string R and a memory.span of cépacity.
T, the working set at time t, 1 = t = £, denoted by W(t,;T), is the set of
distinct pages'corresponding to time indices contained in.ﬁhe memory span,

i.e., M(t.T)., The cardinality.of W(t,T), denoted by w(t,T), is called the

working set size.

Note that Definition 5 generalizes the definition_of the term "working
get" given by Deﬁning [1, 10]. 1In fact, the working set reéplting froﬁ-
Definition 5 (by.any.retention algorithm) is considered to be an estimate of
a program's working information and the working set size its memory demand.
With these preliminéry definitions, we can proceed to define retention algorithms.
Definition 6? A memory management scheme used to dynamically estimate
a program's workiﬁg infofmation and its memory demand is called a reétention

algorithm if an only if
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(i) it has.a fetention rule which, when called for,‘selects a time
index for removal from the memory span of T time frames; a retention rule
may maintain a priority list of pages used by thé program; in case that a
tlie occurs among.several time indices, there must be a tie~breaking rule;
“and (2) 1t operates according to the flowchart shown in Fig. 2.

In the last section, we have seen that useful retention rules can be
designed from the knowledge of replacement rules through the space~time
duality transformation. This idea is formalized in the following definition,

Definition 7: Given a replacement algorithim X with a replacement rule

RRX, then the retention algorithm DX is said to be the dual of ¥ in the time

domain if and only if the retention rule RRDX of DX reads: Select for removal
the smallest time index from the memory span that corresponds to the page in
the working set cohsidered the lowest priority page by RRX,

Nofe thaﬁ, in the above definition, selecting the émallest time index.
among a few time indices all corresponding to the same page is the tie-breaking
rule adopted. It cén be immediately recogﬁized_that the féllowing property
holds for the retention algorithms defined above.

Proposition l: Given any program reference string R ='rlr2...r ...rz,for

t

~all 1 =t = {, the page kept in a memory space of capacity 1_being managed
by any replacement algorithm is identical to the (necessariiy single) page in
the wﬁrking set corresponding to the time index kept iIn é memory span of capacity
1 being managed by any retention'algorithm..

We now consider the dugls of an important class of feplacement algorithms,
the one of stack'algorithms. We recall that a sufficient condition for a
replacement algorithm to qualify as a stack algorithm is that it induces a

priority ordering of all previously referenced pages at every point in time and
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bases its replacemenﬁ decisions on this ordering, Tt haé alse been shown that
priority lists éan be constructed for every stack algorithm [15]., BRecause |
of the priority list maintained by the stack aigorithms, the resulting dual
retention algorithms possess some preperties that are not generally true,
These properties will only be stated here, Their proofs, which are often

easy to construct, can be found in [8].

'Proﬁosition 2: Let X be a stack algorithm and DX its éual'refention algofithm.

Let R = T1Fpee+TreasTp be any program reference string and let T be any

constant such that 1 = T = £, Then when ﬁX is applied to manage a memory

span of capacity T, at every t, 1 =¢ =2, M(t,T) E_M(t,T+l) and W(t,T) € W(t,T+1).
| It should be noted the Propositibn 2 holds for dual retention algorithms

of the class of stack algorithms because of the availibility of a priority

list that orders all previously referenced pages. Furthermore, since W(t,T)

C W(t,T+1) implies'fhat w(t,T) < w(t,TH), we conclude that if all conditions

in Proposition 2 are satisfied; then at every point in time, the working set

size is a non-decreasing function of the memory span capacity T. It should also

be noted thét, unlike stack algorithms, maintaining a priority list of all
previously referenced pages is only a sufficient condition for the conclusions
of Proposition 2.. A case in point is the DWS algorithm, which is the dual
retention algorithms of a non~stack algorithm, FIFo; and jEt possess the inelusion
properties of memory span and working set described in the statement of Proposition
2.

In a stack algorithm, all previously referenced pages ére arranged in a
stack, which is up&ated at every reference according to.the priority list
induced by the stack algorithm. The pages occupying the first k stack positions
will be kept in a memory space of capacity k managed by the stack algorithm

in question., In the case of LRU, the stack and the priority list are identical,
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Because the LRU priqrity ordering of pages is baéed on the fecency of
reference, 1t follows that a memory space of capacity k managed by LRU

always contalns tﬁe.k highest priority pages, namely, the k most recently

" referenced pagés. . This remark is the basis for proving the following lemma.
Lemma 1: Let LRUT be the dual retention algorithm of the LRU replacement
algorithm., Let R = T{TgeesTieaely be any program referénce.string and let

T be any &onstant such that 1 =T = £, Also, let t be any time during the
.program's execution, i.e,, 1 =t = ﬂ.. Suppose that LRUT.is applied to manage
a memory span of capacity T and that the resulting working set at time t,
W(t,T), has a size m, i.e., o(t,T) = m, Then,_if'LRU ig apﬁlied to manage a
memory space of capaéity m and if the set of pages kept in this memory space at
“time t is denoted by B(t,m), it is W(t,T) = B(t,m).

Lemma 1 states that, under LRUT and at any time t, the working sgt of
size ﬁ consists of exabtly the same pages that will be contained at the.same
time t in a memﬁry-space of capacity m managed by LRU. The proof is_baséd
on the faet that with LRU the stack and the priority list.are identical.

This lemma can be used to prove the following proposition.

Proposition 3:: lLet R = TiTpeoclyeasty be any program reference string over
an alphabet of cardinality n. At an& time t, 1 =t = £,

(i) if T is any constant such that 1 < T < £, then there exiéts a constant
ki1 = T such that the pages kept in a memory space of size ky under LRﬁ are |
identical to the working set W(t,T) resulting from using LRﬁT; and

(ii) 4if m is aﬁy constant such that 1 =m = n, then there exists a
constant k, Z 1.§uch that the working set W(t,ky) resulting from using LRUT
is identical to the pages kept in a memory space of siée m under LRU,

It should be noted that, in the above proposition, the constants kj and ko

vary'not only from program to program, but also from time to time during the

execution of any program.
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V. PERFORMANCE OF RETENTION-ALGORITHMS'

Retention algérithms can estimate the memory demand of a program;.this
capability provides valuable information to the scheduler and allows it to
avoid thrashing. From the viewpoint of system cperation, this capability
possessed by retention algorithms has a significant impact because thrashing
is a state in which the computer system practically ceases to do any more
useful work, However, it is not af all clear whether or not this advantage
is accompanied by an improvement of some relevant system performance measures
such as system-ﬁhroughput rate or response'time. To gain some insight Into
the performance of some replacement algorithms and their dual retention
algorithms, an experimental comparison between them has been'performed.

As with different replacement algorithms, the retention algdrithms.we
designed in the previous sections through the space-time duality transformation
are different from DWS in that they monitor a program's working information
according to different retention rules, Therefore, another”matter of interest
in teéting out these newly designed algorithms is their relative performance
with respect to.the DWS algorithm,

These comparisons would be facilitated if there existed a typical program
to serve és a yardstick. Without such a typical program, extensive expérimenté,
performed on real or simulated systems, must be carried oup before any firm
conclusioﬁs can. be drawn,

Only a limited experimental study was carried out in our investigation,
in this study, we employed simulatéd page traces generatéd by a program behavior
model known as the simple LRU stack model [11]. Experimenting with real page
tracesg has the adﬁantage that results are more realistic; IBut local variations
in program referencing patterns in a page trace and therﬁerylnatufe of the

program sometimes not only make selection of a trace or portions of it quite
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difficult, but also subject the results to skepticism. This difficulty can

be resolved if a fairly wide spectrum of representative program traces are

used and enough experimental results collected. However, thils solution is
definitely an expensive one, On the other hand, if only some average statistics
for programs managéd by different algorithms are of inferest, simulated program
traces may adequately serve the purpose, as long as the program model for their
generation.reflects the essential characteristics of the dynamic behaviors in
question, We feel that this is the case in our study and therefore have taken
the latter, less expensive approach.

Two page traces were generated for our study. Since it was the page
referencing patfern, not the page mumbers, that was of intérest, pages were
arranged in ascending numerical order in the initial LRU Staék. Stack distance
distriﬁutioﬁs were obtained from ;hose of real-life programs.reported in the
litérature. The first reference string, which we call trace 1, had an assumed
stack distance disﬁribution identical to that of reference étring #6 in [llj'
with 20 pages., Trace 2 was generated from the stack distance distribution of
the DCDL (Digital Control and Design Language) compiler reported in [12] with
43 pages. In the second case, however, the probabilitiés.of referencing the
first six stack positions, which accounted for 98.34% of all probabilities
were not shown in the curve. These probabilities were found from a rather
straightforward, if arbitrary, extrapolation of the reported curve with the
constraint that all probabilities should add up to 1.0.

Both traces had one million references, but it was soon discovered that only
a portion of each should be used in our experiments for cost considerations.

To select a portion of a trace to use, two sets of tests on trace 1 with the

DWS algorithm were performed, In both sets of tests, the size of the memory
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span (or the window size in the case of DWS) ranged froﬁ 100 to 1COO in
steps of 100, and vélues for the average working set size aﬁd the average
inter-page~fault tiﬁe were measured in each case,

In the first set of tests, three non-overlapping sections of the same length
(100,000 references) were compared. The results were seen to be close enough
for our purpose and the section which appeared to have characteristics between
those of the other two was chosen to be the section to.useiin our experiments,

In no case was the difference between performance measures over 6,5% and the
majority of these differences were well below 2%; In the second set of tests,
the effects of the secfion length were examined and 100,000 references was found

to be a sufficient length for the selected section of the trace.

Thus, the portion of trace 1 starting at the 500001st reference with a
length of 100,000 references was éelected for our experiments. An identical
choice was made for trace 2 on the grounds that both traces were generated with
the same program model énd hence could be expected to display similar dynamic
behaviors. In the seqﬁel, we shall refer to these portions of traces l.and 2
as Trace I and Trace II respectively.

Finally, the page trace generation process was checked by processing
Traces I and IT with the LRU replacement algorithm and.determining the relative
frequencies of reference of different LRU stack positions. Since the page
trace generation process is equivalent to.a sequence of independent and identically
distributed random variables which represent the LRU stack distanées, the strong
law of large numbers predicts that the relative frequéncy of referencing stack
distance k should approach, for a sufficiently long trace, the fixed probability
of referencing this stack distance which was assumed when the trace was generated,.

Also, the results of this last set of tests were completely satisfactory (details

of all tests are reported in [8]).
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Having selectea Traces I and II, four dual algorithm pairs, i.e,, eight
algorithms, were asimulated, These were the FIFO, LRU, LFU and MFU replacement
algorithms and their respective dual retention algorithms, DWS, LRUT,.LFUT
and MFUT, These algorithms were chosen basically for their relative popularity,
In comparing them, three performance measures were of interest: average inter-
page~fault time, efficiency and space-time product. In general, given a page
trace and an algorithm for memoYy management (eithef a replecement algorithm
Or a retention aigorithm), all these performance measures are closely related
to the number of page faults induced by the algorithm in proceasing the page
trace., Of course, the number of page faults is in turn.a function of the size
of the memory space in the case of a replaceﬁent algorithm and of the size of
the memory span in the case of a retention algorithm,

The performance measures selected will now be defined. Let TiToees.Ty
be a page trace having a length £ and using n pages. Let X be a memory management
algorithm; if X is a replacement algorithm, let the memory space capacity be m
page frames with 1 =m < n, and if X is a retention algorlthm, let the memory
span capac1ty be T time frames with 1 =T < L. Let f be the number of page
faults resulting from processing the page trace using algorithm X. 1In the case
Where X is a retention algorithm, let w(t,T) be the working set size at any time
t, 1 =t = £. Finally, let Ty and Tg be the access times.to main and auxiliary

memories respectiveiy, and R be the ratio Ty/ Ty

(a) The average inter-page-fault time, a, is the average number of references

between the occurence of two consecutive page faults, Thus

a= %~ references,

Since a well-designed memory management algorithm is expected to produce  few
page faults, the average inter-page~fault time is a good indicator of this aspect

of memory management as the length £ of the reference string is fixed. Note that
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the reciprocal of a is sometimes referred to as the average paging rate, or
the missing page prebability,
(b) The efficiency, e, for a program's execution is defined as the fraction
of real processing time spent in executing the program, Of course, the rest
of the real proceésing time is assumed to be spent in page waits (here,.as is
usual in this kind of study, user-initiated I/0 activities are neglected).
E'Tm _ 1

e:z = f .

Note that in thé above expression,.only main memory access time, not instruction
execution time, contributes to the program ekecution time, This is justified
because instruction execution time is generally negligible compared to memory
access time in most.modern computers, Note also that if

%-R>>l, thenerzé 1=
f R

=]

Since R is a constant for an experiment, the efficiency wiil be a scaled average
inter-page-fault time in these cases., In fact, this turned out to be the case

in most of our experiments and conéequently we only plotted efficiency in

reportiﬂg our resulté. In general, since the speed ratio R of the memory hierarchy
is in the order of 104 to 105 or higher, efficiency is very low unless f is small
compared to £. An obvious Way.to achieve high efficiency is to allocate

sufficient memory space to the program., But this solution is generally neither

an economical not an optimal way to utilize main memory in a multiprogramming
environment, as a constantly large memory demand by one program tends to interfere
with the execution of the concurrent programs and hence may downgrade the overall

system performance.



27

{c) The gpaceétime product 1s considered to be a measure proportional
to the cost of storage, Belady and Kuehner [13] define the space-time product

during the real time interval (to,tl) as

Ly

C = S 5(t)dt

t
o

-+

where S(t) is the amount of storage occupied by the program at any time t in
the interval (to,tl). If the execution of a program is considered a discrete
process, we can rewrite the above integral, as Chu and Opderbeck (12} do, in

the following way:

c->:sr+zm
: i=1

where Si is the number of allocated page frames prior to.the ith reference and

ts is the time when the ith page fault occurs. For replacement algorithms, since

the memory allocation to a program is a fixed number m, we have
C = m‘E'Tm + f+m-T

Dividing both sides by £|T | gives

Cs = o7 [ | .liml m (L+% +R) page+seconds
m m

As the value of £ and T are fixed for an experiment, Cq isﬁactually'a scaled

spacé-time product, The reason we divide C by the absolute value of T, rather

than by Tm is just to preserve the unit for the scaled sbace-time product,

For retention algofithms, memory demand may vary with time as represented by

the working set size w(t,T); thus the space-time product becomes
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£ £
¢ = E m(t,T)'Tm + E m(ti+l,T)~Ts,
t=1 i=1 '

and a similar scaling gives

£
c,=_ S . Im . 5(T)+§E @ (ty+l,T)
£
2|1y | Tm] 1=1
£
= _ 1 E:: . ' . .
where w(T) = z— w(t,T) is the average working set size.
t=1

In designing our experiments, it was discovered that counting the number of
page faults, f, was not as straightforward for reteﬁtion algorithms as for
replacement algorithms operating in a fixed-space environment. For a fixed-
spéce environment, if the allocated space is filled and a page fault occurs, the
page chosen for replacement is reﬁoved and will no longer e#ist in main memory.
Thus, a lafer reference to this removed page requires moving it back into main
memory and hence always generateé a page fault., On the'other.hand, retention
algorithms monitor a program's working set whose size varies dynamically., When
a page drops out of the working set; fhat is, no more time.indices éorfesponding
to this page are contained in the constant-size meﬁory spén, this page is no
longer considered By the retention algorithm to be part of the program's working
information, and hence the page frame it occupies is available for use by the
same or other, concurtrently executing programs. However, there is no need to
remove this page from main memory unless the page frame it occupies is indeed
needed for placing énother page. Therefore, when this page is referenced again
at a later time, there is a chance that it is still in main memory and so this
reference will not be a ﬁage fault. In this case, we say that the page is reclaimed.

The prbbability that a page which has dropped out of the wofking set is
reclaimed is a function of the system workload, more precisely, of the instantaneous

memory demands of all the concurrently executing programs. In our experiments, .

we consider a fixed probability p to reclaim a page. Thus, when a page dropped
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out of the working set, a random number (uniformly distribﬁted in [0,1})-was
generated for it, which would be compared with the fixed probability p fo
determine whether this page could be recléimed if it woﬁld-be referenced at
a later time. It is clear that.for a series of experiments with p as a
parameter the number of page faults corresponding to the case p=0 is an
upper bound, Similarly, this case gives an upper bound for space-time
product and a loﬁer'bound for efficiency.

In experiments with replacement algorithms, for each page trace and for
each value of memory space capacity, values for the average inter~page-fault
time, efficiency, and scaled space-time product were computed using the
expressions presented above and a speed ratio R = lO,dOO. Likewise, the same
three performance measures were computed in the cases with retention algorithms
for each page trace and for each value of memory span capacity, With retention
algorithms, the peﬁformance measures were also functions of the page reclamation
probability p. In addition, a value for average working set size was also
collected in each experiment with retention aigorithms. With these data, a plot
of a performancé measure versus the memory space capacity.eould be obtained
for each page trace and for each replacement algorithm tested, and a plot'of a
performance measure versus the memory span capacity for-eéch pége trace and for
each retention algbrithm tested.

To compare the performances of different algorithms, iﬁ_particular, the
performaﬁces of a replacement-retention dual algorithm pair,_the problem arises
in comparing plots of the performance measures as functions of different |

independent variables. To get a meaningful comparison, we decided to plot

performance measures on the basis of average memory demand. In the case of

replacement algorithms, we regard the (fixed) memory-spaée capacity to be the
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average memory deménd of a program as estimated by the replacement algorithms,
Retention algorithms, on the other'ﬁaﬁd; do have the ability to dynamically
estimate a program’'s memory demand and in fact; a program'é average memory

demand as estimated by a retention algorithm is just the average working set
size, Therefore, the average working set size curve can be used to obtain plots
of performance measures versus average memory demand. Let PM denote a performance
measuré, let T deﬁote the memory span capacity and let ® denote the average
working set size. Now for each.retention algorithm tested and for each page
tface, two plots; PMvs. T and @ vs, T, can be obtained. Suppose that k is an
integer falling in the range of values of 5, then we can obtain the corresponding
value Ty from the average working set curve, that is, the.ﬁ GS'T plot., Then,
from the PM vs T plot, a value PM;. corresponding to Ty can also be obtained.
Finally. a plot of PM vs k is available which consists of thé points (k,PMk).
This final plot then gives the performance of the retention algorithm on the
basis of average ﬁemory demand., These procedures are schematically illustrated
in Figure 3,

This transformation requires justification. The question is, whether the
ave:age.working set curve 1s a one-to-one function, The answer to this question
is negative as a.simple example will sﬁow: for the reference string ABCABC, the
average working set size using DWS is ©(3) = @(4) = 2.5. However, since LRﬂT,..
LFUT and MFUT are duai retention algorithms of LRU, LFU and MFU which are stack
algorithms, Proposition 2 states that their resulting Working set size at any
time is a non-decreasing function of the memory span capacity, that is, ?
a(t,T) = o(t,T+1), This in turn implies that &(T) < S(T+L) as B(T) - %‘12:; w(t,T).
The same is also true for the DWS algorithm. Therefore, for all four retention

algorithms we tested, the average working set size is a non-decreasing function
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of T. Hence, if for an integral value k, there correspoﬁa a'gfoup of.values
: Tk' these values are'neceséarily congecutive, In thésé caaés, we choose the
smallest such Ty to break the tie, However, in our experiments, no such cases
occurfed. This is also easy to understend, for if T # T,, thgn a(Tl) = 5(T2)
requires 5(t;T1)_= a(t,Tz) for all t. Thus; with t varying between l.and 10°
and with Ty and T, differing for much more than 1, it is highly unlikely that
E(Tl) is equal toxa(Tz), as was evidenced from the results of our experiments,
Figures 4 thrdugh 7 summarize some of the results for Trace T, and Figures
8 through 11 for Trace IT. For each pair of algorithms, there are two flgures,
one for eff1c1ency and one for scaled space-time product so that the relative
performances of theése dual algorithms can be readily compared. Note also that
the scaled space-time product so that the relative performances of these dual

algorithms can be readily compared, Note also that the scaled space~time

L
£] T

is main memory access time. For our experiments, £ = 10° and a typical value

preduct is computed by Cg = C, Qhere £ is the page_tréce léﬁgth and T,
for Tm will be 10"6 sec,, thus Cq is roughly 10 times Bigger than C. Similar
- curves were obtained for the LFU-LFUT and MFU-MFUT pairs and are reported in {8].
For the retention algorlthms DWS and LRUT, quite different values of average
Worklng set size, efficiency and space-time product were obtalned for the same
memotry span capac1ty. However, 1f we compare their performances on the basis of
equal average memory demand, they seem almost 1ndlst1nguishab1e from each other
(see Figures 4 - 7 and 8 -~ 11). Thus, with respect to the traces we Cested, these
two retention algqrithms are almost equivalent in perfofmancg. But for the-saﬁe
MemoYy span capaéii?,'ﬁws seems to always make.a.higher_estimate of ﬁemory demand
than LRUT, This characteristic of DWS may become disadvantégeoﬁs in a heavily

loaded system in.which.memory is always in short supply., =
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As éxpectéd; due to the nature of the page traces used, LRU has the
best performances among all foqr replacement algorithms, In addition, LRU
performs better than Both DWS and LRUT ﬁhen the page réclamation probability
is close to zero, l.e., for p=0 and p=0.1, When there is a highér probability
to reclaim a page (p=0.3), both DWS and LRUT outperform LRU., In contrast, FIFQ
is seen to be outperformed by DWS and LRUT for all values of p, It should be
stressed that, even though a Program trace generated accofding to the simple
LRU stack model is inevitably biased towards LRU, these results seem to indicéte
that for a reasonable probability to reclaim a page both DWS and LRUT have.
bettgr performancés than LRU; Since both DWS and LRUT are retention algorithms,
we may conclude that, just from considerations of the performance measures
we have chosen the idea that a memory management algorithm should have the
capability to dynamically estimate a program's memory demand is a valid one,
Finally, it must be emphasized that the performance data presented here represent
the performances of memory management algorithms with respect to a single
program runniﬁg in a multiprogramming environment, Howeve:, it is not straight-
forwar& to relate these performances to overall system pefformance such as

system thfoughput rate,

VI. - CONCLUDING REMARKS

A general mefhod for the design of algorithms, which we call retention
algorifhms, for dynamic memory management has been developed, The retention
algorithms we deaigned have different retention rules, and hence.different
underlying program behavior models; for computing which parts of a program
constitute its working information at any time during its execution. 1In this

regard, it is of interest to study the relative performances of these retention
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.algorithms with respect to each other and, in particulaf, ﬁith respéct
to the DWS algorifhm.

In our experiments, it was found that, for the page traces tested, DWS
and LRUT were almost indistinguishable in performance and that they out-
performed LFUT and MFUT by almost an order of magnitude in the performance
measures we cheose, However, due to the page trace generation process we used
and to the limited number of traces we tested, these fiﬁdings are By no means
conclusive, To establish the relative merits of these algorithms, more
experiments must be performed so that at lest some statistical conclusions
can be drawn., It also appears that real program traces are preferred for such
purposes, as any program trace generation model 1nev1tab1y biases the results
in favor of some algorithms. These experiments can be performed on real
Systems or in simulated environments, A further refinement in the experiments
seems to be in the area of page reclamation. More realisbic and sophisticated
schemes, such as one in which the probability to reclaim a page depends on ﬁhe
length of time since it left the working set, can be emplbyed to reflect the
real operation of a multiprogramming system, Mﬁreovéi, it would be more
satisfactory to obtain the probability distribution through measurements on
real systems. Choices of other system performance measures that can relate
more readily to overail syétem.performance than those employed in our éxperiments
seem desirable, On a higher level, experiments with thesé algorithms in a
multiprogramming setting, rather than with individual programs, can provide
valuable information in evaluating various MemoTy management schemes.

From the implementation viewpoint, all the newly-designed retention
algorithms appear to reqﬂire, like DWS, large amounts of information, and do
not seem to be éfficient unless implemented in hardware; However, it might'

turn out that some variations of these algorithms, in which the rigid requirement
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that a replacement of time index from the memory span at every instant of
time is relaxed, could be a lot easier to implement, Furthermore, the
determination of the memory span capacity for any of these algorithms may'
be a fruitful research.topic; If separate working sets are kept for procedures
and for data, it may be interesting te investigate how these new algorithms
can be applied;

In conciusibn; we feel that further research work in this area may help
establish the merit and applicability of retention elgorithms as well as shed

some more light on the behavior of progrems.
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